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Abstract

We study a number of aspects of the colonisation of the Eastern Scheldt by
the Japanese Oyster. We formulate and analyse some simple models of the spa-
tial spreading, and determine a rough dependence of the spreading behaviour
on parameters. We examine the suggestion of reducing salinity by opening
freshwater dams, with the aim of reducing oyster fertility, and make predictions
of the effect of such measures. Finally, we present an outline of a large-scale
simulation taking into account detailed data on the geometry and sea floor
properties of the Eastern Scheldt.
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1 Introduction

In 1964 the Japanese Oyster (Crassostrea gigas) was introduced into the Eastern
Scheldt. It was believed that this species could not breed in the colder Dutch climate;
each generation would have to be set out by hand. Therefore this introduction was
expected to have limited impact on the local ecosystem.

Unfortunately the brief hot spells of some Dutch summers allowed the Japanese
Oysters to spawn. With a maximal life span of thirty years the population proved
able to spawn in the rare hot years while simply surviving the cold ones. As a result
the Japanese Oyster is now the dominant crustacean in the Eastern Scheldt; the
indiginous flat oyster has all but disappeared, and the cockles and mussels are de-
clining in number. In addition, the Japanese Oyster has spread beyond the Eastern
Scheldt and settled in parts of the Western Scheldt and the Waddenzee.

At the Study Group two Dutch institutes, the Rijksinstituut voor Visserijon-
derzoek (RIVO, The Netherlands institute for fisheries research) and Rijksinstituut
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voor Kust en Zee (RIKZ, The Netherlands institute for coastal and marine affairs)
presented the issue of the spreading of the Japanese Oysters. The following questions
were formulated:

How do oysters spread?

Can development in the past be reconstructed?

Can a prediction be made for the future?

Can the spreading of the oysters be stopped? How?

2 Overview

In this report we address these questions from a number of different viewpoints.

• In Section 3 we present a first study of the spreading of oysters. We assume a
favourable (i.e. hard) substrate and model the spread of oysters from year to
year. We indicate how to extend this model to perform detailed simulations
to reconstruct the spreading of oysters from 1964 onwards.

• In Section 4 we simplify the model of Section 3 by passing to continuous time,
and compare spreading velocities between soft and hard substrates. We find
a significant difference in spreading velocity, and argue that the ratio of the
two velocities is relatively independent of the important parameters, which are
difficult to estimate.

• In Section 5 we study a proposed remedy of re-opening the dams that cur-
rently prevent river water from entering the Eastern Scheldt. The reduction
in salinity that results from the influx of fresh water may reduce the growth
rate of the oysters. In extension of a recent simulation at RIVO we consider
a scenario of partial, seasonal re-opening of the dams, and find that the ef-
fect on salinity is similar (to a permanent reopening scenario), but with some
advantages. The main conclusion, however, is that the proposed regulation
of salinity is not sufficient to significantly control the growth of oysters in the
Eastern Scheldt.

• In Section 6, finally, we present an outline of a large-scale simulation that takes
into account the detailed geometry and geology (e.g. substrate hardness) of the
Eastern Scheldt. This simulation might be implemented as an extension of a
code that is currently in use at Rijkswaterstaat.

3 Diffusion of larvae

At the end of July of a hot year, the rising of the sea temperature over a certain
threshold triggers a massive production of oyster larvae. During their 30-day life
span, these larvae are passively transported by the flow in random directions until
they choose to settle and grow. This transport is probably the main mechanism
by which Crassostrea gigas invaded the whole Eastern Scheldt. In this section, we
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will analyse this mechanism, in conjunction with a simple model of the interaction
between the oyster and larvae populations. We will restrict our attention to the
eastern part of the Eastern Scheldt, where the Crassostrea gigas was introduced,
in 1964. Indeed, this region is characterised by a relatively shallow sea and weak
currents, which hampers the geographic progression of oysters. Because of this,
it took years before the oyster population reached the central part of the Eastern
Scheldt. Afterwards, larvae became subjected to much stronger currents and were
therefore prone to colonise the rest of the Eastern Scheldt in a relatively short period.

The simplest description of the geographical spreading of oysters should comprise
two independent variables: one for the larvae population and one for the oysters.
Hence we introduce:

• On (x): the density of oysters, expressed in m−2, in year n. On depends on
the position x (which is one-dimensional, for simplicity);

• Ln (x, t): the density, also expressed in m−2, of larvae in the summer of year n.
Ln depends on position x and time t.

During their short life, we model the transport of larvae by a reaction-diffusion
equation of the form:

∂Ln

∂t
= DT

∂2Ln

∂x2
+ Q (Ln,On) . (1)

In this equation, the first two terms describe the diffusive transport averaged over
an entire tidal cycle. The last term Q accounts both for the production and the
disappearance of larvae, either by death or by settlement on the ground. A crucial
parameter is the diffusion coefficient DT and we will estimate it below. As for the
oysters, their density varies from year to year according to:

On+1 = On + G (Ln,On) , (2)

where G is the number of newly born oysters minus the deceased ones per unit area.
For the moment, we do not specify the functionals Q and G. Several choices of Q
and G will be presented in this report and many variations are possible. The choice
between these requires a delicate balancing of the questions that are to be addressed,
on one hand, with the available data on the other. More complex models, often
used for the purpose of tracking growth in cultivated oysters, sort the individuals
by sizes and introduce as many oyster variables as there are size-classes [3]. In this
work, motivated by the relative lack of data during the Study Group, we discard
such aspects of the dynamics and, with the exception of the final Section, focus on
models of minimal complexity.

