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Abstract. Large ant colonies invariably use effective scent trails to guide copious ant numbers to
food sources. The success of mass recruitment hinges on the involvement of many colony members
to lay powerful trails. However, many ant colonies start off as single queens. How do these same
colonies forage efficiently when small, thereby overcoming the hurdles to grow large? In this paper,
we study the case of combined group and mass recruitment displayed by some ant species. Using
mathematical models, we explore to what extent early group recruitment may aid deployment of
scent trails, making such trails available at much smaller colony sizes. We show that a competition
between group and mass recruitment may cause oscillatory behaviour mediated by scent trails. This
results in a further reduction of colony size to establish trails successfully.

1. Introduction

Mass recruitment, the use of scent trails to guide nest mates to food sources, is synonymous with
the ecological success of many ant colonies (Beckers et al., 1989; Hölldobler and Wilson, 1990; Franks
et al., 1991). Yet many ant colonies are founded by single queens (Buschinger, 1974; Hölldobler
and Wilson, 1977; Bourke and Franks, 1995). So how do such initially tiny colonies ever forage
sufficiently successfully to build up their worker populations so that they can take full advantage of
mass recruitment? In other words, how do small colonies manage to forage reliably?

Reliability in animal communication is paramount (Wilson, 1975), particularly for animals living
together in tightly knit groups. Visual cues, such as the distinctive patterns on fish, serve to keep the
the schools or flocks together (Katzir, 1981; Tayssedre and Moller, 1983). Howling of wolves serves
in part the same purpose (Harrington and Mech, 1979). Directing schools or flocks to particular
targets is robust, in the sense that larger groups need relatively fewer leaders to direct them (Couzin
et al., 2005).

Social insects go one step further: the vast majority of species (in a variety of ways) recruit colony
members to food sources, thereby increasing the yield from their collective foraging (Wilson, 1971;
Oster and Wilson, 1978). Those who have found food (either independently or through information
provided by nest mates (Dechaume-Moncharmont et al., 2005)) need to inform naive nest mates
to create a positive feedback loop, so that over time much of the colony is aware of the food and
may act upon this information. A famous example is the honeybees’ waggledance which is used to
encode several aspects of a food source to colony members at the hive, such as quality, distance, and
the direction in which the food can be found (Haldane and Spurway, 1954; von Frisch, 1967). All
these recruitment methods need to be reliable, in particular under changes in colony composition.
Ants, especially, often start colonies as single queens but grow to thousands or even millions over
the course of the colony’s lifespan (Hölldobler and Wilson, 1990, 2009). Throughout this time, the
colony has to rely on its recruitment methods for efficient food collection.
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Ants use various recruitment methods, most often involving scent marking (Hölldobler and Wilson,
1990). Pheromone trails (PT) are well-known to be very efficient in guiding large numbers of ants
to a target. Once a trail is established, recruitment by scents is highly effective since the trail allows
reliable direct navigation between the nest and the recruitment target. Some trails may last for hours
or even days, thus freeing the ants who have laid the trail to be active elsewhere (Robinson et al., 2005;
Jackson et al., 2006; Jackson and Ratnieks, 2006). The major downfall of this method is precisely
when numbers of ants are small: the trail is then laid down too slowly to overcome evaporation. As
a consequence, trails are not strong enough to guide ants reliably to a target (Britton et al., 1998).

In two other recruitment methods, tandem running and group recruitment, trail scents do not
seem to play a role. In these methods, a leader ant guides a single ant or a small group of ants to a
recruitment target such as a food source or a new potential nest. We will refer to these two types of
recruitment as ‘group recruitment’ (GR) throughout. This flies in the face of convention (Beckers
et al. 1989—which distinguishes tandem running from group recruitment) but we do it both for
simplicity and clarity and because a group of two, albeit small, is still a group.

The speed at which these group recruitment proceeds is intrinsically limited by the number of
leader ants active at any moment, making it rather slow. A prime benefit of this individual-based
recruitment, however, is that it works well also when numbers of ants are small. In principle,
two ants, one leading and one following, suffice. But contrary to PT, the probability of any one
recruitment event succeeding does not improve when more ants are actively recruiting.

Intriguingly, in some ant species, such as Tetramorium (Hölldobler and Wilson, 1990), the use
of trails is preceded by an initial phase of group recruitment or tandem running. Several authors
have shown, using a combination of experimental work and theoretical models, that this two-stage
group-mass recruitment method allows these ants to make better choices than when using scent
trails alone (Bonabeau, 1997; Collignon and Detrain, 2010; Collignon et al., 2012).

But this compound recruitment system also has an inherent “competition effect”. Involving ants as
leaders in group recruitment means they are temporarily unavailable as scent trail recruiters (Planqué
et al., 2010). This decreases the rate at which scent may attract ants that are not yet involved in
scent recruitment.

The link between recruiting ants and pheromone concentration is straightforward in species using
only trails and no individual recruitment method: often the number of recruiter ants may be taken
as a proxy for scent trail strength. This is not the case, however, in group-mass recruitment systems
such as in Tetramorium. Both PT and GR recruiter ants may contribute to trails, but GR ants do
not use trails themselves.

In the present paper, our perspective thus focuses on the interplay between the building up of scent
trails and the “competition” between the different recruitment systems. In a recent paper, Collignon
et al. (2012) also modelled this group-mass recruitment system in Tetramorium, but their models
did not feature the competition between group recruitment and scent recruitment. In this paper,
we combine two things: 1) treating scent strength separately from trail ant numbers and 2) making
a distinction between ants involved in GR or PT recruitment. The main question we will address
is whether scent trails are more readily available when colony sizes are small when a group-mass
recruitment system is employed than when only trails are used. Furthermore, we will see that the
assumptions made above may cause this transition to scent trails to occur in a surprising fashion:
via oscillatory behaviour. This is uncommonly seen in ant recruitment models, and further reduces
the minimal colony size needed to employ scent trails.
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2. Modeling

The following equations describe the build up of recruiter numbers after a site with food has been
discovered by a few scouts, using a mean-field approach. A typical time scale at which the dynamics
take place is a few hours. We consider a colony of ants of size N , in which individual workers are
able to recruit using both GR and PT methods. In other words, workers are able both to lead single
ants or small groups to a food source and to follow scent trails. Depending on parameter values,
both types of recruiter ants may deposit trail pheromone. Ants are assumed to be able to use
either recruitment method at any moment exclusively. This is a departure from the more commonly
used modelling framework used to capture ant recruitment for foraging (Sumpter and Pratt, 2003).
However, this framework does not capture the idea that ants cannot be simultaneously involved in
two recruitment methods at the same time. We will see that this assumption leads to interesting
novel dynamics.

