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Predictions for climate chege include movement of temperature isoclines up to
1000 nyyear, and this is supported by recent empirical studies. This paper con-
siders effects of a rapidly changing environment on competitive outcomes between
species. The model is formulated as a system of nonlinear partial differential equa-
tions in a moving domain. Terms in the equations decribe competition interactions
and random movement by individuals. lddhe critical patch size and travelling
wave speed for each species, calculated in the absence of competition and in a
stationary habitaiplay a role in determining the outcome of the process with com-
petition and in a moving habitat. We demtnase how habitat movement, coupled
with edge effects, can opempwa new nitie for invaders that would be otherwise
excluded.

(© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Investigating the potential impact of climate change on biota is one of the impor-
tant tasks for quantitative modellers. Whereas detailed studies require large com-
plex models, a lot of information and powerful computers, many basic effects can
be studied with the help of rather simple models which take into account only a
few important factors.

At present one of the important problems is the impact of climate change on
the biosphere, and in particular on the distribution and interaction of biological
species. Observations show that during several past decades isotherms of year-
avelge temperatures have moved toward poMal¢olm and Makham 200Q
Parmesan and Yoh&003. While computer models for global warming vary
with respect to assumptions and outcomes, they commonly predict that in north-
ern Canada, Fennoscandinavia and Russia the speed of isotherm motion will be
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on the order of 100-1000 meters per yadalcolm and Makham 2000, which

is near or beyond the observed historical spread rates for species such as trees
(Clarket al., 1998. Such species may be unable to catch up with the isotherms
and thus it is reasonable to expect changes in the composition and structure of
northern biota.

One d the first steps in studying the consequences of global warming is to see
whateffects can arise in simple models describing growth, dispersal and competi-
tion of biological species. In this paper we use reaction-diffusion models to analyse
the effect of moving range boundaries on spatial competition. Such models have
been successfully applied to modelling spatially distributed populations and can be
used to predict the speed of species invasion, or the critical patch size needed for
persistence of a specie®Kubg, 1980 Shigesada and Kawasaki997).

We consider competition of two species and denote their population densities
by uj (x,t). It is assumed that the suitable habitat for both species is a moving
domain, inside of which species disperse, grow and compete, and outside of which
the species die at a given rate, with no reproduction or competition.

The equations are

Uyt = DilUixx + (r1 — a11Ug — ar1oUz) Uy, (1)

Upt = Doloyy + (2 — ar1Uy — apoUo)U> (2
onx;(t) < X < xp(t) and

Uyt = DiUixx — Kk1U1, (3

Uzt = Dalayx — koUp 4)

onx < X¢(t) andx > Xo(t). At the pointsx;(t) andx,(t) the densities;; and the
fluxes Djujy are assumed to be continuous. Hereare the diffusion coefficients,
ri are the intrinsic growth rates for the specigs,are the interspecies competition
coefficients, and; characterize the degree of outside environment hostility. For
simplicity we set the same diffusion coefficients within and outside the patch. We
use the natural boundary condition— 0 asx — +oo.

For this model we are interested in the problem of conditions for species coex-
istence. In the absence of diffusion, the conditign < a11, a1 < a7 iS given
by phase plane analysis of the Volterra ordinary differential equations, see e.g.,
Shgesada and Kawasakl997. Spatial dependence and habitat motion, as we
shall show, bring new features: (i) boundaries can work as additional sinks, which
can change the outcome of competition, see @ladrell et al. (1998 andFagan
et al. (1999; (ii) habitat motion also acts as an effective sink for populations; and
(i) spatial dependence creates new opportunities: species that cannot coexist at
one point in space can form spatially distinct colonies, each of them containing
mainly one of the species [see alkavin (1974)].
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One dassic approach to analysing competition is in terms of invasibibyr(et,
2002. Suppose that the patch is occupied by a single species. Will a second,
introduced species, survive and grow, or become extinct? This problem has been
considered by a number of authors, see &hgesada and Kawasaki997). We
consider this problem in the context of the spatial distribution of species in the
moving patch.

As far as weknow, this is the first attempt to analyse the influence of climate
change on interspecies competition within the framework of the motiedsifl ).
At the same time we must note that models with advection, which leads to the
effects close to patch motion have been used in ecological models for rivers, see
e.g., Spers and Gurney(2001). However, (i) the problem of interspecific com-
petition has not been thoroughly analysed in this context, and (ii) the speed of
advection in rivers is many orders of magnitude greater than speed of isotherms
due to climate change, hence the basic effects must be essentially different.

2. THE MODEL EQUATIONS: TRANSFORMATION TO STANDARD FORM

2.1. Habitat motion as advection of biota. When thedomain is fixed (say,

X1 = 0, X, = L) persistence of species in this model can be thought of as a
critical domain size problem with competitioRrdganet al., 1999. Here we con-
sider the case when the patch sia€t) — x1(t) = L is fixed, and the rate of the
movementof the patch[x(t), X»(t)] is constant, that ix; = X, = ¢. A change

of variablesx — x — ct allows us to analyse this as a problem on a fixed spatial
domain 0< x < L with advection. The speed of advectiortjandpositive values

of ¢ correspond to the motion from right to left. The model now is

Uyt = D1U1xx + CUyx + (r1 — 11Ug — arg2U2) Uy, (5)
Ugt = Daloyx + Cloy + (2 — 21Uy — apoUo)U> (6)
for 0 < x < L. Outsie the patch the equations are
U1 = D1U1yxx + CU1x — k1U1, (7)
Uzt = DaUayx + CUzx — k1Up, (8)

for x < 0 andx > L. At the patch edgesx(= 0 andx = L) u; and the fluxes
D;u;y are assumed to be continuous.

2.2. Nondimensionalization. The pioblem has 12 parameters: D2, 2r;,
4aj, ¢, L, and Z;. By rescalingx, t, u, u;, wecan exclude four of these leaving
6 free parameters for equations in the patch, and theq¢weahich ae used in the
equations outside the patch.
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Letx — XpX,t — tot, Uy — ugu;, then

toD1 Ctp
Uy = 7ulxx + X—le + (tor1 — aq1toUoils — argotoUooUz) Uy, 9
0 0
toD> Clp
Uy = 7u2xx + X—sz + (tor 2 — a21toUo1Us — a2otgUgoUo)Up. (10)
0 0
The doice of
1 D]_ r ri
to=—, Xo=,—, Uor = —, Upp = —, (11)
ry r 011 22
and denoting
C D, Iy L Oji Ki
¢ = , D===, r==, LU'=—, o, =", == 12
/Dir1 D; r Xo U a '
yields
U1t = Ugxx + CU1x + (1 — U1 — arqoU2) Uy, (13)
Ut = DUpxx + CUoy + (I — ap1U1 — U2)U> (14)
inside the patclix € [0, L]) and
U1t = Uixx + CU1x — k1U1, (15)
Uyt = DUpyx + Clpx — kU2 (16)

outside the patch, where the strokes have been omitted for notational simplicity.
For the remainder of this paper we shall focus on the case when the mortality rates
outside the patch for each species are identicak k, = «).

