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Abstract

We study self-contact phenomena in elastic rods that are constrained to lie on a
cylinder. By choosing a particular set of variables to describe the rod centerline the
variational setting is made particularly simple: the strain energy is a second-order
functional of a single scalar variable, and the self-contact constraint is written as
an integral inequality.

Using techniques from ordinary differential equation theory (comparison prin-
ciples) and variational calculus (cut-and-paste arguments) we fully characterize the
structure of constrained minimizers. An important auxiliary result states that the
set of self-contact points is continuous, a result that contrasts with known examples
from contact problems in free rods.

1. Introduction

The study of self-contact in elastic rods has seen some remarkable progress over
the last ten years, with highlights such as the numerical work of Tobias, Coleman
and Swigon [27, 7, 6], the introduction of global curvature by Gonzalez and
co-workers [11, 12], and the derivation of the Euler–Lagrange equations for energy
minimization by Schuricht and von der Mosel [22]. Parallel advances have
been made on the highly related ideal knots and Gehring links, where ropelength
is minimized instead of elastic energy [5, 21, 4].

Despite this progress important questions remain open. We are still far from
understanding analytically the solutions of the Euler–Lagrange equations for gen-
eral contact situations. Even if we limit ourselves to global minimizers of an appro-
priate energy functional, we can prove little about the form of solutions as soon as
contact is taken into account.

For instance, a long-standing conjecture for closed elastic rods is that in the
limit of long rods under constant twist the global energy minimizer should be a ply
(double helix) with a loop on each end. If a structure of this type is assumed, then
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the limiting pitch angle can be determined [26]; but the difficult part actually con-
sists in showing that global minimizers have this structure. Incidentally, since local
minimizers of different type have been found numerically [7, 6], the restriction to
global minimizers appears to be essential.

This example is typical for the current state of understanding: if assumptions
are made on the set of contacts, then characterizations are possible [3, 17, 9, 25,
26, 14, 24], but for unrestrained geometry little is known rigorously. It shows how
our lack of understanding of energy minimizers is intimately linked to the lack of
knowledge about structure of the contact set. Examples show that this structure can
be non-trivial: for instance, non-contiguous contact appears at the end of a ply in
an elastic rod [6].

In this paper we study a problem of self-contact of an elastic rod in which the rod
has reduced freedom of movement: the centerline of the rod is constrained to lie on
the surface of a cylinder (Fig. 1). In contrast to the full three-dimensional problem
referred to above, the reduced dimensionality of this problem enables us to give a
near-complete characterization of global minimizers, without making any a priori
assumptions on the structure of the contact set. Notwithstanding this, determining
the structure of the contact set is a central element of this paper.

We transform the classical Cosserat model of an elastic, unshearable rod of
circular cross-section into a more convenient form. The functional that is to be
minimized (representing stored energy and work done by the end moment) is

F(u) =
∫ T

0

[
a(u)u′2 + b(u)

]
,

where

a(u) = 1

4π2r2

1

(1 + u2)5/2

and

b(u) = 1

r2(1 + u2)3/2
− 2M

Br

√
1 + u2 − u√

1 + u2
. (1)

Fig. 1. The centerline of a rod on a cylinder is described using cylindrical coordinates: the
independent variable x is the tangential coordinate, and the position of the centerline is given
by the function ζ(x) measuring distance along the cylinder axis.
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Here r is the radius of the cylinder, M is the moment applied to the end of the rod,
and B is the bending coefficient of the rod. The centerline of the rod is character-
ized by ζ(x), which measures distance along the cylinder axis as a function of a
tangential independent variable x . The unknown in this minimization problem is
the derivative u(x) = ζ ′(x), which may be thought of as the co-tangent of the angle
between the centerline tangent and the cylinder axis; u is zero when the rod curls
around the cylinder orthogonal to the axis, and u =±∞ when the rod is parallel to
the axis. This transformation is detailed in Section 3.

The most interesting part of the variational problem is the transformed contact
condition (condition of non-self penetration). In this paper we take the thickness of
the rod to be zero. Then, under assumptions detailed below, the non-self penetration
condition is

∫ x+1

x
u � 0 for all 0 � x � T − 1, (2)

where the interval [x, x + 1] corresponds to one full turn around the cylinder; this
condition formalizes the intuitive idea that non-self penetration is equivalent to the
condition “that the rod remain on the same side of itself”. This condition on u makes
the variational problem a non-local obstacle problem. Non-zero thickness requires
a contact condition that is substantially more involved than (2); we comment on
this situation in Section 3.5.

Both the background in rod theory and the independent mathematical context
of this minimization problem raise questions about the solutions:

(1) Do solutions exist?
(2) What is the minimal, and what is the maximal regularity of minimizers?
(3) When is there contact, i.e. when is the contact set

ωc :=
{

x ∈ [0, T − 1] :
∫ x+1

x
u = 0

}
(3)

non-empty?
(4) Given that ωc �= ∅, what is the structure of ωc? Is the contact simply contained

in a single interval, or is the structure more intricate, as in the examples of
contact–skip–contact at the end of a ply [6] and in a (ropelength minimizing)
clasp [23, 4]?

(5) How are the contact forces distributed over the rod?
(6) Does the solution inherit the symmetry of the formulation, i.e. is it true that

u(x) = u(T − x)? This is the case for a symmetric rod on a cylinder without
contact condition [13], but need not be true when contact is taken into account.

In the rest of this paper we address these questions.

2. Results

The first main result of this investigation (Theorem 1) shows that the contact
condition (2) is essential — without this condition the centerline of a rod may
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intersect itself. A little experiment with some string wrapped around a pencil will
convince the reader that this is the case. We also prove the regularity result that
a constrained minimizer u is of class W 2,∞, and we derive the Euler–Lagrange
equation

N (u)(x) := −2a(u(x))u′′(x)− a′(u(x))u′2(x)+ b′(u(x)) =
∫ x

x−1
f, (4)

where the Lagrange multiplier f is a non-negative Radon measure with support
contained in the contact set ωc (Theorem 2).

From stationarity alone, which is the basis of Theorem 2, the characterization
of f as a positive Radon measure appears to be optimal; no further information
can be extracted. In Section 7 we use two different additional assumptions to fur-
ther characterize the contact set and subsequently the measure f . In both cases we
obtain the important result that the contact set is a (possibly empty) interval and
that the measure f is a sum of Dirac delta functions, as represented schematically
in Fig. 2. The weighting of the delta functions is shown in the middle of Fig. 2:
there is a linear decrease or increase in weight from one side of the contact set to
the other (Theorem 3). Since f may be interpreted as the contact force, we deduce
that

Fig. 2. The function g(x) = ∫ x
x−1 f is piecewise constant (top); the jumps correspond to

Dirac delta functions in f (middle). Note that the support of g is the set ωc + [0, 1] by the
definition of g. The solution u corresponding to f and g is shown at the bottom.
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Fig. 3. A typical rod configuration (left; front and back views) that minimizes energy and
satisfies the contact condition. On the right the bars indicate the contact forces corresponding
to the arrows in Fig. 2. (The analysis of this paper assumes zero rod thickness — in this
picture the rod has been fattened for presentation purposes.)

(i) the contact force is concentrated in at most two tangential positions x1 and x2,
and in integer translates of x1,2;

(ii) the magnitude of the contact force is maximal at the contact point where the
rod lifts off, and decreases linearly with each turn. Fig. 3 graphically illustrates
this behavior.

The decrease in contact force with each turn can be understood in the following
way. The difference between the contact forces on either side of the rod creates a
resulting force exerted on the rod, and the two resultant forces that act at x1,2 mod 1
point in opposite directions. If we imagine a single, closed ring with two forces
acting on it in this way, the two forces create a moment that will bend the ring. This
also happens with the coil of the current problem, as is demonstrated by the small
but definite oscillations in the numerical solutions calculated in Section 9.

As mentioned above, the crucial result that the contact set is connected requires
additional assumptions. If we step back from this rod-on-cylinder model, and allow
a and b to be general given functions, then for a large class of such functions the
nonlinear operator on the left-hand side of (4) N (u) satisfies a version of the com-
parison principle,

Nu1 � Nu2 =⇒ u1 � u2,

(see Definition 2 for the precise statement). For such functions a and b, any station-
ary point has a connected contact set (Theorem 4). The argument is based on the
observation that non-contact in some interval (α, β) implies that f = 0 on (α, β)
and therefore that the right-hand side of (4),

g(x) =
∫ x

x−1
f, (5)

is non-increasing on (α, β) and non-decreasing on (α − 1, β − 1).
Importantly, however, the functions a and b given in (1) are such that the asso-

ciated operator mostly fails to satisfy this comparison principle. We therefore also
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take a different approach, in which we obtain the same result by only considering
global minimizers, using an argument based on constructing other minimizers by
cutting and pasting; the combined condition of minimization and non-contact in an
interval (α, β) implies the existence of additional regions of non-contact outside
of the interval (α, β), implying that the right-hand side of (4) is constant on (α, β).
From this the result follows (Theorem 5).

In both cases, the fact that the contact set is an interval implies that the boundary
of the contact set is “free” — the measure f is zero on an additional interval of
length one extending on both ends of ωc. This implies that the right-hand side g
is increasing and decreasing at the same time — except at points that lie at integer
distance from the two boundary points. This imposes the specific structure on g
and f that is shown in Fig. 2.

The issue of symmetry of minimizers is a subtle one, which again depends
on the presence or absence of a comparison principle. The comparison principle
simplifies the structure of solutions: all stationary points are symmetric (up to an
unimportant condition on b). Without a comparison principle, and more precisely
when minimization of F favors oscillation, this is no longer true, and even stationary
points that are global minimizers may be asymmetric (Section 8).

Using the characterization of f and g derived earlier we use two numerical
methods to investigate constrained minimizers (Section 9): one is a method of
direct solution using a boundary-value solver; and the other a continuation method.
A typical solution is shown in Fig. 3.

The simple structure of the functional and the contact condition suggest that
the methods and results of this paper might be applicable to other systems than
this particular rod-on-cylinder model. We therefore state and prove our results for
general functions a and b. The main requirements are that a and b are smooth and
that a is positive; other conditions are mentioned in the text below.