In this model, p(t) denotes the number of ants using pheromone trails and l(t) is the number
of ants involved in group recruitment, leaving N − l − p ants not involved in either recruitment
method. Ants following or leading tandem runs or groups are able to build up a trail which may be
used at some later time when recruiter numbers are sufficient. GR and PT ants might or might not
contribute at an equal rate to scent trails. Hence, to model the strength of recruitment by the trail,
we do not use the total number of recruiter ants l + p as a proxy for the strength of this trail. It
is more interesting to regard the scent concentration separately, and study the potential differences
when GR ants do or do not lay trails at the same rate as PT ants. For these reasons, we take the
dynamics of pheromones explicitly into account. In the following, ci, i = 1, . . . , 8, are positive rate
constants.

Let q(t) be the amount of pheromone on trails at time t. Then we model the build up of ants
following scent trails as follows,

(1)
dp

dt
= c1q(N − l − p)− c2p

c3 + q
.

This equation involves a simple positive feedback mechanism, in which trail strength q interacts with
uncommitted workers N − l− p, and a loss term which incorporates that the per capita probability
to lose the trail c2/(c3 + q) depends on the strength of the trail. If we had used the number of ants
on the trail as a proxy for the trail’s strength, we would have found

dp

dt
= c̃1p(N − l − p)− c̃2p

c̃3 + p
,

using a slightly different definition for constants c̃1, c̃2 and c̃3. This equation has been used in
previous models, that did not feature GR (Beekman et al., 2001) or in which GR ants did not
contribute to trails (Planqué et al., 2010). The pheromones are assumed to be laid down by ants
l(t) involved in group recruitment, or by ants following trails p(t). In both cases, the scent is laid
when returning from a recruitment target. Including degradation of the trail, the concentration of
scent over time satisfies

(2)
dq

dt
= −c4q + c5l + c6p.

There are two natural choices for c5: either GR ants, l, do not contribute at all, in which case c5 = 0,
or they contribute as much to the trail as PT ants p, and we set c5 = c6. We will restrict our analysis
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to 0 ≤ c5 ≤ c6, and both limit cases will be studied in detail. The build-up of ants involved in GR
is modelled as follows,

(3)
dl

dt
= c7l(N − l − p)− c8l.

This equation combines the same simple positive feedback between recruiter ants and the inactive
part of the colony as in (1) with a per capita constant loss term: the per capita probability for a
GR act to succeed does not depend on the number of GR ants involved.

Equations (1)–(3) form the main model analysed in this paper. The initial conditions we prescribe
are (p, q, l)(0) = (p0, 0, l0), with p0 small and possibly zero, and l0 small but positive to signify the
start of a recruitment event.

The main questions we pose to this model are

• Which steady states does this model possess?
• What are their stability properties? In particular, which steady state is an attracting one
starting from the given initial conditions, and how does this change when colony size is
changed?

• For changing colony size, are there any new equilibria in which pheromones are used?
• Can we understand the transitions from GR to PT, as colony size increases?
• How do the minimum colony sizes to use PT compare between the two important cases,
c5 = 0 and c5 = c6? Are scent trails accessible for smaller colonies if they use a group-mass
recruitment system?

Before diving straight into the analysis, we present an overview of the results, to give the reader
some intuition of the more detailed discussion to follow.

Depending on parameter settings, we find between one and five steady states. If GR ants do
not contribute to trails, the dynamics is analogous to the model analysed in Planqué et al. (2010).
We find three potentially stable steady states: the trivial one (neither recruitment strategy), a
PT equilibrium and a GR equilibrium. A separatrix marks the boundary between the domains
of attraction. For both recruitment steady states, colony size N should be sufficiently large to be
attracting for solutions starting near the origin. As N increases starting from some small value, the
dynamics first converge to GR and for larger values to PT. This is expounded in Section 4.

The main question thus becomes whether the minimum colony size to reach a PT equilibrium
is reduced if GR ants do contribute to trails. The analytically tractable (and biologically most
interesting) case when GR ants deposit scent at a rate equal to PT ants (c5 = c6) is studied in detail
in Section 5. In this case, the GR-only equilibrium is replaced by a mixed steady state which can
indeed be stable and attracting. A local stability analysis of this mixed steady state, however, shows
that when c2 is small enough (i.e., when the probability to lose the scent trail is low), the transition
from a mixed equilibrium to trails involves a Hopf bifurcation followed by a heteroclinic cycle.

Such oscillatory behaviour is interesting in its own right, and will be further studied in the Dis-
cussion. The biological consequence is that the transition to effective scent trails is made at a lower
colony size. This would have also occurred without the Hopf bifurcation and heteroclynic cycle
occurring (Collignon et al., 2012), but as we will see, the minimum colony size is further reduced
by this phenomenon. To get a better insight into how this qualitative change through oscillations
emerges, we unfold the Hopf bifurcation in the two limiting cases, when Nmin . Nmax and N̂ . Nmax

using regular perturbation expansions (Sections 8.1 and 8.2). The particular colony size values Nmin

and Nmax span the colony range for which the mixed equilibrium exists, and N̂ is the minimum
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colony size for the PT equilibrium. In the first limiting case, the Hopf bifurcation coincides with
the heteroclinic cycle; in the second case, the Hopf bifurcation can be analyzed, but the heteroclinic
cycle remains beyond our grasp analytically.

The detailed insight gained from the c5 = c6 case is finally put into a more complete picture by
studying model for intermediate values 0 < c5 < c6 using numerical experiments (Section 6). The
Hopf bifurcation and subsequent heteroclinic cycles are shown to be robust phenomena (for small c2).
Most importantly, the analytical results show how the different parts of the recruitment mechanisms
may contribute to facilitate a transition from mixed strategies to only scent trails. A combination of
a low net deposition rate of trail scent and good GR recruitment build up should give the greatest
benefit of using GR to build efficient scent trails.

3. Steady states

Without loss of generality, we may set c1 = 1 by rescaling time. We define a number of parameter
combinations, which will be used throughout the paper. Let us set

α =
c6
c4
, β =

c8
c7
, γ =

c8
c7c2

(c6 − c5).

Equilibria are first given as pairs (l, p), with q to be determined. We find two pairs, (p̂, l̂) and (p̄, l̄).
For the first of these,

p̂ =
1

α
q̂, l̂ = 0.

The pheromone trail at steady state satisfies either q̂ = 0, in which case we find the trivial steady
state, denoted P1, or q̂ = q̂±(N) where

(4) q̂±(N) =
αN − c3

2
± 1

2

√
(c3 + αN)2 − 4c2.

The two resulting steady states,

P2 = (p2, q2, l2) = (
q̂+
α
, q̂+, 0), P3 = (p3, q3, l3) = (

q̂−
α
, q̂−, 0),

involve only ants following trails at steady state. This pair of equilibria forms a continuous family
in N , and we will sometimes refer to the complete family as P23(N).

The second pair (p̄, l̄) satisfies

p̄ =
β

c2
q̄(c3 + q̄), l̄ = N − β − β

c2
q̄(c3 + q̄).