3. REDUCTION TO BOUNDED DOMAIN FOR STATIONARY SOLUTIONS

In this section we reduce the modéBf—(16) on an infinite domain to a related
problem with Robin’s boundary conditions on a bounded domain. We show that
steady-state solutions to the equations and the stability of these solutions is equiv-
alent on the original and reduced systems.

3.1. Stationary solutions: reduction to a bounded domain. We mnsider sta-
tionary solutions for the systeml®)—(16); that isu;; = 0. Then, following
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Ludwig et al. (1979, we can transform the problem on the unbounded domain to
a boundary value problem on the domad L]. Outsde the patch, a stationary
solution has the fornu; (x) ~ expkix),i = 1, 2, whereky, k, are roots of the
characteristic equations

k]2_+Ck1—K=0,
DK2 + ckp — k = 0.

There are two roots for each equation, positiye corresponding to the solution
u; for x < 0 andnegativek;, corresponding to the solutiam for x > L,

ki_—ci«/c2+4k ki_—ci«/c2+4D/< (17)
rtTm 2 2= 2D '

These roots satisfy the constraint thiaapproaches zero &s| — oco. Note,that
& * satisfies the first order equatiory, — kiiui = 0. This equation holds outside
the patch with corresponding” or k., and, due to the continuity of both; and
Uix, at thepointsx = 0 andx = L as well. Therefore, it is possible to consider
the stationary problem only inside the patch with the following Robin’s boundary
conditions

Uixx + CU1x + (1 — U1 — ag2Uz)uy =0, O<x<lL, (18)
Duoyy + CUpy + (I — ap1Ug — Uo)Up =0, O0<x <L, (29)
uix — ku =0, x=0,i=12, (20)
Uix —k u =0, x=L,i=12 (22)
The casex = oo (extreme hostility) corresponds to Dirichlet boundary condi-
tionsu; = 0 atx = 0, L. Note that the case of neutral conditions outside the patch

(x = 0) does not lead to Neumann boundary conditions urdes$) (nopoleward
shift in habitat due to climate change).

3.2. Equivalence of the models for unbounded and bounded domains for small
perturbations of stationary solutions. Let us introduce a new dynamical problem,
associated with the steady-state ob&-{(21):

Ugr = Ugxx + CU1x + (1 — U1 — a12U2) Uy, (22)
Ugt = DUaxx 4 CUax + (I — ar21U1 — U2)Uo, (23)
ux —ku =0,  x=0i=12 (24)

Uix — ki up =0, x=L,i=12 (25)
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Note, that nonstationary solutions d4)—(25) are not equivalent to those of
the original problem in unbounded domam)+(8). Nonetheless, this associated
system enables us to make conclusions about the dynamics of small perturbations
of stationary solutions of both systems.

THEOREM 3.1 (Stability). When at least one of « or |c| are positive, stationary
solutions of (22)—(25) and (5)—(8) are either both linearly stable or unstable.

Proof. For the sake of simplicity let us consider only the case- 0. The
case of nonzero advection speed has a similar proof with the help of the change
of variables. Stationary solutiong;(x), ugx(x) of both original and associated
problems coincide inside the patch, hence linearized equations feru; — ug;
also coincide.

(1) Suppose that the eigenvalue problem corresponding to the associated linearized
system

Vixx + 911(X)v1 + G12(X)v2 = Avy, O<x<lL
Duzxx + G21(X)v1 + G22(X)v2 = Avy, O<x<lL (26)
vix — ktv =0, x=0,i=12,
vix —kivi =0, x=L,i=12

wherekii are given by equatiorlL{), has its dominant eigenvalug, > 0. For the
unbounded domain the corresponding eigenvalue problem has the form

Vixx + 012(X)v1 + G12(X)v2 = Ay, O<x<lL,

Duaxx + 921(X)v1 + Go2(X)v2 = Avz, O<x<lL, (27)
Vixx — KU1 = AVq, X<0,x>0L,
Duvoyx — kU2 = Avq, X<0x>L.

Let us show that this problem has at least one positive eigenvalue by constructing
the corresponding eigenfunction.
Let us consider an auxiliary quasi-eigenvalue problem

Vixx + 011(X)v1 + G12(X)v2 = Avy, O<x<lL,
Duoyx + G21(X)v1 + G22(X)v2 = Avo, O<x<lL, (28)
Vixx — kv1 = vy, X <0,x>1L,

Dugxx — kva = lvy, X<0,Xx>1L,
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with | > —k. Repeating arguments fror8ection 3.1 this problem can be reduced
to an eigenvalue problem on the bounded domain. Introduqﬁqtg) =+Vk +1,
k() = £/ +1)/D, we get

Vixx + G11(X)v1 + G12(X)v2 = Avy, O<x<lL,
Duzxx + G21(X)v1 + G22(X)v2 = Avy, O<x<lL, (29)
vix — k't (v =0, x=0,i =12,
vx —k Oy =0, x=L,i=12

Herethe dominant eigenvalue = A(l) depends on. According toSmdler
(1994 andCartrell et al. (1998 A is a continuous and decreasing functiorjk;‘iﬂ,
and hence of. Considero (1) = A(l) — I, which is a decreasing function bf We
will show that there existslkg, 0 < Ig < Aa such thabt (Ig) = 0.

Forl = 0 we have systen®g), and thereforer (0) = Aa > 0. Forl = A5 we
haveo (Ap) = A(Ap) —Aa < A(0) —Aa = 0. Thuse (0) > 0 ando (L) < 0. Due
to continuity ofo there must exist an intermediate valgeO < Ig < A such that
0 =o0(g) = A(lg) — Ig. This means that fot = I (28) is identical to 7), and
hence 27) has at least one positive eigenvalue= |g, and theefore its dominant
eigenvalue is also positive.

(2) Suppose that2f) hasits dominant eigenvalug = Ag > 0. Then forl = Ag
(29) has at least one positive eigenvalue- A g, andhence its dominant eigenvalue
A(l) must be positive too. Now let us decredse (29) froml = Ag tol = 0. Since
A(l) is a continuously decreasing functidty, = A(0) > A(lg) > Ag > 0. Atl =0
(29) coincides with £6), and hence the latter has a positive dominant eigenvalue.

(3) In the caséc| > 0 equations 18) and (L9) have anonself-adjoint operator, and
we cannot directly apply the proof above. Nonetheless, it is possible to use the
change of variables;(x,t) = 01(x, t) exp(—5), Ua(X, 1) = O2(X, t) exp(—35)
(see the details in the next section), which makes the operator self-adjoint and
hence the technique of the proof becomes applicable.

Therefore both systems26) and @7) are simltaneously unstable, and hence
simultaneously stable too.[]

We can conclude, that the associated syst@®) €an be used for testing the
problem for invasibility in 27): if the species can invade the patch in the original
model, the same is true for the associated model and vice-versa.

