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Abstract

Host bird species of the Eurasian Cuckoo, Cuculus canorus, often display
egg-discrimination behaviour but chick-rejection behaviour has never been
reported. In this paper, we analyse a host-cuckoo association in which
both population dynamics and evolutionary dynamics are explored in a
discrete-time model. We introduce four host types, each with their own
defence behaviour, displaying either egg or chick rejection, neither or both.
We also introduce fitness functions for each of these host types. Although
we can characterise the long term behaviour in many cases by a simple
heuristic argument which is in accordance with common views in ecology,
there are a number of other phenomena that are not explained within this
framework: we describe stable oscillatory behaviour and coexistence of
two defensive host types. We analyse the scenarios in which chick rejection
may establish itself and give a first explanation as to why this defence trait
has never been recorded in nature. We find that chick rejectors generally
are at an intrinsic disadvantage with respect to a host type that rejects
eggs. Hosts benefit more from rejecting cuckoo eggs than cuckoo chicks,
and our model suggests that this is chiefly responsible for the absence of
chick rejection. Moreover, even though it seems that chick rejection must
be useful as an extra defence, it is shown that hosts with both defence
strategies are less likely to establish themselves in competition with egg-
rejectors than hosts which reject chicks only. These results provide insight
in the extent to which adaptations may be perfected by natural selection.

*Email: nfb@maths.bath.ac.uk
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Introduction

Defence strategies against predators or more specifically parasites are ubiqui-
tous and diverse (Futuyma 1979, Gilbert 1980). Given the many marvellous
adaptations known in the natural world we may sometimes wonder why a cer-
tain obvious strategy has not evolved. One seemingly contradictory situation in
defence mechanisms is known from ornithology: although host birds often have
great abilities to discriminate against Eurasian Cuckoo eggs, there seems to be
a complete lack of defence when it comes to cuckoo chicks. Everyone is familiar
with the pictures of a gigantic cuckoo chick nearly devouring its foster parents
in their attempt to feed it. Why has the defence strategy of chick rejection not
evolved among any of the cuckoo’s hosts?

This paper is concerned both with the specific case of cuckoos and hosts and with
the general and fundamental issue of the perfection of evolutionary adaptation. Is
natural selection limited in its ability to favour beneficial adaptations? Consider
two adaptations that would each enhance the fitness of a single organism (such
as the rejection of cuckoo eggs or cuckoo chicks by a host): Might such adapta-
tions compete with one another so that the lesser one is lost notwithstanding its
value even in the presence of the first?

Cuckoo parasitism

In this section, we review some basic natural history of the Eurasian Cuckoo,
Cuculus canorus. This is necessary to attack the problem of chick discrimination
in cuckoo-host systems. It has been known for centuries that cuckoos do not rear
their own young. Instead, they lay their eggs in the nest of a pair of passerine
birds, and after the egg is hatched the foster parents raise it. The female cuckoo
removes one of the host’s eggs and lays a single egg in the nest. Having laid the
egg, the female cuckoo abandons the nest and leaves the care to the hosts. The
egg usually hatches before the eggs of the host. A few hours after hatching, the
hatchling, naked and blind, balances each host egg on its back and ejects it from
the nest. Host chicks undergo the same fate and the cuckoo chick becomes the
only occupier of the nest. Hence, the parasitised hosts lose all their reproductive
success associated with that clutch. The host parents do not intervene in the

egg-ejection behaviour of the cuckoo chick. The hosts then rear the single cuckoo
chick.

The cuckoo population can be subdivided into so-called gentes. On the whole,
each gens has specialised in mimicking the colour, patterns of spots and size of
the eggs of the particular host it parasitises (Davies and Brooke 1988). Mimicry
is not found, however, in cuckoo chicks when compared with the host’s chicks.
For instance, in the Reed Warbler Acrocephalus scirpaceus, a well studied host of
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cuckoos, the chicks are small individuals with a pale yellow gape, whereas cuckoo
chicks are much larger and have a red gape. This big difference in appearance in
cuckoo and host chicks is not exploited by the host to save it from parasitism.
The hosts could benefit in two ways if they would reject a cuckoo chick. First,
they would save a lot of energy used to raise the cuckoo chick which might, at
least, be used by them to survive the winter months. Secondly, they might be
able immediately to start a new clutch.

These observations lead us to the main question under investigation in this
paper: why has chick rejection not evolved among any of the cuckoo’s hosts?

The model

We start by explaining the motivation for our approach. Traditionally, research
has focused on egg rejection (see (Winfree 1999) for a short review and (Davies
2000) for a detailed account). Both experimental approaches and modelling ef-
forts efforts have contributed to the understanding of this phenomenon. Because
of the complete lack of chick-rejection behaviour by all the cuckoo’s host species,
it is difficult to set up experiments to test any hypotheses concerning chick re-
jection. Nevertheless, a number of things have been clarified. It has been shown
that some of the cuckoo’s hosts accept chicks of other species too (Davies and
Brooke 1988), which contradicts earlier suggestions that the cuckoo chick must
manipulate its foster parents (Dawkins and Krebs 1979). However, the cuckoo
chick seems to be able to persuade its parents to bring enough food by calling
excessively (Davies et al. 1998). The area of the gape is a signal for the parents.
It indicates the amount of food that is needed to feed the chicks in the nest. A
cuckoo chick, although large, has a smaller gape area than the total gape area
of a normal host’s clutch. The chick needs the same amount of food as a normal
clutch (Brooke and Davies 1989), and hence it has to compensate for this lack
of stimulus by calling more than a normal clutch of host chicks.