3.1 Diffusion-convection over a single tidal cycle

On the time scale of a tidal cycle the larvae are subject to a tidal flow. With u the
water velocity generated by the tides, the transport equation for the larvae becomes
(setting Q = 0 for the present discussion)

∂L
∂t

+ u
∂L
∂x

= D

(

∂2L
∂x2

+
∂2L
∂z2

)

, (3)
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where D is the coefficient of diffusion in the absence of tide and where L is assumed
to depend on the vertical coordinate z too.

As was first recognised by Taylor [13], a nonuniform vertical distribution of u
accelerates the dispersion of particles. This can be understood by noting that at
a depth z where u is maximal, particles (e.g. larvae) are likely to travel over much
longer distances than those at depths where u is small.

If u = u (z), one can show that equation (3) can be approximated in the long
time limit by the following, simpler equation:

∂L
∂t

+ U0
∂L
∂x

= (D + DT )
∂2L
∂x2

, (4)

where U0 is the average velocity of the flow over the z-direction. While equation (4)
applies to the rising tide, the falling tide is described by

∂L
∂t

− U0
∂L
∂x

= (D + DT )
∂2L
∂x2

. (5)

Hence, averaging over many tides, one obtains

∂L
∂t

= (D + DT )
∂2L
∂x2

. (6)

Since we are primarily interested in the diffusion of larvae in the horizontal direc-
tions, and owing to its relative simplicity, equation (6) represents progress from
equation (3).

With the sea level and sea bed respectively denoted by h and z0, the new diffusion
coefficient is given by [10]

DT =
U0

D (h − z0)

∫ h

z0

[
∫ z

z0

(

1 − u (z′)

U0

)

dz′
]2

dz, (7)

Our first task will therefore be to assess the velocity profile u resulting from the tidal
flow. Actually, u depends on x as well as z. Hence, DT = DT (x) and equation (4)
has to be slightly modified, as shown in the appendix.

3.1.1 Tidal flow

For a shallow sea the determination of u is relatively simple. Let the elevation of
the sea bed be denoted by z0 (x). As a result of the tides, the sea level is a function
of time and given by z = h (t). From the “shallowness” hypothesis, and assuming
low velocities, the Navier-Stokes equations for the flow reduce to:

0 = −dp

dx
+ µ

∂2u

∂z2
. (8)

In this equation, p is the pressure and µ is the viscosity of water. This equation must
be supplemented by two boundary conditions. One is that the velocity vanishes on
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the sea bed, u (z0) = 0. The other is that the sea surface is free of any applied stress,
which translates into ∂u

∂z (h) = 0. This allows to write the solution of (8) as:

u (x, z) =
1

2µ

dp

dx
(z − z0) (z − 2h + z0) ,

= C (z − z0) (z − 2h + z0) . (9)

In this expression the constant C is determined from the conservation of mass.
Considering a slice dx of fluid, the rise or fall of its level, dh

dt , is only due to incoming
and outcoming flux of water on either sides of the slice. This leads to the equation

dh

dt
+

∂

∂x

∫ h

z0

u (x, z) dz = 0. (10)

Substituting (9) into (10), we find:

u (x, z) =
3

2
U0

(z − z0) (2h − z − z0)

(h − z0)
2 , (11)

where U0 is the average velocity, given by

U0 =
dh/dt

dz0/dx
. (12)

3.1.2 Estimation of DT

The value of D is estimated to be 10−4 m2s−1 for stratified flow and 10−3 m2s−1 for
well mixed flows [15]. These values are obtained by measuring the diffusion in the
vertical direction, which is not affected by the tidal flow. During the rising tide, the
sea level rises by 3 meters in 6 hours, and we assume the slope of the sea bed to be
1%. Hence, U0 is estimated to be

U0 ≈ 3m/ (6 · 3600 s)

0.01
≈ 0.02ms−1.

Then, substituting expression (11) into (7), we obtain:

DT =
2U0 (h − z0)

2

105D
. (13)

Hence, with a sea depth of 3-4m, a vertical diffusion D of 10−3 m2s−1 and our
estimate of U0, we get

DT ≈ 0.1m2s−1,

which is considerably larger than D.
As we already noted, DT is a function of x. It is therefore tempting to simply

rewrite the diffusion term in the right hand side of (6) as ∂
∂xDT (x) ∂

∂xL. However,
one must bear in mind that the effective parameter DT (x) encompasses more than
just Fick’s law of transport. The actual reduced diffusion equation turns out to be
(see the appendix)

∂L
∂t

= DT

[(

1 +
D

DT

)

∂2L
∂x2

− 12 (dz0/dx)

(h − z0)

∂L
∂x

]

. (14)

For simplicity, in what follows, we will neglect spatial variations of DT .
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3.2 ‘Can development in the past be reconstructed?’

In order to answer this question posed to the Study Group, one needs to choose
sensible and simple forms for Q and G.