4, EXCLUSION OF ADVECTION, INHOMOGENEOUS HABITAT MODEL,
AND CHARACTERISTIC SCALES

In this section we consider characteristic spatial and temporal scales for the
model, nondimensionalize the model, and deduce the habitat movement speed that
yields species extinction.
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4.1. Exclusion of advection and inhomogeneous habitat model. The adection
term can be excluded froml8)—(16) by change of variables:

_ CX _ CX
ur(x, t) = g (X, t) exp(—;) , Uz(X, t) = Ga(X, t) exp(—ﬁ) . (30)
Substituting this into {3)—(16) leads to the spatially inhomogeneous system
Uge = Ugxx + (Fl —e 70 — O‘lze_Z%CIZ) dg, (31)
Upt = DOy + (Fz — 05216_%( Gy — e‘z% l]z) - (32)

within the patch and

C2
Uyt = Ogxx — (K + Z) ag, (33)
C2
':IZt = DCIZXX — (K + E) 02 (34)

c2 c \?
fli=1— —=1—( — 35
n=1-% <C1*> (35)
c2 c \?
=r(1-—)=r{1-(=) ).
fo=r ( 4Dr> r ( <c2*> ) (36)
Here
Cl = 2, Co. = 24/ Dr (37)

are the well known asymptotic rate of population spread for the single-species mod-
els [equations X3) and (4) with ¢ = a2 = ap; = 0 on the infiite domain
—00 < X < oo (Aronson and Weinberget975)].

4.2. Sufficient speed for species extinction. This change of variables allows us
to draw two important conclusions. Let us turn to the equations without the advec-
tion terms 81) and G2).

PrRoPOSITION 4.1. For |c| > ¢, theith species cannot survive.

It can be easily seen that in this ca$e< 0, and the equation fan; has no
sources, only sinks, and henag mustapproach zeroSmdler, 1994. In other
words, theith species will go extinct if the habitat movement speed exceeds the
species asymptotic spread rate in the absence of competition.
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Another way to characterize the ability of a single species to survive is through its
critical patch size., (Ludwiget al., 1979 Okubg, 198Q Shigesada and Kawasaki
1997. The value ofL, depends on the boundary conditions. In the case of the
Dirichlet boundary conditiond = oo for our model (3) and (L4) with ¢ = a1, =
a1 = 0] the critical patch sizes are

/D
L1>‘< =T, Lz* =T I'_ (38)

In the case of general valuesthe valies ofL ., are smaller, but are still propor-
tional to 39).

This is interpreted as the smallest possible size of a patch that will allow for
persistence of a single species. Asncreases through, the trivial equilibrium
solutionu = 0 becomes unstable and an introduced population will grow. In
the presence of competition and patch motiom@nzero), we define the critical
patch sized; as the smallest values affor which species will grow, under the
assumption that both species 1 and 2 are rare, that is nonlinear ter® an¢l
(14) are ngligible.

PROPOSITION 4.2. Wth the increase of |c| the critical patch size for ith species
increases and goes to infinity as ¢ approaches ...

The dze of critical patch is obtained from the linear stability of zero solution
G1(X) = Ua(X) = 0. As shown inSection 3 analysis of the stability of this zero
solution can be facilitated by transforming1j—(34) to a poblem on the finite
domain: equations3() and 32) and boundary conditions

L‘]IX_ |+l]| =0’ X=Oa
Gix —k G =0 x=L,
where
- V2 + 4 - v/c2+4D
k= :I:%, k= :I:%. (39)

Here, theterms with explicit dependence onin (31) and B2) are nonlinear
terms of higher order which do not affect the linear stability. Each linearized equa-
tion decouples from the other. For the Dirichlet problem (the egase oo) the
boundary conditions do not depend grhence the estimate for the critical length
has the same forn88) with f; instead of;. Therefore, the critical patch size is

P L (40)

i ,71_ (i)z’

which gproaches infinity ag| approaches;..
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When the hostility of the exteriat is finite, the single species critical domain

lengths become
~ Lis 2 ( ki )
Liy = —————— arctan[ —= | .

Onecan see that far — oo we obtain @0).

Below we #all use the valueg, regardless of the boundary conditions, as a
parameter characterizing properties of specids sud a ontext it may be prefer-
able to use the more general tercharacteristic length’ for speciesi instead of
‘critical domain size'.

5. NUMERICAL EXPERIMENTS: BASIC EFFECTS OBSERVED

5.1. Singlespeciesat moving patch: extinction at critical speed. Let us suppose
that the second species is absentugse= 0. Then equation13) for the gationary
solution takes the form

Uxx + CUyx + (1 —wu =0, (42)

uy — k¥u =0, x=0,L,
or
2 CX
Gy + (1— - e‘?ﬂ) =0, (42)
{y — kii=0, Xx=0,L.

Herethe index foru was omitted for brevity. For the cage= 0 the detailed
analysis is presented e.g. lindwiget al. (1979, including an analytically derived
solution. For the case # 0 the equation cannot be solved analytically. Only the
bounds for the solution can be obtained analytically Gsppendiy. The examples
of numerically calculated profiles far > 0 are shown irFig. 1 As c approaches
the speed of front propagatian = 2, the profile beconeemore ad moreasym-
metric, then at the right boundary there appears a domain wiaitsost turns to
zero. For greatet valuesthis domain expands, and finally at= 2 only the zero
solution exists.

5.2. Two species at moving patch: preliminary analysis and choice of para-
meters.

5.2.1. TheVolterra competition model. It is well known that important prelim-
inary information about species competition and invasibility can be obtained from
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(a)k =0.1

0.0 10.0 20.0 30.0 40.0 50.0

(b)k =1.0

1.0
S 05
0.0+

0.0 10.0 20.0 30.0 40.0 50.0

0.0 10.0 20.0 30.0 40.0 50.0

T
0.0 10.0 20.0 30.0

(e)r =108

1.0

0.0+ T T T T 1

Figure 1. Stationary profiles for a single species for variowendc. In parels (a)—(d)
c=0,010.2,...,1.8. Panel (e) shows shrinking of the profileaapproaches 2.
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Table 1 Outcomes of competition in Volterra moded ).

Name uq, U Outcome ©nditions
A up — 0,up > ug2 >0 2 wins a1 <, /oo <r
B U; — Upy > 0,up — ugo > 0 Cokistence w21 <r,1/aqo >t
C u; —> Ugy>0,up — 0 1 wins a1 >, 1/a1p >
D A or C, depending om; (0) lor2wins ao1>r,1/agp<r

the model for spatially uniform species distribution, i.e., from equatidBy gnd
(14) without terms containing spatial derivatives

U; = (1—up —aUz)uy,
(43)
Uy = (r — az1Up — Up)Uy.

This is the Volterra competition model, and depending on the coefficierttse
asymptotic behaviour can belong to one of the four kinds, listetainle 1 We
will focus on the case where the success of invasion of a species depends upon the
spatial interaction terms. Specifically, we consider case C, where the nonspatial
model denies the possibility of species coexistence, and investigate the possibility
of invasion by species 2 in a spatial context.

5.2.2. Thesimplest accounting for the speed: the Volterra mode with F instead
of r. Inthe case of a single equation with advection we have shown that the effect
of advection speed can be described by adjusting the species growth rate: using
f instead ofr. It is natual to analyse, what will happen in the Volterra model
after similar substitution. Though nonrigorous, such analysis may be helpful for
understanding the effects observed in numerical experiments.