We will now develop a model to gain insight into the evolutionary aspects
of chick rejection. Lotem (1993) assumed chick rejection to be a trait learned
by imprinting upon the chicks in the nest, and therefore concluded that there
is a simple explanation for the observed lack of chick rejection: this type of
defence strategy is never selectively advantageous if the probability of making a
discrimination error is non-zero. However, if we assume that defensive behaviour
against cuckoo chicks is an innate trait, we are still at a loss (Rothstein and
Robinson 1998). It is this side of the problem we address in this paper.

To motivate the choice of our model we briefly look into previous models for egg
rejection. Early models have focused either on population dynamics (May and
Robinson 1985) or on population genetics (Rothstein 1975, Kelly 1987, Brooker
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et al. 1990). Takasu et al. (1993) and Takasu (1998) have been the first to include
both ecological and evolutionary aspects of the problem. This more dynamic ap-
proach was seen to be necessary following the observation of rapid changes in
the defence behaviour by one of the cuckoo’s hosts in Japan (Nakamura 1990).
Their model has been effective in giving plausible and experimentally testable
explanations of two phenomena. First, it has shown that changes in egg-rejection
behaviour may be caused by a change in parasitic pressure (Takasu et al. 1993).
Second, it has clarified the difference in distribution of egg-rejection behaviour
among hosts of the Eurasian Cuckoo versus those of the Brown-headed Cow-
bird, Molothrus ater, on the basis of their specialist vs. generalist parasitic traits
(Takasu 1998). In our attempt to explain the lack of chick rejection we have a
slightly more complicated situation than in the case of egg rejection: the latter
already exists among many of the cuckoo’s hosts. Hence we have to investigate
whether chick rejection could invade a population that already exhibits defensive
behaviour towards cuckoo eggs. Is the cuckoo-host system exhibiting an evolu-
tionary equilibrium or an evolutionary lag? It is hence necessary to include at
least three host types: hosts that accept both eggs and chicks, hosts that reject
eggs and hosts that reject chicks. For completeness, we shall also include a host
type that rejects both eggs and chicks.

Before we introduce our model we will make some general remarks. As we have
seen the cuckoo has many hosts but each gens generally specialises on only one
or perhaps two. Therefore, in this paper we focus on one gens and its one host.
Contrary to for instance Lotem (1993) we assume that the host defence systems
are determined by hereditary factors. Recent studies on defensive behaviour by
cuckoo hosts support this assumption (Rothstein 2000). We treat the various
host types as separate species of birds. We combine a clonal model for the four
host types with two predator-prey equations for the interaction between cuckoos
and hosts to investigate the brood parasite system. It is widely assumed that
there are costs associated with displaying egg rejection, due to discrimination
errors (May and Robinson 1985, Davies and Brooke 1988, Rohwer et al. 1989,
Rgskaft et al. 1990, Rothstein 1990, Moksnes et al. 1991, Marchetti 1992). These
egg-rejection costs are assumed to be small but are taken into account in our
analysis, and will play an essential role. In this paper we assume that chick-
rejection behaviour also entails similar recognition costs. We do not take into
account any hereditary variation within the cuckoo population.

Let P; be the population density of female cuckoos and H; that of the female
hosts in year ¢. We assume that surviving offspring breed in the year after they
are hatched. If the female cuckoo finds a nest she will lay a single egg and the
chick will grow up with a constant probability G to survive to the next breeding
season. The adult female cuckoo survives to the next season with a probability
sp. Similarly, we introduce a constant sy which measures the intrinsic survival
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rate of adult host birds. Here, as in the rest of the paper, we neglect any effects
due to intra-specific competition.

We distinguish four host types: all-acceptors, egg-rejectors, chick-rejectors and
all-rejectors. Their frequencies in the total host population are denoted by A,
hi, he, hi¢ respectively, which add up to one.

The cuckoo is assumed to perform a random search with a search efficiency
measured by a parameter a, called the area of discovery by Nicholson and Bailey
(1935). The probability that a host nest escapes from parasitism is thus given
by e~**  the zeroth term in a Poisson distribution (May and Robinson 1985).
The density of cuckoos in the next generation is

Py = spPy+ (1 — e ) H,G(BY + qehs + qchy + gechi), (1)

see also (Takasu et al. 1993). The first term corresponds to the surviving adults,
the second to the successfully raised young from the nests that have not escaped
parasitism. We will introduce the constants ¢., ¢., and ¢, in a moment, and
explain their occurrence in equation (1) at the end of the section.

The total density of offspring in the host population is a sum over the contribu-
tions from the different host types:

Hy (fahf + feh + foh§ + fuchi?).

Here we have introduced fitness functions for each of the host types, denoted
by fa, fe, fe, and fe.. They will be discussed shortly. In the absence of cuckoo
parasitism the number of individuals in a certain area is limited by the available
resources. Taking this factor into account with a parameter £, the host density
for the next year is given by

H
Hur = o (50 -+ Jubf + fohf + Fohi + fuchi?). 2)
k

We will now discuss the fitness functions of the host types. In general all host
types will suffer to some extent from an increase in parasitism by the cuckoos,
in the sense that they will lose some offspring. So for all host types we assume
that the fitness functions are monotonically decreasing functions of P;. In the
absence of parasitism however, we expect some differences in the number of
offspring produced by the various host types. Since we have assumed that the
rejecting host types make some errors in their attempts to discriminate cuckoo
eggs or chicks, we assume that the all-accepting pairs have a slight advantage
when the parasitic pressure is low.

Now let f be the number of offspring per annum raised by an all-accepting
host pair that is not parasitised. If we multiply this by the probability for such
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a pair to escape parasitism we find the number of offspring for all-acceptor pairs
in terms of cuckoo density:

f a = f eiaPt-
The corresponding fitness functions for the rejector types are given by

fo=eife " 4+ eyf(1 — e o),
fc = leeiapt + C2f(]- - eiaPt)a

fe = kife ™ + ko f(1 — e7),

where e, f and ey f are the expected number of offspring per annum raised by
unparasitised and parasitised egg-rejectors respectively, and similarly for chick-
rejectors and all-rejectors.