Female and male oysters are able to detect the presence of eggs and sperm in the
water. In order to maximize fecundation, they all release their gametes at the same
time. Accordingly, the production of larvae is modelled by the initial condition

Ln (x, 0) = FOn, (15)

where F is the fecundity of an oyster and is the combination of several factors, such
as the size of the oyster, the salinity of water and the likelihood of an egg to be
fertilised. An expression derived from observation is [8]

F = FlFsFf

with

• Fl = 0.4 l2.8: size factor, where l is the size of the oyster in cm.

• Fs = s−8
5.5 : salinity factor, where s is the salinity of water, expressed in grams

of chloride per liter,

• Ff = 0.005O0.72
n : fertilization efficiency.

Besides, since the larvae only have an approximate 30-day life span, one includes
a death rate in the larvae equation:

∂Ln

∂t
= DT

∂2Ln

∂x2
− Ln

t∗
, (16)

t∗ = 30 days.

Of the larvae that are transported according to this equation, only a tiny frac-
tion λ will actually be able to settle and become oysters the next year. The mag-
nitude of this fraction depends on a number of factors, among which the hardness
of the substrate and the presence of other oysters. For the length of this section we
will assume that the substrate is hard, providing a good environment for settling
larvae. In Section 4 we study the effect of substrate hardness in detail.

Presence of other oysters on the substrate will result in competition for nutrient
and predation of larvae from the mature oysters. This overcrowding factor is sup-
posed to be only effective when the oyster density passes a certain threshold Osat.
Finally, approximately one tenth of the oyster population dies each year [3]. These
considerations lead to the following equation for the oyster population

On+1 (x) = On (x) +
λLn (x, t∗)

1 + On (x) /Osat
− On (x)

10
(17)

From the observation of actual oyster banks, Osat ranges between 30m−2 and
100m−2.
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Prior to the integration of equations (15)-(17), it is useful to introduce dimen-
sionless variables as

T = t
t∗ , X = x

(DT t∗)1/2
≈ x

400m ,

un = λLn
Osat

, vn = On
Osat

.

The system of equations to solve for each year thus becomes

∂un

∂T
=

∂2un

∂X2
− un, (18)

un (X, 0) = Λvn (X) , (19)

vn = 0.9vn−1 +
un−1 (X, 1)

1 + vn−1
. (20)

In these equations, the only free parameter that remains is Λ = λF . It represents
the number of newly born oysters per oyster per year in the absence of overcrowding
effect. Each year, n, the diffusion equation (18) is integrated with initial condition
(19) and the oyster population is updated according to (20).

From 1964 onwards, oysters were introduced and cultivated on 100m-wide squares
approximately 8 km away from the central region. In the new space scale, 100m →
0.25 and 8 km → 20. Knowing that the first spat-fall on dike foots and jetties was
recorded in 1976, we need to integrate the system above for 12 years, n = 1, . . . , 12,
and check whether a significant number of oyster/larvae could reach the central
region. Initially, the oyster distribution is given by

v0 (X) =

{

1, 0 < X < 0.25,
0, 0.25 < X.

It is a simple task to integrate numerically the sytem (18)-(19) with the initial
condition above. The result is shown in Figure 1 and suggests that the development
in the past can indeed be constructed with this simple model provided that Λ ≥ 8-
10.

3.3 Continuous time dependence for oysters

To close this section, let us remark that the system (18)-(19) can be made amenable
to further analytical development by turning the difference equation (20) into a
differential one. Indeed, assuming that the variation of oyster population density is
small from year to year, one can write

v (n + 1) ≈ v (n) +
∂v

∂n
,

where n is now considered as a continuous variable that measures time in units
of years. One thus has: n = t

year = t
month

month
year = εT , so that, generally, the
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Figure 1: Yearly evolution of the oyster distribution vn with Λ = 10 (top) and oyster
density v12 at the border of the Eastern region for various values of Λ after 12 years
(bottom).
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larvae/oyster model can be cast in the following form

ε
∂u

∂n
=

∂2u

∂X2
+ Q, (21)

∂v

∂n
= G. (22)

3.4 Discussion

In this section we have sketched a way to model the oyster expansion in the Eastern
Scheldt. The simplest choice of the generation rates Q and G of larvae and oysters,
respectively, already proves quite informative. After rescaling variables, only one
free parameter remains: Λ, the number of descendants per oyster per year in the
absence of any overcrowding effects. It was found that Λ needs to be in the order
of 10 in order to reconstruct a specific aspect of the history of oyster proliferation,
the time lapse between the introduction in 1964 and the first large-scale sightings
in 1976. Although this value may appear large, one must bear in mind that it does
not account for overcrowding effects. Moreover, the more accurate diffusion model
(19) would probably require smaller values of Λ, owing to the dependence of DT on
the sea depth.

Although the proliferation of oysters was only observed in 1976, the present
analysis suggests that it had actually been taking place right from the beginning of
their implantation in 1964. Because it was under water and at some distance from
the shores and coasts, it is possible that the process went unnoticed before 1976.

Let us finally note the large values attained by the oyster density in figure 1.
This results from the relatively long life span of oysters. However, overcrowding
should be taken into account in the death rate of oysters. It is indeed observed that
oysters grow on top of each other, so that only the top layer is alive. This point is
(at least partially) addressed in the next sections.

4 The effect of substrate hardness on the spreading of
an oyster bank

In this section we study the spreading of an oyster bank where we concentrate on the
phenomenon that oysters prefer to settle on a hard substrate rather than a sandy
one.

