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Abstract
In many semi-arid environments, vegetation cover is sparse, and is self-
organized into large-scale spatial patterns. In particular, banded vegetation is
typical on hillsides. Mathematical modelling is widely used to study these
banded patterns, and many models are effectively extensions of a coupled
reaction–diffusion–advection system proposed by Klausmeier (1999 Science
284 1826–8). However, there is currently very little mathematical theory on
pattern solutions of these equations. This paper is the first in a series whose
aim is a comprehensive understanding of these solutions, which can act as a
springboard both for future simulation-based studies of the Klausmeier model,
and for analysis of model extensions. The author focusses on a particular part
of parameter space, and derives expressions for the boundaries of the parameter
region in which patterns occur. The calculations are valid to leading order at
large values of the ‘slope parameter’, which reflects a comparison of the rate
of water flow downhill with the rate of vegetation dispersal. The form of the
corresponding patterns is also studied, and the author shows that the leading
order equations change close to one boundary of the parameter region in which
there are patterns, leading to a homoclinic solution. Conclusions are drawn
on the way in which changes in mean annual rainfall affect pattern properties,
including overall biomass productivity.

PACS numbers: 87.23.Cc, 02.70.−c, 87.10Ed

1. Introduction

In many semi-arid environments, vegetation cover is sparse, and is self-organized into spatial
patterns. For trees and shrubs, pattern wavelengths of about 1 km are typical, with bands of
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vegetation separated by gaps of bare ground; shorter wavelengths are observed for grasses (see
Valentin et al (1999) and Rietkerk et al (2004) for review). The patterns are most striking on
gentle slopes, where they typically consist of stripes running along the contours. Such banded
vegetation is hard to detect on the ground, and it was first observed in aerial photographs of
sub-Saharan Africa (MacFadyen 1950, Hemming 1965, Wickens and Collier 1971). Banded
vegetation patterns are now known to also be widespread in Australia (Mabbutt and Fanning
1987, Dunkerley and Brown 2002) and Mexico (Montaña et al 1990, Montaña 1992), with
more limited occurrence in South America, Asia and the Middle East (see table 1 and figure 3
of Valentin et al (1999)).

The geographical remoteness of most instances of banded vegetation, coupled with
their physical harshness, make field studies difficult and expensive. Moreover, there are no
laboratory replicates of the phenomenon. Therefore, theoretical models are an important tool
for studying these patterns, and a range of models have been developed (see Borgogno et al
(2009) for a detailed review). Early models were of cellular automaton type (Mauchamp et al
1994, Thiéry et al 1995, Dunkerley 1997), but partial differential equations are now the standard
formalism. These can be broadly divided into models that assume plant–plant interactions to
be based on their structural properties, such as root and crown geometry (e.g. Lefever and
Lejeune 1997, Couteron and Lejeune 2001, Barbier et al 2008, Lefever et al 2009), and those
centred around water redistribution. This latter class is currently in the most widespread use,
and all of the models are effectively extensions of a model proposed by Klausmeier (1999),
whose dimensionless form is

∂u/∂t =

plant
growth︷︸︸︷
wu2 −

plant
loss︷︸︸︷
Bu +

plant
dispersal︷ ︸︸ ︷
∂2u/∂x2, (1a)

∂w/∂t = A︸︷︷︸
rain-
fall

− w︸︷︷︸
evap-

oration

− wu2︸︷︷︸
uptake

by plants

+ ν∂w/∂x︸ ︷︷ ︸
flow

downhill

. (1b)

Here u(x, t) is plant density, w(x, t) is water density, t is time and x is space in a
one-dimensional domain of constant slope, with the positive direction being uphill. The
(dimensionless) parameters A, B and ν reflect rainfall, plant loss and slope gradient,
respectively. For full details of the dimensional model and nondimensionalization, see
Klausmeier (1999), Sherratt (2005) or Sherratt and Lord (2007).

Most extensions of the Klausmeier model involve separate variables for soil and surface
water (e.g. HilleRisLambers et al 2001, von Hardenberg et al 2001, Rietkerk et al 2002,
Gilad et al 2007, Ursino 2007, 2009). Some authors have also incorporated rainfall variability
(Ursino and Contarini 2006, Guttal and Jayaparakash 2007, Kletter et al 2009), a herbivore
population (van de Koppel et al 2002), more realistic representations of plant dispersal (Pueyo
et al 2008), and explicit representation of the dependence of model parameters on temperature
and atmospheric carbon dioxide (Kefi et al 2008). These various studies have made important
contributions to the ongoing ecological debates on the causes of vegetation patterns, and
the most effective management strategies. However, they are almost exclusively simulation-
based, with the mathematical theory available to guide the simulations being extremely limited.
Indeed, even for the original model of Klausmeier (1999), there has been little mathematical
work. This paper is the first in a series whose objective is a detailed understanding of pattern
solutions of the Klausmeier model (1a) and (1b).

Patterned solutions of (1a) and (1b) move in the positive x direction (uphill) at a constant
speed. Ecologically this migration arises because of higher moisture levels on the uphill edge
of the bands compared with their downhill edge, which is reflected in significant differences in
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Figure 1. A typical example of the part of the A–c parameter plane in which there are patterned
solutions of (1a) and (1b), which corresponds to limit cycles in (2a) and (2b). I plot the loci of
Hopf bifurcation points (——) and homoclinic solutions (——) in (2a) and (2b), which bound the
pattern region. The other parameters are B = 0.45 and ν = 182.5. The plot is truncated at c ≈ 20:
patterns actually exist for values of c up to about 50. The numerical solutions were performed using
AUTO (Doedel 1981, Doedel et al 1991, 2006). The loci of homoclinic orbits are approximations;
they are in fact the loci of solutions of a fixed but very long wavelength (3000). Further details of
the numerical continuation approach are given in Sherratt and Lord (2007).

plant death and seedling density (Montaña et al 2001, Tongway and Ludwig 2001). Estimates
of between 0.2 and 1 m year−1 are typical for the migration rate, although accurate data
spanning an appropriately long time period are limited (see table 5 of Valentin et al 1999).
Mathematically, migration is a consequence of the advection term in (1b), and it makes the
solution ansatz u(x, t) = U(z), w(x, t) = W(z) appropriate, where z = x − ct with c being
the migration speed. Substituting these solution forms into (1a) and (1b) gives the travelling
wave equations

d2U/dz2 + c dU/dz + WU 2 − BU = 0, (2a)

(ν + c) dW/dz + A − W − WU 2 = 0. (2b)