We shall neglect any physiological costs associated with the behavioural ca-
pability for rejection, but shall take account of the costs of recognition errors of
types I and II. By type I errors we mean mistakenly ejecting one’s own egg or
chick in the absence of cuckoo parasitism. Let p. be the probability that an egg
rejector makes a type I error and removes one of its own eggs by mistake, and
be the relative pay-off for raising a clutch with one egg removed. Then

€1 = (1 - pe) +pebe-

Similarly,

1 = (1 _pc) +pcbcv

and

kl = (1 - pe)(l _pc) + bepe(l - pc) + bcpc(l - pe) + becpepca
with the obvious notation.

By type II errors we mean that the hosts sometimes fail to spot the cuckoo’s
eggs or chicks in their nests. Let ¢, be the probability of an egg-rejector making
a type Il error, i.e. mistakenly accepting a cuckoo egg. The relative pay-off for a
host that accepts a cuckoo egg is zero. Hence we have

€y = (1 — Qe)be-

We have assumed here that an egg-rejector has the same pay-off b, for rejecting
one of its own eggs when unparasitised as it does for rejecting a cuckoo egg when
parasitised: it merely has one egg less, in the first case removed by itself and in
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the second by the laying cuckoo. For chick-rejectors this is not the case: when an
unparasitised chick-rejector makes a type I error and ejects one of its own chicks,
it still has the rest of its clutch, and its pay-off is b.. When it is parasitised and
ejects the cuckoo chick, however, its pay-off varies between b, (loss of the egg
removed by the laying cuckoo) and zero (loss of the clutch), depending on the
damage done by the cuckoo chick before it is discovered and ejected. We shall
set the pay-off to vb., where v is a measure of how much of the clutch is saved
on average. Thus

ca = (1= gc)Vbe.

For all-rejectors we find

k2 = (1 - Qe)be + Qe(l - QC)’Ybe-

Now note that 0 < b, < b, b, < 1; it is better to lose either an egg or a
chick than to lose both, but it is better still to lose neither. Moreover b, < b.;
if one potential offspring is to be lost it might as well be lost early (at the egg
stage), so that it no longer requires resources (however minimal). Note also that
0 < Pe, Pe, Ge, ¢ < 1, with e.g. p. = 0 if and only if the egg-rejector never makes
a type I error. It follows immediately that

O<e<er <1, 0<ep<e L1, 0<k2<1€1S1;

(i) even rejectors are disadvantaged by parasitism, because the cuckoo ejects
one of their eggs when laying its own, and (ii) rejectors are no better off than
acceptors in the absence of parasitism (and are worse off unless they never make
a type I error). It also follows immediately that

ki <ei,c1, ko> e, c;

(iii) rejectors with both defence strategies are no better off than those with only
one in the absence of parasitism (and are worse off unless they never make a
type I error), but (iv) they are better off than those with only one if they are
parasitised. However, we never see hosts that employ both defence strategies. The
explanation of this depends on a subtler argument that we give later. All these
inequalities, and hence conclusions (i) to (iv), hold for any allowable parameter
values. The relationships between eq, ci, e; and ¢y, on the other hand, depend
on the particular parameter values chosen, and in particular on the value of
v. Unless the biologically unreasonable assumption is made that the cuckoo
chick is always discovered before it does any damage then v < 1. This will play
an important part in our explanation of why egg-rejectors rather than chick-
rejectors are observed in nature.

An illustration of a typical set of fitness functions can be found in figure 1.
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With these fitness functions we may determine the host type frequencies in
the next generation:

o= wtle Q
M = mtte (4
My = ke 6
ney = petntle (©

where D = sy + foh{ + fehi + fchi + fechi®.

We may now explain the cuckoo equation (1) completely: the defensive host

types contribute to the next generation of cuckoos if they have failed to discrimi-
nate the cuckoo’s eggs or chicks. This amounts to the factors g¢., g. and g.. found
in the equation.
As a remark, note that a can be scaled out of the equations, but this is not done
for two reasons: it reduces the number of parameters only by one giving only a
small gain, and the current parameter has a well-defined biological interpreta-
tion, contrary to its rescaled counterpart.

Equations (1), (2), and (3) to (6) constitute our model.

Analysis

As an introduction to the characteristics of the model we will present a simple,
intuitive analysis of a general cuckoo—host system. We believe that this intuitive
analysis is helpful, at this stage, even though the full model exhibits behaviour
that is both different and more complex than that suggested by the simple intu-
itive argument. Moreover, the simple argument does include the most important
clue to answering the main question discussed in this paper. We will therefore
treat it as a background against which we present the more detailed analysis
below.

At low cuckoo densities the all-accepting hosts have highest fitness,
whereas the defending host types are fitter for high cuckoo densities.
Hence, if the cuckoo density were to remain low (or high), the fre-
quency of the accepting (defending) host type will approach unity. Let
us assume that the system will converge to an equilibrium solution,
and assume the following two dynamical properties of the model:

1. If there are only accepting hosts and the cuckoo numbers are low,
the cuckoo numbers will increase.
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Figure 1: The average number of female offspring for each of the host types, all-acceptor,
egg-rejector, chick-rejector and all-rejector pairs, respectively. The three values P¢, P¢ and
Pe¢ are the cuckoo densities at which the fitness of the all-acceptor hosts equals the fitness
of egg-, chick- and all-rejector hosts respectively. In the diagram they satisfy P¢ < P¢ < P¢¢,
but this order depends on the parameters of the problem. When P; is small (less than P°¢)
the acceptor pairs produce more offspring, but for higher cuckoo densities the defending hosts
are reproductively fitter than acceptors. Note that the discrimination costs for all-rejectors
is proportionally higher than for either egg or chick rejection, but that these hosts are fitter
under high parasitic pressure. The dashed horizontal lines are the asymptotic values for each
of the defensive fitness functions for large P;.