3. Problem setting: derivation of the rod-on-cylinder model

3.1. Kinematics

Consider an elastic rod of circular cross-section that is constrained to lie on a
cylinder, and which is subject to a force T and a moment M at the ends. We assume
that at the rod ends, T and M are maintained parallel to both the axis of the cylinder
and the axis of the rod, but that the loading device leaves the rod ends free to rotate
around the circumference of the cylinder; the ends of the rod therefore need not be
coaxial. The rod is naturally straight and inextensible, and material cross-sections
are assumed to remain orthogonal to the centerline. We will derive a minimization
problem for rods of length 2� and later take the limit � → ∞.

In the Cosserat rod theory [1] (Chapter VIII) the configuration of this rod is
characterized by a right-handed orthogonal rod-centered coordinate frame of direc-
tors, {d1, d2, d3}, each a function of the arc length parameter s. The director d3 is
assumed parallel to the centerline tangent, and by the assumption of inextensibility
the centerline curve r satisfies

ṙ = d3,
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where the dot denotes differentiation with respect to arc length. The strain of the
rod is characterized by the vector-valued function u given by

ḋk = u × dk, k = 1, 2, 3.

When decomposed as u = κ1d1 + κ2d2 + τ d3, the components may be recognized
as the two components κ1,2 of the curvature vector and the twist τ .

We choose a fixed frame of reference {e1, e2, e3}, where e3 is parallel to the cyl-
inder axis, and we relate the frame {d1, d2, d3} to this frame by a particular choice
of Euler angles {θ, ψ, φ} [16]. In this parametrization θ is the angle between d3
and e3 (or between the centerline and the cylinder axis), ψ characterizes the rota-
tion around the cylinder axis, and φ is a partial measure of the rotation between
cross-sections. The condition that the centerline of the rod lie on the surface of a
cylinder of radius r translates into the kinematic condition

ψ̇ = 1

r
sin θ. (6)

Note that it is natural not to restrict ψ to an interval of length 2π . In terms of the
remaining degrees of freedom {θ, φ} the curvatures and twist are given by

κ1 = θ̇ sin φ − 1

r
sin2 θ cosφ,

κ2 = θ̇ cosφ + 1

r
sin2 θ sin φ,

τ = φ̇ + 1

r
sin θ cos θ.

3.2. Energy, work, and a variational problem

The strain energy of the rod is given by [16],

E(θ, τ ) = B

2

∫ �

−�
(κ2

1 + κ2
2 )+ C

2

∫ �

−�
τ 2

= B

2

∫ �

−�
θ̇2 + B

2r2

∫ �

−�
sin4 θ + C

2

∫ �

−�
τ 2.

Here B and C are the bending and torsional stiffnesses respectively. To determine
the work done by the tension and moment at the ends of the rod we need to charac-
terize the generalized displacements associated with these generalized forces. For
the tension T the associated displacement is the shortening S,

S(θ) =
∫ �

−�
(1 − cos θ).

The generalized displacement associated with the moment M is the end rotation,
which is well defined by the assumption of equal end tangents. It is common to
identify the end rotation with a link-like functional

L =
∫ �

−�
(φ̇ + ψ̇) = [φ + ψ]�−�.
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As demonstrated in [15], this identification is correct in an open set around the
undeformed configuration θ ≡ 0, but loses validity when |θ | takes values larger
than π . Although nothing we have seen suggests that in an energy-minimizing sit-
uation θ would take values outside of the admissible interval (−π, π), we have no
rigorous argument to guarantee that θ remains inside that interval, and therefore
we are forced to assume this. In terms of the variables θ and τ this functional then
takes the form

L(θ, τ ) =
∫ �

−�

(
τ + 1

r
sin θ(1 − cos θ)

)
.

Here we assume rigid loading in shortening and dead loading in twist, i.e. we
prescribe the shortening S and the moment M , which implies that the tension T
and the end rotation L are unknown and to be determined as part of the solution.
This loading condition leads to the minimization problem

min {E(θ, τ )− M L(θ, τ ) : S(θ) = σ }
for given σ >0. The tension T has a natural interpretation as a Lagrange multiplier
associated with the constraint of S.

We can simplify this minimization problem by first minimizing with respect to
τ for fixed θ , from which we find τ ≡ M/C ; re-insertion yields the final minimi-
zation problem

min {F(θ) : S(θ) = σ } (7)

with

F(θ) = B

2

∫
θ̇2 + B

2r2

∫
sin4 θ − M

r

∫
sin θ(1 − cos θ). (8)

We are interested in localized forms of deformation, in which the deformation is
concentrated on a small part of the rod and in which boundary effects are to be
avoided, and therefore we take an infinitely long rod and consider θ , F , and S to
be defined on the whole real line and assume θ → 0 as |s| → ∞.

3.3. Behavior of minimizers

The Euler–Lagrange equations associated with the minimization problem (7)
can be written as a Hamiltonian system with one degree of freedom,

1

2
θ̇2 + V (θ) = H, (9)

for a particular V , where the overdot now means differentiation with respect to a
rescaled arc length variable t = Ms/B. In this system two independent parameters
remain, which may be interpreted as a scaled cylinder radius r̃ = r M/B and a
combined loading parameter m = M/

√
BT .

Solutions of the original minimization problem are orbits of this Hamiltonian
system that are homoclinic to zero, and such orbits have been studied in detail
in [13]. Among the findings are:
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(1) for all values of r̃ ranges of m exist with orbits that are homoclinic to the origin;
(2) at some parameter points these homoclinic orbits “collide” with saddle points.

The saddle points correspond to helical solutions (constant angle θ ) and close to
these collisions the homoclinic orbit has a large region of near-constant angle θ .

In Fig. 4 a bifurcation diagram is shown with two such collisions, one at a forward
helix (0 < θ < π/2, at m = mc2 , with coils (g–h)) and one at a backward helix
(π/2 < θ < π , at m = mc1 , with coils (d–e)).

In [13] the question of stability of these solutions, both local and global, was left
untouched. If we interpret the combined load parameter m as a (reciprocal) tension
T (with the moment M fixed) then the nature of the bifurcation diagram in Figure 4,
involving as it does the mechanically conjugate variables S and T , suggests that in
each peak the right curve is locally stable [18]. With two peaks occurring, however,
this does not allow us to predict where the globally stable solution is located.

In this paper we focus on global energy minimization. Corollary 1 below states
that for sufficiently large shortening, and when contact effects are neglected, global
energy minimizers always intersect themselves. It is this result that forms the
main motivation of the analysis of this paper: since energy minimization with-
out appropriate penalization leads to self intersection, the non-self intersection
condition is necessary for physically acceptable solutions.

3.4. Transformation to (u, ψ) coordinates

To study the case in which self-contact is taken into account, it is necessary to
properly restrict the class of admissible functions in the minimization problem (7).

(a)

(b)

(c)

(d) (e) (f) (g)

(h)

(i)

(j)

Fig. 4. A load-displacement diagram showing shortening d = SM/B of stationary points as
a function of the (combined) load m (from [13]). Contact effects are not taken into account.
The peaks divide this diagram into three sections. The solutions in the middle section inter-
sect themselves, whilst the solutions on the right do not. The section on the left consists
of heteroclinic connections between θ = 0 and θ = 2π which are not considered here.
For sufficiently large shortening, the rod configuration that has lowest energy is on the self
penetrating branch, as shown by Corollary 1.
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In three dimensions a variety of different descriptions of self-contact exists for
rods of finite thickness, each with subtle advantages and disadvantages (see e.g.
the introduction of [12]). For a rod on a cylinder the situation is simpler since the
freedom of movement is essentially two-dimensional — similar to that of a curve in
a plane. We focus on rods of zero thickness, and implement non-self penetration as
non-self intersection of the centerline. In terms of the unknown θ(·) as introduced
above, this condition can be written as

z(s1)− z(s2) �= 0 for all s1 �= s2 with ψ(s1)− ψ(s2) = 0 mod 2π,

(10)

where we have used the previous equation (6) for ψ and the axial coordinate z:

ψ̇ = 1

r
sin θ, ż = cos θ.

We now make the assumption that z can be written as a function of ψ , or, equiva-
lently, that ψ is monotonic along the rod. This assumption is satisfied for solutions
of the problem without contact having θ < π , as given by equation (9). If we
include a contact condition of the form (10), then we are unable to prove that ψ
is monotonic, and in fact it is conceivable that this monotonicity is only valid for
global energy minimizers.

Under the assumption that z can be written as a function of ψ , we introduce a
dimensionless axial coordinate ζ = z/r , and write ′ for differentiation with respect
to ψ . The functional F in (8) then transforms to

F(ζ ) = B

2r

∫ T

0

ζ ′′2

(1 + ζ ′2) 5
2

+ B

2r

∫ T

0

1

(1 + ζ ′2) 3
2

− M
∫ T

0

√
1 + ζ ′2 − ζ ′
√

1 + ζ ′2
,

(11)

with shortening

S(ζ ) = r
∫ T

0

[√
1 + ζ ′2 − ζ ′].

Here [0, T ], the domain of definition of ψ , is a priori unknown, since the ends of
the rod are free to move around the cylinder.

In these variables non-self intersection is easily characterized. Sinceψ is mono-
tonic, let us assume it to be increasing (this amounts to an assumption on the sign
of the applied moment M , and implies that θ ∈ [0, π ] mod 2π ). Admissible
functions are defined by the following condition:

∀ψ ∈ [0, T − 2π ] : ζ(ψ + 2π)− ζ(ψ) � 0. (12)

Note that it is only necessary to rule out self intersection after a single turn; if
contact exists after multiple turns, contact also exists (potentially elsewhere) after
a single turn.

The contact condition (12) is the novel part in this variational problem. In this
paper we focus on the effect that this condition has on the minimization problem,
and therefore simplify by
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Fig. 5. Two configurations of a rod of thickness ε. This illustrates that for rods with positive
thickness the contact condition given in (12), ζ(ψ + 2π) − ζ(ψ) � 0, cannot be simply
replaced by ζ(ψ + 2π)− ζ(ψ) � ε; a more involved condition is necessary.

(i) fixing the domain size T , and accordingly removing the shortening constraint;
(ii) replacing the mechanically correct boundary conditons ζ ′ = ∞ by a more

convenient condition ζ ′ =1.