Patterned solutions correspond to limit cycles in this system of ODEs.
In Klausmeier’s original paper (Klausmeier 1999), mathematical analysis was limited to

the linear stability of spatially homogeneous solutions of (1a) and (1b). The only studies to go
beyond this investigate (2a) and (2b) using numerical bifurcation analysis (Sherratt and Lord
2007; Wang et al 2009). A typical result is illustrated in figure 1, which shows the region of
the A–c parameter plane in which patterns occur, for fixed values of B and ν. For a given value
of the migration speed c, patterns occur for a range of rainfall parameter values A, bounded
above by a Hopf bifurcation point and below by a homoclinic solution; details of the relevant
homogeneous equilibria are given in section 2. Intuitively, sufficiently high rainfall levels
give rise to only homogeneous vegetation, while very low rainfall levels imply a complete
desert. Intermediate rainfall levels are too low to maintain homogeneous plant cover, but are
compatible with vegetation bands.
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The dimensionless parameter ν depends on the ratio of the advection rate of water and the
(square root of the) plant diffusion coefficient (Klausmeier 1999, Sherratt 2005); as a result
it is very large, with a value of 200 being typical. In contrast, estimates of the plant loss
parameter B are between about 0.05 and 2 (Klausmeier 1999, Rietkerk et al 2002), with the
rainfall parameter A varying between about 0.1 and 3 depending on geographical region and
plant type (Klausmeier 1999). Therefore a natural mathematical approach is to investigate
the leading order asymptotic form of the patterns for large ν. When doing this, I follow
the approach of Sherratt and Lord (2007) and regard A and c as the primary parameters: in
applications, one is mainly concerned with the implications of significant changes in rainfall
level, set against the background of a relatively constant rate of plant loss. Note, however,
that small changes in B due to altered grazing and cropping may be important as a tool for
ecosystem management (Freudenberger and Hiernaux 2001, Noble et al 2001).

A major complication for this asymptotic approach is that the region in the A–c parameter
plane in which patterns occur (see figure 1) spans a range of order of magnitude dependences
of both A and c on ν. For example, the maximum rainfall level A at which patterns occur is
Os(ν), with the corresponding speed c being Os(1) (Sherratt 2005), while the homoclinic and
Hopf bifurcation loci intersect at A = Os(1) and c = o(1) (Sherratt and Lord 2007; this point
is visible near the c = 0 axis in figure 1). Note that the notation f = Os(g) denotes f = O(g)

and f �= o(g). As a result, a number of different cases must be considered, for different
regions of the parameter plane. This paper is the first in a series in which I will consider
these cases, documenting the boundaries of parameter space in which patterns occur, and the
form of these patterns. My overall objective in this programme of work is a comprehensive
understanding of patterned solutions of the Klausmeier model, which can act as a springboard
both for simulation-based studies of that model and for analysis of model extensions. This
requires essentially separate mathematical studies for different parts of the parameter region
giving patterns. In this paper I focus on the ‘tusk-shaped’ region that occurs for c greater than
about 6.5 in figure 1; I will show that this occurs when ν1/2 � c � ν and A2c = Os(ν).

In section 2 I discuss spatially homogeneous steady states and their stability. In section 3 I
study the equations that govern pattern solutions to leading order as ν → ∞, stating a theorem
on the existence of a homoclinic solution that I prove in section 4. In section 5 I show that the
equations studied in sections 3 and 4 cease to be the leading order equations for patterns in a
thin strip in the parameter plane, close to one boundary and in section 6 I study the patterns that
occur for parameters in this strip. In section 7 I summarize the main conclusions and discuss
their ecological implications.

2. Spatially homogeneous steady states

For all parameter values, (1a) and (1b) has a stable trivial steady state u = 0, w = A,
corresponding to bare ground, without vegetation. When A � 2B there are also two other
homogeneous steady states:

u = uu ≡ A − √
A2 − 4B2

2B
w = wu ≡ 2B2

A − √
A2 − 4B2

, (3)

u = us ≡ A +
√

A2 − 4B2

2B
w = ws ≡ 2B2

A +
√

A2 − 4B2
. (4)

The first of these is always unstable to homogeneous perturbations, while the second is stable
to homogeneous perturbations provided B is not too large (Klausmeier 1999, Sherratt 2005);
B < 2 is a sufficient condition for this, and holds for any realistic parameter values for semi-arid
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environments (Klausmeier 1999). For larger values of B, more complicated local dynamics
occur when A is small, but these are not relevant in applications, and henceforth I assume
that B < 2.

The region of the A–c parameter plane in which patterns occur is bounded on one side
by the locus of Hopf bifurcation points of the steady state (us, ws) in the travelling wave
equations (2a) and (2b) (illustrated in figure 1). For ν � 1, this locus can be calculated
explicitly. Linearizing (2a) and (2b) about (us, vs) gives the eigenvalue equation

(ν + c)λ3 + (cν + c2 − 1 − u2
s )λ

2 + (Bν + Bc − c − cu2
s )λ + B(u2

s − 1) = 0.

Comparing this with the generic form of a cubic eigenvalue equation at Hopf bifurcation

0 = (λ2 + C2
1 )(C2λ + C3) = C2λ

3 + C3λ
2 + C2

1C2λ + C2
1C3

gives the conditions for Hopf bifurcation as

(ν + c)(Bu2
s − B) − (cν + c2 − 1 − u2

s )(Bν + Bc − c − cu2
s ) = 0, (5a)

and

(u2
s − 1) · (cν + c2 − 1 − u2

s ) > 0. (5b)

Condition (5a) and (5b) is a cubic equation for c, and the solution relevant to the ‘tusk-shaped’
part of the pattern region is the largest of three real roots. Expanding c as a power series in ν

shows that this largest root is c = B3ν/A2 + o(ν), provided that 1 � c � ν (i.e. 1 � A �
ν1/2). Moreover, u2

s = A2/B2 + o(1) as A → ∞, so that cν + c2 − 1 − u2
s ∼ cν − Bν/c ∼ cν

as ν → ∞, and thus (5b) is satisfied.