2. If there are only defending hosts and the cuckoo numbers are high,
the cuckoo numbers will decrease.

Then we expect that there is an equilibrium value for the cuckoo den-
sity at which the fitnesses of defending and accepting hosts are equal.

Numerical investigation shows that this argument gives a rough description of
the characteristics of the model. We give an illustration of the effect described in
the argument in figure 2. However, this argument misses additional behaviour:
we may encounter for instance quasi-periodic solutions, or stable coexistence of
two defensive host type. We start with a discussion of the solutions described by
the heuristic argument.

Intermediate rejection frequencies

In certain parameter value ranges we find one of three equilibrium solutions
which we denote by 5S¢ 5S¢ and S°. At S° for instance, we find a steady state
with coexistence of all-acceptor hosts and egg-rejectors, i.e. with h®+ h¢ = 1 and
both frequencies positive. Analogous descriptions can be given for the other two
solutions S¢ and S°. The explicit analytic derivation of these solutions is given
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Figure 2: A typical numerical simulation of the model, illustrating damped oscillations con-
verging to a steady state in which egg-rejecting (curve 2) and all-accepting hosts (curve 1)
coexist. This equilibrium is called S¢. Note that chick- rejectors (curve 3) and all-rejectors
(curve 4) increase very briefly but are ’outcompeted’ by the fitter egg-rejecting hosts and drop
to zero almost immediately. The bottom picture shows the temporal dynamics of cuckoos
(curve 5) with respect to hosts (curve 6). Parameters used are sy = 0.5, sp = 0.5, f = 0.7,
a=0.7,G=0.15k=90,e; =0.95, e =0.3, gc = .5, c1 = 0.9, c2 = 0.15, g. = .5, k1 = 0.85,
ko = 0.375, gec = .75 and initial conditions Py = 0.1, Hy = 8, h§ = 0.97, h§ = h§ = h§° = 0.01.
In all numerical investigations, we have only changed sy, f, k, and the discrimination costs.
The parameter values conform to those of Takasu et al. (1993).
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in the Appendix. Here we merely state that they are of the form

S¢ = (P¢ H¢ R, he,0,0), (7)
Se = (P¢, HC K% 0,h,0), (8)
SCC — (PCC’ }ICC7 ha’ 0, 07 hec)’ (9)

where P¢ denotes the steady state value of P; in the case of intermediate egg
rejection, etcetera. The equilibrium values for P, can be determined directly
from the fitness functions: at each of these solutions the fitness of all-acceptors
is equal to the fitness of the respective defensive host type. So in the case of
egg-rejectors, we solve f, = f. for P; to find the desired result.

This result raises the question, to which of these solutions will the system
converge? Numerical investigations have shown that there is a simple rule to
determine this: one computes the equilibrium cuckoo densities P¢, P¢ and P¢
and determines which is the smallest. The equilibrium solution corresponding
to this cuckoo density then is the one to which the system will converge. This
is a direct application of the heuristic argument stated at the beginning of this
section, given that the fitness functions are monotonically decreasing functions
in P;: for P, less than the smallest equilibrium value, P, will increase; for P;
larger than the smallest equilibrium value, the all-acceptors will have highest
fitness and will cause a decrease of P;.

We have assumed a number of things in the preceding discussion, any of which
may under certain conditions be violated and give additional behaviour not
explained by the argument above:

e The system will actually converge to an equilibrium solution.
e In such instances 5¢, S¢, or S are the only possible steady states.

e Among P¢ P¢ and P¢ there is one and only one value which is strictly
smaller than the other two.

Each of these assumptions does not have to hold, giving qualitatively different
behaviour. These phenomena will now be explored in more detail.

Extending the three equilibria

The three equilibria S¢, S¢ and 5 may be extended in a natural way to include
limit cases. We treat these extensions as separate equilibria since these exten-
sions are not described by the heuristic argument, they are treated as separate
equilibria. We describe the occurrence of the following cases: absence of cuckoos,
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a cuckoo population in coexistence with a completely all-accepting host popula-
tion, and a cuckoo population in coexistence with a host population that consists
of a single defensive host type.

We start by looking at the system in the case of all-acceptance of the host
pairs. In general the system will converge to a unique equilibrium solution. The
equilibrium solution for the host population in absence of the cuckoo may be
found by setting Hyyy = Hy and P, = 0 in (2). Let us call this steady state
SO = (PY H® he, he, h¢, he) = (0, H%,1,0,0,0). We then find

H® =k(sg + f — 1).

This number corresponds to the carrying capacity of the host population. If
H® < 0 the host population goes extinct since the death rate then exceeds the
birth rate (1 — f > sg). From now we will assume that 1 — f < sg.

For larger values of £ we find that in the absence of any rejector hosts the
system evolves towards an equilibrium solution S' = (P!, H',1,0,0,0), where
P! and H' are the unique solution of

{ Hl — (lfsp)Pl

G(1-e=aP )’
Hl = k(fe_“P —|—SH— 1)

If P! approaches zero we find

Sp—l

Ga

+k(su+f—1)=0.

Therefore the a critical value of our chosen bifurcation parameter k& for the
survival of the cuckoo population is given by

1—8p

P ._
W= CLG(SH-Ff—l)‘

For smaller values of k the cuckoo population goes extinct. This argument is
identical to the analysis in Takasu et al. (1993).