4.1 The Fisher-Kolmogorov equation

The classical model [9] for spatial spreading of any biological species is the Fisher-
Kolmogorov (FK) equation

∂u

∂t
= D∆u + f(u), (23)

where ∆ is the Laplacian (in the spatial coordinates), D the diffusion constant and f
is a nonlinear function, typically

f(u) = u(1 − u) (24)
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or
f(u) = u(u − a)(1 − u) with 0 ≤ a ≤ 1. (25)

The Fisher-Kolmogorov equation has been analysed in excruciating detail. We will
only recall a few results here to serve as a guide for a more specialized model pre-
sented in §4.2.

In the present context u can be interpreted as the biomass of the oysters (or
their number) per unit area. The crucial difference between the nonlinearities (24)
and (25) is that for the former the trivial equilibrium u = 0 is unstable while for
the latter it is stable (at least in the absence of diffusion). The equilibrium u = 1
is stable in both cases. We will refer to (24) as the monostable case and to (25)
as the bistable case. One interpretation is that the monostable case corresponds
to oyster growth on a hard substrate (rocks or concrete), whereas the bistable case
corresponds to oyster growth on a soft substrate (a sand bank). Without going
into a biological interpretation we now state some mathematical results. In §4.2 we
discuss the choice of nonlinearities in more detail.

The dynamics of solutions of (23) are dominated by travelling wave solutions,
i.e., solutions of the form u = U(x − ct), where c is the speed of the wave, and
x is the direction of propagation. The waves of interest are those connecting the
solutions u = 0 (no oysters) and u = 1 (thriving oyster population).

In the monostable case there exist travelling waves with arbitrarily large speed,
hence a priori the oysters could spread at arbitrarily large rates. However, “most”
solutions, in particular those starting from compactly supported initial data (corre-
sponding to a well-defined bank of oysters), select the velocity cmono = 2

√
D, which

is also the minimal speed among the everywhere positive travelling waves.
In the bistable case there is a unique travelling wave; it has velocity cbi =

√

D/2(1 − 2a). Hence for a < 1
2 the oysters spread, i.e. u = 1 “invades” u = 0.

Clearly cmono < cbi for any a ∈ [0, 1/2). Although this information has limited value
since we have ignored implicit scalings in the argument, the idea is that the oysters
spread more rapidly on a hard than on a soft substrate. With these differences in
mind we now turn to a more detailed model which incorporates both oysters and
larvae.

4.2 An oyster-larvae model

We consider a model which takes into account two stadia in the life cycle of an oyster
with obviously different dynamic capabilities, namely oysters which are fixed to the
seabed and larvae which float around in the sea. We thus disregard (or assume
insignificant) the fact that oysters may detach from the seabed and move to more
favourable grounds. Of course there are many other features that we do not include
in our model either.

From Section 3 we pick up the discussion at the continuous-time system of equa-
tions (21-22). We briefly return to the dimensional variables O and L for oysters
and larvae. Assuming that the larvae diffuse (with diffusion constant D), die at rate
E (per unit time) and that (as in Section 3) each oyster produces F larvae per unit
time, we obtain the equation (analogous to equation (1), with a particular choice
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of Q)
Lt = DLxx − EL + FO. (26)

Here subscripts denote partial derivatives. For simplicity (and since we are going to
look at travelling waves anyway) we take into account only one spatial dimension.1

The more interesting part of the model is the choice of the nonlinearity G which
describes the transition of larvae to oysters. We assume that the increase in oyster
population is proportional to the amount of larvae (with proportionality constant
A), and that the growth saturates when the oysters reach some maximal density
Osat due to competition for food and/or space (which makes it harder for larvae to
settle). Additionally, we include a death rate C. This leads to

Ot = AL(1 −O/Osat) − CO. (27)

Since the oysters are immobile there is no diffusion term. Alternatively, when the
sea bed is sandy, the larvae prefer to settle on existing oysters, which we model by

Ot = AL(O/Osat + δ)(1 −O/Osat) − CO (28)

with 0 ≤ δ � 1 a (dimensionless) measure for the relative preference of larvae to
settle on a soft compared to a hard substrate. We note that the choice δ = 0 prevents
spreading of oysters to previously unoccupied territory: since equation (28) contains
neither diffusion nor convection, O(x, 0) = 0 implies O(x, t) = 0 for all t ≥ 0.

For (27), in combination with (26), the trivial equilibrium (L,O) = (0, 0) is
unstable provided AFE−1 < C, while for (28) it is stable provided δAFE−1 < C
(the inequalities have an obvious interpretation). In the following we will assume
that

δ <
CE

AF
< 1. (29)

The situation is thus very similar to the comparison between the monostable and
bistable cases for the scalar equation in §4.1.

In true study-group spirit, some educated guesses for the parameters are

A : 10−5 y−1 Osat : 102 m−2 C : 10−1 y−1

D : 10−1 m2s−1 E : 3 · 101 y−1 F : 107 y−1 δ : 10−2 (30)

The death rates C and E follow from the life span of the oysters and of the larvae; the
maximal oyster density Osat is estimated from existing oyster banks; the diffusion
coefficient D was estimated in Section 3; the larvae production per oyster per year F
and the ratio δ were estimated by RIVO. The larvae-to-oyster transformation rate A
(under optimal conditions) is difficult to estimate. The second inequality in (29)
implies the bound A > 3 · 10−7 y−1; we chose the value 10−5 y−1 to accommodate
this inequality.

