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Abstract. Many bird species, especially song birds but also for instance some
hummingbirds and parrots, have noted dialects. By this we mean that locally

a particular song is sung by the majority of the birds, but that neighbouring
patches may feature different song types. Behavioural ecologists have been
interested in how such dialects come about and how they are maintained for
over 45 years. As a result, a great deal is known about different mechanisms

at play, such as dispersal, assortative mating and learning of songs, and there
are several competing hypotheses to explain the dialect patterns known in
nature. There is, however, surprisingly little theoretical work testing these
different hypotheses at present. We analyse the simplest kind of model that

takes into account the most important biological mechanisms, and in which
one may speak of dialects: a model in which there are but two patches, and
two song types. It teaches us that a combination of little dispersal and strong
assortative mating ensures dialects are maintained. Assuming a simple, lin-

ear frequency-dependent learning rule has little effect on the maintenance of
dialects. A nonlinear learning rule, however, has dramatic consequences and
greatly facilitates dialect maintenance. Adding fitness benefits for singing par-

ticular songs in a given patch also has a great impact. Now rare song types
may invade and remain in the population.

1. Introduction

Acoustic signals play an important role in structuring animal populations. Both
male-male competition and female mate choice are often strongly mediated by
acoustic communication. Birds are particularly well known for their advertisement
songs and the role they play in sexual selection (Catchpole & Slater, 1995; Marler
& Slabbekoorn, 2004). Bird songs vary both within and between species. Intra-
specific variation across different geographic localities occurs in practically all avian
taxa that have been studied so far (Mundinger, 1982; Podos &Warren, 2007). Inter-
specific variation often plays a critical role as a pre-zygotic barrier to hybridization
between closely related taxa. Under specific conditions, geographic variation within
species can be regarded as a precursor of reproductively isolating variation between
species, as divergent signals do not have to but can promote speciation through an
impact on male settlement success and assortative mating (Slabbekoorn & Smith,
2002; Edwards et al., 2005; Price, 2008, p. 470).

The nature of geographic variation in bird songs varies markedly among taxa.
Non-learning species, such as quails, doves, or owls may exhibit gradual, clinal, vari-
ation in spectral or temporal parameters (e.g., Goldstein 1978; Baptista et al. 1983;
Appleby & Redpath 1997). However, most attention has been drawn by geographic
variation in learning species such as songbirds (e.g., Borror (1956); Marler & Tamura
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2 ROBERT PLANQUÉ, NICHOLAS F. BRITTON, AND HANS SLABBEKOORN

(1962); Payne (1978); Kroodmsa (1985); Handford (1988)), and more recently also
hummingbirds (Gaunt et al., 1994; Yang et al., 2007), and parrots (Wright, 1996;
Baker, 2003). Songbirds have been best studied, and there is huge variation within
this familiar group of bird species in how songs vary geographically (Mundinger,
1982; Podos & Warren, 2007). Detailed studies on species with relatively small
repertoire size have shown isolation-by-distance patterns of geographic variation
in sharing of song types and similarity in structural song characteristics, with the
highest similarity among direct neighbours (Rivera-Gutierrez et al., 2010) or among
individuals that are a few territories apart (Lachlan & Slater, 2003). Individuals
from other species may have large improvised song repertoires without much geo-
graphic structure (Kroodsma et al., 1999) or may typically sing a single stereotypic
song, shared among neighbours, and forming small, geographically distinct, acoustic
clusters (Slabbekoorn et al., 2003).

Geographically distinct acoustic clusters yield sharp transitions in vocal param-
eters across localities and are referred to here as dialects (Marler & Tamura, 1962;
Baker & Cunningham, 1985; Slabbekoorn & Smith, 2002; Podos & Warren, 2007).
The best studied dialectal bird species is the white-crowned sparrow (Zonotrichia
leucophrys) for which there is ample field data on different subspecies (e.g., Bap-
tista & King 1980; Baker & Cunningham 1985; Cunningham et al. 1989; Nelson
et al. 2004). Studies on this species have provided insight into dialect persistence
(e.g., Harbison et al. 1999; Nelson et al. 2004), as well as dialect-dependent re-
sponse behaviour from playbacks in the field (e.g., Nelson et al. 2004; Derryberry
2011), and dialect-dependent local adaptation (MacDougall-Shackleton et al., 2002;
Luther & Baptista, 2010). Furthermore, through laboratory studies we know more
about song development (e.g., Marler 1970; Nelson 2000), for which we have addi-
tional insights from field observations on the impact of social interaction (Baptista
& Petrinovich, 1984; Bell et al., 1998; Nelson et al., 2001).

There are also several theoretical studies that have dealt with explaining as-
pects of dialectal variation not specifically related to a particular species. Such
modeling explorations have for example addressed the impact of repertoire size
and tutor number on dialect formation (Williams & Slater, 1990); the evolutionary
maintenance of song-learning tendency (Lachlan & Slater, 1999); the impact of di-
alectal variation on geneflow and speciation (Ellers & Slabbekoorn, 2003; Lachlan
& Servedio, 2004), and aspects of cultural transmission for multi-component sig-
nals (Strigul, 2009). Most of these studies thus address causes and consequences
of dialect formation and leave aside the issue of dialect maintenance. However, in
the best studied example of white-crowned sparrow, dialects have been shown to
persist over a period of forty years (Marler & Tamura, 1962; Nelson et al., 2004).
We believe it to be a striking property that dialects are maintained over such long
periods of time, given that several factors mentioned above lead to mixing, merging,
and dilution of dialect boundaries.

In this theoretical paper, we develop mathematical models to study dialect main-
tenance through exploring persistence of two adjacent and acoustically distinct
populations. The main questions of our paper are ’How are dialect boundaries
maintained?’ and ’Which factors play a critical role in maintenance?’ We shall
develop four models, each incorporating the primary factors affecting dialectal dy-
namics (song-learning, individual dispersal, assortative mating, and environmental
selection) in a particular way. The differences between the models are as follows.
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Model 1 assumes that birds first disperse to a new territory and then locally learn
new song characteristics which replace natal song characteristics to a variable ex-
tent (post-dispersal learning). We assume there is no link between song type and
the environment. Model 2 assumes that birds disperse after having learnt their song
(pre-dispersal learning). Again, there is no link between song type and environ-
ment. Model 3 is a variation on Model 1, but now we assume that a particular song
type induces fitness benefits associated with certain habitats. Model 4 is another
variation on Model 1, in which the learning component is made more realistic by
integrating a non-linear rule for the post-dispersal song tutor selection. In each of
these models, we study under which conditions dialects persist.

2. Modelling preliminaries

We develop the simplest possible model in which geographic variation in song
may occur: one with only two sites 1 and 2, and two song types, which we call
dialect 1 and 2. Note that for the particular question of dialect maintenance it is
not necessary to consider changes in song type, which might be due to copying errors
in the learning process or innovations of individual young birds. Such variations
only dilute any existing dialect pattern. For the formation of dialects such variations
are of course crucial. In small populations, stochastic effects will eventually drive
one of two static song types to extinction in the absence of some variation. Our
models deal with infinite populations and are deterministic, so that such extinction
events will not occur.