In terms of the new variables x = ψ/2π and u(x) = ζ ′(ψ) = cot(θ), we recover
the problem of the introduction.

These boundary conditions can be described as follows. By prescribing ζ ′ =
u =1 at the ends of the rod we fix the angle between the rod and the cylinder axis to
π/4. By removing the shortening constraint we allow the ends of the rod to move
freely in the axial direction; in contrast, the fixing of the domain size T prevents
the rod ends from moving tangentially. We believe that these changes have little
effect on that part of the rod that is implicated in the contact problem, but this is a
topic of current research.

3.5. Zero thickness

The assumption of zero rod thickness cannot be relaxed without introducing
important changes in the formulation (see Fig. 5). At positive thickness ε, con-
tact between two consecutive turns does not simply occur after one full rotation
around the cylinder. Therefore non-zero thickness cannot be introduced by simply
replacing the right-hand side in (12) by ε/ sin θ .

To make matters worse, if u =ζ ′ is not constant, the minimal distance connec-
tion between two consecutive turns depends on values of ζ ′ nearby (see [19] for
a thorough treatment of the geometry of this issue); it is not clear whether for the
present case of a rod on a cylinder any simpler impenetrability condition can be
found than the well-known global curvature condition [12].

3.6. List of assumptions

In the derivation above we have introduced various assumptions, of various
types, on both the rod model and the mathematical problem that ensues. Here we
summarize them for the purpose of clarity.

Our modelling assumptions are



G.H.M. van der Heijden, M.A. Peletier & R. Planqué

(i) rods are elastic, unshearable, inextensible, have circular cross-section and
zero thickness, and are infinitely long;

(ii) the ends of the rod are parallel to the cylinder axis;
(iii) the angle θ between the rod’s centerline and the cylinder axis takes values

between (0, π).

These assumptions lead to a constrained minimization problem for u =ζ ′: minimi-
zation of F in (11) under constraint of non-interpenetration and of fixed shortening
S, and with boundary conditions u =∞. Here the domain of definition [0, T ] of u
is free.

In this paper we concentrate on the non-interpenetration condition and therefore
simplify the problem by assuming that

(i) [0, T ], the domain of u, is fixed;
(ii) boundary conditions are chosen to be u =1 instead of the mechanically correct

u =∞.

Note that many of the properties of solutions of the simplified problem that we prove
below, such as connectedness of the contact set and symmetry of the solution, trans-
late to the original mathematical problem. If u is a minimizer or stationary point
on an interval [0, T ] with boundary conditions u(0)= u(T )= ∞, we can choose
t1, t2 ∈ (0, T ) such that u(t1)=u(t2)=1; the function u|[t1,t2] is then a minimizer
or stationary point for the simplified problem on [t1, t2].

4. Existence and the contact condition

In this section we state precisely the problem under discussion and show that
minimizers exist. We also study the minimization problem without the contact con-
straint, and show that minimizers will intersect themselves.

Let U =1+ X , where X = H1
0 (0, T ), and Y =C([0, T −1]). Let the functional

F : U → R be defined as in the introduction,

F(u) =
∫ T

0

[
a(u)u′2 + b(u)

]
,

and introduce the constraint operator B : U → Y given by

(Bu)(x) =
∫ x+1

x
u.

With the set of admissible functions given as

K := {u ∈ U : (Bu)(x) � 0 ∀x ∈ [0, T − 1]}
the central problem is

Problem (A). Find a function u∗ ∈ U such that

F(u∗) = min{F(u) : u ∈ K }.
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We first prove existence of minimizers for Problem (A).

Lemma 1. Let T > 0. Assume that a(u) is continuous, a(u) � a0 > 0, and that
b(u) is Lipschitz continuous. Then there exists u∗ ∈ K such that

F(u∗) = min{ F(u) : u ∈ K }.
Proof. Note that K contains the constant 1, so that the infimum of F over K is
finite. Let {un} ⊂ K ⊂ U be a minimizing sequence. We first prove that

∫
b(un)

is bounded from below.
Since minimization of F is equivalent to minimization of F − T b(0), we can

assume without loss of generality that b(0) = 0. Using the Lipschitz continuity of
b and the Poincaré inequality we have

‖b(un)‖L1 � c‖un‖L1 � c(T + ‖un − 1‖L1) � c(1 + ∥∥u′
n

∥∥
L2).

Here and below c is a possibly changing constant that does not depend on n. Then
∫

b(un) � −c(1 + ‖u′
n‖L2)

� −c

(
1 + 1√

a0

( ∫
a(un)u

′
n

2
) 1

2
)

� −c

(
1 + 1√

a0

(
F(un)−

∫
b(un)

) 1
2
)

� −c

(
1 + 1√

a0

(
c −

∫
b(un)

) 1
2
)
.

Hence,
∫

b(un) � −D (13)

for a suitable constant D.
Using the boundedness of F(un) and (13), a Poincaré inequality now shows

that vn := un − 1 is bounded in X . Hence {vn} contains a subsequence {vnm } that
converges weakly in X to a limit v∗ ∈ K − 1, and consequently, unm converges
weakly in U to a limit u∗ ∈ K . Since F is lower semicontinuous with respect to
weak convergence,

F(u∗) � lim inf
m→∞ F(unm ),

implying that u∗ is a minimizer. ��
As we mentioned in Section 3, if contact is not taken into account — if F is

minimized in U rather than in the smaller set K — then minimizers will violate
the contact condition. In the theorem below we actually prove a stronger statement.
We write FT and UT instead of F and U to indicate explicitly the dependence on
the interval [0, T ].
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Theorem 1 (Minimization without contact condition). Assume that a and b are of
class C1, and that a is strictly positive. Assume that some ū < 1 exists such that

−∞ < inf
R

b < inf
u�ū

b(u). (14)

There exists a function ω : (0,∞) → (0,∞) with limT →∞ ω(T ) = 0 such that

1

T

∣∣{x ∈ [0, T ] : uT (x) � ū}∣∣ � ω(T ) (15)

where uT is any solution of the minimization problem on the domain [0, T ],
min{FT (u) : u ∈ UT }. (16)

In addition, each such minimizer uT is symmetric around x = T/2 and monotonic
on each of the intervals [0, T/2] and [T/2, T ].

The function b given in (1) achieves its minimum at u = −∞, regardless of the
value of Mr/B; therefore it satisfies the condition (14) for every ū < 1. Hence, by
applying Theorem 1 we find in particular the following.

Corollary 1 (Minimizers violate the contact condition). In addition to the condi-
tions of Theorem 1, assume that ū < 0. If T is sufficiently large, then (BuT )(x) < 0
for some x ∈ [0, T − 1].

The corollary follows from the theorem by remarking that uT is bounded by 1
by the bi-monotonicity, and therefore

BuT (x) =
∫ x+1

x
u(s) ds � ū

∣∣[x, x + 1] \ A
∣∣ + 1 · ∣∣[x, x + 1] ∩ A

∣∣,
where A = {x ∈ [0, T ] : uT (x) � ū}. By the theorem the optimal ratio

inf
x∈[0,T −1]

∣∣[x, x + 1] ∩ A
∣∣∣∣[x, x + 1] \ A
∣∣

tends to zero in the limit T → ∞, from which the corollary follows.

Proof of Theorem 1. For the length of this proof we assume for convenience, and
without loss of generality, that infu�ū b(u) = 0.

We first use a standard argument to give an upper bound on the energy FT (uT ).
Define for each T > 0 the function vT ∈ UT ,

vT (x) =

⎧⎪⎨
⎪⎩

1 − x for 0 < x < 1 − vmin
T ,

vmin
T for 1 − vmin

T < x < T − 1 + vmin
T ,

1 + x − T for T − 1 + vmin
T < x < T,

where vmin
T < ū < 1 is a T -dependent constant that will be chosen later. Using the

bounds on the derivatives of a and b, we estimate

F(vT ) � 2(1 − vmin
T )

(
a(1)+ b(1)+ c(1 − vmin

T )
) + (

T − 2(1 − vmin
T )

)
b(vmin

T )

� c
(
1 + (1 − vmin

T )2
) + T b(vmin

T ),
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where c is a generic constant that does not depend on T or vmin
T .

A lower bound on F(uT ) is obtained by simple estimation. Setting A = {x ∈
[0, T ] : uT (x) � ū} we have

F(uT ) � |A| inf
u�ū

b(u)+ (T − |A|) inf
R

b

= |A|
(

inf
u�ū

b(u)− inf
R

b
)

+ T inf
R

b.

Since by definition F(uT ) � F(vT ), it follows that

1

T
|A|

(
inf
u�ū

b(u)− inf
R

b
)

� c

T

(
1 + (1 − vmin

T )2
) + b(vmin

T )− inf
R

b.

We now choose vmin
T as a function of T such that both (1 − vmin

T )2/T and
b(vmin

T )− infR b converge to zero as T → ∞. This proves (15).
For the second assertion we note that the Euler–Lagrange equation associated

with this minimization problem,

−2a(u)u′′ − a′(u)u′2 + b′(u) = 0, (17)

can also be written as a Hamiltonian system with one degree of freedom

−a(u)u′2 + b(u) = H. (18)

It follows that for any minimizer u,

(1) b(u(x)) = H at any stationary point x of u;
(2) b(u(x)) � H for all x ∈ [0, T ];
(3) b(1) > H .

The third statement follows from noting that if b(1)= H then u ≡ 1 would be
the unique solution of (18).

We now show that any minimizer u is bi-monotonic, i.e. increasing or decreas-
ing away from a minimum or maximum. Suppose instead that u has two internal
stationary points, a minimum at x1 and a maximum at x2; assume for definiteness
that 0< x1< x2< T . Note that u(x1)< 1< u(x2), since the solution of the Ham-
iltonian system is a periodic orbit oscillating between the values u(x1) and u(x2);
the inequality u(x1)<1<u(x2) follows from the boundary condition. Now pick a
point x12 ∈ (x1, x2) such that u(x12)=1.

Construct a new function

ũ(x) =

⎧⎪⎨
⎪⎩

u(x) 0 � x � x1,

u(x1) x1 � x � x1 + T − x12,

u(x − T + x12) x1 + T − x12 � x � T .
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Then

FT (ũ) =
∫ x1

0

[
a(u)u′2 + b(u)

] +
∫ x1+T −x12

x1

b(u(x1))+
∫ x12

x1

[ a(u)u′2 + b(u) ]

=
∫ x12

0

[
a(u)u′2 + b(u)

] +
∫ x1+T −x12

x1

b(u(x1))

=
∫ x12

0

[
a(u)u′2 + b(u)

] + H(T − x12)

< FT (u).