We can interpret β as the number of ants not involved in recruitment at the mixed steady state,
since β = N − l̄ − p̄. At these steady states, q̄ solves

(5) γq̄2 + (c3γ − c4)q̄ + c5(N − β) = 0,

with solutions q4(N) < q5(N) if γ ̸= 0 (i.e., if c5 ̸= c6), giving rise to two mixed steady states, P4

and P5. These form again a continuous family in N , and will sometimes be denoted by P45(N). In
the important case c5 = c6, i.e., γ = 0, we find only one steady state, P4, in which

q4 = α(N − β).

Figure 1 illustrates how the q component of the different steady states vary with N .
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3.1. Existence of equilibria. The pheromone-only steady states P23(N) exist only if N is large
enough for the discriminant in q̂±(N) to be positive, so when

N ≥ N̂ :=
2
√
c2 − c3
α

.

For the mixed steady states, let us first assume that γ = 0. The mixed equilibrium P4 is biologically
relevant if N ∈ [Nmin, Nmax], where

Nmin := β, Nmax := β − c3
α

+
c2
α2β

.

At N = Nmax, l̄ = 0, and the steady state is thus of the form (p4, q4, 0), and P4 in fact coincides with
P2 or P3 here, depending on the other parameter values. A prerequisite for Nmax > Nmin is that

(6) −c3
α

+
c2
α2β

> 0 ⇐⇒ αβ <
c2
c3

⇐⇒ c8
c7

c6
c4

c3
c2

< 1.

We will assume this throughout, and many results depend on it. The reason to assume (6) is that
we are particularly interested in how a colony using, at least in part, individual-based recruitment
methods, makes the transition to using trails only as colony size increases. Mathematically, this
amounts to a transition from orbits converging to a stable attracting steady state P4 to orbits
converging to P2 or P3. The existence of P4 is thus essential and is guaranteed by assuming (6).

If γ ̸= 0, we find two steady states, P4 and P5. The roots q̄ of (5) exist if

N ≤ NSN := β +
(c3γ − c4)

2

4γc5
.

The q-component of the P45 equilibria, q̄(N), becomes positive at N = Nmin and the l-component
vanishes at N = Nmax. However, if q4(NSN) < q4(Nmax), then the steady states are biologically
relevant for N ∈ [Nmin, NSN].

Studying the stability of these steady states, especially of the mixed ones P4 and P5, proves
difficult. However, the cases c5 = 0, when GR ants do not contribute to scent trails, and c5 = c6,
when GR and PT ants contribute equally, are accessible and shed much light on the equilibria
at intermediate values of c5. We will now study the two limit cases in turn, and then study the
intermediate case 0 < c5 < c6.

4. GR ants do not contribute to scent trails: the case c5 = 0

Let us assume that group recruiting ants do not contribute to scent trails and set c5 = 0, and
consider

dp

dt
= q(N − l − p)− c2p

c3 + q
,(7)

dq

dt
= −c4q + c6p,(8)

dl

dt
= c7l(N − l − p)− c8l.(9)

Apart from the steady states P1, P2 and P3, which do not depend on c5, there are two steady states
in which GR ants are present. In one, P4 = (0, 0, N − β), they feature exclusively, and the other,
P5, is a fully mixed steady state.
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The model above closely matches one studied previously in detail in Planqué et al. (2010). The
main differences with the current model is that pheromones were not taken into account explicitly,
and that in group recruitment a distinction was made between ants leading and following in tandem
groups. In that model, there are also five equilibria, and there is a qualitative one-to-one correspon-
dence to the five steady states above. Moreover, the stability properties are qualitatively the same,
when varying colony size N .

In this paper, we are chiefly concerned with the stability of steady states in which ants follow
trails, and for which solutions starting close the origin converge to such scent equilibria. In Planqué
et al. (2010) it was shown that solutions starting close to the origin can only converge to the scent
equilibrium P2 if the other of the pair, P3, which is always unstable when biologically relevant, has
passed into the positive octant. This happens at

N = N3 :=
c2
αc3

.

The same is true in model (7)–(9). The only fully mixed steady state, P5, which appears in both
models, is unstable whenever it is biologically relevant.

We thus conclude that, as in Planqué et al. (2010), colony sizes need to be sufficiently large for P3

to pass the origin, before the only stable steady state containing ants following trails, P2, becomes
attracting for solutions starting near the origin.

How does this result change when ants involved in GR or TR lay down trail as well? The major
part of the rest of this paper studies the other natural choice for parameter c5: c5 = c6.

5. GR ants contribute fully to scent trails: the case c5 = c6

The second case for which the dynamics may be studied analytically in more detail is when ants
following trails contribute as much pheromone to these trails as ants leading tandems or groups,
reflected in c5 = c6:

dp

dt
= q(N − l − p)− c2p

c3 + q
,(10)

dq

dt
= −c4q + c6(l + p),(11)

dl

dt
= c7l(N − l − p)− c8l.(12)

This model has one less steady state than the full model: it features P1, the origin, two trail
equilibria involving no leader ants, P2 and P3 as before, and one (rather than two, when c5 ̸= c6)
mixed equilibrium in which leader ants and pheromone trails are used, P4 = (p4, q4, l4), where

p4 =
αβ

c2
(N − β)(c3 + α(N − β))(13)

q4 = α(N − β),(14)

l4 = N − αβ

c2
(N − β)(c3 + α(N − β))− β.(15)

In the following sections, we give a detailed description of the behaviour of solutions for this model,
where we use colony size N as the main bifurcation parameter.

7



The analysis of the steady states starts with a local stability analysis of the equilibria. Recall the
following critical values for N ,

Nmin = β, N̂ =
2
√
c2 − c3
α

, Nmax = β − c3
α

+
c2
α2β

.

5.1. Local stability of P2 and P3. Equilibria P2 and P3 are of the form (p̂, q̂, 0). At such a steady
state, the Jacobian is given by

J :=

 −A B −q̂
c6 −c4 c6
0 0 c7(N − p̂− β)

 ,

where

A = q̂ +
c2

c3 + q̂
, B = N − p̂+

c2p̂

(c3 + q̂)2
.

One of the eigenvalues is hence c7(N − p̂− β). It passes through zero at N = Nmax, which may be
seen as follows. At N = Nmax, the l-coordinate of P4 vanishes, and q4 = q̂+ or q4 = q̂−, depending
on the ordering of q4(N̂) and q23(N̂). Hence, in the case of the first ordering, P2 = P4 at this value
of N , and in the second case, P3 = P4. But since l4 = N − p4 − β, the eigenvalue c7(N − p̂− β) is
zero at N = Nmax.