We now list the main ingredients for each of the models. At any point in time
each individual knows either dialect 1 or dialect 2, but not both. Juvenile birds
initially learn a natal dialect, but may later learn the other dialect. (The model
for this will be described later.) A bird who learns a new dialect is assumed to
forget its old one. (It is known from some species that the old dialect is sometimes
retained along with the new one, but for mathematical simplicity this is ignored.)
The frequency of individuals at site i who know dialect j at any census point is
given by Pij . The model is frequency-independent, and we assume sites are at
carrying capacity at each stage. The state of the system at any census point is
therefore determined by the variables Pij , for i = 1, 2 and j = 1, 2. The annual
cycle consists of three stages,

• reproduction,
• dispersal of juveniles, and
• learning by juveniles.

Juveniles are assumed to become adult in one year. The census (determining
the Pij) is taken before reproduction, and therefore counts one-year-old and older
adults, who make up the breeding population in that year. Annual adult mortality
is taken to be a constant µ, independent of age. The population is assumed to
be at carrying capacity, so that those adults who die in a year are replaced in the
breeding population by the same number of one-year-old birds.

We now discuss in detail how reproduction takes place. The implementation
of dispersal and learning will be deferred until Model 1, since the order of these
two processes (and thus their mathematical implementations) differs between the
models.

Assortative mating takes place, in such a way that the number of mixed-dialect
matings is less than it would be in a panmictic population. Juvenile birds initially
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learn the dialect of their father, who sings either dialect with equal probability (so
that effectively offspring of mixed-dialect matings have equal probability of learning
either dialect); this is known as their natal dialect. If pij is the frequency of juveniles
in patch i with natal dialect j, then

(1) pi1 =
P 2
i1 + σPi1Pi2

P 2
i1 + 2σPi1Pi2 + P 2

i2

, pi2 =
P 2
i2 + σPi1Pi2

P 2
i1 + 2σPi1Pi2 + P 2

i2

.

The parameter σ measures how tolerant the population is to mixed-dialect matings;
a value σ = 1 represents a perfectly panmictic population, while a value σ = 0
represents one where no mixed-dialect matings take place.

The mathematical analysis in each model consists of finding the equilibria and
studying their stability properties. A steady state may be denoted as one with
dialects if patch 1 contains a majority of birds singing one dialect type, and patch
2 a majority of the other song type. Due to the symmetric assumptions in the
models these majorities are often identical between patches, so e.g., a (80%, 20%)
split between dialect 1 and 2 in patch 1 usually means that patch 2 has a (20%,
80%) division. (Strictly speaking, this is not true for all steady states, but it seems
true for all stable equilibria.) It is also important to note that the stability of such
dialect steady states often coincides with instability of the fully mixed (50%, 50%)
steady state. In other words, persistence of a dialect pattern is usually equivalent
to showing that the fully mixed steady state can segregate into a dialect pattern.
This is different from studying when a rare new vocal variant can invade, which
would be the typical analysis to study formation of new dialects.

3. Model 1: Post-dispersal learning

In the post-dispersal model, juveniles (and only juveniles) are assumed to dis-
perse, with some fixed probability, in such a way that after dispersal a fraction ε
of the juveniles at each site have arrived from the other site. (Note that ε is the
fraction of successful colonisers, which is not necessarily the same as the fraction
of attempted colonisers.) Let p′ij be the frequency of juveniles at site i with natal
dialect j after this dispersal process. Then

(2) p′1j = (1− ε)p1j + εp2j , p′2j = (1− ε)p2j + εp1j .

The juvenile birds may now keep their natal dialects, with probability 1− λ, or
learn a new dialect from an adult bird chosen at random, with probability λ. Let
p′′ij be the frequency of juveniles at site i with dialect j after learning. Then

(3) p′′ij = (1− λ)p′ij + λPij .

This type of learning is linearly frequency-dependent, sometimes referred to as
“linear learning”. A non-linear learning rule is explored in Model 4.

To complete the model, recall that a fraction µ of adults die each year and are
replaced in the breeding population by the same number of one-year-old birds. Let
P ′
ij be the frequency of birds in patch i with dialect j at the subsequent census.

Then Model 1 is given by

(4) P ′
ij = (1− µ)Pij + µp′′ij .

for each i = 1, 2, j = 1, 2.
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3.1. Analysis. Note that Pij , pij , p
′
ij and p′′ij are frequencies (with respect to j),

so we need only to consider new variables Qi = Pi1 −Pi2, qi = pi1 − pi2, etc. Then

(5) Q′
i = (1− κ)Qi + κq′i = (1− κ)Qi + κ((1− ε)qi + εqj),

where κ = µ(1− λ) and j ̸= i. It is easy to check that

(6) qi = f(Qi),

where

(7) f(Q) =
Q

1
2 (1 + σ) + 1

2 (1− σ)Q2
,

so the system becomes

(8) Q′
i = (1− κ)Qi + κ((1− ε)f(Qi) + εf(Qj)),

where j ̸= i.

3.1.1. Symmetric and anti-symmetric steady states. Note that f(0) = 0, f(1) = 1,
f(−1) = −1. There are therefore three steady states that are symmetric under
the transformation (Q1, Q2) → (Q2, Q1), Q1 = Q2 = 1 and Q1 = Q2 = −1,
corresponding to extinction of dialect 2 and 1 respectively, and Q1 = Q2 = 0,
corresponding to equal numbers of each dialect in each site, P11 = P12 = P21 =
P22 = 1

2 . The points (Q∗,−Q∗) and (−Q∗, Q∗) are non-trivial anti-symmetric
steady states of the system (under the same transformation) if

(9) Q∗ = (1− 2ε)f(Q∗),

i.e. if

(10)
1

2
(1− σ)Q∗2 = 1− 2ε− 1

2
(1 + σ),

or

(11) Q∗2 =
2(1− 2ε)− (1 + σ)

1− σ
.

A non-trivial pair of such points exists in R if and only if

(12)
1

2
(1 + σ) < 1− 2ε,

or

(13) ε < ε1 =
1

4
(1− σ).

As ε decreases past ε1, the non-trivial anti-symmetric steady states bifurcate from
(0, 0).

3.1.2. Two invariant sets. Note that if Q1 = Q2 then Q′
1 = Q′

2, so that the set
Q1 = Q2 in the (Q1, Q2) plane is invariant under the dynamical system. On this
invariant set we have

(14) Q′ = (1− κ)Q+ κf(Q).