Let us @nsider the following system

Uy = (f1 — Up — a1oU2)Uy,
(44)
Uy = (f2 — U1 — Up)Up.

Assuming 0< ¢ < min{cy, Cy}, the outcome of competition iM4) depends
now on the ratio

c? c? 2
R(C) = %0 _ 1T a0r _ 1-(c/c)
1-¢ 1-¢ 1-(c/cu.)?

(45)

which pays the role ofr in (43) and inTable 1 As we dangec, R may pass
through the valuea,; and Y a5, which results in changing the outcome of com-
petition. For example, far = 0 we may have case A frorfiable 1 then case B, and
eventually case C. In other words, we may expgoted-induced mode switching,
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and consequently switches in competitive dominance induced by different rates of
climatic change.
Actual sequence of competition modes depends on three factors:

(1) The valueR(0) = r. In the meationed example switching from A to B and
C means decreasing ®&. To olserve the whole sequence we must have big
enoughr. On theother hand, ifr is small there is always case C for any
speedc and no mode switching.

(2) The relation betweea, andc,,. Forci, > Cp., R(C) is a decreasing func-
tion while for ¢y, < Cy, itis an increasing one.

(3) The relation betweem,; and Ya1,. This deermines which of the inequali-
ties in Table 1changes first, and hence the details of the mode switching.

Therefore, assuming big or small enough to observe the whole sequence of
modes, we come to the following four scenarios of mode switching, which we
shall denote S1 to S4.

Sl Cie > Cp,ap1 > 1/agp, r corresponds to case A. For€ ¢ < Cy, R(C)
decreases fromto 0 giving the sequence of competition modes-AD —
Cor'2 —»1/2 -1,

S2; Cie < Cpy, 21 > 1/agp, r corresponds to case C. For ¢ < g, R(C)
increases from to oo through C— D — Aor‘l’ —'1/2" —2".

S3: C1x > Cpy, 021 < 1/agp, ' corresponds to case A. For8 ¢ < ¢, R(C)
decreases fromto 0 through A~ B — Cor 2’ —»'1 + 2" —»'1".

A C. < Cp, 01 < 1/agp, t corresponds to case C. For€9 ¢ < ¢y, R(C)
increases from to co through C— B — Aor‘'l’ —'1 42" —2'.

Since he model 44) is only an approximation, these scenarios are not by any
means rigorous predictions, they may be used only as a guidance helping to under-
stand numerical data, presented below.

5.3. Numerical data: comparison with conjectures. Numerical experiments

were peformed for the system2@)—(25). The parameters andq;; of the equa-

tions we have chosen are such that in the Volterra mat®lthere is case C: the
second species goes extinct and the first one persists for any initial data where the
second species is nonzero. This choice allows us to detect new effects that can be
related with the patch motion and spatial distribution.

During the calculations we set up nonzero initial data for both species, allowed
all transitions to decay and then analysed the resulting stationary profiles. This
procedure has been performed fofrom 0 to maxcy., C.}. Some esults are
presented irFigs. 24. The vdues ofu; (x) for everyc are shown by the shades
of grey: from O (white) to maximal; max (black).

We cannot physically present all the results, instead we shall describe the main
effects observed. We focus on what seems to be the most important observation,
the role of the ratid_,, /L1, and the four scenarios of the previous section.
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Figure 2. Dependence of stationary profilggx) on the patch speerl Grey shde shows

the valie ofu from 0 (white) toumax (black, the value shown above the plot). Shown
are examples of good agreement with predictions of S1-S4 scenarios. Note that in all
casesLy, /L1, > 1. Paraetersk = 1,L = 2000, (a)D = 5.00,r = 140,12 =

0.30, 21 = 1.50, cp/c1 = 2.65, Lo, /L1, = 1.89, Predicted scenario: > 1+ 2 — 2;

(b) D = 250,r = 2.00,¢12 = 0.10,ap1 = 3.00,co/cq = 2.24, Lo, /L1, = 1.12,
Scenario: 1—- 1+2 — 2; (c)D = 1.00,r = 3.50, a12 = 0.10, w1 = 5.00,¢cp/c1 =

1.87, Lo, /L1, = 053, Scenario: 1> 1+2 — 2; (d)D = 1.30,r = 130,012 =

0.70, wp1 = 1.50, cp/cq = 1.30, Lo, /L1, = 1.00, Scenario: > 1/2 — 2.

e ForlL,,./Li, > 1 usually the numerical results correspond to the predictions
of the scenarios S1-SEig. 2

e Scenarios S1, S2 correspond to abrupt replacement of the species; scenarios
S3 A gve oft replacement—there is a rangem¥aluesfor which species
coexist.

e For L, /L1, < 1 usually the outcome of the experiments was essentially
different from those predictions;igs. 3and4.
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Figure 3. Examples of bad agreement with pregticcenarios—in all cases predicted is
extinction of species 2 and existenof species 1 for the shown range ofvalues. hstead

the gecies 2 sometimes appear at the boundary [Panels (a)—(c)] and in some cases even
out-competes species 1 and occupies the whole patch [Panels (c) and (d)]. Note that in
all cased 5, /L1, < 1. Paranetersc = 1, L = 20.00, (2)D = 0.14,r = 1.30, 12 =

0.70,
0.70,
0.10,

a1 = 1.50,¢cp/c1 =
a1 = 1.50,c0/c1 =
a1 = 7.00,c0/Cc1 =

0.43 Lo, /L1x
0.58, Lo, /L 14
1.00, Loy /L1

0.33; (b)D = 0.26,r = 1.30,a12 =
0.45; (c)D = 0.20,r = 5.00, a7 =
0.20; (d)D = 0.70,r = 1.30,a5p =

0.70, o217 = 1.50, cp/c1 = 0.95, Lo, /L1, = 0.73.

There aretwo basic effects observed mainly far,/Li, < 1. (i) Species
2 inskead of going extinct, occupies part of the patch near one or both edges,
Figs. 3(a)-3(c) and4(d). Most pronounced this effect is for nonzezpthough
sometimes it can be found far = 0. (ii) Species 2 not only survives near the
boundary, but occupies the whole domain and replaces spediggsl,3(d) and
4(a)-4(c). We observed this effect only for nonzero patch speed.
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Figure 4. Examples of bad agreement with pregticcenarios—in all cases predicted is
extinction of species 2 and existenof species 1 for the shown range ofvalues. hstead

the gecies 2 sometimes appear at the boundary (all panels) and in some cases even out-
competes species 1 and occupies the whole patch [Panels (b) and (c)]. Note that in all
casesL,, /L1, < 1. Parmetersc = 106, L = 20.00, (a)D = 0.20,r = 5.00, a1 =

0.10, @p1 = 7.00,cp/c; = 1.00, Lo, /L1, = 0.20; (b) D = 0.26,r = 1.30, 12
0.70, @1 = 1.50,cp/cqy = 058 Lo,/L1, = 0.45; (c)D = 0.30,r = 1.30, a1 =
0.70, @31 = 1.50,co/c; = 0.62 Lo, /L1, = 048; (d)D = 0.50,r = 1.30, 12 =
0.50, @27 = 1.50, cp/c; = 0.81, Lo, /L1, = 0.62.