We now consider the relationship between these two new steady states and S€,
S¢ and S°. Since h¢ € (0,1) we may solve h® > 0 from the analytic expression
in (14) in terms of £ to find a minimal value for k£ for S® to be meaningful. Let
us call this value k§. Similarly we find minimal values £§ and k§°. The methods
to derive these expressions are given in the Appendix. We note here that k¥ <
ks, kG, k¢, thus excluding the possibility that any defensive host types could
establish themselves before the cuckoos were present. When £ is in the interval
(KT, min{k¢, k§, k§°}) the system converges to S*.

Intuitively the occurrence of these values k§, k§ and kG can be explained by our
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expectancy that the cuckoo has to search well enough, and the environmental
carrying capacity for the hosts has to be sufficiently high.

We can, on the other hand, also find maximal values for k£ for these equilibria
S¢, S¢ and 5% to be converged upon. This can be done by solving for instance
h¢ < 1 in the case of S¢. We refer to the Appendix for the formal calculations.
We denote these values by k{, k{ and k{°. We can now formulate more precisely
when one of the three equilibria may be converged upon, which we illustrate
again in the case of S¢: S¢ may be attained if k& € (k§, k) and P¢ is the smallest
of the three equilibrium values P¢, P¢ and P¢¢. Completely analogous conditions
can be given for S¢ and S°°.

We thus find natural extensions for all £ > 0 of the equilibria S¢, S¢ and S5°.
As k increases we go through four stages:

e Only hosts and no cuckoos, k € (0, kF).

e Coexistence of cuckoos with all-accepting hosts, k € (k% k*), where k* =
min{k§, k5, k5°}-

e Coexistence of cuckoos with a stable mixed population of all-accepting and
one defensive host type, k& € (k*, k), where k is the corresponding k¢, kf or
kse.

e Coexistence of cuckoos with a host population existing only of hosts of one
defensive type, k € (k,oc), where k is one of {k$, k§, k§}.

This is illustrated in figure 3 in the case of egg-rejectors.

Here we have still assumed two things: the system converges to an equilibrium
and the steady state in which one defensive type is the only host type is stable
for all k > k where k is one of {k¢, k¢, k¢}. The violation of the latter condition is
discussed later. When the first assumption is not valid we can find quasi-periodic
solutions. These are discussed in the next section.

No convergence to an equilibrium solution

Even when the conditions for any of the three steady states is satisfied, the sys-
tem does not have to converge to any of the three. We again illustrate this in
the case of S°. There is an asymptotic value for sy, s§ say, with the property
that for sy < s, the steady state S¢ is not attained. The analytical derivation
of s% is given in the Appendix. This is illustrated in figure 4. Numerical inves-
tigations show that there is an sgy-interval in which S is not attained, but the
system converges to a quasi-periodic orbit (see figure 5 for an example). These
stable oscillations are both in cuckoo and host numbers, and also in host type
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Figure 3: The coexistence of egg-rejectors and all-acceptors at steady state S¢ (bold curved
line, and dashed its hypothetical extension below h¢ = 0 and above h® = 1). The extension of
5S¢ to all k > 0 is indicated by the horizontal bold lines. Starting at £ = 0 we find no cuckoos
present until k¥, cuckoos but no defensive hosts between k¥ and k¢, cuckoos and a mixed
defensive and accepting host population between k§ and kf and cuckoos and only egg-rejectors
for k > k¢. This figure corresponds to curve (1) of figure 4.

frequencies. Mathematically their appearance corresponds to a Naimark-Sacker
bifurcation, the equivalent of the Hopf bifurcation for discrete time systems (see
e.g. (Arrowsmith and Place 1990, p. 261)). In figure 4 the occurrence of this
bifurcation has been placed in a broader context of parameters. The occurrence
of this phenomenon seems to be independent of the stability or occurrence of the
three equilibria S¢, S°¢ and S¢. The sg-interval in which these periodic solutions
are found is concentrated around the asymptote sy = s%. Note that we also find
non-trivial defensive hosts (i.e. hf > 0) for sy < s%, which do not correspond
to the intermediate frequency A° in steady state S°. This is not predicted by the
heuristic argument.

More coexisting host types

The heuristic argument predicts that the system converges to a steady state in
which the cuckoo population is equal to the smallest value of P¢, P¢ and P¢.
However, for some parameter values we may find a stable coexistence between
two defensive host types rather than between one accepting and one defensive
host type. As an example, in figure 6 we see that although for smaller values
of k we find the familiar coexistence between all-acceptors and egg-rejectors,
for larger values of £ the egg-rejectors and all-rejectors are in coexistence. This
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Se-surface