It is easy to show that (0, 0) is unstable and (−1,−1) and (1, 1) are stable steady
states of the dynamical system restricted to this set. Now note that if Q1+Q2 = 0
then Q′

1+Q′
2 = 0, so that the set Q1+Q2 = 0 is also invariant under the dynamical

system. On this set we have

(15) Q′ = (1− κ)Q+ κ(1− 2ε)f(Q).
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The trivial steady state Q = 0 is stable as a solution of the dynamical system
restricted to this set if ε > ε1 but unstable if ε < ε1, which is the condition for anti-
symmetric steady states to exist. Each of the non-trivial anti-symmetric steady
states is stable as solutions of this restricted dynamical system whenever the pair
exists in R.

3.1.3. Stability of the symmetric and anti-symmetric steady states. The results
above give complete information on the stability of (0, 0), showing that it has a
single unstable eigenvalue (with eigenvector (1, 1)T ) if ε > ε1, and two unstable
eigenvalues (with eigenvectors (1, 1)T and (1,−1)T ) if ε < ε1. To complete the
analysis of the stability of the other symmetric and anti-symmetric steady states,
we make use of the Jacobian matrix of the system in the (Q1, Q2) plane, given by

(16) J(Q1, Q2) =

(
1− κ+ κ(1− ε)f ′(Q1) εκf ′(Q2)

εκf ′(Q1) 1− κ+ κ(1− ε)f ′(Q2)

)
.

Note that f is an odd function, so that f ′ is an even function, and so for the
symmetric and anti-symmetric steady states, f ′(Q∗

1) = f ′(Q∗
2). It follows that the

eigenvectors at all of these steady states are (1, 1)T and (1,−1)T , with eigenvalues

(17) λ+ = 1− κ+ κf ′(Q∗) and λ− = 1− κ+ (1− 2ε)κf ′(Q∗).

Clearly 0 < λ− < λ+. For Q
∗ = −1 and Q∗ = 1, f ′(Q∗) < 1, so that (−1,−1) and

(1, 1) have two stable eigenvalues, and hence are stable.
It remains to determine the stability of the anti-symmetric steady states. We

know from subsection 3.1.2 that the condition that they are stable in the (−1, 1)T

direction is identical to the condition that they exist in R, ε < ε1. The condition
that they are stable in the (1, 1)T direction is that f ′(Q∗) < 1. Since f ′(0) > 1
and f ′(±1) < 1, and it is easy to show that f ′′(Q) is positive for Q ∈ (−1, 0)
and negative for Q ∈ (0, 1), this is true if Q∗ is sufficiently close to ±1. However
Q∗ = ±1 if ε = 0, and depends continuously on ε, so that these anti-symmetric
steady states are stable for sufficiently small ε.

In fact, (Q∗,−Q∗) (with Q∗ > 0) is stable if Q∗ > Q̂, where Q̂ is the positive
solution of f ′(Q) = 1. It is straightforward to show that

(18) Q̂2 =
−(2 + σ) +

√
5 + 4σ

1− σ
,

while we have already shown that

(19) Q∗2 =
2(1− 2ε)− (1 + σ)

1− σ
.

Hence (Q∗,−Q∗) is stable whenever

(20) 2(1− 2ε) > (1 + σ)− (2 + σ) +
√
5 + 4σ,

or

(21) ε < ε2 =
1

4
(3−

√
5 + 4σ).

A calculation confirms that ε1 > ε2 > 0. As ε decreases towards zero, there are
two bifurcation points, the one already discussed at ε = ε1 = 1

4 (1 − σ), where
the pair of non-trivial anti-symmetric steady states bifurcate from (0, 0), and one
at ε = ε2 = 1

4 (3 −
√
5 + 4σ), where a pair of steady states bifurcate from each

of the anti-symmetric steady states, symmetrically placed with respect to the line
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Figure 1. Bifurcation diagram for the post-dispersal learning
model, indicating for which parameter values dialects exist or are
indeed stable, summarised in inequalities (13) and (21).

Q1 +Q2 = 0. These new steady states are unstable, and their bifurcation confers
stability on the anti-symmetric steady states. See Figure 1 for an illustration for
which parameter values dialects are maintained.

3.2. Conclusion. We need both dispersal strength ε and assortative mating ten-
dency σ to be sufficiently small in order for the anti-symmetric coexistence steady
state to exist. Quantitatively, the requirement on ε and σ is given by inequal-
ity (13), ε < 1

4 (1−σ). Dispersal must not be too great but assortative mating must
be sufficiently strong in order to allow this. If ε is sufficiently small, the coexistence
steady state will not only exist but will also be stable, as detailed in inequality (21).
In this case, the system will tend to move towards a state in which both dialects
exist; if the initial conditions are sufficiently close to this steady state, each dialect
dominates in one of the sites. Note that the single-dialect steady states are also
locally stable, and novel dialects cannot invade a one-dialect steady state.

Neither the adult mortality µ nor the learning parameter λ (nor therefore the
product κ = µ(1 − λ)) are important in determining the existence or stability of
the two-dialect steady state, although they will influence the speed at which any
steady state is approached or left.

4. Model 2: Pre-dispersal learning

Model 1 assumes that juvenile birds first disperse and then learn their songs
from conspecifics in their patch. Model 2 makes the opposite assumption.

Note that we do not model learning from parents here (which is already incor-
porated in the assortative mating), but from the local community, precisely as in



8 ROBERT PLANQUÉ, NICHOLAS F. BRITTON, AND HANS SLABBEKOORN

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Q1

Q2

Figure 2. Example phase planes for system (8). Parameter values
are λ = 0.4, µ = 0.4, σ = 0.2 throughout, and ε = 0.25 (left),
ε = 0.15 (middle) and ε = 0.05 (right). The critical ε-values at
which bifurcations occur are ε1 = 0.2 and ε ≈ 0.14. As ε decreases,
the nontrivial dialect steady states bifurcate from the origin, are
first unstable (middle plot), and then become stable (right plot).
Arrows indicate direction and speed of change of the dynamical
system. The red lines are example solutions with initial conditions
chosen on a circle centered around the origin. These plots illustrate
how far the nontrivial steady states extend away from the origin
before they stabilise, and also give some indication of the basins of
attraction of these dialect steady states.

post-dispersal learning. The equations in Q1 and Q2 become subtly different:
(22)
Q′

i = (1−µ)Qi +λµ[(1− ε)Qi + εQj)]+µ(1−λ)[(1− ε)qi + εqj ], i, j = 1, 2 i ̸= j.

where, as before,

qi = f(Qi), i = 1, 2.

In the previous model, the εQ2 term was εQ1, so that we could write the sum
λµ((1 − ε)Q1 + εQ2)) as λµQ1, and take κ = µ(1 − λ) as a combined parameter.
This is no longer the case.

The dynamics of this model are still invariant on the Q1 = Q2 line and on
Q1 = −Q2. We again have the symmetric steady states (−1,−1), (0, 0), and
(1, 1, ).