3. Leading order pattern equations

In this paper I restrict attention to the ‘tusk-shaped’ part of the pattern region in the A–c

parameter plane, which occurs for c greater than about 6.5 in figure 1. The discussion in
section 2 shows that this is bounded on one side by the Hopf bifurcation locus cA2 = B3ν,
to leading order as ν → ∞. To investigate further the patterns that occur within the region,
it is convenient to rescale the equations. The appropriate rescalings are indicated via the
Hopf bifurcation locus; straightforward calculation shows that along this locus us ∼ A/B and
ws ∼ B2/A as ν → ∞, with the neutrally stable oscillations having period 2πc/B. Therefore,
I set

Ũ = (B/A)U W̃ = (A/B2)W z̃ = (B/c)z. (6)

Substituting these into (2a) and (2b) gives

(B/c2) d2Ũ/dz̃2 + dŨ/dz̃ + Ũ 2W̃ − Ũ = 0, (7a)

(ν + c) · (B3/cA) dW̃/dz̃ + A − (B2/A)W̃ − A Ũ 2W̃ = 0. (7b)

Since A � 1 and 1 � c � ν, the leading order form of these equations as ν → ∞ is

dŨ/dz̃ = Ũ − Ũ 2W̃ , (8a)

dW̃/dz̃ = σ 2(Ũ 2W̃ − 1), (8b)

where σ = Ac1/2/B3/2ν1/2, which is Os(1) as ν → ∞ near the Hopf bifurcation curve. The
rest of this section and section 4 are concerned with limit cycle solutions of (8a) and (8b).

Equations (8a) and (8b) have a unique steady state: Ũ = W̃ = 1. Explicit calculation
of eigenvalues shows that this steady state is stable if and only if σ < 1, with a Hopf
bifurcation at σ = 1; as expected, this condition is the same as the leading order condition for
Hopf bifurcation in the full travelling wave equations (2a) and (2b). Standard calculation
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Figure 2. Numerical continuation of the branch of limit cycles emanating from the Hopf bifurcation
in (8a) and (8b) at σ = 1. I plot the period of the limit cycle against the parameter σ . The limit
cycle branch proceeds monotonically with σ , terminating at a homoclinic orbit at σ ≈ 0.9003.
The computation was performed using the numerical continuation software package AUTO (Doedel
1981, Doedel et al 1991, 2006).

(e.g. section 3.4 of Guckenheimer and Holmes 1983) shows that the Hopf bifurcation is
subcritical, so that there are limit cycles (patterns) for σ just below 1. I have been unable to
determine analytically the behaviour of the limit cycle branch away from the neighbourhood of
the Hopf bifurcation point, but an important indicator of the way in which the branch terminates
is given by the following result.

Theorem. For equations (8a) and (8b) there is exactly one value of σ = σ ∗ ∈ (√
16/27, 1

)
for which there is a homoclinic solution.

The proof of this theorem is presented in section 4, and is constructive in the sense that it
gives a detailed picture of the form of the limit cycles for σ just above σ ∗; the form is unusual
and will be important in determining the behaviour of limit cycles of the full equations (2a)
and (2b) as σ → σ ∗ +.

Numerical continuation of the limit cycle branch of (8a) and (8b) is straightforward; I
used the software package AUTO (Doedel 1981, Doedel et al 1991, 2006). This shows that
the solution branch proceeds monotonically in σ from the Hopf bifurcation point at σ = 1,
terminating at the homoclinic orbit identified in the theorem (illustrated in figure 2). Numerical
computations show that σ ∗ ≈ 0.9003.

At first glance, it appears that the investigation of the ‘tusk-shaped’ part of the pattern
region in the A–c plane is complete, since (8a) and (8b) have limit cycle solutions for parameter
values between the loci of a Hopf bifurcation point and a homoclinic orbit, exactly as illustrated
for the full equations (2a) and (2b) in figure 1. However, it transpires that the homoclinic orbit
in (2a) and (2b) is quite different from that in (8a) and (8b). This is because when σ is
sufficiently close to σ ∗, (8a) and (8b) cease to be the leading order form of (7a) and (7b) for
large ν. Explanation of this, and determination of the actual form of the homoclinic solution
of (2a) and (2b), requires a fuller understanding of the homoclinic solution of (8a) and (8b),
which is provided by the proof of the theorem.



Pattern solutions of the Klausmeier Model for banded vegetation in semi-arid environments I 2663

Figure 3. An illustration of the form of the φ nullcline for equations (9a) and (9b). (a) A typical
example for σ >

√
16/27: there are two nullcline branches. (b) The case of σ = √

16/27, when
the two branches intersect. The three large dots in each picture indicate the three steady states
(0, 0), (σ, 1) and (0, 1). In (b), the shaded region is R2, defined in section 4.4. The nullcline is
given explicitly by µ = [σ ± (σ 2 − 4φ2(1 − φ))1/2]/(2φ).

4. Proof of the theorem

4.1. Alternative formulation of the equations

Direct investigation of the homoclinic solution of (8a) and (8b) is difficult because, as I will
show, the solution is actually homoclinic to a point at infinity. Therefore, it is convenient to
rewrite the equations, replacing W̃ by φ = ŨW̃ . For algebraic simplicity I also replace Ũ by
µ = σŨ , giving

dµ/dz̃ = µ − µφ, (9a)

dφ/dz̃ = µ2φ − σµ + φ − φ2. (9b)

Equations (9a) and (9b) have three steady states: (µ, φ) = (0, 0), (σ, 1) and (0, 1). The first of
these plays no role in the proof, and explicit calculation of eigenvalues shows that the second is a
stable focus for allσ ∈ (√

16/27, 1
)
. The steady state (0, 1) is key to the proof, since I will show

that it is this steady state to which the homoclinic solution connects; note that this steady state
corresponds to a point at infinity in the original Ũ–W̃ formulation. (0, 1) is non-hyperbolic.
It has a stable eigenvector (0, 1), and an unstable centre manifold φ = 1 − σµ + µ2 + O(µ3)

for µ > 0, along which µ = −1/(σ z̃) + O(1/z̃2) and φ = 1 + 1/z̃ + O(1/z̃2) as z̃ → −∞.
The nullclines play an important role later in the proof, and are easily calculated. The

µ nullclines are µ = 0 and φ = 1, independent of σ . However, the φ nullcline depends on
σ , and for σ ∈ (√

16/27, 1
)
, there are two nullcline branches, whose form is illustrated in

figure 3(a); at σ = √
16/27 these two branches meet (figure 3(b)).

4.2. Classification of the phase plane into three cases

There is exactly one trajectory, T say, leaving the steady state (0, 1), and it does so along the
centre manifold φ = 1 − σµ + O(µ2), entering the strip 0 < φ < 1. Since dµ/dz̃ > 0
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throughout this strip, the phase plane can be classified into one of three cases.

Case 1. T leaves 0 < φ < 1 through the line φ = 0.

Case 2. T remains within 0 < φ < 1. This requires dφ/dz̃ → 0 as z̃ → ∞, so that T must
approach the right-hand branch of the φ nullcline as z̃ → ∞, with µ → ∞.