At N̂ there is a saddle-node bifurcation at which the two branches of equilibria P2 and P3 appear.
Here, one eigenvalue of J passes through zero, the other being negative. To see this, let

Js :=

(
−A B
c6 −c4

)
,

be the relevant submatrix of the Jacobian, whose eigenvalues determine the stability of solutions
near N̂ . The characteristic equation is

(16) (−A− λ)(−c4 − λ)− c6B = λ2 + (A+ c4)λ+ Ac4 − c6B = 0,

and we note that the trace is always negative. The stability changes when the determinant of Js
vanishes. Along the branch P23(N), q and N satisfy

q̂(N − q̂/α) =
c2q̂/α

c3 + q̂
.

Note that q̂ > −c3 for any N ≥ N̂ . The nontrivial solution for q satisfies

(αN − q̂)(c3 + q̂) = c2,

which is the same as

N =
1

α

( c2
c3 + q̂

+ q̂
)
.

If we substitute this into the determinant of Js, we find

det Js = q̂
((c3 + q̂)2 − c2

(c3 + q̂)2

)
,

so that det Js = 0 either when q̂ = 0 or when (c3 + q̂)2 = c2. On (−c3,∞), this equation has only
one solution, q̂ =

√
c2 − c3. As we have seen, the determinant of Js changes sign precisely at the

saddle-node. Starting at low q̂ values on the P3 branch, the determinant is negative, and P3 is hence
unstable. Conversely, P2 has three stable eigenvalues.
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5.2. Local stability of P4. Steady state P4 may change stability through a transcritical bifurcation,
in which an eigenvalue passes through the origin, or via a Hopf bifurcation, in which a pair of
eigenvalues passes through the imaginary axis. We will show that the latter occurs if

(17) c2 < c∗2 := α2β2.

Whether it also occurs when c2 > c∗2 is not straightforward, but we conjecture that it does not. All
numerical results indicate that it does not and that P4 is locally stable in this case. It is at least
clear that P4 cannot lose stability through a simple eigenvalue through the origin, by the following
argument.

Along the branch of equilibria P4(N), the Jacobian has the form

J =

 −A(N) B(N) −q4(N)
c6 −c4 c6

−D(N) 0 −D(N)

 ,

where A, B and D are positive functions of N given by

A(N) = q4(N) +
c2

c3 + q4(N)
,

B(N) = β +
βq4(N)

c3 + q4(N)
,

D(N) = c7l4.

The characteristic equation is thus given by

−λ3 + (−A− c4 −D)λ2 + (D(q4 − c4 − A) + c6B − c4A)λ+Dc4(q4 − A) = 0.

The determinant of J is Dc4(q4 − A). Whenever P4 is biologically relevant, D > 0 and A ≥ q4.
Precisely when P4 becomes biologically unrealistic (which occurs when N = Nmin and N = Nmax),
the determinant of J switches sign.

Inequality (17) is also equivalent to an ordering of q values. The trail-only steady states P2 and P3

exist for N ≥ N̂ . Let us denote the single scent-only steady state at N = N̂ by (p̃, q̃, 0). If c2 < c∗2
then

q4(N̂) > q̃,

and the intersection between P4 and P23 occurs in the top branch P2. If the ordering is the other
way round, the intersection lies in the lower branch, P3. See Figure 2.

5.3. A Hopf bifurcation on P4(N). We set c2 < c∗2, and focus on the pair of complex eigenvalues
of P4(N). To show that a Hopf bifurcation occurs for some N between Nmin and Nmax, we investigate
when a pair of purely imaginary eigenvalues passes the imaginary axis. Consider the characteristic
equation

−λ3 + aλ2 + bλ+ c = 0.

Then λ = iµ is an eigenvalue if and only if b = −µ2 and −ab = c. As detailed above, c = Dc4(q4−A)
does not have any roots for any N ∈ [Nmin, Nmax]. Since a < 0 for any q > 0, b must be negative if
the equation −ab = c is to be satisfied.
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The resulting function −ab− c is given by

(18) m(N) := (A(N) + c4 +D(N))
[
D(N)(q4(N)− c4 − A(N))

+ c6B(N)− c4A(N)
]
−D(N)c4(q4(N)− A(N)).

We want to know whether m(N) has a root for N between Nmin and Nmax. A direct calculation in
Maple (Version 14.00, Waterloo Maple Inc., 2010) shows that

m(Nmin) =

(
c2
c3

+ c4

)(
c6β − c4c2

c3

)
,

and hence, using (6), m(Nmin) < 0. In N = Nmax, we have

sign m(Nmax) = sign
(
(α2β2 − c2)(c2 − αβc3)

)
,(19)

so that, again using (6),

m(Nmax) > 0 ⇐⇒ c2 < α2β2 = c∗2.

So if c2 < c∗2, there is indeed a Hopf bifurcation on the P4 branch. Let us call the value of N at
which a Hopf bifurcation occurs NH .

5.4. A heteroclinic cycle. Numerical analysis indicates that for some N between NH and Nmax

there exists a cycle consisting of two heteroclinic orbits connecting the origin and the unstable P3

steady state. The value at which this cycle occurs is denoted by Nc. For N ∈ (NH , Nc), orbits
starting close to the origin converge onto a stable limit cycle. For N > Nc, such orbits converge to
P2. See Figure 3 for an example.

We cannot prove the existence of this heteroclinic cycle for all parameter values such that Nmin <
Nmax and c2 < c∗2. We will try to shed more light on this phenomenon using asymptotic analysis
in Section 8.1 and 8.2. Note, however, that its existence is consistent with the dimensions of the
stable and unstable manifolds at the steady states that are connected. For N > Nmin the origin
has one unstable eigenvalue, and thus a one-dimensional unstable manifold. The lower branch, P3

has a two-dimensional stable manifold. An intersection between a one-dimensional manifold and a
two-dimensional one is a generic phenomenon when we vary a parameter.

5.5. Conclusion of local stability analysis. In all, we have found two main scenarios, charac-
terized by the position of the rate of losing the trail, c2 relative to c∗2 = α2β2.

First of all, the P2 branch is locally stable for all N > Nmax.
If c2 > c∗2, then P2 and P4 meet at N = Nmax, and P4 loses a stable eigenvalue, and P2 gains one.

For N ∈ (N̂ ,Nmax), P2 is unstable. P3 is always unstable.

If c2 < c∗2, P4 meets P3 at N = Nmax. Now P2 is stable from N̂ onwards, and P3 is always unstable.
P4 is stable from Nmin until the Hopf bifurcation, which occurs at NH < Nmax. Numerics suggests
that a heteroclinic cycle appears just after the Hopf bifurcation, allowing solutions starting near the
origin to converge to the scent equilibrium P2.

It is possible to obtain a deeper understanding of the solution structure by studying how the
different types of solutions unfold. The Hopf bifurcation exists whenever Nmin < Nmax, provided
that N̂ < Nmax. In the Appendix, we study in detail the extremal situations Nmin . Nmax and

N̂ . Nmax using an asymptotic analysis. In the first case, both the Hopf bifurcation and the
heteroclinic cycle may be found by suitable scaling arguments, and occur at the same value of N .
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The situation in the latter case is more subtle; the Hopf bifurcation does occur, but the heteroclinic
cycle disappears by zooming in. This is to be expected, as the cycle connects steady states that are
far removed from each other in state space.