4.1. Analysis. The eigenvalues at the symmetric steady states and anti-symmetric
steady states (where f ′(Q∗) = f ′(−Q∗)) are

Λ+ = 1− µ(1− λ)(1− f ′(Q∗)),

and

Λ− = 1− µ(1− λ)(1− f ′(Q∗)) + 2µε(λ(f ′(Q∗)− 1)− f ′(Q∗)).

At the steady state (1, 1) and (−1,−1), f ′(±1) = σ, and Λ− < Λ+ < 1, so that
these symmetric steady states are always stable.
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Assuming Q1 = Q2, the system reduces again to (14), and so the origin is
unstable as before when we restrict ourselves to this line. There are again anti-
symmetric steady states (Q∗,−Q∗) if Q∗ solves

Q∗ =
(1− λ)(1− 2ε)

(1− λ(1− 2ε))
f(Q∗).

Conditions on λ, ε and σ to ensure the existence of the anti-symmetric steady state
are now

1

2
(1 + σ) <

(1− λ)(1− 2ε)

(1− λ(1− 2ε))
.

Setting S = 1
2 + 1

2σ and E = 1− 2ε, we require

(23)
(1− λ)E

1− Eλ
> S.

Note that S > 1
2 for σ ∈ (0, 1), and 1 − λ > 0 for λ ∈ (0, 1). The only possibility

for (23) to occur is if both E > 0 and 1 − Eλ > 0 (the combination E < 0
and 1 − λE < 0 are excluded within these parameter ranges). This allows us to
rewrite (23) as

λ <
E − S

E(1− S)
,

where we have used that 1− S > 0 for all σ ∈ (0, 1). So in all, we require that

(24) E > 0, E > S, 1− λE > 0, λ <
E − S

E(1− S)
.

Written in the original parameters, the anti-symmetric nontrivial steady states exist
when

ε <
1

2
, ε <

1

4
(1− σ), λ <

1− 4ε− σ

(1− 2ε)(1− σ)
, λ <

1

1− 2ε
.

Note that 1
4 (1− σ) < 1

2 and that

1− 4ε− σ

(1− 2ε)(1− σ)
=

1

1− 2ε
− 4ε

(1− 2ε)(1− σ)
<

1

1− 2ε
,

so the above set of requirements reduces to

(25) ε < ε1 =
1

4
(1− σ), λ < λ1 =

1− 4ε− σ

(1− 2ε)(1− σ)
.

These conditions are also the conditions for (Q∗,−Q∗) to be stable in the (1,−1)
direction, so that existence of these equilibria coincides with the origin losing sta-
bility in this direction and the new anti-symmetric steady states taking over this
stability. The eigenvalue in this eigendirection is greater than 1 iff

λσ − 2λεσ − σ − λ+ 2ελ− 4ε+ 1 > 0.

One can readily check that this is the same as (23).
As before, however, the condition that (Q∗,−Q∗) is unstable in the (1, 1) direc-

tion is that f ′(Q∗) > 1. Again, f ′(0) = 2/(1+σ) > 1, so if Q∗ is small enough, it is

still unstable. We again look for the value Q̂ such that f ′(Q) = 1, which solves (18),
as before, whilst Q∗ solves

Q∗2 =
2K − (1 + σ)

1− σ
, where K =

2(1− λ)(1− 2ε)

(1− λ(1− 2ε))
.
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Figure 3. Bifurcation diagram for the pre-dispersal learning
model, indication when dialect steady states exist or are indeed
stable, summarised in inequalities (25) and (27).

Hence, (Q∗,−Q∗) is stable whenever Q∗ > Q̂, i.e., whenever

K > S′ := −1

2
+

1

2

√
5 + 4σ.

So we again have to solve
(1− λ)E

1− Eλ
> S′.

Since S′ > 1
2 , and, as before, S

′ ∈ ( 12 , 1) for all σ ∈ (0, 1), we get analogous to (24),

(26) E > 0, E > S′, 1− λE > 0, λ <
E − S′

E(1− S′)
.

It is straightforward to show that

E − S′

E(1− S′)
<

1

E
,

so that the conditions, in the original parameters, reduce to

(27) ε < ε2 =
1

4
(3−

√
5 + 4σ), λ < λ2 =

3− 4ε−
√
5 + 4σ

(1− 2ε)(3−
√
5 + 4σ)

.

See Figure 3 for an illustration for which parameter values dialects are maintained,
and some example phase planes in Figure 4.

4.2. Conclusion. Our second model leads to very similar results compared to the
first, and are summed up in inequality (27): if dispersal ε and learning probability
λ satisfy

ε < ε2 =
1

4
(3−

√
5 + 4σ), λ < λ2 =

3− 4ε−
√
5 + 4σ

(1− 2ε)(3−
√
5 + 4σ)
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then dialects persist. The only real difference is that the learning parameter λ now
does play a role in determining the occurrence of dialects arising from a well-mixed
population—but a seemingly negative one. As with dispersal, learning must not
be too strong for dialects to arise, which is opposite to our expectations. After
all, imitative learning is always suggested to be a prerequisite for the emergence
of dialectal patterns. In our second model, however, strong pre-dispersal learning
will impede dialect formation and undermine dialect maintenance. This is contrary
to biological understanding (see the Discussion), and suggests that a learning rule
as implemented in this model is not realistic. Note also, that, as before, rare song
types cannot invade a one-dialect steady state.

5. Model 3: Adaptive song types

Since post-dispersal learning is more commonly found than pre-dispersal learn-
ing, we go back to Model 1. Let us now further assume that in each patch the
mortality rate depends on the song type, so that (4) becomes

(28) P ′
ij = (1− µij)Pij + (µijPij + µikPik)p

′′
ij

for each i = 1, 2, j = 1, 2, where k ̸= j. Note that all the adults who die in patch i
each year are replaced by the same number of juveniles, as in the basic model, so
that Pij again represents a frequency, with Pi1 + Pi2 = 1 for each i. Let song type
i be adapted to patch i, in such a way that, for simplicity, µ11 = µ22 = µ(1 − δ),
µ12 = µ21 = µ(1 + δ), for some δ ∈ [0, 1). We define Qi = Pi1 − Pi2, as before, and
we obtain

Q′
1 = Q1 + µ(δ −Q1) + µ(1− δQ1) {λQ1 + (1− λ)(1− ε)f(Q1) + (1− λ)εf(Q2)} ,

Q′
2 = Q2 − µ(δ +Q2) + µ(1 + δQ2) {λQ2 + (1− λ)(1− ε)f(Q2) + (1− λ)εf(Q1)} .