Case 3. T leaves 0 < φ < 1 through the line φ = 1.

I will show that cases 1 and 3 apply when σ = 1 and σ = √
16/27, respectively, and I

will then show that this implies that case 2 holds for exactly one intermediate value of σ , and
that this corresponds to a homoclinic solution.

An important general consideration underlying the argument in various places is the
location of T relative to the φ nullcline. Explicit calculation shows that near the steady
state (0, 1), the φ nullcline is φ = 1 − σµ + (1 − σ 2)µ2 + O(µ3); recall that T leaves (0, 1)

along the centre manifold φ = 1 − σµ + µ2 + O(µ3). Therefore for all σ > 0, T lies between
the φ nullcline and the line φ = 1, sufficiently close to (0, 1). Moreover, dµ/dz̃ > 0 when
0 < φ < 1, implying that all trajectories crossing the φ nullcline with 0 < φ < 1 do so in the
direction of increasing µ. Thus T must remain to the right of the left-hand branch of the φ

nullcline, when σ ∈ (√
16/27, 1

)
.

4.3. Behaviour when σ = 1

Fixing σ = 1, I define L1 to be the line segment φ = 1 − µ/2, 0 < µ < 2. I further define
R1 to be the triangular region bounded by L1 and the line segments φ = 0, 0 < µ < 2 and
µ = 0, 0 < φ < 1 (illustrated in figure 4(a)). Since the slope of T at (0, 1) is −1, T enters
R1. Now along L1,

dφ/dµ = φ

µ
+

µφ − 1

1 − φ
= −1

2
− (µ − 1)2

µ
� −1

2
,

implying that all trajectories crossing L1 do so into R1. Therefore T cannot exit R1 through L1,
and neither can it leave through µ = 0, 0 < φ < 1, which is a solution trajectory. Moreover,
there are no steady states in the interior of R1, and T cannot terminate at the vertex (0, 0)

(which is a steady state) since dµ/dz̃ > 0 throughout the interior of R1. Therefore T must
exit R1 through φ = 0, i.e. case 1 applies.

4.4. Behaviour when σ = √
16/27

When σ = √
16/27, the two branches of the φ nullcline meet (at (µ, φ) = (1/

√
3, 2/3)), and

I define R2 to be the region bounded by the line segment φ = 1, 0 < µ <
√

16/27 and the
part of the φ nullcline with 1 > φ > 2/3 (illustrated in figure 3(b)). In section 4.2 I showed
that T enters R2. Since dφ/dz̃ < 0 on φ = 1, 0 < µ <

√
16/27, and dµ/dz̃ > 0 in the

interior of R2, T must exit R2 through the part of the φ nullcline with positive slope, i.e. at a

value of µ ∈
(

1/
√

3,
√

16/27
)

. Subsequently, µ and φ both increase with z̃ along T , until

the trajectory crosses the line φ = 1, i.e. case 3 applies.

4.5. Case 3 for σ = σ0 implies case 3 for σ < σ0

I now show that if case 3 applies for some σ = σ0 ∈ (√
16/27, 1

)
, then it also applies for all

σ ∈ (√
16/27, σ0

)
. I denote by T0 the curve in the µ–φ plane traced out by the trajectory T

when σ = σ0, and I define R3 to be the region enclosed by the segment of T0 between (0, 1)
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Figure 4. An illustration of various lines, regions and points in the µ–φ plane that are referred to
in the proof of the theorem. (a) The line L1 and region R1, defined in section 4.3. (b) The region
R3, defined in section 4.5. (c) The point P1, defined in section 4.6. (b) The point P2, defined in
section 4.6, and the points (µ1, 0) and (µ2, 0), defined in section 4.7; the dotted lines are the φ

nullclines.

and its first crossing of φ = 1, and the segment of the line φ = 1 between (0, 1) and this
crossing point (illustrated in figure 4(b)). The form of the centre manifold at (0, 1) implies
that the slope of T at (0, 1) is −σ , and thus for all σ < σ0, T enters R3. Now dφ/dµ is a
decreasing function of σ in the strip 0 < φ < 1, with dµ/dz̃ > 0; thus all trajectories crossing
T0 do so into R3. Moreover, there are no steady states in the interior of R3. Therefore for any
σ < σ0, T must exit R3 through φ = 1, i.e. case 3 applies.

4.6. Application of the continuity of T

The results in sections 4.3–4.5 together imply the existence of σ ∗ ∈ [√
16/27, 1

]
such that

case 3 applies for σ < σ ∗, while case 1 or case 2 apply for σ > σ ∗. I now define two special
points in the µ–φ plane. When case 1 applies, I denote by P1 the point at which T first crosses
φ = 0 (illustrated in figure 4(c)), and when case 3 applies, I denote by P2 the point at which T
first crosses the φ nullcline (illustrated in figure 4(d)). Note that I have shown in section 4.1
that T lies to the right of the left-hand branch of the φ nullcline, implying that P2 lies on the
right-hand branch.

Now T varies continuously with σ . Therefore, if case 1 were to apply when σ = σ ∗, the
locus of P2 would have to terminate (as σ → σ ∗−) at P1|σ=σ ∗ , which would be a finite point;
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this is impossible. Similarly case 3 cannot apply when σ = σ ∗, leaving only the possibility
that case 2 applies. Continuity is then possible, with limσ→σ ∗+ P1 = limσ→σ ∗− P2 = (+∞, 0).
Note that I have already shown that σ ∗ ∈ [√

16/27, 1
]
, and since cases 1 and 3 apply at σ = 1

and σ = √
16/27, respectively, I can now conclude further that σ ∗ ∈ (√

16/27, 1
)
.

As an aside, I mention that numerical calculations suggest that P1 moves monotonically
along the line φ = 0 as σ increases above σ ∗. However, I have not proved this, and thus I
cannot exclude the possibility that case 2 applies for values of σ > σ ∗. This is not an issue
for the proof of the theorem, though, which does not require uniqueness of case 2.

4.7. The form of T as σ → σ ∗−

For σ < σ ∗, I define µ1 and µ2 to be the values of µ at which T crosses the line φ = 1 for
the first and second times (illustrated in figure 4(d)). Now φ = 1 is a µ nullcline, on which
dφ/dz̃ has the same sign as µ − σ . Therefore 0 < µ2 < σ , so that limσ→σ ∗− µ2 exists and
lies in [0, σ ∗]. I will show that the limiting value is zero, by contradiction. Suppose that
limσ→σ ∗− µ2 ∈ (0, σ ∗]. Then fixing σ = σ ∗ and integrating (9a) and (9b) backwards in z̃

shows that µ1 is finite, since dµ/dz̃ and dφ/dz̃ remain bounded throughout the integration.
But dµ/dz̃ > 0 in 0 < φ < 1, and thus µ|P2 < µ1 when σ = σ ∗. This contradicts the result
in section 4.6 that P2 → (+∞, 0) as σ → σ ∗−.

