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Abstract Consider a patch of favorable habitat surrounded by unfavorable habitat and
assume that due to a shifting climate, the patch moves with a fixed speed in a one-
dimensional universe. Let the patch be inhabited by a population of individuals that re-
produce, disperse, and die. Will the population persist? How does the answer depend on
the length of the patch, the speed of movement of the patch, the net population growth
rate under constant conditions, and the mobility of the individuals? We will answer these
questions in the context of a simple dynamic profile model that incorporates climate shift,
population dynamics, and migration. The model takes the form of a growth-diffusion
equation. We first consider a special case and derive an explicit condition by glueing
phase portraits. Then we establish a strict qualitative dichotomy for a large class of mod-
els by way of rigorous PDE methods, in particular the maximum principle. The results
show that mobility can both reduce and enhance the ability to track climate change that
a narrow range can severely reduce this ability and that population range and total popu-
lation size can both increase and decrease under a moving climate. It is also shown that
range shift may be easier to detect at the expanding front, simply because it is consider-
ably steeper than the retreating back.

Keywords Climate change · Reaction–diffusion equation · Traveling wave · Moving
favorable patch · Co-moving population profile · Persistence · Extinction · Principal
eigenvalue

1. Introduction

The area occupied by a species is to a large extent determined by the climatic circum-
stances with temperature playing a major role. The global warming phenomenon, there-
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fore, has a great impact on survival and location of such species. See Walther et al. (2002)
for a review of ecological responses to recent climate change.

We idealize the world by putting the North Pole at +∞ and the equator at −∞. This
ignores the finiteness of the Earth, but it offers a good framework for a theoretical analysis.
Warming and its effect can be seen as a shift in the profile of local climatic suitability,
which the population density profile of a species tries to track. If a species keeps pace, its
area expands as much in the north as it loses in the south. However, if it lags behind too
much, it will go extinct.

Which of these two scenarios applies? How does the answer depend on the mobility
of the species, on the extensiveness of the area, the local population dynamics, and on
the speed of climate shift and the way climate actually acts on a species? If the species
survives, what happens to the size and form of its population profile?

The recent research of one of us (Nagelkerke, 2004) tackles these issues in the con-
text of a relatively realistic metapopulation model, using simulations as the main tool.
The aim of the present paper is to address the same issues for a continuous population
using an analytical approach. We study a simplified model, taking the form of a reaction-
diffusion equation. Within this framework, our findings confirm the ones that had been
observed in simulations. Here, we establish these results for a large class of equations,
with rigorous mathematical proofs, thus proving their robustness and shedding light on
the mathematical properties behind them.

From an ecological point of view, our main results are the following:

• An explicit formula (23) and in different forms in (24) and (25), for the critical size
of the favorable patch for persistence, as a function of the Malthusian parameters, the
diffusion constant and the climate speed. The formula pertains to the juxtaposition of
two types of homogeneous habitat, the favorable patch being a bounded interval outside
of which the environment is unfavorable.

• Revelation of a striking asymmetry in the comoving population profile: the north front
is much steeper than the south tail and the population maximum occurs near to the
northern border of the population profile.

• The observation that if the climate does not move too fast, the size of the total popula-
tion as well as the range of the population may actually grow, relative to the situation
in a static climate. But when the climate speed is further increased, an abrupt collapse
may follow (see Figs. 7, 8 and 9).

The model we study here takes the form of the following reaction-diffusion equation:

∂u

∂t
= D

∂2u

∂x2
+ f (u, x − ct). (1)

Here, −∞ < x < +∞ and c is a given positive number. Here, u is the population density
of the species of interest and we have assumed that dispersal is adequately described
by diffusion with constant D. The function f describes the net effect of reproduction and
mortality and how this depends on population density and on the local climatic conditions.
Hence, it expresses the suitability profile. Note that D is assumed to be independent of
climate. The situation before the climate shift sets in corresponds to c = 0. We assume
that

f (u, x) = u g(u, x), (2)
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where the per capita growth rate g is negative for large values of x, both negative and
positive. More precisely, we shall incorporate only negative density dependence in the
model (i.e., we do not incorporate an Allee effect, as discussed in Shi and Shivaji, 2006
for instance) and so the suitable area is

{x : g(0, x) > 0} (3)

which we assume to be an interval of length L.
The key questions concerning (1) are: does a positive solution of the form

u(t, x) = w(x − ct) (4)

exist and is it a stable solution? What is the form of the solution? If no such solution
exists, does it follow that u converges to zero for t → ∞? How do the answers depend on
c, D, L, and other parameters characterizing f ?