Note that (1, 1) and (−1,−1) are still steady states of this system, but (0, 0) is not.
Note also that if each song has a higher frequency of occurrence than the other

where its mortality is lower (song 1 in patch 1 and song 2 in patch 2), then Q1 > 0,
Q2 < 0, so we shall refer to the two-song steady state (Q∗

1, Q
∗
2) as adaptive if

Q∗
1 > 0, Q∗

2 < 0 and maladaptive if Q∗
1 < 0, Q∗

2 > 0.
It is easy to show that if Q1 +Q2 = 0 then Q′

1 +Q′
2 = 0, so that Q1 +Q2 = 0

is invariant, and (Q∗
1, Q

∗
2) = (Q∗,−Q∗) is an anti-symmetric steady state of the

system as long as

(29) Q∗ = Q∗ + µ(δ −Q∗) + µ(1− δQ∗) {λQ∗ + (1− λ)(1− 2ε)f(Q∗)} .
Writing τ = 2/(1− σ) = 1/(2ε1), so that f(Q) = τQ/(τ − 1 +Q2), this becomes

(30) λδQ∗4 + (1− λ)Q∗3 + a2δQ
∗2 − (1− λ)(1− 2ετ)Q∗ − δ(τ − 1) = 0,

where a2 = −(1+λ)+ τ(λ+(1−λ)(1−2ε)). If δ = 0 this quartic equation reduces

to a cubic with solutions Q∗ = 0 and Q∗ = ±
√
1− 2ετ = ±

√
1− ε/ε1, the last two

real if ε < ε1. The model with δ = 0 is the non-adaptive Model 1, and these are
the steady states for Model 1, so this is as expected. These steady states are the
ε-axis and the parabola sketched in figure 5.

For δ > 0, it may be shown that the only relevant roots (i.e. real roots in
[−1, 1]) of the quartic equation (30) are as sketched on the bifurcation diagram as a
perturbation of the configuration for δ = 0. For all values of ε there is a positive root
Q∗ > 0, (so that Q∗

1 > 0, Q∗
2 < 0, and the steady state is adaptive), which is always

stable as a solution of the dynamical system restricted to Q1+Q2 = 0, but stabilises
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Figure 4. Example phase planes for the predisperal learning
model (22). Parameter values are µ = 0.4, σ = 0.2 throughout.
In the top row, ϵ = 0.25, so that λ2 < λ1 < 0 and anti-symmetric
steady states never appear for any λ > 0, but they are unstable for
all λ > 0. In these simulations, λ = 0 and λ = 0.2 for illustration.
In the middle row, ε = 0.18, so that λ1 > 0 but λ2 < 0. In other
words, anti-symmetric steady states do form for λ < λ1 (in this
illustration, λ = 0.1 < 0.156 ≡ λ1), but they are never stable for
any λ > 0. In the bottom row, ε = 0.1. For these values of ε and
σ, λ1 ≡= 0.625, and λ2 = 0.405. Hence, with sufficiently little
learning, dialects are formed. From left to right in this row, λ =
0.8, 0.5, 0.2.
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Figure 5. The bifurcation diagram for Model 3.

even without this restriction through a bifurcation near ε = ε2 = 1
4 (3−

√
5 + 4σ).

In addition to this positive root of (30), there is a saddle-node bifurcation point at
a value of ε < ε1 = 1

4 (1−σ) = 1/(2τ) where a pair of negative roots, corresponding
to maladaptive steady states, appear. The root closer to Q∗ = 0 is always unstable,
while the more negative one is always stable as a solution of the dynamical system
restricted to Q1+Q2 = 0, but becomes unconditionally stable through a bifurcation
near ε = ε2 in a similar way to the positive root.

We have indicated that the adaptive two-song steady state is stable for ε suf-
ficiently small, but we wish to know whether it attracts solutions initially close
to one of the symmetric (single-song) steady states (1, 1) and (−1,−1), so that
we might expect two songs to arise from one. In the case δ = 0 the domains of
attraction of the two anti-symmetric steady states expand at the expense of those
of the symmetric steady states (1, 1) and (−1,−1) as ε decreases further, but do
not reach these single-song steady states until ε reaches zero, (when the patches
are completely isolated), so that for ε > 0 the single-song steady states are always
stable. We now wish to investigate the stability of the single-song steady states
(1, 1) and (−1,−1) for δ > 0.

A straightforward calculation shows that the Jacobian matrix at (1, 1) is given
by

(31) J(1, 1) =

(
1−A− δC B − δD
B + δD 1−A+ δC

)
,

where A = µ(1 − λ)(1 − (1 − ε)f ′(1)), B = εµ(1 − λ)f ′(1), C = (1 + λ) + (1 −
λ)(1− ε)f ′(1), and D = ε(1−λ)f ′(1). The eigenvalues at (1, 1) are therefore given

by Λ± = 1 − A ±
√
B2 + δ2(C2 −D2). These are both stable for δ = 0, but an
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eigenvalue passes through 1 as δ passes through δ1, where δ21 = A2−B2

C2−D2 . Noting

that f ′(1) = σ, we have

(32) δ21 = (1− λ)2
(1− (1− ε)σ)2 − ε2σ2

((1 + λ) + (1− λ)(1− ε)σ)2 − (1− λ)2ε2σ2
.

or

(33) δ21 = (1− λ)2
(1− σ)(1− (1− 2ε)σ)

(1 + λ) + (1− λ)σ)((1 + λ) + (1− 2ε)(1− λ)σ)
< 1.

A sufficient advantage δ > δ1 to the favoured type destabilises (1, 1). Solutions of
the dynamical system with initial conditions (1, 1) (or (−1,−1)) presumably then
tend to the anti-symmetric steady state in the fourth quadrant as t → ∞. See
Figure 6 for some phase plane examples with increasing δ.

As δ increases, then (at least for ε small) the other anti-symmetric steady state
remote from the origin remains stable until it hits the anti-symmetric steady state
moving from the vicinity of the origin and disappears through a saddle-node bifur-
cation at δ = δ2. At least for ε small, δ2 < δ1, so that this saddle-node bifurcation
occurs before the bifurcation that destabilises (1, 1), and neither anti-symmetric
steady state with Q∗

1 < 0 is ever stable while (1, 1) is unstable.

5.1. Conclusion. Our third model, including environmental selection, yields dra-
matically different results compared to the first two models. Giving birds singing
particular song types in a patch fitness benefits destroys the fully mixed steady
state. Instead, we find an asymmetrical situation with a majority of birds singing
the song type in the patch with highest fitness benefits. Sufficiently high penalties
on singing the wrong song type in a patch (corresponding to δ > δ1, where δ1 is
given by (33)) now does allow for new song types to invade. This does not occur
in any of the other models.

6. Model 4: nonlinear frequency-dependent learning

We go back to Model 1 since post-dispersal learning seems more common than
pre-dispersal learning, as evidenced from well-studied species such as Bewicks wrens,
Thryomanes bewickii (Kroodsma, 1974), white-crowned sparrows, Zonotrichia leu-
cophrys (Baptista & Petrinovich, 1984; Nelson et al., 1996), great tits, Parus ma-
jor (McGregor & Krebs, 1989), indigo buntings, Passerina cyanea (Payne, 1981),
European starlings, Sturnus vulgaris (Mountjoy & Lemon, 1995), and canaries,
Serinus canarius (Nottebohm & Nottebohm, 1978).