Therefore µ2 → 0 as σ → σ ∗−, implying that the solution trajectory T approaches an
orbit that is homoclinic to (0, 1) as σ → σ ∗−. This completes the proof of the theorem.

5. Breakdown of the leading order equations (8a) and (8b)

Numerical continuation (e.g. figure 2) indicates that the branch of limit cycles of (9a) and (9b)
emanating from the Hopf bifurcation (σ = 1) proceeds monotonically in σ , terminating at
the homoclinic solution (σ = σ ∗ ≈ 0.9003). I have been unable to prove this, but in the rest
of the paper I assume it to be true, on the basis of strong numerical evidence. The theorem
then gives a clear picture of the form of limit cycles when σ is close to (and above) σ ∗. In
particular, the maxima of µ and φ on the limit cycle both → ∞ as σ → σ ∗+. For σ ∈ (σ ∗, 1),
I define µmax(σ ) to be the maximum value of µ on the limit cycle of (9a) and (9b); recall that
µ = σŨ . Then scaling arguments indicate that the maximum value of φ on the limit cycle of
(9a) and (9b) is also Os(µmax) as σ → σ ∗+, with a scaling of z̃ needed in order to balance the
terms in the equations. Specifically, substituting

µ̂ = µ/µmax φ̂ = φ/µ2
max ẑ = µ2

maxz̃ (10)

into (9a) and (9b) gives

dµ̂/dẑ = −µ̂φ̂ + O(µ−2
max),

dφ̂/dẑ = µ̂2φ̂ − φ̂2 + O(µ−2
max)

as σ → σ ∗+. These imply that φ̂ = µ̂(k̂− µ̂) to leading order, for some constant of integration
k̂, and this parabolic shape is evident in numerical solutions of (9a) and (9b) for σ just above σ ∗.

The scalings (10) have two key implications for the limit cycle solution of (8a) and
(8b)/(9a) and (9b). Firstly, as σ → σ ∗+, part of the solution changes over a z̃ length scale that
is O(µ−2

max), and secondly the maximum value of W̃ → ∞ in proportion to µmax (recall that
W̃ = σφ/µ). Both of these invalidate the derivation of (8a) and (8b) as the leading order form
of (7a) and (7b) for large ν. A sufficiently rapid (in z̃) change in the solution means that the
term (B/c2)d2Ũ/dz̃2 in (7a) and (7b) cannot be neglected, while sufficiently large W̃ causes
the term (B2/A)W̃ to be comparable in size to A, and hence non-negligible.
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Figure 5. The increase in µmax, the maximum value of µ in the limit cycle solution of (9a) and
(9b), as σ approaches σ ∗ (from above). Computations are done with 16-byte precision. These
results suggest that µmax = Os(log(σ − σ ∗)) as σ → σ ∗+. The numerical procedure involves
two distinct stages. The first stage is to determine accurately the value of σ ∗. I did this by
numerical integration of (9a) and (9b) starting on the centre manifold: σ is below/above σ ∗ if the
solution crosses µ = 1/µ = 0. The second stage of the calculation is to integrate (9a) and (9b)
for a sequence of values of σ just above σ ∗. In each case I use initial conditions close to the
equilibrium (σ, 1), which lies inside the limit cycle, integrating backwards in z̃ for a long interval,
and then recording the next two points at which the right-hand side of (9a) is zero: the larger of
the two µ values provides the estimate of µmax. The equations were solved numerically using the
routine DLSODAR (Hindmarsh 1983, Petzold 1983), which is part of the ODEPACK collection, and is
freely available at www.netlib.org. This routine incorporates root-finding capability, enabling easy
calculation of the zeros of the right-hand side of (9a).

Therefore, the ‘tusk-shaped’ part of the region of c–A parameter space giving patterns
cannot be studied as a single unit. In the bulk of the region, as ν → ∞, patterns approach the
limit cycle solutions of (9a) and (9b), for which sections 3 and 4 provide a detailed account.
However, there is a thin strip in parameter space, close to the curve c = σ ∗ 2B3ν/A2 (i.e.
σ = σ ∗), in which different scalings apply. The width of this strip depends on the rate at
which µmax → ∞ as σ → σ ∗+. I have been unable to determine this rate analytically, but a
numerical study is relatively straightforward (figure 5). Details of the numerical method are
given in the legend to figure 5; note that the required level of accuracy necessitates 16-byte
numerical precision. The results in figure 5 suggest that µmax = Os(log(σ −σ ∗)) as σ → σ ∗+.
Note, however, that this is not assumed in the subsequent analysis.

The term (B/c2)d2Ũ/dz̃2 in (7a) can be neglected to leading order as ν → ∞ provided
that µmax � c, while the condition for (8b) to be the leading order form of (7b) is µmax � A2.
Throughout the region of parameter space that I am studying, σ = Os(1) as ν → ∞, ⇒
A2c = Os(ν). Therefore if ν1/2 � c � ν, the initial breakdown of (8a) and (8b) occurs
because the term (B/A)W̃ in (8b) must be retained to leading order. I will show (section 6)
that the resulting equations contain a homoclinic orbit which is reached with the assumption
µmax � c remaining valid. The scaling range ν1/2 � c � ν defines the bulk of the ‘tusk-
shaped’ parameter region that I am considering. When c = Os(ν

1/2) and A = Os(ν
1/4),

(8a) and (8b) can become invalid simultaneously as the leading order forms of (7a) and (7b).
This determines the location of the base of the ‘tusk’. Its top occurs at a finite value of c that

http://www.netlib.org
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is Os(ν). Investigation of both of these cases are major studies in themselves, which I will
publish separately.

I conclude this section with a final point of clarification. I have shown (section 4) that
equations (8a) and (8b) have a homoclinic solution, at σ = σ ∗. Nothing in the preceding
discussion negates this. Rather, in this section I have additionally shown that this homoclinic
solution is not the limit for large ν of any solution of (7a) and (7b). I will show (section 6) that
for ν1/2 � c � ν, the homoclinic solution of (7a) and (7b) has a quite different form. The
significance of the homoclinic solution of (8a) and (8b) is that an understanding of its form is
an essential precursor to studying the homoclinic solution of (7a) and (7b).