1As explained in §3.3, this equation represents a smoothed version of the discrete-time equation

of the previous section. Assuming a reference time scale of a year, the coefficients D and E in this

equation are the natural coefficients associated with diffusion and death of the larvae, per year. The

coefficient F , on the other hand, should be viewed as the production of larvae, per oyster, averaged

over a year.
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Figure 2: A solution of (31) with k = 1, α = 1, β = 10−2, δ = 10−3 showing the
development towards travelling waves.

Introduce the dimensionless variables

ũ = E(OsatF )−1L, ṽ = O−1
satO, x̃ =

√

E/Dx, t̃ = Et,

and the dimensionless parameters

α = AFE−2 and β = CE(AF )−1.

(The parameter α is closely related—approximately equal—to the combined param-
eter εΛ of the previous section. It is the growth rate of the system without diffusion,
without oyster morbidity, without taking crowding into account, and with δ = 0).
After dropping the tildes from the notation we obtain

{

ut = uxx − u + v,
vt = α[u(vk + kδ)(1 − v) − βv].

(31)

Here k = 0 or k = 1, corresponding to a hard and a soft substrate respectively. We
recall that we assume 0 ≤ kδ < β < 1 (which is satisfied if the estimated values (30)
are approximately correct, namely β = 3 · 10−2 � 1).

As for the FK equation in §4.1 we expect the long term dynamics to be dominated
by travelling waves and this is confirmed by numerical simulations, see Figure 2.

Our discussion of (31) now follows the lines of that of the FK equation. For
the hard substrate (k = 0) we look at the asymptotic case β = 0. The trivial
state is unstable and we can expect there to be a one parameter family of travelling
waves, one of which is selected by sufficiently localised initial data. The expected
asymptotic velocity ch can be calculated explicitly; here we did so by locating the
value of c for which two eigenvalues coincide. Under the condition that c should be
real, this value is unique. The result is depicted in Figure 3 as a function of the
parameter α. In the limits of small and large α the behaviour is

ch ∼
√

27
4 α as α → 0, ch ∼ 4

√

27
4 α1/4 as α → ∞.

Numerical calculation show that the speed ch thus calculated analytically is indeed
the selected wave speed.
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Figure 3: The wave speed ch on a hard substrate as a function of α (with β = 0).
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Figure 4: The wave speed cs on a soft substrate as a function of α (with β = 3 ·10−2

and δ = 10−2).

For the soft substrate (k = 1) the limit case β → 0 also implies δ → 0 because
of the requirement δ < β. However, it is not clear that this limit is well-defined.
Therefore, for the moment we will use the values β = 3 · 10−2 and δ = 10−2 which
follow from (30). In any case it is impossible to calculate the (unique) wave speed
analytically, so we have to rely on numerical computations. The asymptotic speed
cs is depicted in Figure 3, again as a function of the parameter α.

4.3 Discussion

For α = 10−1, the value corresponding to (30), we have ch = 0.2 and cs = 0.01.
These numbers can be interpreted in two ways:

• A speed c = 0.2 in dimensionless variables corresponds to 0.2
√

ED ≈ 2 · 103

meter per year (which seems rather fast). This confirms that the estimates
of (30) may be rather inaccurate, and that α may well differ significantly from
10−1.

• On the other hand, the two numbers ch and cs suggest that an oyster bank
spreads about twenty times faster on hard substrate than on soft substrate.
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Despite the inaccuracy in the coefficients α, E, and D, the linear behaviour of
ch and cs for small α (see Figs. 3 and 4) implies that the ratio

ch : cs ≈ 20 : 1

remains valid as long as the parameters are such that the dimensionless pa-
rameter α = AFE−2 is not too large (roughly α < 1).

While this biological conclusion is relatively easily drawn, many mathematical
niceties/issues are so far unresolved, partly due to time limitations. In particular,
the asymptotic regime β → 0 for the soft substrate model has not been analysed in
depth. Besides, the limit of large α would be interesting to study from a mathemat-
ical point of view.

5 Reduction of salinity

The possibility of lowering the salinity of all or part of the Eastern Scheldt by once
again allowing freshwater from local rivers to drain into the basin has been proposed
as a method to hinder oyster population growth. It should be noted that for raising
salinity levels (by for example turning compartments into lagoons by building more
dams) to have an impact on larval production or morbidity, or on oyster morbidity,
the salinity level would have to be taken above the tolerance of many other indiginous
benthics.

Specifically, we have already seen (p. 6) that oyster fecundity is a function of
salinity, both because oysters produce fewer larvae in less salty water and because
oyster larvae have higher morbidity (proportion of population succumbing to disease)
in less salty water [7]. However, other species in the Scheldt are also sensitive to
salinity levels, so for example a stratagem involving closing the storm surge dam and
flooding the Scheldt with freshwater would doubtlessly remove the vast majority
of oysters, but would also presage an ecological disaster. Furthermore, since the
freshwater dams were constructed between 1964 and 1987, agriculture upstream of
the dams has become dependent on the current river conditions. This is in addition
to the still pertinent reason for building the dams: flood prevention. With these
facts in mind, a permanent reopening of the dams would not be without its side
effects. In this section we will therefore consider seasonal salinity reduction, or SSR,
in which freshwater would be allowed into the Scheldt only in a period coinciding
with the spawning season and the life span of the larvae. In addition, and for reasons
to be explained below, only SSR in the Eastern Compartment (Kom) of the Eastern
Scheldt will be considered. This implies that the dams in other compartments would
remain intact, and the consequences for agriculture and flood prevention would be
minimised.