6. GR ants contribute moderately to scent trails: connecting c5 = 0 to c5 = c6.

When GR ants do not contribute to the pheromone trail (c5 = 0), dynamics are essentially the
same as in Planqué et al. (2010): solutions starting near the origin either converge to a GR-only
steady state, or to a PT-only steady state. The mixed steady state is unstable whenever it exists
and separates the basins of attraction of the two stable equilibria. Importantly, the scent trail is
reachable only when the other, unstable, pheromone steady state has passed into the positive octant.

When GR ants contribute to the scent trail at an equal rate to PT ants, c5 = c6, the GR-only
steady state changes into a mixed steady state. This equilibrium only exists for intermediate colony
sizes. Before or precisely at the point at which this steady state vanishes, the pheromone-only
equilibrium becomes the stable attracting point. This either happens with a simple exchange of
stability, or through a more complex route involving a Hopf bifurcation and a heteroclinic cycle that
occurs close to the Hopf bifurcation (see Appendix). In both cases, the transition to scent trails has
been made at Nmax (or earlier), rather than at N3.

What may we infer about properties of the model for values of c5 between 0 and c6? For 0 < c5 < c6
there are potentially two steady states involving group recruiters. For each of these, the numbers of
GR and PT ants are given by

l̄ = N − β − β

c2
q̄(c3 + q̄), p̄ =

β

c2
q̄(c3 + q̄).

Recall from Section 3 that the scent trail at steady state satisfies

(20) γq̄2 + (c3γ − c4)q̄ + c5(N − β) = 0,

where, as before,

γ =
β

c2
(c6 − c5).

Hence, we find two potential steady states for q̄,

q4 =
c4 − c3γ

2γ
− 1

2γ

√
(c4 − c3γ)2 − 4c5γ(N − β),

and

q5 =
c4 − c3γ

2γ
+

1

2γ

√
(c4 − c3γ)2 − 4c5γ(N − β).

These exist provided that

N < NSN = β +
(c3γ − c4)

2

4γc5
.

At N = NSN a saddle-node bifurcation occurs at which the solutions disappear.
The analysis of the case c5 = c6 gives us a good indication of the expected stability properties

of the mixed steady states for c5 ∈ (0, c6). There are again two cases, depending on whether c2 is
smaller or greater than c∗2 = α2β2.

If c2 > c∗2, then the family of mixed steady states intersects the P2 branch in one value of N . The
bifurcation occurring there is a transcritical one, an exchange of one stable eigenvalue. However,
for small values of c5, the branch of mixed steady states extends beyond N = Nmax, and there is a
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saddle-node bifurcation at the turning point N = NSN. This suggests that as N increases, the P4

branch is followed beyond N = Nmax, and at the turning point the solution drops off the P4 branch
and converges to P2. Numerical experiments agree with this, see Figure 4.

If c5 = c6 and c2 < c∗2, then we have seen that a Hopf bifurcation occurs for some value of N
between Nmin and Nmax. Numerical experiments suggest that this remains the case as long as the
q4(NSN) > q4(Nmax). As c5 decreases from c6, this is certainly the case, and there is one value of
c5 at which Nmax = NSN. For c5 less than this number, NSN > Nmax, but q4(NSN) < q4(Nmax).
Figure 5 gives an illustration that the Hopf bifurcation extends for some range of c5’s, after which
the behaviour is as in the previous case.

7. Discussion

7.1. Main results. We have modelled the dynamics of the growth of the populations of recruited
foragers in colonies of ants in which the workers are able to employ two different recruitment methods,
group recruitment (including tandem running; GR) and pheromone trails (PT). The main question
we have posed is how the interplay between group and mass recruitment facilitates the establishment
of scent trails at lower colony sizes.

The model clearly shows that GR aids PT employment. When trails are not laid down by GR
ants, colony size N has to be sufficiently large for solutions to converge to scent trail steady states.
When GR ants do contribute, solutions generally converge to PT equilibria at lower colony sizes.
Mathematically, this may happen in three ways: (1) through a simple exchange of stability in a
transcritical bifurcation; (2) through a saddle-node bifurcation where GR equilibria cease to exist;
(3) through a Hopf bifurcation combined with a subsequent heteroclinic cycle.

We have found two main cases. If probabilities to lose a trail are low, then colonies end up using
both trails and group recruitment at smaller values of N , and exclusively trails for large values of N .
In the second case, if probabilities to lose a trail are high, then a moderate contribution to the trail by
group recruiters allows colonies to show the same recruitment behaviour switching as in the previous
corresponding case. If group recruiters contribute equally to trails compared to trail following ants,
then colonies are able to converge to exclusive use of pheromone trails at much smaller colony size,
which mathematically happens by way of a Hopf bifurcation and subsequent heteroclinic cycle.

7.2. Oscillatory behaviour in scent-mediated recruitment. We have focused a great part of
the analysis on studying the oscillatory behaviour: its onset through Hopf bifurcation and ultimate
disappearance after passing the heteroclinic cycle. The oscillations may be understood intuitively
as follows. Scent trail recruitment requires a minimum colony size to be able to function on its own.
Group recruitment, with GR ants contributing to trails, makes it possible for scent to build up,
which in turn invites more ants to follow trails rather than be involved in GR. But if the number of
ants involved in following trails is ultimately insufficient to sustain the trail, it collapses, and group
recruitment starts to build up again, initiating a new cycle.

Put differently, we have two recruitment systems that differ in two fundamental ways. Scent
recruitment is dependent on scent concentration for recruiter build up, whereas group recruitment
is not. Group recruitment build up is only dependent on the number of GR ants involved. If GR is
initiated, it is very reliable. But its reliability does not scale well with colony size. Scent trails do
scale well, but when numbers of ants are lower, it is not very reliable. It is thus precisely the interplay
between the two recruitment systems via pheromones that leads to the observed oscillations.

12



Note that a slight change in the model, in which the success of a group recruitment act does
depend on scent trails, does not destroy these oscillations. If we replace

l̇ = c7l(N − l − p)− c8l

by an equation in which the loss term is of the same form as for pheromone trail ants,

l̇ = c7l(N − l − p)− c8l

1 + εq
,

then just by continuous dependence of the solutions on parameters, all properties, including oscilla-
tory behaviour, will persist at least for small ε. The occurrence of oscillations is hence not completely
dependent on the assumption that the probability for GR acts to succeed is a per capita constant.
It does hinge, however, on how positive feedback in PT or GR is regulated: by q (scent) or by l (GR
ants).