6. Limit cycle solutions near σ = σ∗

I have shown that equations (8a) and (8b) cease to be the leading order form of (7a) and (7b)
as ν → ∞ in a thin strip in the c–A parameter plane, adjacent to the curve σ = σ ∗. To study
behaviour in this strip, it is convenient to rewrite (7a) and (7b) as

(B/c2) d2Ũ/dz̃2 + dŨ/dz̃ + Ũ 2W̃ − Ũ = 0, (11a)

(1 + c/ν) dW̃/dz̃ + σ 2(1 − Ũ 2W̃ ) − εW̃ = 0, (11b)

where ε = B2σ 2/A2 = c/(Bν). (Recall that σ 2 = A2c/(B3ν)). Note that as ν → ∞, A � 1;
since σ is bounded, this implies that ε � 1. My objective is to investigate limit cycle solutions
of (11a) and (11b), for large ν. I will derive such solutions in the form of four matched layers,
each of which has different scalings of the variables with respect to ν. I will show that my
solutions are valid provided that ν1/2 � c � ν; since A2c = Os(ν) in the parameter region
that I am studying in this paper, this is equivalent to 1 � A � ν1/4, i.e. ν−1/2 � ε � 1. I
present the layers in a clockwise order going round the limit cycle in the Ũ–W̃ plane, which
is in the direction of decreasing z̃; all rescalings can be given just in terms of the parameter ε.

Layer 1. Here there is no rescaling. Therefore provided that ν � c � 1, the leading order
equations are simply (8a) and (8b). For notational consistency with what follows, I write
Ũ = Ũ1, W̃ = W̃1, z̃ = z̃1 in this layer.

Layer 2. This is a ‘thick’ layer, corresponding to slow changes with respect to z̃. The
appropriate rescalings are

Ũ2 = Ũ/ε W̃2 = εW̃ z̃2 = εz̃, (12)

⇒ (Bε2/c2)d2Ũ2/dz̃2
2 + ε dŨ2/dz̃2 + Ũ 2

2 W̃2 − Ũ2 = 0,

(1 + c/ν)dW̃2/dz̃2 + σ 2
(
1 − εŨ 2

2 W̃2
) − W̃2 = 0.

Therefore provided that ν � c � ε, the leading order equations are

Ũ2
(
Ũ2W̃2 − 1

) = 0 dW̃2/dz̃2 + σ 2 − W̃2 = 0. (13)

Equations (13) imply that

Ũ2 = (σ 2 − k2ez̃2)−1 W̃2 = σ 2 − k2ez̃2 (14)

to leading order, where k2 is a constant of integration. (The alternative possibility of Ũ2 ≡ 0 is
not relevant.) Because of the different scalings for z̃ in this layer and layer 1, I require that the
behaviour of (Ũ1, W̃1) as z̃1 → −∞ matches that of (Ũ2, W̃2) at some finite value of z̃2, which
I arbitrarily take to be zero. Expanding (14) in power series about z̃2 = 0 and then undoing the
scalings (12) shows that the behaviour of W̃1 as z̃1 → −∞ must match (σ 2k2)/ε − k2z̃1 + · · ·,
which requires k2 = σ 2. Then matching of Ũ1 and Ũ2 requires Ũ1 ∼ 1/(−σ 2z̃1) as z̃1 → −∞.
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The substitutions µ = σŨ1 and φ = Ũ1W̃1 convert the leading order equations in layer 1 to
(9a) and (9b), and the matching conditions become µ ∼ −1/(σ z̃1) and φ → 1 as z̃1 → −∞.
Therefore, the required solution in layer 1 corresponds to the unique trajectory in (9a) and (9b)
leaving the steady state (0, 1) along the centre manifold (see section 4; the required trajectory
is T ).

Layer 3: Intuitively, layer 2 reflects the approach of the limit cycle to its minimum value of
Ũ , and it is a ‘thick’ layer, corresponding to the slow (algebraic) approach to (µ, φ) = (0, 1)

of the trajectory of (9a) and (9b) relevant to layer 1. Layer 3 corresponds to the increase in Ũ

away from its minimum value, and no rescaling of z̃ is required: this corresponds intuitively
to (9a) and (9b) having an unstable eigenvector at (µ, φ) = (0, 1). However, Ũ and W̃ must
be rescaled to reflect the proximity to (µ, φ) = (0, 1). Formally I set

Ũ3 = Ũ/ε W̃3 = εW̃ z̃3 = z̃,

⇒ (B/c2)d2Ũ3/dz̃2
3 + dŨ3/dz̃3 + Ũ 2

3 W̃3 − Ũ3 = 0,

(1 + c/ν) · (1/ε)dW̃3/dz̃3 + σ 2
(
1 − εŨ 2

3 W̃3
) − W̃3 = 0.

Therefore provided that ν � c � 1, the leading order solution is

Ũ3 = [
k3 − h3 exp(−z̃3)

]−1
W̃3 = k3,

where k3 and h3 are constants of integration. Matching between this layer and layer 2 requires
that limz̃2→−ζ (Ũ2, W̃2) = limz̃3→+∞(Ũ3, W̃3) for some finite ζ > 0, i.e. k3 = σ 2(1 − e−ζ ).

Layer 4: Layers 1 and 3 are linked by a transition layer in which variation with respect to z̃ is
rapid. The appropriate scalings are

Ũ4 = εŨ W̃4 = εW̃ z̃4 = z̃/ε2,

⇒ (
B/(c2ε2)

)
d2Ũ4/dz̃2

4 + dŨ4/dz̃4 + Ũ 2
4 W̃4 − ε2Ũ4 = 0,

(1 + c/ν)dW̃4/dz̃4 + σ 2
(
ε3 − Ũ 2

4 W̃4
) − ε2W̃4 = 0.

Therefore provided that ν � c � 1/ε, the leading order solution is

σ 2Ũ4 + W̃4 = k4
k2

4 z̃4

σ 2
+ h4 = k4

σ 2Ũ4
+ log

(
k4 − σ 2Ũ4

Ũ4

)
, (15)

where k4 and h4 are constants of integration. I require that the limiting form of this solution
as z̃4 → +∞ matches the behaviour of the layer 3 solution as z̃3 approaches an arbitrary finite
matching point, which I take to be zero. This holds provided that k4 = k3 = h3. The constant
h4 corresponds to an expected arbitrary o(1) translation in z̃, and can be taken as zero without
loss of generality.