5.1 The Eastern Compartment

The two locations for direct freshwater input are The Northern and Eastern Com-
partments. The Kom was chosen for analysis for several reasons. Important among
these is the canal which now runs along the Eastern bank of the compartment.
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It splits into two canals: the Schelde-Rijn-kanaal for shipping and the Bathse
Spuikanaal, both fed by the Zoommeer, a lake bordering on the Eastern Scheldt,
from which it is assumed large volumes of water can be pumped due to the capacity
of the lake. Agriculture is believed to be more dependent on the rivers which feed
the Northern Compartment. Furthermore, the Kom is the shallowest compartment
and has the most regular topography and is thus amenable to a simplified analysis.

Prior to construction of the Kom dam, RIVO measured [5] the influx of fresh-
water into the Kom at between 50 and 70 cumecs (cubic metres per second). As
a seasonal measure, freshwater flowing through sluice gates in the dam would not
approach these flow rates, and so the following analysis assumes that the dam re-
mains intact and freshwater is pumped from the canal at a rate of 100 cumecs. The
assumption is that the large body of water in the Zoommeer can provide the extra
capacity, and this source can be replenished in the majority of the year when the
pumps are not in operation.

5.2 Effects of Lower Salinity

The primary trigger for spawning is water temperature [7, p. 312], [4]: C. gigas
are known to spawn when the temperature exceeds 20oC over a period of several
weeks, although they are capable of spawning at 16oC. With large concentrations of
sex cells in the water, spawning tends to be highly coordinated with large colonies
spawning almost in synchrony, to maximise chances of reproduction. Larvae develop
in the water phase for between 15 and 30 days, during which time they are spread
by water currents and diffusion.

The 60 day period covering the spawning and larval phases is seen as the optimal
time to reduce salinity as larvae are more susceptible to reduced salinity levels than
oysters. Oysters can survive water as brackish as 10ppt (parts per thousand of
chloride), while larvae will not develop in salinity levels below 11ppt. This is far
below the tolerance of other benthics in the area and, even if it were possible, lowering
the salinity to kill the oysters and/or larvae is therefore not an option. However,
morbidity, oyster respiration rates, and oyster filtration rates are affected by even a
small change in conditions, through the following formulae quoted in [7]:

morbidity ∝ S − 8

5.5
, (32a)

respiration rate ∝ 1 +

(

Rr − 1

5

)

(20 − S) , (32b)

where Rr =

{

0.0915T + 1.324 T > 20oC ,

0.007T + 2.099 T < 20oC ,

filtration rate ∝ S − 10

10
for 10 < S < 20 , (32c)

where S denotes salinity and T temperature. Note that oysters are filter feeders,
actively pumping water through their feeding organs and filtering out phytoplankton,
bacteria and protozoa for consumption. Filtration rate can be measured in millilitres
per minute.
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Figure 5: Strategy 0400

5.3 Pumping Strategies

We introduce a time system modulo 4, with 0 at low tide, 1 at the midpoint between
low and high tide, and so on, with each time phase defining a Pumping Period (PP).
We assume that the tidal convection is the primary mixing mechanism for fresh and
salt water in the Kom, and that mixing is highly efficient: in any PP, volumes of
fresh and salt water are assumed to mix fully. Though this assumption may not
hold in all circumstances, in a relatively shallow basin such as the Kom, with a
tidal difference of approximately 3 metres, temperature and salinity stratification,
for example, are perhaps unlikely.

As discussed above, we normalise on a pumping rate of 100 cumecs by supposing
that the capacity of the canal and lake permit this rate of continual supply. Thus
a normalised freshwater input would be 1 unit per PP, and we can generate 24

pumping strategies within the constraint of a total of 4 units pumped during the
four PPs. We shall be using the concepts, symbols and values listed in table 1, where
volume is in units of 106m3, and salinity is in ppt. The data is taken from RIVO
data.

The formula we use to calculate the mass of salt in the Kom at time n+ 1 is the
following:

Vn+1ρn+1 = Vnρn + Wn+1Vfρf + (Vn+1 − Vn − Wn+1Vf )Mn+1 , (33a)

where Mn+1 =

{

ρs if Vn+1 − Vn − Wn+1Vf > 0.

ρn if Vn+1 − Vn − Wn+1Vf < 0.
(33b)
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Concept Symbol Value

Time step t —
Volume at t = n Vn —

Global salinity at t = n ρn —
Weighting at t = n Wn Depends on strategy (mod 4)

Volume of freshwater influx in one PP Vf 1.08
Freshwater salinity ρf 0.5
Sea water salinity ρs 17.5

Water volume in Kom at high tide V 600
Water volume in Kom at low tide v 400

Table 1: Table of concepts and data

The origin of this formula is clear when it is considered term by term:

Vn+1ρn+1 — mass of salt at t = n + 1;

Vnρn — mass of salt at t = n;

Wn+1Vfρf — mass of salt from freshwater input;

Vn+1 − Vn − Wn+1Vf — saltwater volume change due to tidal flux.