In a recent paper, Collignon et al. (2012) establish, using a slightly different model based on
the ant recruitment modelling framework by Sumpter and Pratt (2003), that scent trails are more
easily established using a group-mass recruitment system. This model, however, seems to lack the
oscillatory behaviour shown in the model discussed in this paper (a full stability analysis is not
provided, though). The main difference with the model studied in this paper is that it assumes that
single ants may be simultaneously involved in both types of recruitment at the same time. This is
consistent with the arguments given above.

7.3. Distinguishing scent concentration from numbers of ants following trails. In many
modelling studies of ant foraging, the scent concentration is not taken explicitly into account, but
is taken to be proportional to the number of ants following trails. This simplification keeps the
model lean and facilitates its analysis. This is, in some cases, quite defendable, especially when the
pheromones are quite short-lived, and the ants that follow the trail are the only ones contributing
to it. In our situation, the latter is not the case. Other previous studies of group-mass recruitment
also made the modelling distinction between scent and trail followers (Bonabeau, 1997; Collignon
et al., 2012).

In general, making this distinction may give rise to new dynamical phenomena that would oth-
erwise not be captured. Ants often use their scent trails in sophisticated ways (Detrain and
Deneubourg, 2008), such as when they incorporate negative feedback such that they cease to de-
posit pheromone when trail strength is too great (Czaczkes et al., 2013); learning the route to food
sources (Grüter et al., 2011); or using multiple pheromones with different longevities (Dussutour
et al., 2009). Apart from direct regulation of ant numbers by crowding or negative feedback, the
dynamics may include oscillatory behaviour (Verhaeghe and Deneubourg, 1983; Dussutour et al.,
2009), and in combination with environmental factors such as food availability to other periodic
behaviour (Rissing and Wheeler, 1976; Franks and Fletcher, 1983; Goss and Deneubourg, 1989).
These examples show that at the very least, a careful examination must be made before equating
trail strength with numbers of ants following trails.

7.4. Experimental evidence and testing of results. It has been demonstrated that group-mass
recruitment gives colonies greater flexibility and speed in their choice of foraging sites. Once an
initial choice has been made, a species with a combined recruitment system can change its decision
by deploying subsequent group recruitment, whereas a species with only trails can not (Beckers
et al., 1990; Bonabeau, 1997).
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Collignon and co-workers (2010, 2012) have provided further experimental evidence that groups
of recruits in Tetramorium caespitum are faster to form, are larger, and will recruit more reliably
towards a food droplet with a higher energetic content in sugars. The success of group recruitment
could also be linked to the efficiency of leading a recruitee group and its size.

In another species, T. bicarinatum, ants have been shown to be more willing to follow a leader
to a new nest source in a GR event than merely to follow the trail laid by that same leader previ-
ously (de Biseau et al., 1994). One explanation for this is that it is likely that the ants will arrive
at the food source by group recruitment than by following the weak trail.

The main predictions of the model have not been directly tested, but this should be possible
with techniques similar to those described in for instance (Collignon and Detrain, 2010; Collignon
et al., 2012). It will be particularly interesting to see if there are indeed oscillations in the recruiter
numbers when trails are difficult to follow and the number of ants involved in recruitment is limited.

7.5. The role of trail efficiency. Throughout the paper we have focussed on the role of c2 to
determine which type of changes of stability occurred. This parameter has a relatively clear inter-
pretation, as it is directly related to the probability of losing the scent trail. When trails work very
well, c2 is low, and when for instance, trails degrade quickly, c2 is high. When scent marks work
very well, there are in fact no mixed equilibria at all (inequality (6) is not satisfied). The minimum
colony size necessary to reach the PT equilibria, N3, is also small.

In the other case, however, there are stable mixed equilibria and the minimum colony size to reach
PT equilibria is higher. Especially when GR ants contribute to trails just as much as PT ants do
(which is most likely, since after all the same ants are involved in different tasks at different times),
solutions definitely converge to a trail steady state when colony size has surpassed Nmax.

Since

α2β(Nmax −N3) = (αβ − c3)
(
αβ − c2

c3

)
,

Nmax < N3 when c3 < αβ and (6) are satisfied. These two inequalities are only met simultaneously
if c3 < c2/c3, i.e. when c2 > c23. The righthand side is minimized if αβ lies inbetween c3 and c2/c3.
Hence, a combination of a low net deposition rate of trail scent (α low) and good GR recruitment
build up (β high) should give the greatest benefit of GR compared to PT.

7.6. Experimental evidence for an association between mixed recruitment methods and
small colony sizes. Tetramorium caespitum is one of the species in which the combined GR/PT
recruitment system has been documented. Colonies start as single queens and grow to have worker
populations between about 1,000-30,000 ants (Brian et al., 1965, 1967) with many colonies reaching
about 10,000. As such, these colonies clearly undergo growth over three to four orders of magnitude.
Our modelling suggests that the group-mass recruitment system allows them to overcome potential
growth obstacles by foraging efficiently at low colony sizes through the use of group recruitment to
establish effective and reliable trails.

In Beckers et al. (1989), a distinction is made between group-mass recruitment, and other uses
of trails which are called mass recruitment, trunk trails and group hunting. The median colony
size for group-mass recruiting species is indeed lower than for the other mass recruitment strategies,
consistent with our model.

7.7. Conclusion. One important question in the study of social insect behaviour is how the internal
organization of colonies keeps up with colony growth spanning several orders of magnitude. In
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ants, bees and termites, recruitment systems have been shown to be powerful and flexible collective
mechanisms to provide work forces where labour is needed. This study adds to our understanding
how group-mass recruitment systems allow them to use mass recruitment methods even in the
absence of ‘masses’ of ants.

The study of growing social insect societies is still in its infancy. Robustness of mechanisms that
can perform well over very substantial ranges of colony sizes and under varying environments are
likely to play a pivotal role. Studies linking colony growth to internal colony organization should
provide a much needed and deeper understanding of the ecological success of the social insects.
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Nmin β
Nmax β − c3

α
+ c2

α2β

NSN β + (c3γ−c4)2

4γc5

N3
c2
αc3

NH Hopf occurs

N̂ 1
α
(2
√
c2 − c3)

α c6
c4

β c8
c7

γ c8
c2c7

(c6 − c5)

c∗2 α2β2

Table 1. Important parameter values used in the paper.
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c5 = c6