6. INVASION ANALYSISAND BASIC EFFECTS

Let us suppose that species 1 has established and the corresponding stationary
profileu; = u(x) is formed. After that we introduce a small amount of the second
species. Will it go extinct or survive and grow? What will be the two-species
stationary profile?
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6.1. Theproblem of invasion. The invasion problem is well known, and is con-
sidered, for example, iBhgesada and Kawasakl997. To solve it, one must
evaluate the stability of the solutiom = u(x), u, = 0 for the ystem @2)—(25).
Substitutions ofsu,e* = u; — u(x), su.e* = uy, |8u;| < 1 lead to the linearized
problem

Déuoxx + CoU2y + (I — apaU)dU = Ad Uy (46)
Sug — ki su, =0, X =0,
Suy — k5 8up =0, Xx=L.

Applying the change of variablési; = exp(—35)v transforms this system to

Duyx + (r - % — oc21u> v=Av (47)
uX—R;v:o, x =0,
vX—R5v=0, x=1L,
whereu(x) is the solution of
Uyx + CUy + (1 —wu=0.
ux — kju=0, X =0,
uy —kju=0, x=1L.

If the greatest eigenvalue is positive then invasion by the second species is
possible, if it is negative, the second species cannot invade.

Similarly, the conditions for the invasion of the first species when the second one
has established, are determined by another eigenvalue problem

2
Uyx + <l -7z a12u> V=Av (48)

UX—RI_UIO, x =0,

vx—lz{v=0, X =L.
Duxx 4+ Cux + (r —uwyu=0

ux — kju=0, X =0,

uy —k;u=0, Xx=1L.

Numerical calculations show that the invasibility essentially depends on the ratio
of characteristic lengths of the species,/L1,. The inmportance of this ratio is
shown by the following theorems.
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6.2. Noninvasion and coexistence theorems for the case with a stationary
hogtile boundary (¢ = 0, Kk — 00).

6.2.1. Equationsin stationary case. Thissection can be considered as a sequel
or complementary to the analysis @Gartrell et al. (1998. We shall consider the
same questions—which species wins the competition, which is going to be extinct,
and which can invade the habitat occupied by the other? However we shall primar-
ily analyse how the situation depends Brandr rather than boundary conditions.

For the sake of simplicity we shall consider the system with0 and a ompletely
hostile environment

Ut = Uixx + (1 — Uy — agplp)Uy,

Uzt = DUgux + (I — a21Us — Up) Uz, (49)

Uy =0,x=0,L.
The systems47) and @8) now takethe form

Duyx + (r — a21up)v = Av,
Uiy + (1 —upug =0, (50)

u,v=0x=0,L,
and

Vxx + (1 — a12U2)v = Av,
Duoyyx + (r — u)uz =0, (51)

U, v=0x=0,L.

In the proofs of the theorems we shall use the following theorems Sordler
(1994 andCartrell et al. (1998:

(T1) Upper and lower solutions. Letbe a solution oDuy, + F(u,x) = 0,x €
Q, Ulpe = h(X). If v satisfy Duvyx + F (v, X) < 0, v]3q > h(X), thenv > uin Q
and is called an upper solution.udfsatisfy Dvyx + F (v, X) > 0, v|3o < h(X), then
v < uin Q and is called a lower solution. This is the consequence of maximum
principle and comparison theorems for elliptic and parabolic differential equations.

(T2) The dominant eigenvalugax Of a problemDuy, — k(X)v = Av, X € [0, L],
vlp,. = 0 is a ontinuous and decreasing function lafx), that is ifk; > kp,

Amax1 < Amax2:
The first esult is given by the following theorem.
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6.2.2. Noninvasion theorem.

THEOREM 6.1 (Noninvasion of species with longer characteristic length in sta-
tionary environment Let c = 0, x = oo (Dirichlet boundary conditions). Con-
sider the case Cin the Volterra model (1st specieswins), and Lo, > L1,. Suppose

that species 1 has established and reached its stationary distribution u;(x), then
species 2 cannot invade.

Proof. Let us consider stationary distributions of both species in the absence of
the otheru; andu,. They sé#éisfy the equations

Uixx + (1 —ug)ug =0, (52)
Dugx + (r — up)up =0, (53)

with the boundary conditions; = 0,x = O,L. Note hat 0 < u; < 1 for
0 < X < L and hencél — uj)u; > 0. Let us show thatu; > u, with the help of
the theorem (T1). Substitutingy, into the second equation we have

Druyy + (r —rupruy; =(r —rupru; — Dr(1 —uqu,

D
= —r? (T — 1) (1—upuy <0 (54)
provided
D Lo\ 2
r_:<L:> > 1. (55)

By assumption this condition holds, herrag, is the upper solution fou, and
henceru; > us,.
Now let usconsider two eigenvalue problems

Dugx + (I — Uz)v = v, (56)
Duxx + (I — az21U1)v = Av, (57)
v(0) =v(L) =0, x=0,L.

We are inérested in the dominant eigenvaluggy andumax and the correspond-
ing eigenvectors. Since,; > r (case C)upiU; > Uy and henceimax < max
(Smdler, 1994 Cartrell et al., 1998. In casew = 0 weknow one of the solutions
of (56): if we substitutev = uj it turns into 62) for which u, is a solution. This
means thaty = u, is an eigenfunction corresponding to the eigenvalue- O.
Sinceu, > 0, this is the dominant eigenvalugmax = 0, and we can conclude
thatAmax < 0. Therefore the population of the second species cannot grow in the

presence of the established population of the first one.
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NoTE 1. The theorem can be extended to the case of more general boundary
conditions if the ‘hostility parameter® outside the patch are proportional to the
diffusion coefficients, that ig1/ko» = D1/D,. In the casec = 0 this implies

ki = ko, that isup; andug; satisfy the same boundary conditions. This allows to
extend the proof to the case of finikg/D;. For the samex for both species the
proof encounters problems at the boundary: to ensuraughas an upper solution

we need to impose conditio® < 1 (to makek, > k;), and this restricts applica-
bility of the theorem to the not very interesting case of smalluch hatD/r is

still greater than 1.

NOTE 2. If parameters correspond to the casef the Volterra model (second
species wins) andL,, < L. then, after interchanging the species<i 2 the
theorem states that the first species cannot invade if there exists an established
population of the second one.

6.2.3. Coexistencetheorem. Thenoninvasion theorem is based upon the obser-
vation that under certain conditions the second species cannot grow in the pres-
ence of the established population of the first one. Now suppose there is another
situation: both species can grow in the presence of the established population
of the other, in other words, both 1-species solutiops= u;(x),u, = 0 and
u; = 0, u; = uy(x) are unstable. Then we can conclude that the steady state of the
system must be a coexistence of both species. This is the idea of the coexistence
theorem.