Therefore the assumption of two stationary points is contradicted. The proof of
the theorem is concluded by noting that the symmetry of uT follows from the
combination of the bi-monotonicity and equation (18).

Remark 1. With a slightly refined argument we may show the following statement:
if infR b is uniquely achieved at some ū ∈ R, then

‖uT − ū‖
L∞

(√
T ,T −√

T
) −→ 0 as T −→ ∞.

5. The Euler–Lagrange equation

We characterize the duality (X, X ′) by identifying the smooth functions on
[0, T ] with a dense subset of X ′ via the duality pairing

X ′ 〈ξ, x〉X =
∫ T

0
ξ x .

Similarly we identify Y ′ with the space of Radon measures RM([0, T −1]) via the
same duality pairing, defined for smooth functions,

Y ′ 〈η, y〉Y =
∫ T

0
ηy.

Where necessary, we extend Radon measures in Y ′ by zero outside of their domain
[0, T − 1].
Theorem 2. Assume that a and b are globally Lipschitz continuous, and that a �
a0 > 0. Let u ∈ U be a solution of Problem (A). Then u ∈ W 2,∞(0, T ) and there
exists a Radon measure f ∈ Y ′ such that

−2a(u(x))u′′(x)− a′(u(x))u′2(x)+ b′(u(x)) =
∫ x

x−1
f (s) ds (19)

for almost every x ∈ (0, T ). Moreover f � 0 and supp f ⊂ ωc.

Definition 1. A function u ∈ U is called a stationary point if there exists a Radon
measure f ∈ Y ′, with f � 0 and supp f ⊂ ωc, such that (19) is satisfied.
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In the rest of the paper we will often drop the arguments in (19) and write

−2a(u)u′′ − a′(u)u′2 + b′(u) =
∫ x

x−1
f.

The proof of Theorem 2 follows along the lines of [2]. We fix the function u, with
contact set ωc defined in (3), and introduce the cone of admissible perturbations V ,

V := {
v ∈ X : ∃{εn}n∈N ⊂ R

+, εn → 0 such that B(u + εnv) � 0 ∀n ∈ N
}
.

Let V be the closure of V with respect to the norm of X .

Lemma 2. Let u be a minimizer. Then F ′(u) · v � 0 for all v ∈ V , where V is the
closure of V in X.

Proof. For any v ∈ V , the fact that u is a minimizer implies that

F(u + εnv)− F(u) � 0 for all n ∈ N.

The conditions on a and b imply that F is Fréchet differentiable in u (this follows
from the conditions on a and inspection of (21) below), so that

0 � F(u + εnv)− F(u) = εn F ′(u) · v + o(εn||v||X ),

from which it follows that F ′(u) · v � 0. Now, given any v ∈ V , take a sequence
vm ⊂ V that converges to v in X . Since F ′(u) : X → R is a continuous linear
operator, F ′(u) · vm → F ′(u) · v. Hence F ′(u) · v � 0 for any v ∈ V . ��

V can be characterized in a more convenient way:

Lemma 3. For any u ∈ K ,

V = W := {v ∈ X : Bv � 0 on ωc}.

We postpone the proof to the end of this section.

V is a closed convex cone, with dual cone

V
⊥ = {γ ∈ X ′ : 〈γ, v〉 � 0 ∀v ∈ V }.

Let

P = {y ∈ Y : y � 0 on ωc}.

This also is a closed convex cone, with dual cone

P⊥ = { f ∈ Y ′ : 〈 f, y〉 � 0 ∀y ∈ P}.
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Lemma 4. If f ∈ P⊥, then supp f ⊂ ωc and f � 0.

Proof. Given any y with support inωc
c (the complement ofωc), y ∈ P and −y ∈ P .

Hence 〈 f, y〉 = 0 and therefore supp f ⊂ ωc. Now take y ∈ Y positive. Then in
particular y � 0 on ωc, and y ∈ P . By definition of P⊥ this implies f � 0. ��

We now use the following Lemma to characterize V
⊥

in a different way.

Lemma 5. Let Y be a Banach space, and P ⊂ Y a closed convex cone with dual
cone P⊥. Let X be a second Banach space, and A : X → Y a bounded linear
operator. Let K be the following cone in X:

K = {u ∈ X : Au ∈ P}.
Then the dual cone K ⊥ can be characterized by

K ⊥ = {AT g ∈ X ′ : g ∈ P⊥}.
The proof of this Lemma can be found in [2]. An immediate consequence of

Lemma 5 is

Corollary 2.

V
⊥ = {BT f ∈ X ′ : f ∈ P⊥}.

We now turn to the proof of the main theorem of this section.

Proof of Theorem 2. We have seen that since u is a minimizer, F ′(u) ∈ V
⊥

and

V = {v ∈ X : Bv � 0 on ωc},
by Lemmas 2 and 3. By Corollary 2 there exists an f ∈ P⊥ such that F ′(u) = BT f ,
and by Lemma 4 supp f ⊂ ωc and f � 0. The conjugate operator BT is easily
seen to be given by

BTφ(x) =
∫ x

x−1
φ(s) ds (20)

for a smooth function φ ∈ Y ′, where φ is implicitly extended by zero outside of the
interval [0, T − 1]. We use the same notation for a general Radon measure f ∈ Y ′.

Lastly, direct computation gives

F ′(u) · v =
∫ T

0

[
2a(u)u′v′ + a′(u)u′2v + b′(u)v

]
, (21)

and hence we obtain the equation

−2[a(u(x))u′(x)]′ + a′(u(x))u′(x)2 + b′(u(x)) =
∫ x

x−1
f (22)

in the sense of distributions.
We now turn to the statement of regularity. Since f ∈ RM([0, T − 1]), the

function g (defined in (5)) is uniformly bounded. Since all terms in (22) except the
first are in L1(0, T ), we have a(u)u′ ∈ W 1,1, and the lower bound on a implies
that u ∈ W 2,1(0, T ). Since W 2,1 ⊂ W 1,∞, the second term is now known to be
in L∞, and again the lower bound on a is used to obtain u ∈ W 2,∞(0, T ). This
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regularity of u implies that the distributional equation (22) is also satisfied almost
everywhere. ��

We still owe the reader the proof of Lemma 3.

Proof of Lemma 3. V ⊂ W : Since B : X → Y is continuous, W is closed, and
therefore it suffices to show that V ⊂ W . Take any v ∈ V and x ∈ ωc. Then
B(u + εnv)(x) � 0, and by definition of ωc, Bu(x) = 0, implying that Bv(x) � 0.
It follows that v ∈ W .

W ⊂ V : First consider w ∈ W such that supp (Bw)− (the support of the neg-
ative part of Bw) is contained in ωc

c . We claim that w ∈ V , for which we have to
show that there exists

{εn} ⊂ R
+, εn → 0, such that B(u + εnw) � 0 ∀n ∈ N.

For x ∈ ωc, Bu(x) = 0, and since Bw(x) � 0 we have B(u + εnw)(x) � 0
for any sequence {εn} ⊂ R

+.
For the complement ωc

c , note that since supp (Bw)− is compact and contained
in the open set ωc

c , there exists δ>0 such that Bu � δ > 0 on supp (Bw)−. Hence,
if εn � δ ‖Bw‖−1

L∞ , then Bu + εn Bw � 0 on supp (Bw)−. Note that Bu � 0 on
[0, T − 1], and Bw� 0 on (supp (Bw)−)c. This means that Bu + εn Bw � 0 on
ωc

c . Together with Bw � 0 on ωc, this implies w ∈ V .
Finally, consider a generalw ∈ W . Fix a smooth function φ ∈ X with φ > 0 on

(0, T ); note that Bφ � c > 0. We approximate w by the function wε := w + εφ.
We claim that supp (Bwε)− ⊂ ωc

c for sufficiently small ε > 0. It then follows that
wε ∈ V and wε → w, implying that w ∈ V .

To prove the claim, note thatw ∈ X ⊂ L∞. Hence Bw is Lipschitz continuous,
with Lipschitz constant 2||w||L∞ , and for small enough ε,

Bwε(x) = Bw(x)+ εBφ(x)

� Bw(y)+ εBφ(y)− 3||w||L∞|x − y|. (23)

Suppose Bwε(x) < 0 and y ∈ ωc. Then Bw(y) � 0, and by (23),

|x − y| > εBφ(y)

3||w||L∞
.

Therefore d(supp (Bwε)−, ωc)>Cε for a suitable C>0. Hence supp (Bwε)− ⊂
ωc

c for small enough ε, which proves the claim. ��

6. Characterization of stationary points

For this section we assume that the conditions of Theorem 2 are met.

Lemma 6. Let u be a stationary point, and let g be defined as in (5).

(1) For all x ∈ ωc, u(x) = u(x + 1) and u′(x) � u′(x + 1).
(2) If ωc contains an interval [x0, x1], then
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(i) u′(x) = u′(x + 1) for all x ∈ (x0, x1);
(ii) u′′(x) = u′′(x + 1) and g(x) = g(x + 1) for almost all x ∈ (x0, x1).

This lemma imposes an interesting form of periodicity on the solution and the
right-hand side g. Although the constraint is a non-local one, on an interval of con-
tact of length L the solution actually only has the degrees of freedom of an interval
of length one; the other values follow from this assertion.

Proof. Since x ∈ ωc,
∫ x+1

x
u = 0.

Hence, since Bu(x) = ∫ x+1
x u ∈ W 3,∞, and Bu � 0,

0 = d

dx

∫ x+1

x
u = u(x + 1)− u(x),

and

0 � d2

dx2

∫ x+1

x
u = u′(x + 1)− u′(x).

If Bu = 0 on [x0, x1], then the inequality above becomes an equality on the interior
(x0, x1), implying that

u′(x) = u′(x + 1) for all x ∈ (x0, x1),

and therefore

u′′(x) = u′′(x + 1) for almost all x ∈ (x0, x1).