Figure 1. Schematic diagrams depicting the q-component of the various equilibria
for varying colony size N , showing the relative positions of the critical values Nmin,
Nmax, N̂ , N3 and NSN. Left, a generic example in which 0 < c5 < c6. The steady state
P4, corresponding with q4 in the figure, is biologically relevant for N ∈ [Nmin, NSN].
Right, the case c5 = c6. The P4 steady state is now biologically relevant for N ∈
[Nmin, Nmax].
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Figure 2. Schematic diagrams of the q-components of the equilibria for the model
with c5 = c6. Left, c2 < c∗2 so that q4(N̂) < q2(N̂) = q3(N̂); right, c2 > c∗2, hence

q4(N̂) < q2(N̂).
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Figure 3. Example numerical runs of model (10)–(12) for colony sizes N = 4400,
4460, 4473, 4480, from left to right, top to bottom. Note the convergence to a stable
mixed equilbrium in the first plot, followed by a Hopf bifurcation (top right), an orbit
approaching a heteroclinic connection (bottom left), and finally a solution converging
to the stable pheromone equilibrium on the P2 branch (bottom right). Parameter
values used are c2 = 3, c3 = 0.1, c4 = 10, c6 = 0.01, c7 = 0.01, c8 = 40.
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Figure 4. Solutions for c2 < c∗2 for c5 values in the range 0 ≤ c5 ≤ c6. Rate constants
are, c2 = 2, c3 = 1, c4 = 1, c6 = 0.001, c7 = 0.001, c8 = 1, and c5 as indicated above
the figures. Bold lines show long-term behaviour of solutions starting near the origin,
thin lines the families of steady states. In all but the c5 = 0 case, solutions starting
near the origin converge to the mixed steady state for smaller values of N and to the
scent-only steady state for large values of N . For small values of c5, this transition
occurs by means of a saddle-node bifurcation, and for large values of c5 a transcritical
bifurcation occurs.
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Figure 5. Solutions for c2 > c∗2 for c5 values in the range 0 ≤ c5 ≤ c6. Rate constants
are, c2 = 2, c3 = 0.5, c4 = 0.5, c6 = 0.001, c7 = 0.001, c8 = 1, and c5 as indicated
above the figures. Bold lines show long-term behaviour of solutions starting near the
origin, thin lines the families of steady states. For c5 just above zero, solutions starting
near the origin drop off the branch of equilibria involving both group recruitment and
pheromone trails as colony size increases; for large colony size solutions converge to
the steady state involving only pheromone trails. For large c5, solutions converge to
these scent steady states much earlier, and drop off the mixed equilibria through a
Hopf bifurcation and subsequent heteroclinic cycle. The ‘kink’ in the last two images
are solutions converging to a limit cycle, and indicate that a Hopf bifurcation has
occurred.
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8. Appendix

As we have seen, a Hopf bifurcation exists whenever Nmin < Nmax, provided that N̂ < Nmax. In
this Appendix we study these extremal situations Nmin . Nmax and N̂ . Nmax using an asymptotic
analysis. See Figure 6 for a sketch of both extremal situations, and Figure 7 for an illustration of
the equilibrium solutions near Nmin = Nmax.

8.1. Unfolding the orbit structure: Nmin . Nmax. We start with Nmin = Nmax = β, which
occurs precisely when

c2
c3αβ

= 1,

and assume that the P4 branch intersects P3, which in this particular case is equivalent to requiring
that N̂ < Nmin, or c2 > c23. Let us introduce a small parameter ε by setting

(21) ε =
c2

c3αβ
− 1

and introduce the rescaling

N = β + εN∗,

where N∗ = O(1). To be concrete, we write (21) in the form

(22) c6 =
c2c4c7

c3c8(1 + ε)
.

We substitute a power series expansion of the variables, given by

p(t) = p0(t) + εp1(t) + ε2p2(t) + · · · ,(23)

q(t) = q0(t) + εq1(t) + ε2q2(t) + · · · ,(24)

l(t) = l0(t) + εl1(t) + ε2l2(t) + · · · .(25)

into the equations (10)–(12), and change the time scale by setting τ = εt. (Note that the pi, qi and
li have nothing to do with their previous use in equilibria P1, . . . , P5.) The O(ε0) problem is then
simply the set of steady state equations for p0, q0 and l0. Since we are expanding near the origin,
we conclude p0 = q0 = l0 = 0. The O(ε) problem in time τ is given by

0 = q1
c8
c7

− p1
c2
c3
,

0 = −c4q1 + (l1 + p1)
c2c4c7
c3c8

,

0 = l1.

We thus find that the first two equations both give

(26) q1 =
c2c4c7
c3c8

p1.
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The order ε2 problem is

dp1
dτ

= q1(N
∗ − p1) +

c8
c7
q2 −

c2p2 − c2
c3
p1q1

c3
,(27)

dq1
dτ

= −c4q2 +
c2c4c7
c3c8

(l2 + p2 − p1),(28)

dl1
dτ

= 0.(29)

Substituting equation (26) into the second equation (28), we can solve for q2 and substitute into the
first equation (27). The p2 terms cancel, and we are left with

(30)
dp1
dτ

=
c2c4c7

c33(c8 + c4c7)

(
c7(c

2
3 − c2)p

2
1 + c23(c7N

∗ − c8)p1 + c23l2
)
.

Together with the order ε3 equation for l2,

(31)
dl2
dτ

= c7l2(N
∗ − p1),

equations (30) and (31) for p1 and l2 form a closed set of equations. This set of equations has three
equilibria. First the origin, second, a pheromone-only steady state

(p̄1, l̄2) =

(
c23(c8 − c7N

∗)

c7(c2 − c23)
, 0

)
,

which is biologically relevant when c2 > c23, which we assumed at the start of this section, and when
N∗ < c8

c7
= β. This steady state is the part of the family of P23 equilibria close to the origin, and

thus remains in this scaling. Third, we find a mixed steady state,

(p̂1, l̂2) =

(
N∗, N∗

(
1− c2c7

c23c8
N∗
))

This steady state exists for N∗ ∈ [0,
c23
c2
β]. Note that

c23
c2
β < β since c23 < c2 by assumption.

How much of the dynamics of the full three-dimensional system can be recovered in this two-
dimensional system? First, we can recover the Hopf bifurcation occurring between N∗ = 0 and

N∗ =
c23
c2
β. The Jacobian at this mixed steady is

J =

(
c2c4c7

c33c8(c4c7+c8)
(c7N

∗(2c2 − c23)− c23c8)
c2c4c7

c3(c4c7+c8)
c7N∗(c7N∗c2−c23c8)

c23c8
0

)
.

The conditions for a Hopf bifurcation are tr J = 0 and det J > 0. The value of N∗ at which the
trace becomes zero is

N∗ = β
c23

2c2 − c23
= β

c23
c2 + (c2 − c23)

< β
c23
c2
.

It is easy to check that the determinant remains positive at the above value of N∗.
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The heteroclinic cycle does appear in this scaling. To find it, we study the 2D system more
abstractly. Equations (30)-(31) have the form

dp

dt
= Ap(p−B) + Cl,(32)

dl

dt
= Dl(N∗ − p),(33)

for suitable positive constants A, B, C and D. Whenever the pheromone-only steady state (p̄, 0)
exists, there also exists an orbit connecting it with the origin, through the p-axis. We now show
that for a particular choice of N∗ there also exists an orbit connecting the orbit with (p̄, 0) forward
in time. For a particular value of B, this system has solutions symmetric about u = N , namely for
B = 2N∗: then the term Ap(p−2N∗) is symmetric about the p = N∗ line. For this particular choice
of B we can find a function which is conserved along orbits. Write

dl

dp
=

Dl(p)(N∗ − p)

Ap(p− 2N∗) + Cl(p)
,

and solve for l(p) (directly, using Maple) to find

(34) M(p, l) := Dl2A/D

(
1

2
p(p− 2N∗) +

CDl

2A+D

)
= constant.