Such questions are a bit reminiscent of the “critical patch length” problem (cf. Okubo
and Levin, 2001 and Ludwig et al., 1979), the “traveling wave invasion” problem (cf.
Kolmogorov et al., 1937; Fisher, 1937; Aronson and Weinberger, 1978; Berestycki and
Hamel, 2009; Thieme and Zhao, 2003; Rass and Radcliffe, 2003) and the “heterogeneous
environment” problem (cf. Berestycki et al., 2005a, 2005b; Roques and Stoica, 2007;
Shigesada and Kawasaki, 1997; Shigesada et al., 1986; Weinberger, 2002). Yet, the mix
of ingredients (in particular, the fact that c is prescribed, and hence amounts to an external
forcing) makes it different from each of these and apart from Pease et al. (1989), where
a quantitative genetics approach is adopted, we could not find any references. After most
of the work described here was finished, however, we came across the preprint version of
Potapov and Lewis (2004), which addresses exactly the same question, but with emphasis
on the effect of a moving climate on the outcome of competitive interaction between
two species. In fact, the special case that we treat in Sections 2 and 3 is also treated by
Potapov and Lewis. Yet, we decided to include our analysis of this case in this paper as
(1) the method is more geometrical (essentially phase plane analysis), (2) we deliver an
analytical solution for the population profile and (3) we present additional results, leading
to further biological insights. Other related work can be found in Dahmen et al. (2000),
Deasi and Nelson (2005), and Pachepsky et al. (2005). It is known that diffusion enhances
invasion speed but is counter productive for population growth on a finite stationary patch.
Consequently, for a moving patch, there is a conflict between gain due to colonization of
newly favorable habitat and loss due to migration into unfavorable habitat. A key result,
formula (23) below, provides a quantitative algorithm for deciding which of these two
effects is the stronger one.

We employ two different methods. If we assume that g, as a function of x, is piecewise
constant we can glue phase portraits corresponding to the second order traveling wave
ODE:

Dwξξ + cwξ + wg(w, ξ) = 0, ξ = x − ct. (5)

Making use of the linearization at w = 0 we thus derive rather explicit answers to the
key questions.

A more qualitative analogue of these answers for quite general g is obtained by a PDE
approach. The information provided by the linearization at zero is again crucial. Using
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various methods, notably the comparison principle, we derive, in Section 4, a dichotomy
from this information:

• Either no positive traveling wave exists and zero is the global attractor,

• Or such a wave does exist and it attracts all orbits starting from nonnegative ( �≡ 0) initial
data.

The biological insights derived from our analysis are explained in detail in Sections 2
and 3 while taking for granted that the results of Section 4 demonstrate the correctness
and the robustness of the conclusions. More ecological consequences are discussed in
Section 5. Readers who are looking for theorems and proofs will find the rigorous theory
for a general class of equations presented in Section 4.

2. Glueing phase portraits

Throughout this section, we assume that for given positive parameters r̃ , r , K, and L,

g(u, x) =
{

−r̃ x < 0 and x > L,

r(1 − u
K

) 0 ≤ x ≤ L,
(6)

while requiring that solutions are C1 (indeed, to guarantee that diffusion conserves mass,
the flux D ∂u

∂x
should be continuous). In this model, the underlying assumption is that spa-

tial heterogeneity is fully described by two abrupt changes taking places at the positions
x = 0 and x = L. By scaling u, t, and x, we can reduce the number of parameters from
six to three. We choose to do this in such a way that the new values of K , r̃, and D are
all one. To facilitate the interpretation of our final results, we list how the new r , c, and L

relate to the six original parameters:

rnew = rold

r̃
,

Lnew =
√

r̃

D
Lold,

(7)

cnew = 1√
r̃D

cold,

wnew = wold

K
.

Already at this stage we can conclude that K only sets the scale for u, but that it is
irrelevant for the answers to our questions.

In the outer regions ξ < 0 and ξ > L, the function w that we seek to construct should
satisfy the linear equation

wξξ + cwξ − w = 0. (8)
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Fig. 1 The unstable and the stable subspace (restricted to w > 0) for the linear system (10).

Define

μ± = − c

2
±

√
1 +

(
c

2

)2

, (9)

then any solution to (8) is a linear combination of exp(μ+ξ) and exp(μ−ξ). Since μ+ > 0
and μ− < 0 and we want w to be bounded, the solution for ξ < 0 should be a multiple of
exp(μ+ξ) while the solution for ξ > L should be a multiple of exp(μ−ξ).

If we rewrite (8) as the first order system:

wξ = v,

vξ = w − cv,
(10)

and think in terms of orbits in (w,v)-space, the solution for ξ < 0 corresponds to motion
away from the origin along the half-line v = μ+w,w > 0, while the solution for ξ > L

corresponds to motion toward the origin along the half-line v = μ−w,w > 0 (see Fig. 1).
The analogue of (10) for 0 ≤ ξ ≤ L is

wξ = v,

vξ = −rw(1 − w) − cv.
(11)

This system has equilibria (w,v) = (0,0) and (w,v) = (1,0). (Incidentally, orbits
connecting these two equilibria yield the classical KPP-Fisher traveling waves Fisher,
1937; Kolmogorov et al., 1937. These exist if and only if c ≥ 2

√
r . The lowest possible

wave speed, 2
√

r , is the invasion speed Aronson and Weinberger, 1978; Berestycki and
Hamel, 2009.)
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Fig. 2 Phase portrait of (11) for ( c
2 )2 < r .