Recall that we are again considering parameter values corresponding to the
case Cixiof < 1,ap1 > r. Here, invasibility of the first species depends on
the principal eigenvalue of the proble®lj. It can be shown that, < r (Smdler,

1999, thereforex;,U,; < agor < 1. Let us consider the eigenvalue problem

Uxx + (1 — a1of)v = po, v(0) =v(L) =0. (58)

According to (T2) Amax > Umax therdore if umax > 0, Amax iS also positive. The
value of umax can be found explicitly, this gives the condition

7T\ 2
Mmax = 1 — agaf — (E) >0
or
L>— (59)
1- oqof

This gives he proof for the following lemma for the invasion of the second
species by the first species.

LEMMA 6.1. Consider the case Cinthe Volterramodel. If (59) holds, species 1
can grow in the presence of species 2.
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Invasion of the second species into the first species depends on the principal
eigenvalue of the problenb(). Here we cannot just use the estimate< 1 since
it always gives a negative estimate #gfax.

In the Appendixit is shown thatu;(x) < ua(X) (A.2), where, forc = 0 and
K=o0

cosh(x — %)

(x—L) —X) — 1
(& +e7) cosh(%)

ua(X) =1-

1+et

Substitution ofu, into (50) gives a Mathieu equation, for which there are no
good estimates of. For this reason we shall use another estimate which brings
more analytical possibilities. Note thap is concave upwards and hence lies below
its tangent, in particular the tangentat= 0, hence

cosh(Z5:t)  sinh(s)
up(X) < ua(x) =1- S =X = < X (60)
cosh(s) cosh(s)
Let us @nsider the eigenvalue problem
Duxx + (I — a21X)v = v, (61)

v(0)=v(L) =0.

According to 60) and (T2), Amax > Mmax- If, for certain D, r, anday, this
problem hasumax = 0, thenimax > 0 and thesecond species can invade. It is
convenient to fixD anday, and varyr. The value ofumax = 0 corresponds to
somer = rq. To findrg we need to find conditions under which there is a positive
solution of 1) with .« = 0. Let us use the change of variable

X=(—) z+—,
21 021

to transform 61) with . = 0 to

VUzz — v = 0, (62)
v(z1) = v(z2) =0, (63)
r 1/3
L= ——F Zy = (%) L + z. (64)

2/3 ’
o2*D1/3

A general solution to this equation can be expressed through the Airy functions,
Ai(2) and Biz) (Abramawitz and Stegunl1965, v(z) = aAi(z) — bBi(z). For
Zz < 0 both of these functions behave like trigonometric ones; in particular they
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Figure 6. For everyy, > 0 there isa valie ofz; € (—za, —zp) satisfyingI'(z1) = I'(22)

wherel'(z) = Bi(z)/Ai(z). Thenumber—z, satisfiesI'(—z3) = I'(0) = +/3 and the
number—zy is a verttal asymptote fof® (Ai(—zp) = 0). Their values are-zg ~ —2.67

and—z, ~ —2.34.

have an infinite number of zeros amlli(z)| < 1, |Bi(2)] < 1 (Fig. 5. For
z > 0 they behave like exponential functions, and Zdarge there are asymptotic
formulas

1 1
2 /mz1/4 Jr 4
We consider case C in the Volterra model (1st species wins and hence

az1, a1of < 1) and assume that both species can survive in the absence of the
other (the domain length exceedg, = = andL,, = w+/D/r). Thus

2= () Lra= () (t-2) = (B) wa-v-0 @9

Ai(z) ~ e’, Bi(z) ~ e, ¢ =272

The soltion to ©2) and 63) satisfies
[(zy)=T(zn)=A (66)

whereI'(z) = Bi(z)/Ai(z) and A = a/b constant. It is straightforward to show
that for eachz, > 0 there exists a critical value,. of z; € (—z,, —2z,) which
satisfies §6), wherez, ~ 2.67 andz, ~ 2.34 (Fig. 6). This gives a critical growth
rate for the second species which satisfiesz; = z;. SO when

I =re = zic05,°DY3 (67)
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umax = 0 andhencernax > 0 and the second species can invade. As can be seen
from Fig. 6, z;¢ is a decreasing function @ and hence, usings@) and 67) we
observe that. is a decreasing function of the domain slze

For equation §1) we olserve thafu is an increasing function af. Herce the
second species can invade for any

r>r,=2z02°DY3,  z,=267 (68)
21

2
SubstitutingD = (t_i) r, this relation can be rewritten as

Lo\ 2
r? > Zg“%l( *>
L
1x

L r
2 <732 7,32~ 0.22, ooy > T, o <1, (69)
L1« a1

This proves the seand lemma.

or

LEMMA 6.2. Consider the case C in the Volterra model and assume L > max
{7, m/D/r}. 1f (69) holds, species 2 can grow in the presence of species 1.

Combinng both lemmas, we obtain

THEOREM 6.2 (Coexigencg. Let c = 0, k = oo. Consider the case C in the
\olterra model. If

"
<0.22—
L 1. o1

«/1—a12r’ r

both species can coexist in the domain.

D Lo
L>max{Ln —}, 2

NoTE 1. The apgarance of the Airy functions suggests the form of coexistence,
Fig. 5 Near the boundary Az) looks qualitatively similar to th&e™ function—

it goes to zero at the boundary and in the centre of the domain. Therefore the
species which is to be extinct according to the Volterra model instead settles near
the boundary in the layer of sizeL.,, where Aiz) is essentially nonzero, while

the other species occupies the rest of the patch. Examples of the described coexis-
tence are shown iRig. 7.

NOTE 2. Due to the symmetrpf the problem, sufficient conditions for coexis-
tence can be obtained for case A of the Volterra ma@dg] < r, a1of > 1) in the
same way.

6.3. Biological view of edge effects: habitat inhomogeneity as a new opportu-

nity for species. How biologically important is spatial distribution? The simplest
generalization of43) with accounting for spatial inhomogeneity is a compartment
model, where there are several habitats with spatially uniform species distribution,
and there is a flow from one habitat into another proportional to the difference in
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Figure 7. Examples of boundary coexistence fgr, < L4,. Sdid line—species 1,
dashed—species 2.

individual densities. This model has been analysed [e.g.einn (1974], and

the main conclusion was that the species that cannot share the same homogeneous
habitat can use the separation in space: they cannot coexist in the same compart-
ment, but can occupy different neighbouring ones.

The mmpartmental approach implies spatial inhomogeneity of the habitat, some
sort of patchiness, and the patch boundaries cannot be set arbitrarily, they should
reflect changes in permeability or local carrying capacity. In other words, inho-
mogeneity of habitat creates opportunities for species coexistence and invasion.
This idea has been stressed in a number of publications [aganet al. (1999,
Shgesada and Kawasaki997), Cartrell et al. (1998]. It has been shown that
conditions at the habitat boundary can change and even reverse the outcome of
competition compared to the prediction of the homogeneous model.