We thus consider the original post-dispersal Model 1, excluding assortative mat-
ing but assuming panmictic mating. It is still assumed that a young bird is more
likely to learn the dialect that is sung by the majority of local adults, but the
probability that it is learnt is now more than its majority share. This happens, for
instance, if the young bird samples a finite number of local songs and chooses the
most common song type in the sample.

The juvenile birds may now keep their natal dialects, with probability 1 − λ,
or acquire a new dialect by a process of sampling from neighbouring adult birds,
with probability λ. The sampling process is assumed to favour the dialect that is
locally more common, in a stronger way than acquiring it from a single neighbour
chosen at random. Let p′′ij be the frequency of juveniles at site i with dialect j after
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Figure 6. Example phase planes for system (5)–(5). Parameter
values are λ = 0.1, µ = 0.1, σ = 0.1, ε = 0.1 throughout, and
δ = 0, 0.05, 0.1, 0.5, 0.7 from top to bottom, left to right. The
critical δ-value at which (1, 1) loses stability if δ1 = 0.69. Note
that the solution tend to the anti-symmetric steady state in the
fourth quadrant. The other anti-symmetrical steady state seems
to remain stable, but ceases to exist when δ keeps increasing.

learning. Then

(34) p′′ij = (1− λ)p′ij + λ
P z
ij

P z
ij + P z

ik

,
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where Pik = 1−Pij is the frequency of adult birds in patch i singing the alternative
dialect k. The parameter z measures how strongly the population favours the
majority dialect; a value z = 1 gives p′′ij = (1 − λ)p′ij + λPij , and is equivalent to
sampling a single neighbour chosen at random, and we shall normally assume that
z > 1.

Recall that a fraction µ of adults die each year and are replaced in the breeding
population by the same number of one-year-old birds. Let P ′

ij be the frequency of
birds in patch i with dialect j at the subsequent census. Then

(35) P ′
ij = (1− µ)Pij + µp′′ij .

for each i = 1, 2, j = 1, 2.

6.1. Analysis. Note that Pij , pij , p
′
ij and p′′ij are frequencies (with respect to j),

so that we need only consider new variables Qi = Pi1 − Pi2, qi = pi1 − pi2, etc.
Then, from (35),

(36) Q′
i = (1− µλ)Qi − µ(1− λ)εQi + µ(1− λ)εQj + µλg(Qi),

where j ̸= i and

(37) g(Q) =
(1 +Q)z − (1−Q)z

(1 +Q)z + (1−Q)z
.

Note that g is an odd function, and satisfies

(38) g(0) = 0, g(1) = 1, g(−1) = −1.

Its derivative is given by

(39) g′(Q) =
4z(1−Q2)z−1

((1 +Q)z + (1−Q)z)2
,

which is of course an even function, and (if z > 1) satisfies

(40) g′(0) = z, g′(1) = 0, g′(−1) = 0.

It is also easy to show that (if z > 1) the second derivative g′′ satisfies

(41) g′′(Q) < 0 for 0 < Q < 1, g′′(Q) > 0 for − 1 < Q < 0.

6.1.1. Symmetric and anti-symmetric steady states. Since g(0) = 0, g(1) = 1,
g(−1) = −1, there are three steady states that are symmetric under the trans-
formation (Q1, Q2) → (Q2, Q1), Q1 = Q2 = 1 and Q1 = Q2 = −1, corresponding
to extinction of dialect 2 and 1 respectively, and Q1 = Q2 = 0, corresponding
to equal numbers of each dialect in each site, P11 = P12 = P21 = P22 = 1

2 . The
points (Q∗,−Q∗) and (−Q∗, Q∗) are non-trivial anti-symmetric steady states of the
system (under the same transformation) if

(42) (λ− 2(1− λ)ε)Q∗ = λg(Q∗).

Let us consider λ as a bifurcation parameter, and look for such anti-symmetric
solutions bifurcating from the trivial solution. They do so where

(43) (λ− 2(1− λ)ε) = λg′(0) = λz,

or

(44) λ = λ1 =
2ε

z − 1 + 2ε
.
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As λ increases past λ1, two non-trivial anti-symmetric steady states bifurcate from
(0, 0).

For z = 1, λ1 = 1, and there is no bifurcation for realistic values of λ; we have
already stated that we expect z > 1 for pattern formation. For z = 2, we can find
the anti-symmetric steady states explicitly, since then g(Q) = 2Q/(1 +Q2). They
are given by

(45) Q∗ = ±

√
λ− 2(1− λ)ε

λ+ 2(1− λ)ε
.

6.1.2. Two invariant sets. Note that if Q1 = Q2 then Q′
1 = Q′

2, so that the set
Q1 = Q2 in the (Q1, Q2) plane is invariant under the dynamical system. On this
invariant set we have

(46) Q′ = (1− µλ)Q+ µλg(Q).

Since g′(0) = z > 1, and g′(−1) = g′(1) = 0 for z > 1, then (0, 0) is unstable and
(−1,−1) and (1, 1) are stable steady states of the dynamical system restricted to
this set. Now note that if Q1 + Q2 = 0 then Q′

1 + Q′
2 = 0, since g is odd, so that

the set Q1 +Q2 = 0 is also invariant under the dynamical system. On this set we
have

(47) Q′ = (1− µλ)Q− 2µ(1− λ)εQ+ µλg(Q).

The trivial steady state Q = 0 is stable as a solution of the dynamical system
restricted to this set if λ < λ1 but unstable if λ > λ1, which is the condition for
anti-symmetric steady states to exist. Each of the non-trivial anti-symmetric steady
states is stable as solutions of this restricted dynamical system whenever the pair
exists in R.

6.1.3. Stability of the symmetric and anti-symmetric steady states. The results
above give complete information on the stability of (0, 0), showing that it has a
single unstable eigenvalue (with eigenvector (1, 1)T ) if λ < λ1, and two unstable
eigenvalues (with eigenvectors (1, 1)T and (1,−1)T ) if λ > λ1. To complete the
analysis of the stability of the other symmetric and anti-symmetric steady states,
we make use of the Jacobian matrix of the system in the (Q1, Q2) plane, given by
(48)

J(Q1, Q2) =

(
1− µλ− µ(1− λ)ε+ µλg′(Q1) µ(1− λ)ε

µ(1− λ)ε 1− µλ− µ(1− λ)ε+ µλg′(Q2)

)
.

Since g′ is an even function, then g′(Q∗
1) = g′(Q∗

2) for the symmetric and anti-
symmetric steady states. It follows that the eigenvectors at all of these steady
states are (1,−1)T and (1, 1)T , with eigenvalues

(49) Λ− = 1− µλ− 2µ(1− λ)ε+ µλg′(Q∗) and Λ+ = 1− µλ+ µλg′(Q∗).