(34)

The two cases in (33b) correspond to a rising and falling tide, respectively.

5.4 Results and Discussion

Figures (5 & 6) show SSR for two different pumping strategies. The periodic be-
haviour apparent here after approximately 40 time steps is a common feature of the
16 strategies considered, and suggests that pumping need only begin 5 days before
spawning is predicted to start. In these two examples, the baseline (that is, mean
over tidal periods) salinities after 5 days are close to each other in value. Figure (7)
shows a comparison in baseline salinities for all 16 strategies, and it is clear that
there is not much to choose between them in terms of baseline salinities. It is very
likely that each strategy has a different engineering cost depending on the rate of
pumping required, and also that some strategies may place too great a strain on
water supply, and that these may become the dominant factors in deciding strategy.
All strategies recover to the original baseline salinity of 18 ppt within 5 days of the
freshwater supply being cut off.

It should be noted that RIVO has conducted numerical simulations to study
the effects on salinity of a permanent reopening of the compartment dams in both
the Northern Compartment and the Eastern Compartment ([5]). The long-time
maximum baseline salinity they predicted for the Kom is within the range covered
by our SSR strategies.

We conclude by noting that SSR in the Kom has the advantages of maintaining
the flood protection afforded by the compartment dams, of providing a short-term,
controllable method to reduce salinity in time for the spawning and larval devel-
opment periods, and of allowing farmed oyster production — with beds created by
“planting” imported young oysters — to continue in the Kom. There may even be
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additional benefits associated with importing water from Lake Zoommeer. These
could include a decrease in water temperature in the Kom, and an increase in sus-
pended sediment — both of which have negative impacts on spawning and survival
rates, see for example [7]. However, the scheme has the disadvantage of only low-
ering salinity by 2 − 3% in the Kom which, through the formulae (32), could lead
to an increase in larval mortality of approximately 4%. There is also an associated
decrease in oyster filtration rate of around 5%, and an increase in oyster respiration
of around 10% for a summer water temperature of 22oC.

Consuming less food and utilising more stored energy supplies will presumably
impact on the number of sex cells each oyster is capable of producing, and a quanti-
tative link would be of use. Less food removed from the water column also implies
more is available for other species.

The above analysis rests on many simplifications of the system, and any final
recommendation on the viability of SSR would have to rest on a more complete nu-
merical model similar to that used by RIVO in their long-time simulations. However,
we believe that the data obtained gives reasonable estimates for the likely effects
of SSR in the Kom, and could form the basis of the proposal for a more detailed
feasibility study.

6 Outline of a large-scale simulation

For a more detailed answer to the questions of the Introduction we propose the use
of large-scale computer simulation to reconstruct and to predict the development of
the oysters.
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6.1 How are the oyster clusters formed?

The life cycle of a Japanese oyster:

1. egg & gamete (spawning in July-August, O(106)–O(108) per adult oyster);

2. larvae (within several hours);

3. veliger larvae (in one or two days the larvae develop into veliger larvae (with
larval shell));

4. spat (in two to three weeks these settle down on appropriate substrate (hard
culture));

5. juvenile oysters develop into adult oysters after one year (estimated mortality
of juvenile eastern oysters of more than 64% in seven days after settlement
and more than 86% in one month after settlement on sub-tidal and inter-tidal
plates);

6. death (caused by aging (approx. 20 years), predators, disease).

A simplified view of how a new cluster/colony arises is the following:
The larvae floating in water are displace by diffusion and carried with the tidal

movement. Within 3 weeks they have to settle down on appropriate substrates
(hard surface) or otherwise die. The settling down occurs at the moment when the
water is quiet (e.g., at the turn of a tide, approximately 20 minutes, or in quiet
surroundings). After settling down they will stay there, however, a large percentage
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of them die before reaching adulthood. After one year, those surviving (juvenile)
oysters will enter the reproduction system and start to produce gametes and eggs.
Oyster clusters are formed or grow when (veliger) larvae settle down on appropriate
substrates and survive there.

6.2 Diffusion and convection of larvae due to tides

Two main factors, determining the place for the larvae to settle down, are: 1) ad-
vection and diffusion of the tidal flow; and 2) to be at the appropriate place while
the water is quiet. If we ignore the swimming effect of the larvae, the transport of
larvae can be described by the shallow water equations,

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
− w

∂u

∂z
+ fv − g

∂ζ

∂x
+ νh

∂2u

∂x2
+ νh

∂2u

∂y2
+

∂

∂z

(

νv
∂u

∂z

)

(35)
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∂v
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∂v
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∂ζ

∂y
+ νh

∂2v

∂x2
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∂2v

∂y2
+

∂

∂z

(

νv
∂v

∂z

)
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)
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)
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(
∫ ζ
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)
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−d
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)
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and the transport equation with c being the concentration of larvae:

∂c

∂t
= −∂uc

∂x
− ∂vc

∂y
− ∂wc

∂z
+

∂

∂x

(

Dh
∂c

∂x

)

+
∂

∂y

(

∂c

∂y

)

+
∂

∂z

(

Dv
∂c

∂z

)

(39)

Here the triplet (u, v, w) is the velocity vector, f the Coriolis parameter, g the grav-
itational acceleration, and νh/νv and Dh/Dv the horizontal and vertical viscosities
and diffusion (or dispersion) coefficients. The function ζ is the height of the water
surface.