We would like to stress one feature of habitat edges more cleanlyer certain
conditions the habitat edge serves to help the invading species. Theorigin of the
effect can be explained in rather simple terms as follows. As we have mentioned,
each species has a characteristic lerigth Besides showing the minimal patch
size where the species can exist, it also characterizes the size of the area where the
species distribution ‘feels’ the presence of the edge. If two species have different
characteristic lengths, sal,;. > L., and the hbitat size is big compared to
Li., then there is a domain where the population of species 1 is disturbed by the
edge while that of species 2 almost does not feel it. If the ratio of intrinsic growth
ratesr = r,/ry is big enough, then species 2 has a good chance to survive in this
domain. Instead of extinction species 2 retreats to a ring surrounding the habitat
of species 1. If on the other hand, < L,., then spatial inhomogeneity is not
of any help for species 2, and the outcome of competition can be predicted by the
Volterra model.

6.4. Edge effects and competition in the general case ¢ # 0, ¥k < oo. Boundary
coexistence and replacement front reversal.

6.4.1. Boundary coexistence. In general case whem # 0 andx < oo the
theoretical analysis becomes much harder. Itis possible to develop an approximate
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analysis for the invasion of the second species assuming the othei>on® be
established. Like in the previous section it is possible to approximatenear the
boundary by a linear function(x) ~ ugg + Ug1X, then to get theigenvalue prob-

lem with the solutions, which again can be expressed through the Airy functions.
The esimates forug; from above and below can be obtained (8g@pendiy, but

they are not accurate enough to give practically useful results. For this reason we
shall only make some remarks.

As with chemostat flow $mith and Waltman1995, for the moving patch there
is the effect of ‘washing out’ the species, which changes the shape of the profile for
the established species near the bound@iy. (1). At the in-flow boundary (right
for ¢ > 0, left for c < 0) the profileu(x) becomes less steep and slowly retreats as
|c| increases. This may enhance the opportunity for the second species to invade.
At the out-flow boundary the profile ef(x) becomes more steep, and so invasion
becomes harder.

On the @her hand, the invading species also suffers from the washing out effects,
which may preent invasion. So we have a combination of a number of different
factors, and in different cases they can produce different patterngjigee2-4.

The only general result is that the quotielns, /L1, remains an important classi-
fying feature: we observed boundary coexistencecfer 0 only when it was less
then 1, even if in the case= 0 there wee no coexistence.

However, forc > 0 numerics showed one more effect, which has no analogue in
the casec = 0 — replacement of the dominant species, sometimes with another
replacement at greater speed.

6.4.2. Invasionfrontreversal. Letus consider the following problem. Suppose
that in the infinite homogeneous domain there is a barrier, and on the left of it there
is an established population of species 1, while on the right—that of species 2. Let
there be no advection, and the species parameters correspond to the case C of the
Volterra model (a1, < 1, a1 > r, pecies 1 wins in the competition). At some
moment the barrier between species disappears, and after some relatively short
transition time a wave of species replacement will form. Species 1 propagates to
the right and replaces species 2, while the latter retreats. This problem has been
thoroughly studied ih.ewis et al. (2002, and it has been shown that if parameters
of the model satisfy two inequalities,

D <2, o101 — 1 < (r -1 a12)(2 — D), (70)

then the speed of the invasion front is equal to

Cg = C]_*\/l —lapp = 2\/1 —lroqo. (71)

If the inequalities are not satisfied, the front speed can be greater than this value.
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We now retirn back to the model with advection. If the speed of advection
C < Cf, in the mwing system we shall observe the front moving in the same
direction with speed@r; = ¢ — c. But if ¢ > cf, in the mwing system we shall
see a qualitatively different situation: the front moving on the left, that is species 2
becomes the winner in the competition!

If the domain is finite, but long enough, this effect can be observed in numerical
experiments, when appropriate initial data are set. Note that in this case the prob-
lem is not isotropic: if the population of species 2 has been created at the in-flow
boundary (right forc > 0), then species 2 can successfully propagate to the left
and make species 1 extinélig. 8 If on the other hand the population of species 2
is created at the out-flow end, it will quickly become extinct itsglg. 9.

Now suppose that species 2 can grow near the boundary up to big enough values.
Then the initial conditions for the propagating front may be satisfied, and hence
instead of quiet coexistence near the boundary species 2 may become dominant
and take over the whole habitat.

In numerical calculations we observed this effect a number of times. Examples
can be seen ifrigs. 3and4. Usually this occurs for the value dof close to the
estimate 71), which suggests that the explanation for the effect is correct.

The profiles for sgle speciesKig. 1) show hat asc grows, the right (in-flow)
edge of the profile becomes less and less steep, which makes invasion simpler.
Therefore the possibility of successful invasion should be different for in-flow and
out-flow edges.

Numerical experiments confirm this assumption and show the resonant character
of such an invasiorkigs. 8and9. A small perturbation at the in-flow edge grows
and occupies all the domain, while the pre-existing species becomes extinct. At the
same time a much bigger perturbation at the other edge quickly dies out.

7. SUMMARY AND CONCLUSIONS

7.1. Mathematical conclusions. This pger contains a number of rigorous
results: (i) proof of equivalence of stationary solutions stability for the problem
in unbounded domains and the corresponding boundary value problem; (ii) the
noninvasion and coexistence theorems; (iii) the estimates for stationary solutions
presented in th&ppendix The first esult gives an efficient instrument for numer-
ical studies of stationary solutions and invasibility. The others may be useful for
theoretical analysis of invasion problems.

7.2. Ecological conclusions. The nodel described in this paper predicts some
new effects:

1. Habitat motion decreases effective growth rates and increases critical length
scales for species persistence.
2. Coexistence through edge effects becomes more typicahaseases.
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Figure 8. Invasion of a very small amount of the species 2 (dashed line) at the propagating
(in-flow) boundary leads first to boundary coexistence, then turns into a moving front and
then replacement of the dominant species 1 (solid line). Parameters®, D = 0.7,r =

13, 012=07,021 =15 L =20c=1.

3. Habitat motion may result in reversal of the invasion process: weaker invad-
ers may become successful if introduced at the in-flow boundary.

From our point of view the most interesting ecological effect described in our
work is boundary coexistence. Patch motion enhances it and makes it a primary
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Figure 9. Resonant character of the speed-induced invasion. Compared to the previous
figure, much bigger initial invasion of the species 2 at the other edge dies out very quickly
to zero.

mechanism for invasion of new species. We would like to note that we present
rather simple criteria, when one can expect that the boundary coexistence may take
place.

7.3. Applicationsto global change. According to the literature, now the average
speed of habitats motion is abauts 600 nyyear Parmesan and Yoh2003. On
the other hand it is known that for some spedigs- 1-3 kiryyear. Therefore we
may exgect:

1. Extinction of species with small dispersal spegdsmall Dr) and big criti-
cal domain size (bido/r).
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2. Invasion of new species, especially at the poleward habitat edges.
3. Replacement of some species by previously unsuccessful competitors if

isotherm speed approachgs

7.4. Conceptually related questions. There areconceptually related questions

that are interesting from both biological and mathematical perspectives. For exam-
ple, when species are in alpine habitats, climate change can mean both upwards
shifts in habitat zones and shrinkage and fragmentation of those zones because
there is less habitat at higher elevations. Although this could be addressed in
the reaction-diffusion framework presented here, it would require complex spatio-
temporal shifts in the domain boundaries—a nontrivial problem.