The periodicity of g now follows from (19). ��
Lemma 7. Let u be a stationary point, and assume that ωc contains an interval I .
Then ∫ x+1

x
g

is constant on Int I .

Proof. By Lemma 6 u(x) = u(x +1) for all x ∈ I , and u′′(x) = u′′(x +1) almost
everywhere on I . In addition, u′(x) = u′(x + 1) for all x ∈ Int I .
Hence,

x �→
∫ x+1

x

[−2a(u)u′′ − a′(u)u′2 + b′(u)
]

(24)

is constant on I . But by (19), (24) is equal to
∫ x+1

x

∫ s

s−1
f =

∫ x+1

x
g. ��
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The following two lemmas and the theorem that follows are essential in
determining the structure of the right-hand side g and therefore of the measure
f . The main argument is the following. The function g has no reason to be mono-
tonic; its derivative in x equals f (x) − f (x − 1), and although f is a positive
measure this difference may be of either sign. However, if for instance a left end
point x0 of ωc is flanked by a non-contact interval (x0 − 1, x0), then the measure
f is zero on that interval, and the function g is non-decreasing on (x0, x0 + 1). It
is this argument, repeated from both sides, that allows us to determine completely
the structure of the function g and the underlying measure f .

Notation. Let [x0, x1] ⊂ ωc, x1 � x0. Define

p ≡ x1 − x0 (mod 1), (25)

and

P = min{n ∈ N : n � x1 − x0}. (26)

Throughout the rest of this paper τ is the translation operator defined by

(τu)(x) = u(x + 1). (27)

Lemma 8. Let u be a stationary point, such that ωc contains an interval [x0, x1],
x1 > x0. Assume furthermore that

supp f ∩ (x0 − 1, x0) = ∅. (28)

Then

(1) if x1 − x0 ∈ N, then g does not decrease on each of the subintervals

(x0 + i, x0 + i + 1), i = 0, 1, . . . , P;
(2) if x1 − x0 �∈ N, then g does not decrease on each of the subintervals

(x0 + i, x0 + i + 1), i = 0, 1, . . . , P − 1,

nor does it on

(x0 + P, x1 + 1).

Proof. On (x0, x0 + 1),

f − τ−1 f
(28)= f � 0 in the sense of Radon measures,

and therefore g is non-decreasing on (x0, x0 + 1). By Lemma 6, g(x) = g(x + 1)
for almost all x ∈ (x0, x1). This implies that on each consecutive interval (x0 +
i, x0 + i + 1), i = 1, . . . , P − 1, g does not decrease. By the same reasoning, if
x1 − x0 ∈ N, then this also holds for (x0 + P, x0 + P + 1) = (x1, x1 + 1). If not,
then it holds for (x0 + P, x1 + 1). ��
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Remark 2. Let u be a stationary point. Define the mirror image v(x) = u(T − x),
and h(x) = f (T − x − 1). Then (v, h) solves

{−2a(v)v′′ − a′(v)v′2 + b′(v) = ∫ x
x−1 h,

v(0) = v(T ) = 1,

and hence is also a stationary point.

Applying Lemma 8 to (v, h) yields for (u, f ):

Lemma 9. Let u be a stationary point such that ωc contains an interval [x0, x1],
x1 > x0. Assume furthermore that

supp f ∩ (x1 + 1, x1 + 2) = ∅,
(1) if x1 − x0 ∈ N, then g does not increase on each of the subintervals

(x0 + i, x0 + i + 1), i = 0, 1, . . . , P;
(2) if x1 − x0 �∈ N, then g does not increase on each of the subintervals

(x0 + p + i, x0 + p + i + 1), i = 0, 1, . . . , P − 1,

nor does it on

(x0, x0 + p).

To combine the previous two Lemmas, let

Xi = x0 + i, i = 0, . . . , P,
Yi = x0 + p + i, i = 0, . . . , P.

(29)

Theorem 3. Let u be a stationary point such that the contact set ωc contains an
interval [x0, x1], x1 > x0. Suppose that

supp f ∩ {
(x0 − 1, x0) ∪ (x1 + 1, x1 + 2)

} = ∅. (30)

Then there exists G ∈ R such that

(1) if x1 − x0 ∈ N, then g ≡ G on (x0, x1 + 1), and

f |(x0−1,x1+2) = G
P∑

i=0

δ(x − Xi ).

(2) if x1 − x0 �∈ N, then

g(x) =
{

g1 on (Xi ,Yi ), i = 0, . . . , P,
g2 on (Yi , Xi+1), i = 0, . . . , P − 1,

(31)

and

f |(x0−1,x1+2) =
P−1∑
i=0

aiδ(x − Xi )+ biδ(x − Yi ),
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where ai = (1 − i
P )g1 and bi = 1+i

P g1, and

g1 := G P

P + 1 − p
∈

( PG

P + 1
,G

)
, (32)

g2 := G(P + 1)

P + 1 − p
= P + 1

P
g1 ∈

(
G,
(P + 1)G

P

)
. (33)

Proof.

(1) x1 − x0 ∈ N. By Lemma 8, g does not decrease on the intervals (Xi , Xi+1),
i = 0, 1, . . . , P , and by Lemma 9 g does not increase on these intervals either.
Hence g is constant on each interval. By Lemma 7 the constant is the same on
each interval, i.e. g ≡ G on (x0, x1 + 1). This also implies that within the interval
(x0 −1, x1 +2), f can only have support in the points x0 = X0, X1, . . . , X P = x1,
yielding the formula for f in the statement of the theorem.

(2) x1 − x0 �∈ N. Combining Lemma 8 and 9, we find that g is constant on each
interval (Xi ,Yi ) and (Yi , Xi+1), i = 0, 1, . . . , P −1, and on (X P ,YP ). By Lemma
6, g(x) = g(x + 1) for almost all x ∈ (x0, x1), and hence g takes three values, 0,
g1 and g2 (say) on (x0, x1 + 1). We choose g = g1 on (Xi ,Yi ), i = 0, 1, . . . , P ,
and g = g2 on the intervals in between, (Yi , Xi+1), i = 0, 1, . . . , P − 1. Outside
of the interval (x0, x1 + 1), g vanishes. By Lemma 7,

G =
∫ x+1

x
g =

∫ x+p

x
g1 +

∫ x+1

x+p
g2 = pg1 + (1 − p)g2. (34)

Either g1 = g2 = G or g1 < G < g2. The first case implies that g ≡ G on
[x0, x1 + 1]. This implies that f does not only have support in X0, X1, . . ., X P−1,
but by reasoning for the mirror image (v, h) it also implies that f has support in
Y0,Y1, . . . ,YP−1 = x1. This is impossible. Hence g1<G< g2. The support of f
on (x0 − 1, x1 + 2) is now seen be to limited to the set given in the statement of the
Theorem.

Thus, we conclude that f is a sum of delta functions, but we still have to deter-
mine the weights ai and bi . Since f = 0 on (x0 − 1, x0), we have g1 = g(x0+) =
f (x0). Here we abuse notation, and write f (x) for the weight of the Dirac delta
function at x . Now we have the following recurrence relations:

f (Xi )+ f (Yi ) = g2,

f (Yi )+ f (Xi+1) = g1,

for i = 0, 1, . . . , P − 1. Solving this system we obtain

f (Xi ) = f (X0)− i(g2 − g1) = g1 − i(g2 − g1),

f (Yi ) = (i + 1)(g2 − g1).

In addition, since x1 = YP−1, f (x1) = P(g2 − g1). On the other hand, g1 =
h(T − x1 − 1) = f (x1). This implies

g2 = P + 1

P
g1.
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To conclude,

ai = f (Xi ) =
(

1 − i

P

)
g1,

and

bi = f (Yi ) = i + 1

P
g1.

By (34),

pg1 + (1 − p)
P + 1

P
g1 = G.

Solving for g1 now yields all asserted results. ��
As we will see in the next section, the contact set of u is connected in many

important cases. Hence, Theorem 3 allows us to give concise expressions for g in
cases that ωc is an interval of positive length (using the Heaviside function H ):

Corollary 3. If the contact set is an interval [x0, x1], x1 > x0, then g equals the
explicit function

g(x; x0, x1,G) =⎧⎨
⎩

G (H(x − x0)− H(x − x1 − 1)) if x1 − x0 ∈ N,

g1
(
H(x − x0)− H(x − x1 − 1)

)
+ (g2 − g1)

∑P
i=1

[
H(x − Yi−1)− H(x − Xi )

]
if x1 − x0 /∈ N.

(35)

Here the coefficients g1,2 are computed from x0, x1, and G by (25), (26), (32),
and (33), and Xi and Yi are as in (29).

Figure 6 shows examples of both cases. For the remaining two cases of a stationary
point that has a single or no contact point, g is immediately clear: with a single
contact point,

g(x) =
{

m on [x0, x0 + 1],
0 otherwise,

for a suitable constant m � 0, while when there is no contact then obviously g ≡ 0.

7. The contact set is an interval

In order to apply Theorem 3 we study two cases in which the contact set proves
to be connected, thus satisfying condition (30). In the first case we assume that
the operator given by the left-hand side in (19) satisfies a version of the classical
comparison principle. In the second case we restrict ourselves to global minimizers.
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(a)

(b)

Fig. 6. A generic picture of g(x; x0, T ) for T − x0 �∈ N(a) and for T − x0 ∈ N (b). The
light gray shaded areas represent the contributions of the individual delta functions of the
corresponding Radon measures f . As an example, in (b) f consists of four Dirac deltas, all
with mass G, at x0 = X0, x0 + 1 = X1, x0 + 2 = X2, and x0 + 3 = X3.

7.1. Single-interval contact by assuming a comparison principle

Definition 2. Let N be a (non)linear operator on U ; N is said to satisfy the com-
parison principle if for any [x0, x1] ⊂ [0, T ], x1 > x0,

Nu1 � Nu2,

u1(x0) � u2(x0),

u1(x1) � u2(x1),

⎫⎬
⎭ =⇒ u1 � u2 on [x0, x1].

See e.g. [10] or [20] for a general exposition. Operators of the type considered here,
i.e.