Clearly 0 < Λ− < Λ+, for realistic values of ε < 1
2 . For Q∗ = −1 and Q∗ = 1,

g′(Q∗) = 0 < 1, so that (−1,−1) and (1, 1) have two stable eigenvalues, and hence
are stable.

It remains to determine the stability of the anti-symmetric steady states. We
know from subsection 6.1.2 that the condition that they are stable in the (1,−1)T

direction is identical to the condition that they exist in R, λ > λ1. The condition
that they are stable in the (1, 1)T direction is that g′(Q∗) < 1. Since g′(0) = z > 1
and g′(±1) = 0 < 1, and g′′(Q) is negative for Q ∈ (−1, 0) and positive for Q ∈
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Figure 7. Bifurcation diagram of the nonlinear frequency-
dependent learning model, indicating for which parameter values
dialects exist or are indeed stable. The dark-gray area indicates
the region of stable dialects for the choice z = 2, see inequality (53).

(0, 1), this is true if Q∗ is sufficiently close to ±1. However Q∗ = ±1 if λ = 1, and
depends continuously on λ, so that these anti-symmetric steady states are stable
for λ sufficiently close to unity.

In fact, (Q∗,−Q∗) (with Q∗ > 0) is stable if Q∗ > Q̂, where Q̂ is the positive
solution of g′(Q) = 1. For z = 2 it is straightforward to show that

(50) Q̂2 = −2 +
√
5,

while we have already shown that

(51) Q∗2 =
λ− 2(1− λ)ε

λ+ 2(1− λ)ε
.

Hence (Q∗,−Q∗) is stable whenever

(52) λ− 2(1− λ)ε > (λ+ 2(1− λ)ε)(−2 +
√
5),

or

(53) λ > λ2 =
2ε(

√
5− 1)

(3−
√
5) + 2ε(

√
5− 1)

.

A calculation confirms that 0 < λ1 < λ2 < 1. As λ increases towards unity, there are
two bifurcation points, the one already discussed at λ = λ1 = 2ε/(1+2ε) (for z = 2),
where the pair of non-trivial anti-symmetric steady states bifurcates from (0, 0), and

one at λ = λ2 = 2ε(
√
5− 1)/(3−

√
5 + 2ε(

√
5− 1)), where a pair of steady states

bifurcates from each of the anti-symmetric steady states, symmetrically placed with
respect to the line Q1 + Q2 = 0. These new steady states are unstable, and their
bifurcation confers stability on the anti-symmetric steady states. See Figure 7 for a
bifurcation diagram illustrating for which parameter values dialects are maintained.
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6.2. Conclusion. The fourth and last model confirms, using a more realistic learn-
ing mode, the importance of dispersal and the learning factor in the persistence of
two different dialects. For fixed dispersal strength ε, we need learning probability λ
to be sufficiently large, as detailed in inequality (44), in order for the anti-symmetric
coexistence steady states to exist. That is, dispersal must not be too great but learn-
ing must be sufficiently strong and sufficiently favourable to the majority dialect
in order to allow this. If λ is sufficiently large, see inequality (53), the coexistence
steady states will not only exist but will also be stable. Now the system will tend
to a state in which both dialects exist, and each dialect dominates in one of the
sites, if the initial conditions are sufficiently close to this steady state. Note that
the single-dialect steady states are again locally stable, so that this does not explain
how such a two-dialect steady state may be arrived at from a one-dialect ancestral
state.

Although we have made a dramatic change in the learning component of this
last model, the adult mortality µ remains unimportant in determining the existence
or stability of the two-dialect steady state. It will of course influence the speed at
which any steady state is approached or left.

7. Discussion

Our theoretical explorations confirm previous understanding but also reveal sev-
eral new insights. First, as expected, the combination of low dispersal and strong
assortative mating based on song promotes dialect maintenance (models 1 to 4).
Second, although variation in post-dispersal learning propensity affects the rate
of change, a simple linear rule of tutor frequency-dependent copying probability
has little effect on the probability of maintenance for our two neighboring song
dialects (model 1). Third, variation in pre-dispersal learning propensity does affect
the maintenance of dialect boundaries, but plays an undermining role if songs are
largely and accurately copied from natal territories (model 2). Fourth, we revealed
a strong environmental impact on dialectal maintenance patterns: the probability
that rare song types can establish and remain depends heavily on whether there
are fitness consequences to using a song type in a particular patch (model 3). And
fifth, an impact of post-dispersal learning flexibility on dialect maintenance turns
out to be dependent on the rule for tutor selection (model 4): dialect maintenance is
enhanced by post-dispersal learning if dispersing males follow a non-linear rule and
learn the most common local dialect with a greater probability than the fraction of
local birds singing it.

7.1. The impact of pre- and post-dispersal learning. Pre-dispersal learning
will promote acoustic convergence and merging of dialects. In such cases dialect
maintenance will rely solely on limited dispersal and strong assortative mating.
In isolated or small, newly colonized populations may still diverge by founder ef-
fects or the accumulation of random copy errors (Baker et al., 1987; Slabbekoorn
& Peet, 2003). It is difficult to empirically verify the predictions of our model as
pre-dispersal learning may be rare and restricted to species such as zebra finches,
Taeniopygia guttata (Zann, 1997) and Darwin’s finches, Geospiza sp. (Grant &
Grant, 1996). However, the impact of strong pre-dispersal learning may yield pat-
terns similar to those of non-learning species, as suggested by the model of Ellers
& Slabbekoorn (2003). The available empirical examples of geographic patterns in
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Model Parameters
changed

Dialect
maintenance

Dialect
invasion

1: post-dispersal, ε (dispersal) – X
linear learning λ (learning

probability)
X X

µ (mortality) X X
σ (assortative
mating)

+ X

2: pre-dispersal, ε – X
linear learning λ X X

µ X X
σ + X

3: post-dispersal, adap-
tive song types

δ (measure
of difference
in mortality
rates)

+ +

4: post-dispersal, ε – X
nonlinear learning λ + X

(µ) (X) (X)
(σ) (+) (X)

Table 1. Overview of the four different models considered, and
the different outcomes when varying parameters. A +/- indicates
that increasing the parameter has a positive(negative) influence on
dialect maintenance or dialect invasion (i.e., establishment of new
dialects); an X means changing the parameter has no effect. In
model 3, parameters ε, λ, µ and σ were kept fixed. Parameter δ
did not feature in models 1, 2 and 4. In model 4, only the effect
of ε and λ were explicitly studied. The influence of parameters µ
and σ is in all likelihood the same as in model 1, as indicated by
the parentheses. “Linear (or nonlinear) learning” refers to “lin-
ear (or nonlinear) frequency-dependent learning”, see Model 1 for
additional explanation.

non-learning species indeed suggest a lack of discrete boundaries such as those ex-
pected with a dominant merging role for gene or meme flow (Appleby & Redpath,
1997; Peake & McGregror, 1999).