Whereas this paper has focused on two species interacting through Lotka—
Volterra competition, competitive interactions are undoubtedly more complex, and
may involve a arge number of species. The effect of climate change on a large
number of species with different dispersal and competitive abilities may result in
new local mixes of species, which then would have differential effects on any
given competitor. Mathematical analysis of this situation would be an impor-
tant step towards extending the pairwise competition results of this paper to real
ecosystems.
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APPENDIX: ESTIMATES FOR THE SOLUTION OF (42) AND BOUNDS FOR
THE COEFFICIENTS upg1 AND up;

We shall apply the method of upper and lower solution 4)( see statement
(T1) in Section 6.2.1 It gives a rather simple criterion for obtaining upper and
lower bounds for the solution without actually solving the equation.

A.l: Lower solution. For the lower solution the recipe is to try a first eigenfunc-
tion of the differential operatou?/dx? for the specified domain and the boundary
conditions. The solution of the equation

l»0xx + sz =0

Y = AsIn(2X + ) = A(SINQ2X cosH + COSRX Sind).
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From the boundary conditions it follows that

Qcosf — ksing =0,

Q(cos2L cosfd — sinQ2L sinf) + k(sin2L cosh + cos2L sing) = 0.

From the fist equation it follows that

k Q T
cosh) = ———, sing = ——, 0<6H<=—.
Vk2 4+ Q2 Vike+ Q2 2

Dividing the second equation hyk? + Q2 we obtain
cosQL sin X + sinQ2L cos & = sin(2L + 20) = 0.

The smalést root isRL = 7 — 26. This gives an equation faf2, but itis more
convenient to transform it to

tan 2k —tan(” 9) _ coto = X
2 93 - =g

or

QL
QtanT =k. (A.1)

Substitutingyr into the right-hand side o#@) and taking into account that
?S,eﬁ((e_% Sin(Qx + 19)) < r[giti(e‘% max sSin(Qx + 9)| = 1
we have
Yex + (r _ e*%*lp) ¥ = ASINQX + &) (r — Q2 — Ae % sin@x + 19)) >0
providedA < F — Q2. Therdore

¥ = (F — Q%) sin(Qx + )

is a lower solution for the stationary problem. This result is used below to obtain
estimates for the approach describe&®ettion 6.4.1



Climate and Competition 1005

A.2: Upper solution. To construct an upper solution let us first obtain a solution of
an auxiliary problem, and then we shall show that it is the required upper solution.
We linearize @2) about the solutiore? , iy = €2 — ¢, then

C2 cx C2 ox ox
—e? — ot (1—2—1+e2¢> (e7 —¢) —0,

2

C
byx — 0’ =0, w>=1+ Z,¢=ae“’x+be“"x.
We reqiire thatli = e%Z — ¢ satisfy the boundary conditions, that is

(k—w)a+ (k+ w)b=Kk,
(k + w)ae’t + (k — w)bet = keZ.

Solving the system foa andb yields

k e (e=3)L _ pg=20L b k 1— Ae (-3t A K—w
a— s — s -
k+w 1— A2g-20L kd4+w 1— A2e-20L k+ w

and hence

Kk 1
K+ ow1— A2 2oL

x ((e% - Ae“"L> e 4 (1 - Ae‘(“"%)L> e“"x> . (A2

~ (2.8
Up=6€2 —

Substituting this into 42) we have afunction which satisfies the boundary
conditions and

- . _ox o ? o c? _ o ox _x o
Oa+ (T =€ 20a) Ga = —-€% — g+ (—5 +€ 79 (67 —¢) = —e 792 <0,

thereforelia (A.2) is an upper solution. The same is true fog = e 2 (i, for
equation 41). This result is used i®ection 6.2.3or the proof of the coexistence
theorem and in the next section to obtain estimates for the approach described
in Section 6.4.1

A.3: Solution near the habitat edge: estimate from above. For the estimates it is
more conenient to use the estimate fog = e 2 U, wherel is given by A.2)
that is

K ((1- Aer@rDL) elomHOL) 4 (1 pem(@DL) g (0F)x)
1_k+w 1— A2e20L

. (A.3)

ua =



1006 A. B. Potapov and M. A. Lewis

We are inerested in the estimates forbig enough, when the boundary coexis-
tence effects are possible, so we assemfé*+2)- negligible. Then

k [ C
—1_ (0—5)(x=L) —(w+35)x
ua=1 o (e 2 + e (o3 )

for big enoughL. Sinceu, is an increasing function df, therdore this estimate
is still an estimate ofl from above. Since&” < 0, ua lies below its tangent at any
point, and we shall use tangents at the edges, so nea&to

w (a)+%)kx

< , > 0,
u(x)_a)+k w+k x=
and neartx = L
(w—£)k(L —x)
2
L.
U<X)§w+k p—” , X <

A.4: Solution near the habitat edge: estimate from below. To get hese estimates

we can use the lower solution. There is a little problem—equatid)(for ©
cannot be solved analytically. So to get an estimate we shall use the estimates
for Q* from above and2~ from below. They can be obtained with the help of
the fact that for monotone increasing and continuous functiafs) and f,(x) if

f1(x) > fa(x), then f71(k) < f,1(K). Sincesinx < X < tanx, then to get2~

we can multiply A.1) by L /2 and replace by tan— SO

tan it LC o =2 arctan,/kL
2 27 L 2

Similarly, replacmg by sin¥:, we get the quation forQ*:

2 2
n oL tanQ+L - (sinﬂ) ~ 1— (cosﬂ) kL

, A.4
2 2 cosZt cosZt 2 (A4)

hence
kL

4

'_

kL

IN

T +
and, dividing @.4) by cos%k,
tanQ+ 2— kL 1+ KL 2+ KL
2 4 4

Q*—zarctan KL 1+ kL 2+ kL
L 2 4 4

)
)
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For k — oo (Dirichlet boundary conditions) botk~ and Q* tend tox/L.
Now let usget the estimates of the solutioiix).

ux) > e 2y (x) = (F — Q%) e 2 sin(Qx + 9).

Nearx = 0 it is convenient to use the formula of the sine of sum:
F—Q% o .
u(x) > ﬁe*ﬂk SiN2X + CosNX)
F— (Qh)?

= /k2+(Q+)2

Leavingonly terms linear irx we have

ux) > %Q‘ (1-1— (k— g) x).

Near tox = L it is convenient to make a change= L — X, then, taking into
account thaf2L = 7 — 26,

e Z(ksinQ X + Q~ cosQTx).

SiN(2X + 0) = sin(QL + 6 — Qy) = sin(r — 6 — Qy) = sin(QY + 6),
CX cL C
oo (-5) =e(-5 ) ool 2).

and hence up to linear termsyn

u(y) > Ir~;QJF)ZST@% (1+ (k+ E) y) .

k2 + (Q+)2 2

Due to thefactore™ 7, this esimate may not be very useful for big valuesabf
as it may become very small.

The obtained estimates can be used for approximate theory of boundary coexis-
tence in the casg| > 0, when the coexistence theorem does not apply. The tech-
nique is the same as in the proof of the coexistence theor&edtion 6.2.3-see
Section 6.4.%or more comments.
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