Nu := −2a(u)u′′ − a′(u)u′2 + b′(u),
may fail to satisfy the comparison principle for two reasons. First, the zero-order
term b′(u) need not be increasing in u. For instance, the operator u �→ −u′′ − u
does not satisfy the comparison principle on any interval of length 2π or more. In a
slightly more subtle manner, the prefactor a(u) of the second-order derivative may
also invalidate the comparison principle; see e.g. [10] (Section 10.3) for an example.

We conjecture that the “true” rod functions a and b given in (1) do not give rise
to a comparison principle: b′ is not monotonic, suggesting that on sufficiently large
intervals the principle will fail.

We first prove a lemma that will be used in both cases.
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Lemma 10. Let u be a stationary point such that x1, x2 ∈ ωc. Assume that

(x1, x2) ∩ ωc = ∅.
Then

∫ x2

x1

u =
∫ x2+1

x1+1
u, (36)

and for any m ∈ (0, x2 − x1),

∫ x1+m

x1

u <
∫ x1+1+m

x1+1
u and

∫ x2

x2−m
u >

∫ x2+1

x2−m+1
u. (37)

Proof. Since (x1, x2) ∩ ωc = ∅,

∫ x1+m+1

x1+m
u > 0,

for all m ∈ (0, x2 − x1), which implies

∫ x1+m+1

x1+1
u −

∫ x1+m

x1

u =
∫ x1+1

x1

u +
∫ x1+m+1

x1+1
u −

∫ x1+m

x1

u

=
∫ x1+m+1

x1+m
u > 0.

The other two assertions are handled similarly. ��
Theorem 4. Let u be a stationary point, and assume that

Nu := −2a(u)u′′ − a′(u)u′2 + b′(u) (38)

satisfies the comparison principle. Then ωc is connected.

Proof. We proceed by contradiction. Sinceωc is closed, non-connectedness implies
the existence of x1, x2 ∈ ωc such that (x1, x2) ∩ ωc = ∅.

Set v = u − τu. Then v(x1) = v(x2) = 0 by Lemma 6,
∫ x2

x1
v = 0 by (36), and

∫ x1+m

x1

v < 0 for all 0 < m < x2 − x1 (39)

by (37). Hence, there exists an x̄ ∈ (x1, x2) such that v(x̄) = 0.
From (x1, x2) ∩ ωc = ∅ it follows that supp f ∩ (x1, x2) = ∅. Hence g(x) =∫ x

x−1 f is a decreasing function on (x1, x2) and τg is an increasing function on this
interval by previous arguments. Hence g − τg is a decreasing function on (x1, x2).
There are three possibilities, each leading to a contradiction with the comparison
principle.
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Case 1. g � τg on (x1, x2). On (x1, x̄),⎧⎨
⎩

Nu = g � τg = Nτu,
u(x1) = τu(x1),

u(x̄) = τu(x̄).

By the comparison principle, u � τu on (x1, x̄), i.e., v � 0. But this contra-
dicts (39).

Case 2. there exists an x∗ such that g � τg on (x1, x∗) and g � τg on (x∗, x2).
If x∗ � x̄ , the same argument applies. If x∗ < x̄ , we consider (x̄, x2) instead, and
apply the same argument. Now we conclude v � 0 on (x̄, x2). But observe that
from

∫ x̄
x1
v < 0 by (39) and

∫ x2
x1
v = 0 we have

∫ x2
x̄ v > 0, which again implies a

contradiction.

Case 3. g � τg on (x1, x2). Again we obtain a contradiction by considering the
interval (x̄, x2). This concludes the proof of Theorem 4. ��

7.2. Single-interval contact by global minimization

We now change assumptions. Instead of assuming a comparision principle, we
limit ourselves to global minimizers. The following theorem therefore also applies
to the functions a and b given in (1).

Theorem 5. Let u be a minimizer. Assume that a and b are of class C1 and that a
is strictly positive. Then ωc is connected.

Proof. As in the proof of Theorem 4 we assume that there exist x1, x2 ∈ ωc with
(x1, x2) ∩ ωc = ∅ to force a contradiction. Then

supp f ∩ (x1, x2) = ∅, (40)

and hence g is a decreasing function on (x1, x2), and an increasing function on
(x1 + 1, x2 + 1). Now consider the following two new functions

v(x) =
⎧⎨
⎩

u(x) on [0, x1],
u(x + 1) on [x1, x2],
u(x) on [x2, T ],

and

w(x) =
⎧⎨
⎩

u(x) on [0, x1 + 1],
u(x − 1) on [x1 + 1, x2 + 1],
u(x) on [x2 + 1, T ].

Both are admissible, i.e. v,w ∈ K . They are continuous by Lemma 6, implying
that v,w ∈ X , and the fact that Bv, Bw � 0 follows from Lemma 10. In fact we
need certain strict inequalities.

The functions v and w are minimizers. To show this, write

F(u|[x1,x2]) =
∫ x2

x1

[
a(u)u′2 + b(u)

]
.
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Then since u is a minimizer, and since u and v only differ on [x1, x2],
F(u|[x1,x2]) � F(v|[x1,x2]) = F(u|[x1+1,x2+1]),

and similarly

F(u|[x1+1,x2+1]) � F(w|[x1+1,x2+1]) = F(u|[x1,x2]).

This implies that

F(u|[x1,x2]) = F(u|[x1+1,x2+1]),

and that F(u) = F(v) = F(w). Every minimizer is also a stationary point,
and hence for v and w there exist positive Radon measures fv and fw such that
supp fv ⊂ ωc(v) and supp fw ⊂ ωc(w). We also denote gv(x) = ∫ x

x−1 fv and
gw(x) = ∫ x

x−1 fw.
For any x ∈ (x1, x2),

∫ x+1

x
u > 0. (41)

Let first x2 � x1 + 1. Then for any x ∈ (x1 − 1, x1),
∫ x+1

x
v =

∫ x1

x
v +

∫ x+1

x1

v

=
∫ x1

x
u +

∫ x+2

x1+1
u

>

∫ x1

x
u +

∫ x+1

x1

u by Lemma 10

=
∫ x+1

x
u � 0.

For any x ∈ (x1, x2 − 1) the same is true:
∫ x+1

x
v =

∫ x+2

x+1
u > 0,

since x + 1 < x2, which allows us to use (41). Now let x2 < x1 + 1. Then for any
x ∈ (x1 − 1, x2 − 1), we can repeat the first argument above to conclude

∫ x+1

x
v > 0.

Combining these statements we find
∫ x+1

x
v > 0 for all x ∈ (x1 − 1, x2 − 1),

which impliesωc(v)∩(x1 −1, x2 −1) = ∅. Hence, supp fv∩(x1 −1, x2 −1) = ∅,
but since u and v coincide on [0, x1], we have gv|[0,x1] = gu |[0,x1], so that supp fu ∩
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(x1 − 1, x2 − 1) = ∅. Combined with (40), this implies that gu |[x1,x2] is constant.
Repeating the argument from the other side (i.e. for the function ū(x) := u(T −x)),
we see that the same is true for gu |[x1+1,x2+1]. Note that if x2 > x1 + 1, then the
overlap implies that the two constants are the same; for the other case we now prove
this.

Define z = u − τu; the function z solves the equation

−2a(u)z′′ = gu − τgu +
{

a′(u)u′2 − a′(τu)(τu)′2
}

− {
b′(u)− b′(τu)

} + 2 {a(u)− a(τu)} (τu)′′ (42)

on the interval (x1, x2). Of the right-hand side, we have seen above that the term
gu − τgu is constant on (x1, x2); let us suppose it is non-zero for the purpose of
contradiction. The function z is of class C1, and both z and z′ vanish at x = x1,2.
Therefore, the assumed regularity on a and b implies that the expressions between
braces are continuous on [x1, x2] and zero at x = x1,2. The sign of the right-hand
side of (42) is therefore determined by gu − τgu , and most importantly, is the same
at both ends x1 and x2. Therefore, the sign of z, at x = x1+ and x = x2−, is also
the same. This contradicts the following consequence of Lemma 10:

∫ x1+m

x1

z < 0 and
∫ x2

x2−m
z > 0 for all 0 < m < x2 − x1.

This leaves gu = τgu on (x1, x2). However then, by uniqueness of the ini-
tial-value problem (19), u(x) = u(x + 1) for all x ∈ [x1, x2], and [x1, x2] ⊂ ωc,
contrary to our assumption that (x1, x2) ∩ ωc = ∅. ��

8. Symmetry

In the introduction we raised the question of whether the stationary points or
minimizers inherit the symmetry of the formulation, such that u(x) = u(T − x);
or to put it differently, whether solutions exist that do not have this symmetry.

For the discussion of this question it is useful to introduce an equivalent for-
mulation of the Euler–Lagrange equation (19) similar to the Hamiltonian-systems
formulation used in the proof of Theorem 1. For the length of this section we assume
that Theorem 3 applies and therefore that there is a single contact interval [x0, x1].

By multiplying (19) with u′ and integrating we find that the function H ,
defined by

H := −a(u)u′2 + b(u)− gu, (43)

is piecewise constant, and that H and g jump at the same values of x . The function g
takes three values on [0, T ], these being the values g1 and g2 introduced in Theo-
rem 3, and the value g0 = 0 outside of the extended contact interval [x0, x1 + 1].
(note that g1 and g2 may be equal). We claim that H also takes three values, H0,
H1, and H2, and that these values correspond to those of g, i.e. that the pair (g, H)
takes three values (0, H0), (g1, H1), and (g2, H2) (although it may happen that
(g1, H1) = (g2, H2)).
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To prove this claim, first consider the case of p > 0, where p is defined as
in (25). Then

u|(x0,x0+p) ≡ u|(x0+1,x0+1+p) and g|(x0,x0+p) ≡ g|(x0+1,x0+1+p)

by Lemma 6 and (31). Therefore, H is the same on these two intervals. Repeating
this argument for all subintervals of [x0, x1 + 1] of the form (x0 + k, x0 + k + p)
and (x0 + k + p, x0 + k + 1) we find that H takes two values H1 and H2 on the
interval [x0, x1 + 1] corresponding to the values g1 and g2 of g.

When p = 0, a similar argument yields that H takes only one value on [x0, x1 +
1] (as does g).

A consequence of this characterization of H is the following lemma:

Lemma 11. Under the conditions and notation of Theorem 3,

u(x0) = u(x0 + p) = u(x0 + 1) = u(x0 + 1 + p) = · · · = u(x1 + 1).