Post-dispersal learning has the potential to promote acoustic divergence, but
dialect maintenance depends on the behavioural rule of tutor selection. The dif-
ference between our first and fourth model was the mode of learning. In model 1
we assumed linear frequency-dependent oblique learning. This rule implies that a
dispersing male bird exposed to four different tutors, three singing one song types
and one singing another, chooses the most common onewith probability 75%. In
model 4, with the same set of tutors, the likelihood of learning the majority dialect
is greater than 75%. In the latter condition, learning propensity does not have a
neutral role in dialect maintenance: dialects are actively reinforced instead, and are
easier to maintain at the same levels of dispersal and assortative mating.
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A simple kind of voting mechanism, in which a bird chooses (‘votes for’) the
most common type of song heard over a limited period of time, would give rise to
this. Linear frequency-dependent learning would then be voting based on just one
random sample from the population, and a nonlinear dependence would be created
by voting after hearing more than one randomly chosen song. This suggests that a
nonlinear rule should be the norm, not the exception. Simple voting mechanisms are
known to cause patterns in a wide variety of biological systems (see e.g., Camazine
et al. 2001). An alternative mechanism leading to a nonlinear frequency response
might be selective attrition, in which birds learn a series of different songs, then
subsequently lose most of these (Marler & Peters, 1982; Nelson, 1992).

7.2. Environmental impact on dialectal maintenance and emergence. As-
suming direct fitness consequences for using a particular song type in a focal
patch has a great impact on dialect maintenance, and indeed on dialect emergence.
Among the models considered here, rare song types are never invasive and hence
never remain, unless there are fitness benefits for using that rare song type. Extant
patterns of geographic song variation may thus be caused (or promoted) initially
by environmental impact, but may subsequently be maintained by a combination
of low dispersal, strong assortative mating and a nonlinear rule for tutor selection.

It is currently difficult to assess the importance of these model results using
empirical evidence. Studies are still mostly divided into those with a focus either on
dialect or on environmental impact and change in acoustic structure (Slabbekoorn
& Smith, 2002). There are, however, some interesting exceptions. The study on
white-crowned sparrows in the Sierra Nevada mountains by MacDougall-Shackleton
et al. (2002) indicates that males singing the local dialect may benefit from local
adaptation, as they had higher fertility rates than males singing a deviating song
that may have come from elsewhere. In another study, Luther & Baptista (2010)
show dialectal changes in time in urban white-crowned sparrows of San Francisco,
which may be driven by environmental advantages to high-frequency song variants
in neighbourhoods where low-frequency traffic noise has increased.

Similar noise-dependent and discrete song variation can be found beyond the
intra-specific level among different subspecies or closely-related species that live
in different natural habitats. A clear example involves high-elevation and low-
elevation woodwren populations living on the steep slopes of the South-American
Andes (Dingle et al., 2008, 2010). In this model system, empirical data involve
adjacent populations, even including a narrow zone with adjacent territories, where
song variation remains as a distinct acoustic boundary. At low elevations there is
much more high-frequency noise than at high elevations, probably mainly due to
variation in the local insect communities, and at high elevations woodwrens sing
more high-frequency song notes than at low elevations. Detailed song analyses and
genetic determination of parental species and hybrids at the contact zone indicates
the existence of mixed singers and even some individuals singing song repertoires
which are entirely like those of the other population (Halfwerk et al. unpublished
data). So, this is a case of environmental selection on song variation in which a
distinct acoustic boundary is maintained despite proven capabilities of heterotypic
song-learning.
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7.3. Theoretical work. Several related theoretical studies on bird-song dialects
focus mainly on the effect of social learning or dialectal patterns on biological pro-
cesses (e.g., Ellers & Slabbekoorn, 2003; Lachlan & Servedio, 2004; Lachlan et al.,
2004). Most of these models are spatially explicit and all are simulation models.
However, the precise mechanisms with which dispersal, learning, or territorial de-
fence and mate choice are assumed to work differ substantially between them. One
common choice, however, is that song-learning is taken to be linearly frequency-
dependent, as in our models 1 to 3.

A few studies, however, focus on the pattern formation itself. In an early model
of repertoire maintenance, Williams & Slater (1990) implemented a linear oblique
learning mode for birds in a spatial grid. Depending on the number of tutors from
which a young bird could learn its repertoire, song types within these repertoires
persisted for longer when song was learnt from more tutors. In Ellers & Slabbekoorn
(2003), there is a mixed choice of predefined subpopulations from which song tutors
are chosen, which ignores those subpopulation boundaries. Dialects do form in this
model, contrary to our results from models 1–3. This indicates that biased learning
within local populations and dispersal through assortative territory-holding poten-
tial can have a comparable impact on geographic variation in song as assortative
mating in our current models.

In our models we assumed the occurrence of nonlinear frequency-dependent
learning from song tutors. Some evolutionary aspects of this phenomenon, also
termed conformity bias (Boyd & Richardson, 1985) have been modelled by Lachlan
et al. (2004) using a game-theoretical approach. Our model 4 also suggests that
a combination of conformity bias and assortative mating would already suffice to
cause between-group differences, but it may even be simpler. Strigul (2009) recently
showed that simple implementations of nonlinear frequency-dependent learning may
cause emergence of homogeneous subgroups. In this model, individuals could copy
traits from conspecifics in such a way that an agent was more likely to copy the
trait if there was an overall greater match over all shared traits. In the models
studied by Strigul, only imitation was considered, but other ingredients such as
dispersal, mortality and assortative mating were left out. Self-organization into
dialect groups was found to depend strongly on the mode of learning. Our models
suggest that this cohesive force persists even in the face of dispersal and mortality.

7.4. Outlook. Much of the current literature presumes that the formation and
maintenance of dialects is self-evident. Kroodsma (2004), in a recent overview chap-
ter, wrote that “Dialects happen because birds tend to breed and therefore to sing
in the same local area where they learned their songs.” Our models show that even
in the minimal case of two patches and two song types, the integrated outcome of
the various mechanisms at play is not evident. Song-learning, when implemented as
linearly frequency-dependent (the most common model choice), does not promote
dialects in our models.

Although our current paper focused on dialect maintenance, it also reflects to
some extent on dialect formation. It is most often thought that new dialects arise
through founder effects (Kroodsma, 2004). This will undoubtedly be true in some
cases. However, we believe that the nonlinear effects of assortative mating and
song-learning, as implemented for instance in Model 4, could also give rise to the
emergence of dialects when explored in a spatial model. Spatial pattern formation
is one of the main fields in applied mathematics these last decades (Murray, 2003),
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and patterns can often be explained using very simple nonlinear mechanisms. There
is still much scope for future work on birdsong dialects, in which the vast literature
on song-learning, dispersal, assortative mating and habitat is taken into account
more fully in more realistic models, to give rise to a coherent theory of birdsong
dialects.
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