The zero level set yields

l = 0, l =
2A+D

2CD
p(2N∗ − p).

The latter is a parabola connecting (p, l) = (0, 0) to (p, l) = (2N, 0). The two orbits connecting (p̄, 0)
and the origin form a heteroclinic cycle. For level sets above zero, we find a set of nested periodic
orbits centered on the mixed steady state (p̂1, l̂2), see Figure 8. Finally, using the full equation for
p1 (30), note that B = 2N∗ means that

N∗ = B/2 = N∗
Hopf = β

c23
2c2 − c23

.

Hence, the Hopf bifurcation occurs at the same value of N∗ as the heteroclinic orbit.
We can also show that N∗ = B/2 is the only value of N∗ at which periodic orbits and the

heteroclinic cycle exist. We treat the case B > 2N∗; the argument for B < 2N∗ is a straightforward
extension.

Let us thus assume that B > 2N∗. Local stability analysis shows that the mixed equilbrium is
locally stable in this case. The result follows from the following monotonicity property. Let Q be
any point on the l-isocline above the equilibrium: Q = (N∗, l̄). Consider the orbit with initial data
Q. The forward orbit is described by the graph p = ϕ+(l), the backward orbit by p = ϕ−(l), at least
until the orbits hit the l-isocline again. Note that ϕ+(l) > ϕ±(l̄) = N∗ > ϕ−(l) for l < l̄.

The flow lines are determined by

(35)
dϕ±

dl
= G(ϕ±(l), l),

with

G(p, l) =
Ap(p−B) + Cl

Dl(N∗ − p)
.
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Now reflect the orbit p = ϕ−(l) in the l-isocline: p = ϕ∗
−(l) = 2N∗ − ϕ−(l). Then

(36)
dϕ∗

−

dl
= G∗(ϕ∗

−(l), l),

with

G∗(p, l) = G(2N∗ − p, l).

Since B > 2N∗, we infer that

G∗(p, l) < G(p, l) for all p < N∗.

Hence, (35) and (36) now imply that ϕ+(l) < ϕ∗
−(l) by usual ODE techniques. Using standard

phase-plane arguments, one finds for example that that no periodic orbit exists, and that the orbit
forming the unstable manifold of the origin spirals towards the nontrivial equilibrium.

For B < 2N∗, the origin remains unstable, as is now the nontrivial equilibrium. All orbits now
tend to infinite p while l vanishes.

8.2. Unfolding the orbit structure: N̂ . Nmax. We now consider the other extremal situation,

where the Hopf bifurcation ceases to exist: N̂ = Nmax (see Figure 6). We conjecture that the

heteroclinic cycle remains as N̂ approaches Nmax, but it is not to be expected that asymptotic
analysis reveals this: the heteroclinic cycle consists of orbits connecting the origin and a steady
state far removed from the origin. Expanding solutions around this second steady state, we will
not be able to find those heteroclinic orbits. (In the first extremal case, the second steady state
was situated close the origin, and the heteroclinic cycle was present in the asymptotic expansion.)
Nevertheless, performing expansions still reveals much of the structure of solutions close to the point
where N̂ = Nmax, in particular the distance between Nh and Nmax as ϵ → 0.

One way to characterize N̂ = Nmax is by choosing c2 = c∗2 = α2β2, so that N̂ = Nmax = 2β− c3/α.
Performing an asymptotic expansion as in the first case is now more subtle. We introduce a small
parameter ε by setting

(37) c2 = α2β2(1− ε).

Next, both N̂ and Nmax will change when we vary ε, and the distance between these two points is of
order ε2. It is to be expected from (19) that for ε > 0 small, the Hopf bifurcation appears at some
value of NH close to Nmax, but it turns out that it occurs at a distance of order ε, not ε2, as we will
show later on. Hence, when performing the asymptotic expansion using N = 2β − c3/α+ ε2N∗, we
find in timescale τ = εt solutions which do not undergo any Hopf bifurcation.

The direct approach of studying the eigenvalues near N̂ = Nmax is more fruitful. Next to (37), we
set

N = 2β − c3
α

+ εN∗.

We compute the Jacobian matrix of our original system of equations, and substitute the branch
of mixed equilibria P4, along which the Hopf bifurcation should occur. The resulting eigenvalue
equation is of the form

Q0(ε) +Q1(ε)λ+Q2(ε)λ
2 + λ3 = 0,

for suitable functions Q0, Q1, Q2. In ε = 0, there is a double root λ = 0 and one negative root
λ1 < 0. Hence, we can write the above equation as

(λ− λ1(ε))(R0(ε) +R1(ε)λ+ λ2) = 0,
24



where λ1(0) < 0, and R0 and R1 are suitable functions satisfying R0(0) = R1(0) = 0. We are only
interested in the case when R0 = Aε+O(ε2), with A > 0, since we want to find complex eigenvalues.
To lowest order then, the second factor is of the form λ2 + Bελ + Aε = 0, from which we conclude
that the imaginary part of these complex eigenvalues are of order

√
ε, and the real part is of order ε.

To find the Hopf bifurcation, we thus substitute λ = i
√
εµ into the eigenvalue equation, and separate

imaginary and real parts. We find that µ and N∗ must satisfy the following two linear equations,

S1µ
2 + S2N

∗ = 0,(38)

µ2 + S3N
2 = S4,(39)

where

S1 = c3 − 2αβ − c4,

S2 = c4c7(c3 − αβ),

S3 =
c7
c4

(c3
c4

− 1 +
c3
αβ

)
− c3

β
− c8c6

c24
,

S4 =
c3 − αβ

c4
.

Inequality (6) and the specific choice of c2 may be combined to infer that c3 < (1− ϵ)αβ. Therefore,
S1, S2 and S4 are all negative.

Writing out the α’s and β’s in S3, and then collecting terms to produce a polynomial in c7, we get

(40) S3 =
c24c3
c6c8

c27 +
(
− c4 −

c4c3
c8

+ c3

)
c7 −

c6c8
c4

.

The restriction 0 < c3 < αβ can be rewritten as 0 < c7 < c6c8/c3c4. On this interval S3 < 0 as a
function of c7, since it is negative in both end points of the interval.

Finally, directly solving the two linear equations yields

µ2 =
S2S4

S1S3 − S2

> 0, N∗ = − S1S4

S1S3 − S2

= −S1

S2

µ2 < 0

This completes the proof that a Hopf bifurcation occurs at a distance of order ε from Nmax. (It was
to be expected that N∗ < 0, since we expect the value of N to be less than Nmax, and we have set
N = Nmax + εN∗.)
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