Matching layers 1 and 4. There remains one outstanding constant of integration, for which ζ

is the most convenient choice. The final step in the construction of the limit cycle solution is to
match the behaviour of the layer 4 solution as z̃4 → −∞ with that of the layer 1 solution as z̃1

approaches an (arbitrary) finite matching value; this matching will determine the relationship
between ζ and σ . The implicit solution (15) implies that (Ũ4, W̃4) → (k4/σ

2, 0) as z̃4 → −∞.
From the difference in the scalings of Ũ in layers 1 and 4, it follows that Ũ1 must contribute
a term (k4/σ

2) · (1/ε) at the matching point. Moreover, a detailed investigation (omitted for
brevity) shows that the first term in the asymptotic expansion of W̃4 with a non-zero limit as
z̃4 → −∞ is Os(ε

3), implying that W̃1 = o(1) is required at the matching point (as ν → ∞).
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Figure 6. Numerically calculated values of µ0(σ ), the point at which the trajectory T of equations
(9a) and (9b) (defined in section 4) crosses the φ = 0 axis. Note that I plot log10(σ − σ ∗) on the
horizontal axis; µ0 is defined only for σ ∈ (σ ∗, 1), and the results in section 4 imply that µ0 → ∞
as σ → σ ∗+. Computations were done with 16-byte precision. I calculated the value of σ ∗ to high
accuracy as described in the legend to figure 5, and then integrated (9a) and (9b) for a sequence of
values of σ just above σ ∗. In each case I used initial conditions close to the equilibrium (0, 1) and
lying on the centre manifold at that equilibrium. I used the ODE solver DLSODAR (Hindmarsh 1983,
Petzold 1983), which is part of the ODEPACK collection, and is freely available at www.netlib.org.
This routine incorporates root-finding capability, enabling easy calculation of the point at which φ

becomes zero.

These conditions on Ũ1 and W̃1 determine the relationship between ζ and σ . In section 4, I
defined T to be the unique trajectory of (9a) and (9b) leaving (µ, φ) = (0, 1), and I showed
that for σ ∈ (σ ∗, 1), φ decreases along T until the trajectory crosses the φ = 0 axis. I now
define µ0(σ ) to be the value of µ at this crossing; leading order matching of W̃1 and W̃4

determines this as the matching point. Note that µ0 is defined only for σ ∈ (σ ∗, 1), and that
µ0 → ∞ as σ → σ ∗+. Since Ũ1 = µ/σ , matching between layers 1 and 4 requires that
µ0(σ )/σ = (k4/σ

2) · (1/ε). But k4 = σ 2(1−e−ζ ), and thus the required relationship between
ζ and σ is

µ0(σ )/σ = (
1 − e−ζ

)
Bν/c . (16)

Note in particular that since c � ν as ν → ∞, (16) implies that for any fixed value of ζ ,
µ0(σ ) → ∞ as ν → ∞, ⇒ σ → σ ∗+.

The solution that I have derived is valid in a thin strip in the A–c parameter plane, adjacent
to the curve σ = σ ∗. The width of this strip depends on the rate at which µ0(σ ) → ∞
as σ → σ ∗+, which I have been unable to determine analytically. However, numerical
calculations (illustrated in figure 6) suggest that µ0(σ ) = Os(log(σ − σ ∗)) as σ → σ ∗+,
which would imply that the approach of σ to σ ∗ is exponential in ν for any fixed ζ . It would
then follow that the width is exponentially small in ν as ν → ∞, which is consistent with the
numerical calculations in section 5.

Away from σ = σ ∗, it is the limit cycle solution of (8a) and (8b) that is relevant for
patterns. In the thin strip, the period of the limit cycles is dominated by layer 2 (‘thick’), and
is ζ/ε to leading order. Therefore, as expected, the layer structure breaks down as ζ → 0+,

http://www.netlib.org
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corresponding to the solution approaching a limit cycle solution of (8a) and (8b). As ζ → +∞,
the period of the limit cycle → ∞, so that the limit cycle approaches a homoclinic solution.
This corresponds to the homoclinic solution in the full model (2a) and (2b), and it has quite a
different form from the homoclinic solution of (8a) and (8b). Since z̃2 = −ζ is the matching
point between layers 2 and 3, the solution is homoclinic to the limiting location of this point
as ζ → ∞, i.e.

(Ũ , W̃ ) = lim
ζ→∞

(
ε

σ 2(1 − e−ζ )
,
σ 2(1 − e−ζ )

ε

)
= (ε/σ 2, σ 2/ε) = (B2/A2, A2/B2).

Using (6), this corresponds to (U, W) = (B/A, A), which is exactly the leading order form
(as ν → ∞) of (uu, wu), defined in (3). This shows that on the part of the boundary of the
pattern region that I am considering, the pattern solution is homoclinic to (uu, wu).

In equations (8a) and (8b), the limit cycles become unbounded in both Ũ and W̃ as they
approach the homoclinic limit. However, this is not the case for the limit cycle solutions I have
constructed in this section. On these limit cycles, the maximum/minimum of Ũ is given by
the matching points between layers 1 and 4/layers 2 and 3, respectively. Therefore, on these
limit cycles

ε/
[
σ 2(1 − e−ζ )

]
� Ũ � (1 − e−ζ )/ε,

i.e.
B2/A2

1 − e−ζ
� Ũ � (1 − e−ζ )Bν/c,

i.e.
B/A

1 − e−ζ
� U � (1 − e−ζ )Aν/c

to leading order as ν → ∞, using (6). Hence the limit cycle solution for U remains both
bounded and bounded away from zero, up to and including the homoclinic limit (ζ = ∞),
for which U varies between B/A and Aν/c. The variation in W can be found in the same
way, although the minimum value depends on calculation of the Os(ε

3) term in the asymptotic
expansion of W̃4, which I have omitted for brevity. This shows that c2/(Aν2) � W � A.

To test these results numerically, I tracked the branch of limit cycle solutions of (2a)
and (2b) by numerical continuation. I used the software package AUTO (Doedel 1981, Doedel
et al 1991, 2006), with A as the principle continuation parameter. I decreased A from a large
initial value, first detecting the Hopf bifurcation point of (us, ws) and then following the limit
cycle branch until numerical continuation fails, close to the homoclinic limit. Figure 7 shows
that maxz{U(z)}c/(Aν) increases with the period up to a maximum value, and then remains
approximately constant as the period increases further. (Note that the period increases with
A). In terms of my notation above, the transition to a constant value of maxz{U(z)}c/(Aν)

would be expected to occur at a value of ζ that is at least approximately independent of ν.
Now the period of the limit cycle is ζ/ε = ζBν/c, to leading order as ν → ∞. Moreover
ν � c, and thus the value of the period at which the transition occurs should increase with ν,
as seen in figure 7. Moreover, as the parameter ν is increased, figure 7 shows that the limiting
maximum value of maxz{U(z)}c/(Aν) approaches 1, exactly as predicted by my calculations.