Figure 4: Assuming P¢ to be the smallest of {P¢, P°, P}, we find qualitatively different
solutions if we vary parameters k and sg. With sy large, we find the standard solution S¢, such
as (1), (2) and (3). The region with intermediate frequencies, denoted by S¢ forms a surface in
the (k, sm, h®)-space, which asymptotically converges to k =0 and s§; =1 — fea/(1 —e1 + €3)
in the two planes h® = 0 and h® = 1. For small values of sy we find quasi-periodic solutions
which are confined to the white curved regions, originating at the dashed line. One implication
is that solutions exist for sy less than the asymptotic value in which there is sustained egg
rejection, for instance (5). The width of the oscillating regions is largest in the (sg, h¢)-plane
at the sg-asymptote, see (4). Keep in mind that for large values of k, S¢ is only locally stable.
Keeping initial conditions fixed, the system can make a transition from egg rejection as steady
state to all-rejection, as explained in figure 6. This effect is not shown in the above picture.
The five small pictures correspond to the solutions shown in the large picture. Note that in
all but the left figure, we find regions where Naimark-Sacker bifurcations have occurred. As
in the large picture, figure 1 does not include the instability of the h® = 1 solution for larger
k. Figures 2 and 3 do not show the unstable part of the egg-rejector equilibria, namely the
part between h¢ = 0 and where it attaches to the closed oscillatory regions. These figures have
been made with parameter values as in figure 2 but with, from left to right, sy = 0.5, 0.379,
0.3785, 0.377 and 0.37; logk € (3.8,8.6) (figure 1) and logk € (3.5,18.5) (figures 2 to 5).
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Figure 5: Numerical simulation showing quasi-periodic behaviour of both all-acceptor and
egg-rejector host types (curves 1 and 2 respectively). The temporal dynamics of the host
frequencies are illustrated in the top picture; the cuckoo and host densities are compared
in the lower one. Parameter values and initial conditions are identical to figure 2, with the
exception of kK = 3000 and sy = 0.378. Curves 2 and 4 (chick rejection and all-rejection)
quickly drop to zero and remain there.
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Figure 6: For small values of k£ we find coexistence between all-acceptors (curve 1) and egg-
rejectors (curve 2), but for larger values the all-rejectors (curve 4) start to increase: we find
a steady state S¢¢¢ in which all-rejectors can be found alongside the egg-rejectors. For even
larger k the all-rejectors are the only hosts. In all these cases we have P¢ < P¢ P¢. The
chick-rejectors (curve 3) are absent for all k. Parameters used are as in figure 2, but with
f=0.71212, ¢; = 0.882 and ¢; = 0.934.

steady state of intermediate egg- and all-rejectors will be denoted by 5% and
is of the form

geec — (Pe,ec’ He,ec7 0, he’ 0’ hec)'

Similarly, we may encounter a steady state S“¢ in which chick-rejectors and
all-rejectors are coexisting in intermediate frequencies of the form

geec — (Pc,ec’ Hc,ec’ 0’ 0’ hc’ hec)’
or an equilibrium S&€
§ec — (Pe,c’ He,c’ 0’ he’ hc’ 0)’

in which we find egg-rejectors and chick-rejectors The analytical derivations of
these equilibria are given in the Appendix.

Still other combinations of host types in equilibrium are possible, but we have
only found them when two or more equilibrium cuckoo densities are chosen
to be equal, e.g. P® = P¢ < P°. In such cases one may find one-parameter
families of steady states when two cuckoo densities are the same, or a two-
parameter family if P¢ = P¢ = P¢‘. Since this is biologically implausible, these
mathematical properties of the model don’t provide additional insight in this
biological context.

Discussion and biological implications

With these results at our disposal, we will now give a reflection on some current
views in ecology, and more specifically on the original question: why do we not
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find cuckoo hosts that are able to defend themselves by recognizing an aberrant
cuckoo chick in their nest?

Before giving a detailed account on the question of why chick rejection has
not evolved among cuckoo hosts, we will first put the model in an ecological
perspective.

Predator-prey systems

As a short remark we note that the model displays damped oscillatory behaviour,
common to predator-prey systems (see e.g. (May 1973)) and illustrated in fig-
ure 2.

Diploid model

We have also looked at a full diploid system (e.g. as in (Takasu et al. 1993, Takasu
1998)), and may conclude that although there are some quantitative differences,
the overall effects of both models are qualitatively the same. The main difference
is to be seen in the invasion speeds. The process of recombination slows down
the increase of the selectively advantageous hosts, and vice versa for selectively
disadvantageous hosts.

Fitting the model to nature

As we have seen in the analysis, the model may display a sensitive dependence on
parameters. For instance, we have found a small interval in the sgz-range, where
sudden changes in the qualitative behaviour take place. We briefly compare this
interval with experimental values. Table 1 shows the survival rates for a number
of well-known hosts of the cuckoo.

host species survival rate sg
Reed Warbler (Acrocephalus scirpaceus) 0.37—0.51
Meadow Pipit (Anthus pratensis) 0.83
Wren (Troglodytes troglodytes) 0.58 — 0.63
Dunnock (Prunella modularis) 0.51
Redstart (Phoenicurus phoenicurus) 0.51 —0.71

Table 1: Survival rates for various well-known host species of the cuckoo (Cramp 1988, Cramp
and Brooks 1992).
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Takasu et al. (1993) have used somewhat lower values (sg ~ 0.2,0.5). The sy
values in which the periodic solutions have been found are in the lower range of
the experimental values. For instance, taking the parameter values of figure 5 we
find oscillatory behaviour roughly in the interval sy € (0.365,0.38) as shown in
figure 4. Hence we may have to be careful with the interpretation of population
dynamics in species which exhibit survival rates at this lower end of the spectrum:
they may display sustained defensive rejection behaviour for sy values even
below the critical asymptotic value.

Perfect defence is not sustainable

We have discussed the existence of the equilibria S¢, S¢ and S in which we
find coexistence of two host types, namely the acceptors and one defensive host
type. In the Appendix we have given the full mathematical derivation of these
solutions. At each of these three equilibria the values of the fitness functions
of the respective host types are equal. This simplifies the procedure. To give an
example, for $¢ we find that egg-rejection hosts have the same fitness as acceptor
hosts at the given cuckoo density. In mathematical terms, and recalling that

S¢ = (P¢ H® h® h%,0,0)
by equation (7), we have
fa(Pe) = fe(Pe)-

From this expression we infer that this gives only relevant solutions provided
P¢ >0, or

1 (1—61+€2)>O‘

P = —log

a €9
Hence, if we were to exclude any discrimination costs by setting p. = 0, and hence
e; = 1, we would find P¢ = 0. Similarly, if the chick-rejectors or all-rejectors were
to defend themselves perfectly, giving cost coefficients of ¢; and k; = 1, we would
obtain P¢ = 0 and P® = 0 respectively. So for the cuckoo it is crucial that the
hosts display imperfect defence behaviour. Also from a physiological point of
view there may be consequences. Let us suppose that the defensive hosts have
to incur some physiological cost associated with the ability to discriminate eggs
or chicks (a cost we have so far neglected). Now, if we introduce a perfectly-
defending host type in an otherwise accepting host population, the defending
hosts will increase in number, and will drive the cuckoos to extinction. From
that moment on, the two host types will be selectively neutral with respect to
defence behaviour, but the accepting hosts will have a selective advantage in
terms of the physiological costs they don’t have to incur. Heuristically, we may
thus conclude that in the long run we expect to find non-defending hosts again.
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In short, the assumption that hosts birds defend themselves imperfectly by
making type I errors (pe, p. > 0) is a necessary condition for any discrimination
behaviour to be sustained within this model.