Proof. When p = 0 the statement follows from Lemma 6. For p > 0, note that
at any of the interior jump points, i.e. at all jump points except x0 and x1 + 1, we
have [H ] = −[g]u where [H ] = ±(H2 − H1) and [g] = ±(g2 − g1). Regardless
of the sign this equation has only one solution u. For the remaining two points x0
and x1 + 1 the result follows from Lemma 6. ��

We still need to show that the value of H is the same on both sides of the
extended contact interval [x0, x1 +1], so that we can define the value H0 unambig-
uously. If one of the ends of this interval equals 0 or T there is nothing to prove;
we therefore assume that min{x0, T − x1 − 1} � d > 0. Now multiply (19) with
the function

v(x) =

⎧⎪⎨
⎪⎩

x
d u′(x) 0 < x < d,

u′(x) d � x � T − d,
T −x

d u′(x) T − d < x < T,

and integrate to find

− 1

d

∫ d

0
H + 1

d

∫ T

T −d
H = 0.

Since H is constant on (0, d) and on (T − d, T ) the two constant values are equal;
we then define H0 to be this value.

We now turn to the implications of this characterization of solutions (u, g) and
the associated pseudo-Hamiltonian function H .

Theorem 6. Let u be a stationary point with a single contact interval [x0, x1]. Let p
be given as in (25), and define the set of jump points J = {x0, x0 + p, x0 + 1, x0 +
1 + p, . . . , x1 + 1}.
(1) There exists α ∈ R such that at any x ∈ J , u′(x) = ±α.

Now assume that b is non-decreasing on [1,∞).
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(2) If the operator N given in (38) satisfies the comparison principle, then u is
symmetric on [0, T ] about T/2.

(3) If u is a minimizer with u′(x0) = −u′(x1 + 1), then u is symmetric on [0, T ]
about T/2.

Proof. For the first part write

u′2 = b(u)− gu − H

a(u)
,

and note that by the proof of Lemma 11 the sum gu + H is continuous.
For the second part, note that by Lemma 11 u has the same value on each end of

the interval [x0, x0 + p] (if p > 0) or [x0, x0 +1] (if p = 0). By the uniqueness that
follows from the comparison principle the function u is symmetric on this interval
about its midpoint. By repeating this argument over all subintervals of [x0, x1 + 1]
we find that u is symmetric on [x0, x1 + 1] about its midpoint.

The functions u1(t) := u(x0 − t) and u2(t) := u(x1 + 1 + t), therefore, have
the same zeroth and first derivatives at t = 0. They satisfy the same equation (43)
(note that H is symmetric on [x0, x1 +1]), and therefore the two functions are equal
as long as they both exist. This implies that lack of symmetry must stem from a
difference in domain of definition of u1 and u2 for t > 0.

We claim that neither u1 nor u2 has an interior maximum. Assuming this claim,
the assertion of the theorem follows since the monotonicity of u1,2 then implies
that the boundary condition u1,2(t) = 1 has at most one solution t .

Now assume without loss of generality that u1 has a maximum at t1> 0. The
function u1 is a solution of the Hamiltonian system (43), where H and g are constant
for t > 0. As in the proof of Theorem 1, therefore u1(t1) > 1. Choose a bounded
interval I ⊂ [0,∞) such that u1>1 on Int I and u1(∂ I ) = 1.

The reduced functional F̃(v) = ∫
I [a(v)v′2 + b(v)] has a global minimizer ṽ

in the class of functions v satisfying v(∂ I ) = 1. From studying the perturbation
v �→ min{v, 1} and using the monotonicity of b it follows that ṽ � 1 on I . By
the comparison principle this is the only stationary point of F̃ , a conclusion that
contradicts the fact that u1 is a different stationary point.

For the third part, first note that the zero set of the continuous function x �→∫ x+1
x u is [x0, x1]. Therefore,

for every ε > 0 there exists δ > 0 such that any perturbation v with
d(supp v, [x0, x1 + 1]) > ε is admissible provided ‖v‖L∞ < δ.

We will use this below.
The assumption on the derivatives places us in the same position as above: the

functions u1(t) := u(x0 − t) and u2(t) := u(x1 + 1 + t) are equal as long as they
both exist. Again we will show that neither may have an interior maximum, but by
a different argument.

Assume that u1 has a maximum. By defining t1 = x0 the boundary condition on
u takes the form u1(t1)=1. Pick

max{1, u1(0)} < β < max{u1(t) : 0 � t � t1}
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and define the set S = {t ∈ [0, t1] : u1(t) � β}; we can assume that for ε =
inf S > 0 we have max{u1(t) : 0 � t � t1} − β < δ for the associated δ given
above (by changing β if necessary).

Now define v(t) = min{β, u1(t)}. The function v is admissible by construction;
it differs from u1 only on the set S, and therefore the difference in energy is given
by (with a slight abuse of notation)

F(v)− F(u1) =
∫

S

[
−a(u1)u

′
1

2 + b(β)− b(u1)
]
< 0.

This contradicts the assumption of minimality. ��
The conditions of Theorem 6 are quite sharp. We demonstrate this with two

examples.

Example 1. (b is decreasing on [1,∞)). It is relatively straightforward to con-
struct a non-symmetric stationary point by choosing an appropriate function b that
is decreasing on [1,∞), thus showing that part (2) of Theorem 6 is sharp.

Take a symmetric stationary point u for which u � 1 on [0, T ], u′(T ) > 0,
and for which the contact set is bounded away from x =T (see the next section for
examples). Close to x =T , the function u satisfies

u′2 = b(u)− H

a(u)
(44)

for some H ∈ R, and since u′(T ) > 0, b(1) > H . Now change b(u) for u > 1
such as to have (for instance) b(2) = H , and continue the solution u past x = T by
solving (44). By construction u(T + T̃ ) = 2, for some T̃ > 0, and u′(T + T̃ ) = 0;
by symmetry then u(T + 2T̃ ) = 1. The new function u defined on the domain
[0, T + 2T̃ ] is a non-symmetric stationary point (Fig. 7).

Example 2. (Equal (non-opposite) derivatives on ∂ωc). For certain functions b and
domains [0, T ] global minimization favors breaking of symmetry. We demonstrate
this for the functional

F(u) =
∫ 1

0

[
u′2 + α(1 − u2)2

]
,

Fig. 7. A non-symmetric stationary point can be constructed by defining b(u) appropriately
for u > 1.
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where α will be chosen appropriately. We consider the functional F on functions
u : [0, 1] → R with boundary conditions u(0) = u(1) = 0; since we are interested
in the contact case we also impose the integral condition

∫ 1
0 u = 0. This setup is

different from the rest of the paper, but it simplifies the argument and illustrates the
basic concept.

We will show that

inf

{
F(u) :

∫ 1

0
u = 0

}
< inf

{
F(u) :

∫ 1

0
u = 0 and u is symmetric

}
. (45)

To estimate the infimum on the right-hand side we use the Poincaré inequality

∫ d

0
u2 � cd2

∫ d

0
u′2 for all u with u(0) = 0 and

∫ d

0
u = 0. (46)

The function v(x) = a + cos(b(1 − x/d)) is optimal in this inequality, where
a �0.22 and b �4.49 are determined by the boundary condition v(0)=0 and the
integral condition

∫
v=0. The Poincaré constant equals c �0.0495. Note that for

symmetric functions u we may take d =1/2, so that the infimum on the right-hand
side is bounded from below by

F(u) � α +
∫ 1

0

[
u′2 − 2αu2] � α + (1 − αc/2)

∫ 1

0
u′2.

At the functionw(x) = sin 2πx the functional F has the value F(w) = 2π2 +
3α/8. For all α ∈ (16π2/5, 2/c] � (31.6, 40.3], therefore

F(w) = 2π2 + 3α/8 < α � inf

{
F(u) :

∫ 1

0
u = 0 and u is symmetric

}
,

which demonstrates (45) for this range of α.
The reason for this preference for asymmetry can be recognized in the constant

in the Poincaré inequality (46) (see Fig. 8). For symmetric functions the relevant
class is {u : [0, 1/2] → R : u(0) = ∫

u = 0}, and for more general functions
{u : [0, 1] → R : u(0) = u(1) = ∫

u = 0}. For this latter class the Poincaré coeffi-
cient is achieved by the function w above with the value c = 1/4π2 � 0.0253,
which is larger than c(1/2)2 � 0.0124.

Fig. 8. Under symmetry conditions the effective domain, the domain on which
∫

u = 0, is
half the actual domain size. Equivalently, more (costly) oscillations are necessary.
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9. Numerical simulations

In this section we describe in detail our numerical simulations of stationary
points of F under constraint, i.e. of solutions of

−2a(u)u′′ − a′(u)u′2 + b′(u) = ∫ x
x−1 f, (47)

u(0) = u(T ) = 1, (48)

supp f ⊂ ωc, (49)

f a positive Radon measure, (50)∫ x+1

x
u � 0 ∀x ∈ [0, T − 1]. (51)

We concentrate on the case in which the solution is symmetric and the contact set
is non-empty, and we use the fact that the right-hand side in the differential equa-
tion can be characterized explicitly (see (35)). We further simplify by replacing
the inequality (51) with the condition that the function x �→ ∫ x+1

x u has a second-
degree zero at x = x0, leading to the new system in the unknowns (u, x0,G)

−2a(u)u′′ − a′(u)u′2 + b′(u) = g(x; x0, T − x0 − 1,G), (52)

u(0) = u(T ) = 1, (53)

u(x0) = u(x0 + 1), (54)∫ x0+1

x0

u = 0. (55)

For brevity we shall write ḡ(x; x0, T,G) for g(x; x0, T − x0 − 1,G).

Lemma 12. Assume that the operator on the left-hand side of (52) satisfies the com-
parison principle. Then any solution of problem (47)–(51) with non-empty contact
set is also a solution of (52)–(55); vice versa, any solution of (52)–(55) is also a
solution of (47)–(51).

Proof. Since the implication (47)–(51) =⇒ (52)–(55) follows by construction, it
suffices to show the opposite implication; in fact, since an admissible measure f
can be constructed from any ḡ(x; x0, T,G), it is sufficient to show that solutions
of (52)–(55) satisfy

∫ x+1

x
u � 0 ∀x ∈ [0, T − 1].