I conclude this section with a brief comment on its validity. The solution structure that
I have derived in this section is valid only if c satisfies ν � c � 1/ε. Since 1/ε = Bν/c,
the condition for validity is ν � c � ν1/2. Qualitatively different behaviours occur when
c = Os(ν) and c = Os(ν

1/2), and as mentioned previously, I will publish details of these cases
separately.



2672 J A Sherratt

Figure 7. Numerical verification of the predictions of the matched asymptotic expansion
constructed in section 6 for the limit cycle solutions of (2a) and (2b) when σ is close to σ ∗.
Using the software package AUTO (Doedel 1981, Doedel et al 1991, 2006), I performed a numerical
continuation of limit cycle solutions of (2a) and (2b). I used A as the principle continuation
parameter, and decreased A from a large initial value, determining the Hopf bifurcation point of
(us , ws), and then following the limit cycle branch emanating from this. In the figure, I plot
maxz{U(z)}c/(Aν) against the period along this branch, for three different values of ν. The key
features of these plots are that maxz{U(z)}c/(Aν) approaches a limiting value as the period → ∞,
that the period at which this limiting value is attained increases with ν, and that this limiting value
approaches 1 as ν → ∞, as predicted by the analysis in section 6. The other parameter values are
B = 0.45 and c = 2B3ν3/4, with ν as indicated on the curves.

7. Discussion

The Klausmeier model (1a) and (1b) is one of the most generic mathematical models for
vegetation patterning in semi-arid environments. Nevertheless, there has been very little
previous analysis of the model equations. My objective in this paper has been a detailed
investigation of pattern solutions, in one particular region of parameter space. My specific
results, which are valid to leading order for large values of the slope parameter ν, are as
follows.

(1) For any migration speed c in the range ν1/2 � c � ν, there are patterns for values of the
rainfall parameter A satisfying

A ·
( c

B3ν

)1/2
∈ (

σ ∗, 1
)
,

where σ ∗ ≈ 0.9003 is defined in section 3.

(2) The upper limit on A in #1 corresponds to a Hopf bifurcation in equations (2a) and (2b),
so that the pattern amplitude approaches zero at this boundary, while the limiting spatial
period is 2πc/B.

(3) The lower limit on A in #1 corresponds to a homoclinic solution in equations (2a) and
(2b), that is homoclinic to the steady state (uu, wu), defined in (3). In this solution, the
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plant density u varies between B/A and Aν/c, while the water density w varies between
c2/(Aν2) and A.

(4) Denote by L the spatial period of a pattern solution. Then patterns for which L increases
with ν such that either L = Os(ν/c) or L � ν/c, with ν1/2 � c � ν, occur at a value of
the rainfall parameter A satisfying

µ0(Ac1/2B−3/2ν−1/2) = (Aν1/2B−3/2c−1/2) · (1 − e−cL/(Bν)),

where µ0(.) is defined in section 6. This follows from equation (16), and the condition
L = Os(ν/c) is equivalent to ζ = Os(1). If L � ν/c, then for sufficiently large ν the
solution lies outside the thin strip in which the calculations in section 6 apply, and the
leading order relationship between A and L is simply that between the period of the limit
cycle solution of (9a) and (9b) and the parameter σ = Ac1/2B−3/2ν−1/2.

(5) The equations governing the leading order form of the patterns as ν → ∞ have one form
(see sections 3 and 4) for values of A away from the lower limit in #1, and another form
(see section 6) close to this lower limit. Numerical calculations suggest that the latter case
applies only when A is exponentially close (in ν) to the lower limit.

The ecological literature contains a large amount of data on banded vegetation patterns. For
example, the comprehensive review of Valentin et al (1999) lists 41 ‘main references’ to
field studies (see their table 1 and see section 1 of Borgogno et al (2009) for more recent
references). However, few if any of these empirical data sets are complete, and an important
role for theoretical modelling in this area is to provide estimates for missing measurements.
In particular, there are only a handful of studies containing estimates of uphill migration speed
(see table 5 of Valentin et al 1999). My results show clearly that migration speed can be
estimated using the model (1a) and (1b), on the basis of data on mean annual rainfall, the
slope of the study site, and the level of herbivory, together with one observational statistic on
pattern type, such as wavelength. In older studies, wavelength is usually available from aerial
photographs, and in more recent cases its estimation is straightforward, via online repositories
of satellite images.

Another ecologically important quantity is the net biomass productivity, which
corresponds to the mean value of the plant density u(x, t). My analysis shows that in the
parameter region I am considering, productivity varies between us (defined in (4)) at the upper
limit on A for patterns, and uu (defined in (3)) at the lower limit. The latter follows from
the exponential approaches in z̃ of the homoclinic solution constructed in section 6 to the
equilibrium (uu, wu),1 which imply that the ‘pulse’ makes no contribution to the mean. For
a given value of the migration speed c, the transition between these two limiting values can
be calculated numerically via continuation of the limit cycle solutions of (2a) and (2b), and
a typical result is illustrated in figure 8. As one would expect intuitively, the productivity
decreases with the rainfall parameter A. Through most of the pattern region, the productivity
remains relatively close to the plant density at the coexistence equilibrium, us , dropping
sharply to uu near the homoclinic limit. This reflects the rapid change in pattern form close to
σ = σ ∗. An important implication of my analysis is that away from this boundary in parameter
space, and to leading order for large ν, the ratio of productivity in banded vegetation to the
corresponding uniform vegetation density (us) is a function of the single parameter grouping
A2c/(B3ν).

1 The homoclinic limit for the solution in section 6 is ζ → ∞. The ‘pulse’ of the solution has layer 2 at one side and
layer 3 at the other. In both of these layers, in the limit of ζ → ∞, the leading order solution decays exponentially to
its asymptotic steady state.
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Figure 8. An illustration of the mean value of plant density U (the biomass productivity) as a
function of mean annual rainfall A (solid curve), for a fixed value of migration speed c. This was
calculated by numerical continuation of limit cycle solutions of (2a) and (2b), as described in the
legend to figure 7. The upper and lower dashed lines are us and uu, respectively. The parameter
values are B = 0.45, ν = 106, c = 3 × 104. The horizontal axis shows the full range of A for
which patterns occur, for these values of the other parameters.
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