The non-prevalence of chick rejection

We now turn to more specific considerations and formulate more precisely why,
according to our findings, chick rejection is not found in nature.

Chick-rejection behaviour is incorporated in this model in two host types: the
chick-rejectors and the all-rejectors. As we have seen, in most cases the heuristic
argument given at the beginning of the Analysis section is applicable. Hence, to
explain why we do not see chick-rejectors rather than egg-rejectors we have to
show that P¢ < P¢ for realistic parameter values. The conditions for this are

1—61 < 1—(31.

€9 Co
After some algebra this reduces to

Pe 1_Qe1_bc
1—¢q. pe 1—0,

Now b. < be, so that (1 — b.)/(1 — be) > 1, and ~, the average fraction of the
clutch saved by parasitised chick-rejectors, satisfies v < 1. The combination
Pe/(1 — ¢.) is a measure of how difficult it is to discriminate eggs. It increases
with the probability of either type I or type II errors. Hence, unless it is more
difficult by a sufficient margin to discriminate eggs than chicks, so that

Y < Yec =

De 1_qc>1_bel
1_Qe Pc _1_b07

chick-rejection cannot compete with egg-rejection. If v is small, as it might be
unless chick-rejectors keep a close watch on their nest, then chick-discrimination
must be much easier than egg-discrimination for chick-rejection to prevail. It
has been suggested that to spot a cuckoo chick might be more difficult than to
recognize a cuckoo egg (Davies and Brooke 1988). The chicks are born within a
number of days and their appearance changes quickly due to rapid growth. Eggs
may look more homogeneous. This suggests that p./(1 — ¢.) < p./(1 — ¢.), and
under these circumstances egg-rejectors always outcompete chick-rejectors.

> 1,

All-rejectors are fitter than egg-rejectors if they are parasitised (since kg > e5).
To explain why we do not see all-rejectors rather than egg-rejectors we have to
show that P¢ < P¢ for realistic parameter values. The conditions for this are

1-— 1—
€1 < k‘l '
€2 ko
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Defining a« = e; — ky > 0, 8 = ky — ey > 0, this is equivalent to

1—61

(0%
€9 ,6’

or

1_bc c 1_61_ e ebe_bec
Y < Yok = P g p{1+(p( ) }

1_be1_QC DPe Ge 1_pe)(1_b0)

The term in the braces is greater than 1. If egg-rejection errors are sufficiently
small that p. + ¢. < 1, then (1 — p.)/qe > 1. Egg discrimination would be
extremely poor if this inequality did not hold. Either p, or g. or both would be

greater than 1, meaning that the host would be more likely than not to make

29
an error of type I, type II, or both. It follows that Yer > e, so that if the

chick-rejector inequality v < 7, holds, then

Y < Yec < Yek

and the all-rejector inequality also holds. It is easier for chick-rejectors than all-
rejectors to invade a steady state consisting of egg-rejectors and all-acceptors.
At first sight this is a surprising result, and it is interesting to see why it holds.
We may trace it back to the fact that 8 = ko — e5 is small unless errors are large.
Even when all-rejectors have an advantage, which is when parasitism pressure
is high, that advantage is small, only being brought into play when, through an
error, the first line of defence has failed. Compounding the difficulty, the stable
steady state, where the system ends up, is the one where parasitism pressure is
lowest, and even this small advantage is likely to disappear.

This result may be applied much more generally. Similar arguments could
be advanced for any situation where two consecutive lines of defence against
parasitism or predation were possible, and we would predict that although in
certain circumstances either one could prevail, the strategy of maintaining both
defence systems would only be worthwhile if there was a high probability that
the first one would fail.

Evolutionary lag or equilibrium?

There has been a long debate whether the observed lack of chick rejection (and
also the variation in egg rejection in different host species) in avian brood par-
asitism is due to an evolutionary lag (Dawkins and Krebs 1979, Zahavi 1979,
Lotem 1993, Soler et al. 1995) or whether the present situation is one of evo-
lutionary equilibrium (Davies and Brooke 1988, Rothstein 1990). We will argue
that the model captures both ideas, and by choosing discrimination costs appro-
priately, we will see that the model is in agreement with both of these views.
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These hypotheses are both concerned with the explanation of one trait. If
we want to view chick discrimination from the viewpoint of the lag hypothesis,
we assume a lack of hereditary variation in the gene coding for this trait and
sufficient benefit for the host to have the ability reject a cuckoo chick (Rothstein
1975). Hence we assume ¢; and ¢y to be large, so chick discrimination is quick
(v close to 1) and easy (p. and g, are close to zero). There are no restrictions on
k1, ko, €1 or ey. The critical point would be values of ¢; and ¢y such that

1—61_1—61

(10)

Co €2

The model predicts that, starting with any non-trivial number of chick-rejectors,
if chick rejection is the attracting steady state, the system will converge to this
steady state.