The shallow water equations governing the water movement can be simulated
using the existing simulation model TRIWAQ (which is in operational use at Rijks-
waterstaat [16, 14]), and the transport equation can be simulated with a particle
simulation model SIMPAR (a 2-dimensional version is also in operational use at
Rijkswaterstaat [2, 6], and a 3-dimensional model is currently being developed at
TU Delft [11, 12]) using the flow velocity data produced by TRIWAQ. Instead of
looking at the concentration of larvae, we consider the discrete (likely aggregated into
groups of larvae) quantity which are ‘particles’ carried with the water movement.
For that the continuous transport equation (in concentration) is transformed into a
stochastic partial differential equation (e.g., Fokker-Planck equation).

With the above simulation models we can determine the position of the larvae
at the time when the water is quiet. If a larva happens to be positioned above
an appropriate (preferably hard) surface, then there is a certain chance that it will
settle down on that surface. There exist quite detailed geometry and geological data
about the Eastern Scheldt which can be used for the simulation. The geometry data
(e.g. depth) are already used by TRIWAQ and SIMPAR, but we need additional
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geological data (hard, soft surfaces) for our simulation of the distribution of the
oysters. The main problem remaining here is to simulate the life cycle of the oysters
in order to determine the speed of population increase, reconstruction of the past
development and prediction of future development, etc.

6.3 Simulation of the life cycle of oysters

In section 6.1 we have described the life cycle of an oyster. In order to obtain
detailed information of the spread of the oysters we need to model the important
factors which affect the development of oysters.

We may distinguish this life cycle into two major phases:
Phase 1. Each year in July there is a moment when oysters (older than 1 year)

start to produce eggs and gametes. Then there will be billions of eggs and gametes
or larvae floating in the water (initially above the spawning oyster colonies). This
can be modelled as (multiple) sources in the transport model SIMPAR. The number
of larvae produced by a single oyster depends on many factors: size of the oyster,
environmental conditions, etc. (see the discussion in Section 3).

Phase 2. This is the period from the moment of settling down to developing into
an adult oyster. During this period the oyster will stay in the same place except
when they are very young (spat, juvenile oyster). In the latter case they can be
wiped out by strong currents. From juvenile oyster to adult oyster, we know that a
large percentage will die before reaching adulthood.

In general, there are 5 biotic factors causing oyster death: disease, predation,
competition, developmental complications, and energy depletion. And there are 5
abiotic factors: desiccation, temperature, salinity, water motion, and oxygen deple-
tion. Disease and predation are said to have the greatest effect on oyster popula-
tions. However, which factors contribute predominantly to the death or survival of
the Japanese oysters in this specific Eastern Scheldt remains to be investigated.

To conclude: many factors for the model of the life cycle of a Japanese oyster
still need to be investigated, part of them can be determined by experiments, and
part of them can be determined/tuned by comparing simulation results with the
past observational data.

A Appendix: derivation of (14)

Consider equation (3) where u is given by (11). Let us rescale the space and time
variables as

(

X Z T
)

=
(

x/L z/h U0t/L
)

, (40)

where L is a characteristic scale in the x-direction. From the shallowness hypothesis,
we assume that h = εL, ε � 1. Then, introducing the Peclet number Pe = U0h

D ,
equation (3) becomes

εPe

(

∂L
∂T

+ v (Z)
∂L
∂X

)

=
∂2L
∂Z2

, (41)

v (Z) =
3

2

(Z − Z0) (2 − Z − Z0)

(1 − Z0)
2 , (42)
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with no-flux boundary conditions at Z = 0, 1:

∂L
∂Z

= 0, Z = 0, 1. (43)

The presence of the small number εPe � 1, suggests to seek a solution in series of
power of εPe in the form

L = L0 (X,Z, T ; τ) + εPeL1 (X,Z, T ; τ) + . . . , (44)

where τ is a slow timescale defined by εPeT . Inserting ( 44) into (41), we find at
leading order that

L0 (X,Z, T ; τ) = L0 (ξ; τ) , ξ = X − T, (45)

while the solution at order (εPe)
2 is

L1 (X,Z, T ; τ) = −
[

(−2 + Z)Z + 2Z0 (X) − Z2
0 (X)

]2

8 [−1 + Z0 (X)]2
∂L0

∂ξ
. (46)

Finally at order (εPe)
2, equation (41) reads

∂2L2

∂Z2
= F

(

∂L0

∂τ
,
∂L0

∂ξ
,
∂2L0

∂ξ2
, Z, Z0

)

. (47)

The form of F is rather complicated and of no real interest so we do not explicitate
it here. The key point is that L2 has to satisfy the boundary conditions (43) and
this yields the solvability condition

∫ 1

0
F

(

∂L0

∂τ
,
∂L0

∂ξ
,
∂2L0

∂ξ2
, Z, Z0

)

dZ = 0.

After integration, we obtain

∂L0

∂τ
= −24 (1 − Z0)

105

dZ0

dX

∂L0

∂ξ
+

(

1

P 2
e

+
2 (1 − Z0)

2

105

)

∂2L0

∂ξ2
, (48)

which, in terms of the original space and time variables x and t, is (5).
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