We show slightly more, namely that
∫ x+1

x
u = 0 ∀x ∈ [x0, T − x0 − 1]

and that
∫ x+1

x
u > 0 ∀x /∈ [x0, T − x0 − 1].
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The function u is symmetric by Theorem 6. Since u(x0) = u(x0 + 1),

u(x0) = u(x0 + 1) = u(T − x0) = u(T − x0 − 1) =: ū.

Set u1(x) = u(x0 + x), and u2(x) = u(x0 + x + 1) for all x ∈ [0, T − 2x0 − 1].
By construction, ḡ(x; x0, T,G) = ḡ(x + 1; x0, T,G) for all x ∈ [x0, T − x0 − 1].
Hence, if we set h(x) = ḡ(x + x0; x0, T,G), for all x ∈ [0, T − 2x0 − 1], then u1
and u2 both satisfy

−2a(v)v′′ − a′(v)v′2 + b′(v) = h,

v(0) = v(T − 2x0 − 1) = ū,

By uniqueness, u1 = u2 on [0, T −2x0−1]. In terms of u this means u(x) = u(x+1)
for all x ∈ [x0, T − x0 − 1]. But that implies that

∫ x+1

x
u = 0 ∀x ∈ [x0, T − x0 − 1].

It remains to be shown that

∫ x+1

x
u > 0 ∀x /∈ [x0, T − x0 − 1]. (56)

By symmetry we only show this for x < x0. Let u p and gp be the period-1

extrapolation of u|[x0,x0+1] and g|[x0,x0+1]; note that
∫ x+1

x u p = 0 for every x .
For x< x0,

−2a(u)u′′ − a′(u)u′2 + b′(u) = 0 < gp

= −2a(u p)u
′′
p − a′(u p)u

′
p

2 + b′(u p), (57)

implying that u>u p for x = x0− and therefore also (56) for x = x0−. If u and u p

intersect again at some x̃ < x0, then the comparison principle and (57) imply that
u �u p on [x̃, x0], in contradiction with the previous statement. This concludes the
proof. ��

We discuss two different ways of calculating solutions of the problem (52)–(55).

9.1. Continuation

We implemented a strategy of continuation of solutions, using the continuation
package Auto [8], and we chose the simple case

a(u) = 1

2
, b(u) = 1

2
(u + 1)2. (58)
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To implement system (52)–(55) in Auto, we divide [0, T ] into three subdomains,
[0, x0], [x0, x0 + 1] and [x0 + 1, T ] and specify the equations

−u′′
1(x1)+ u1(x1)+ 1 = ḡ(x1; x0, T,G)

ξ ′
1 = 1

}
on [0, x0], (59)

−u′′
2(x2)+ u2(x2)+ 1 = ḡ(x2; x0, T,G)

ξ ′
2 = 1

}
on [x0, x0 + 1], (60)

−u′′
3(x3)+ u3(x3)+ 1 = ḡ(x3; x0, T,G),

ξ ′
3 = 1

}
on [x0 + 1, T ], (61)

with boundary conditions

u1(0) = 1,

u1(x0) = u2(x0), u′
1(x0) = u′

2(x0),

u2(x0) = u3(x0), u′
2(x0) = u′

3(x0), (62)

u3(T ) = 1,

u2(x0) = u2(x0 + 1),

ξ1(0) = 0, ξ2(x0) = x0, ξ3(x0 + 1) = x0 + 1,

and integral condition
∫ x0+1

x0

u2 = 0. (63)

Note that in (59)–(61) we have added functions ξi (x) that satisfy ξi (x) = x , for
i = 1, 2, 3, to obtain the x values required in the evaluation of ḡ(x; x0,G, T ).

There are still some technicalities that have to be overcome: Auto is not well
equipped to handle systems with a discontinuous right-hand side, such as the func-
tion g(x; x0,G, T ) that is supplied here. We remedy this by using a low-order
method for all simulations, and we smooth the function g given in (35) by substi-
tuting arctans for Heaviside functions:

g̃(x; x0, T,G)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1

π

(
arctan(A(x − x0))− arctan(A(x − T − x0))

)
if T − 2x0 /∈ N,

+ (g2 − g1)

π

∑P
i=1

[
arctan(A(x − Yi−1))− arctan(A(x − Xi ))

]
,

G

π

(
arctan(A(x − x0))− arctan(A(x − T − x0))

)
if T − 2x0 ∈ N,

where Xi and Yi are as in (29). In the limit A → ∞, g̃(x; x0, T,G) converges
pointwise to ḡ(x; x0, T,G).

There are nine differential equations with ten boundary conditions and one inte-
gral condition. This means that we expect to need three free parameters to obtain a
one-parameter curve of solutions. These are T , x0, and an additional parameter β.
It worked well to choose the freedom in β in modulating the values of g1,2:

g̃1 = g1 + β and g̃2 = g2 + β.
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We may prove a priori that β=0 by remarking that

∫ x0+1

x0

g̃ =
∫ x0+1

x0

[−u′′ + u + 1
] = 1,

and using (34) to find

1 =
∫ x0+1

x0

g̃ = p(g1 + β)+ (1 − p)(g2 + β) = 1 + β.

We have found no other role for β than to accommodate for small numerical inac-
curacies due to the discontinuous right-hand side. In all simulations β � 10−4.

We have validated the code by comparing solutions from Auto with explicit
solutions. An example is given in Fig. 9.

As we have seen earlier, as T becomes larger the minimizer u has to have a con-
tact point, and for large enough values even a full interval of contact. The point x0,
the leftmost point of contact, is determined as part of the solution; we may wonder
how this point depends on T . For operators N that satisfy the comparison principle,
it is straightforward to prove that x0 remains bounded for all T . Moreover, for the
operator under consideration here, as T → ∞, x0 → log(2 + √

3). These two
phenomena are illustrated in Fig. 10.

Since |g1 − g2| → 0 as P (and therefore T ) increases, g becomes zero on
[log(2 + √

3), T − log(2 + √
3)] in the limit of large T . By the comparison prin-

ciple, u converges uniformly to zero on this interval. The energy of the minimizer
converges to 2

√
3 − log(2 + √

3)+ T/2. The start of this convergence is shown in
Fig. 11.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 9. A comparison of a solution of system (59)–(63) produced with Auto (◦ symbols)
to an explicit solution, for a generic value of T (here scaled to 1): T = 4.91635. In this
simulation A = 1000.
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4 6 8 10 12 14 16 18
1.26

1.27

1.28

1.29

1.3

1.31

1.32

1.33

Fig. 10. Behavior of x0 as a function of domain size T for system (59)–(63) computed with
Auto. As T grows, x0 remains bounded and converges to log(2 + √

3) (horizontal line).

4 5 6 7 8 9 10 11 12
2.16

2.17

2.18

2.19

2.2

2.21

2.22

2.23

2.24

2.25

Fig. 11. Behavior of F(u)− T/2 as a function of domain size T for system (59)–(63) com-
puted with Auto. As T grows, F(u)/T appreaches 1/2, the energy of u ≡ 0 on a unit length
interval. The excess F − T/2 converges to 2

√
3 − log(2 + √

3) ≈ 2.147, which is twice the
energy difference between u ≡ 0 and the solution of −u′′ + u = 0 on [0, log(2 +√

3)] with
boundary conditions u(0) = 1 and u′(log(2 + √

3)
) = 0.

9.2. Directly solving the boundary-value problem

Computing solutions of the rod equations — rather than the simpler problem
(58) — using Auto has proved difficult, for reasons that we do not understand well.
Instead, a boundary-value problem solver from Matlab was used to create Fig. 3.
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Set

Lu = − 2u′′

4r2π2(1 + u2)
5
2

+ 5uu′2

4r2π2(1 + u2)
7
2

− 3u

r2(1 + u2)
5
2

+ α

(1 + u2)
3
2

.

To find a solution of

Lu = g(x; x0, T,G), u(x0) = u(x0 + 1),
∫ x0+1

x0

u = 0,

for a generic value of T (large enough) we construct a two-parameter shooting
problem. Fix G and x0 and consider the boundary-value problem

Lu1 = 0 on [0, x0],
Lu2 = g1 on [x0, x0 + p],
Lu3 = g2 on [x0 + p, x0 + 1],
Lu4 = g1 on [x0 + 1, x0 + 1 + p],
Lu5 = 0 on [x0 + 1 + p, T̃ ],

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(64)

with boundary conditions

u1(0) = 1, (65)

u1(x0) = u2(x0), u′
1(x0) = u′

2(x0), (66)

u2(x0 + p) = u3(x0 + p), u′
2(x0 + p) = u′

3(x0 + p), (67)

u3(x0 + 1) = u4(x0 + 1), u′
3(x0 + 1) = u′

4(x0 + 1), (68)

u4(x0 + 1 + p) = u5(x0 + 1 + p), u′
4(x0 + 1 + p) = u′

5(x0 + 1 + p),

(69)

u5(T̃ ) = 1. (70)

Here, as before, p ≡ T − 2x0 − 1 (mod 1), P = min{n ∈ N : n � T − 2x0 − 1},
and

g1 = G P

P + 1 − p
, g2 = G(P + 1)

P + 1 − p
,

by Theorem 3. Note that this is not exactly the same problem as (52)–(53), since
the periodic section has been reduced from P periods to a single period, and the
solution is defined correspondingly on a smaller domain of length

T̃ = 2x0 + p + 1.

This allows us to use the decomposition in five subdomains for any T , which facil-
itates computation. This is illustrated in Fig. 12.

We now vary x0 and G to find solutions of system (64)–(70) that satisfy

u2(x0) = u3(x0 + 1),
∫ x0+p

x0

u2 +
∫ x0+1

x0+p
u3 = 0,
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Fig. 12. Schematic picture of the idea behind T̃ = 2x0 + p + 1. Since u (solid black line)
is periodic between x0 and T − x0, we can cut out an interval of length T − 2x0 − p − 1
and find the corresponding solution on [0, T̃ ].

using a standard Matlab boundary-value problem solver, bvp4c. An example solu-
tion is drawn in Fig. 3 in which we have used α=1/2π, r =1. Note that all analysis
in this paper assumes zero rod thickness; in Fig. 3 the rod has been artificially fat-
tened for better viewing.
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