If we assume higher costs for chick-discrimination, so that it is either slow
or difficult, hence assuming c¢; and ¢y to be low and thereby questioning the
adaptiveness of this trait, we are in the domain of the equilibrium hypothesis.
This view assumes moreover that there is sufficient hereditary variability in the
host population, i.e. the number of chick-rejectors in the host population is non-
trivial. Again there are no constraints on any of the other four discrimination
costs. The critical point is again given by equation (10), and the model predicts
that chick rejection should prevail if these discrimination costs are low enough.

Further modelling and experimental work

Finally we summarise the experimental work needed to test these results. Most
important, the values of ey, ¢; and k; (the cost due to type I errors for egg-
rejectors, chick-rejectors and all-rejectors respectively), es, ¢o and ko (the cost
due to type II errors for the egg-, chick- or all-rejector) should be assessed in
the field in order to find out whether the present analysis is consistent with the
biological situation. It may however prove difficult to assess c;, co, k1 and ks
since no hosts have been found to discriminate against chicks. Knowledge of the
host survival rate sy is required since we have found a sensitive dependence of
the qualitative behaviour of the model on this parameter.

No attention has been paid in this study to the genetic variation of the cuckoo
population. Since we have set out to investigate an evolutionary arms race in
which one adaptation is the cause of another (Davies 2000), it is advisable to
perform such an analysis in the future (Winfree 1999).

The model results have shown that the counterintuitive observations can be
placed into a rational context which, if supported by additional experimental
data, may resolve a long-standing question in evolutionary ecology.
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Appendix

We start the more formal mathematical investigations with an explicit formula-
tion of the three equilibria S¢ S¢ and 5%. We will do these derivations for S°¢
and leave the rest of the details to the interested reader.

5S¢ is converged upon if the fitness of egg-rejectors and all-acceptors is equal.
By solving the fitness equations f, = f. for P, we find that at 5S¢
1—e;+ey
€ )

(11)

For easy reference in the discussion, the other equilibrium values for the cuckoo
for S¢ and S are given here.

P =P = élog(

1 —
P, = P¢ = llog(ﬂ>, (12)
a Cy
1 1— ki + ko
= €c = —1 — . 1
Pi=P = Clog(—— ) (13)

If we introduce arbitrary (non-trivial) host type frequencies for all four host
types, and the system converges to S¢ then we will see that the chick-rejectors
and all-rejectors have vanished at steady state: they have been outcompeted by
the fitter egg-rejectors. Hence, using eq. (11) and setting h® = h* = 0, we can
solve eq. (2) at steady state to find

H, = H® := k(sp + #ﬁi@ ~1).
To express h¢ at steady state we introduce
(1 —sp)logx
aG(sg +L—1)(1-1)

T

Az) =

Now we find h® and h® at steady state by solving eq. (1):

Be— 1 1 (1_114(1—61-1-62)),

1—qe k €2
) s
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In conclusion, we find

S¢ = (P, HE k% he,0,0).

The derivation of the other equilibria is done in a completely analygous fash-
ion. For chick and all rejection the expressions are given upon substitution of ¢;
and k; for e; respectively, 7 = 1, 2, and similarly ¢g. and g, for g., in all equilibrium
expressions for egg rejection. The formulae for the three other steady states—egg
and all rejection, chick and all rejection and egg and chick rejection—are slightly
more complicated but found in precisely the same way.

We make the following remarks, which apply for all three 5S¢, S¢ and 5 but
to avoid iteration are only stated for S°. The steady state S¢ is illustrated in
figure 3 in terms of h® with respect to our chosen bifurcation parameter k. It
intersects h® = 0 and h® = 1 in two points. In the interval between these points
we hence have coexistence of egg-rejectors with all-acceptors. We extend S¢ by
including the steady states h® = 0 and h® = 1, and denote this by Se.

A necessary condition for S¢ to be attained is h® > 0. Using this condition,
we can find a minimal value for k£ for this condition to be satisfied, denoted by

G, such that h® > 0:
1—e + 62)
€9 ’

kS:A(

Recall that k% is the critical value for the existence of the cuckoo population,
given by k¥ = (1 —sp)/aG(sg + f —1). Note that k < k¢. For k in the interval
(k¥ k¢), the system converges to S*.

Another necessary condition for S¢ to be attained is that h® < 1. Following the
same procedure, we find a maximal value for £, denoted by £f,

1 /1-
ke = _A(ﬂ>_
ge €2

If we solve h® = 0 for sy we find an asymptotic value for which S€ can exist.
Denoting it by s, it is given by
__Je

1-— €] + eg ’
An illustration of this asymptote is given in figure 4. Under the assumption that
e1,c1 > ki and kg > eq, ¢y one can show that s§f > s%;, s%, and k§¢ > kg, k.

L —
sy =1

Dynamical behaviour of the three equilibria

With these explicit equilibrium solutions we investigate which of these equilibria
is attained by the system. Suppose that for instance P¢ < P¢ < P¢, that k is
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sufficiently large, and that all host type frequencies are non-trivial. Then if we
start at some Py > P, we know by construction of the fitness functions, that
the all-rejection hosts have highest fitness (see figure 1). Hence, they will cause
the cuckoo population to decrease. By the decreasing nature of f., there comes a
point where egg rejection becomes fitter than all-rejection. This is reflected by the
fact that we have assumed that P¢ < P¢“. So the cuckoo population will decrease
further and will eventually spiral around P¢: for P, < P¢ the all-acceptors are
fittest and their increase allows P; to increase; the opposite effect is seen when
P, > P¢. If we assume that these oscillations converge to an equilibrium, we only
have one option: the system converges to S¢. This argument indicates that the
relative position of the equilibrium cuckoo populations may determine to which
solution the system converges.

As we have seen in the previous paragraph, we can determine to which equilib-
rium solution the system converges by looking at the relative positions of P¢, P°¢
and P°. It is immediate that P¢ < P¢ if l_eel2+e2 < 1_6612+c2, and analogous
identities for the other options.
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