The linearization at (1,0) has eigenvalues − c
2 ±

√
r + ( c

2 )2. So one is positive and the

other negative or, in other words, (1,0) is a saddle point. The linearization at (0,0) has
eigenvalues:

σ± = − c

2
±

√
−r +

(
c

2

)2

. (12)

Provided −r + ( c
2 )2 < 0 these form a complex conjugate pair and then since c > 0,

(0,0) is a stable spiral point (see Fig. 2).
If on the other hand, −r + ( c

2 )2 > 0, then (0,0) is a stable node. Since μ− < σ±, orbits
of (10) that approach the origin from the positive half plane w > 0 do so “above” the line
v = μ−w. It is known (see Hadeler and Rothe, 1975; Aronson and Weinberger, 1978;
Volpert et al., 1994, or Diekmann and Temme, 1982) that the unstable manifold of (1,0)

that lies in the region w ≤ 1 does, in fact, approach the origin in this manner, and that it
lies entirely above the line v = μ−w (in fact above v = σ−w).

Our task is to make a connection between the line v = μ+w and the line v = μ−w

by way of a piece of orbit of (11) that is completed in a ξ -interval of exactly length L.
The preceding paragraph established that this is impossible for ( c

2 )2 > r , since then the
connecting orbit between (1,0) and (0,0) forms an obstruction. (Note that this implies
the nonsurprising fact that a species can never track a climate that moves faster than the
invasion speed of that species into the favorable habitat.) So, we focus our attention on
the situation obtained by combining Figs. 1 and 2 (see Fig. 3).
In view of the results of Schaaf on two-point boundary value problems (Schaaf, 1990), it
is to be expected that the length of the ξ -interval of an orbit piece connecting the two lines
increases with increasing distance (along either line) from the origin (with limit +∞ if
we approach the connection via pieces of the stable—and unstable manifold of (1,0)).
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Fig. 3 Superimposed phase portraits of (10) and (11). The three pieces that are drawn in bold together
form a sample trajectory that moves out of 0 along v = μ+w, next follows an orbit of (11), and finally
moves back into 0 along v = μ−w.

Indeed, let us now prove this monotonicity property.

Lemma 2.1. Let (v1,w1) and (v2,w2) be two solutions of (11) defined on (a1, b1) and
(a2, b2), respectively, and satisfying

vi
(
ai

) = μ+ wi
(
ai

)
, vi

(
bi

) = μ− wi
(
bi

)
as well as

μ− <
vi

wi
< μ+ and wi > 0 in

(
ai, bi

)
for i = 1,2. Suppose that v2(a2) > v1(a1). Then b2 − a2 > b1 − a1.

Proof: By shifts of the solutions w1 and w2, (taking wi(x + ai)) there is no loss in
generality in assuming that a1 = a2 = 0. Then we want to show that b2 > b1.

Recalling that wx = v, Eq. (11) reads

−(
ecx wx

)
x
= ecxwg(w), (13)

where g(w) = r(1 − w). From (13) and integration by parts, we see that for any α,0 <

α < Min{b1, b2}, the following relation holds:

[
e−cx

(− w1
xw

2 + w2
xw

1
)]α

0
=

∫ α

0
ecx w1w2

(
g
(
w1

) − g
(
x2

))
dx. (14)
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Suppose that w1 < w2 in (0, α) (which is certainly true for small α > 0). Then formula
(14) shows that

w2
x(α)

w2(α)
>

w1
x(α)

w1(α)
. (15)

Indeed, g(w1 > g(w2) in (0, α). Now, if α < min{b1, b2} is such that w1 < w2 in (0, α)

while w1(α) = w2(α), then (15) yields w2
x(α) > w1

x(α) which is impossible. Hence, w1

and w2 do not cross each other in (0,min{b1, b2}).
Assume now by way of contradiction that b2 ≤ b1. Then choosing α = b2 in (15), we

get

w1
x(α)

w1(α)
< μ−

again a contradiction. Therefore, b2 > b1 and the lemma is proved. �

So, the shortest feasible L is obtained in the limit where the points on the line v = μ±w

approach the origin. In that limit, we can replace the nonlinear term −rw(1 − w) in the
second equation of (11) by its linearization −rw.

So, we want to connect the half-lines v = μ±w, w > 0, by a piece of orbit correspond-
ing to

wξ = v,

vξ = −rw − cv,
(16)

that is traversed in an interval of length L or less. The general real solution of (16), for
( c

2 )2 < r , is given by

w(ξ) = k exp(σ+ξ) + k̄ exp(σ−ξ),

v(ξ) = σ+k exp(σ+ξ) + σ−k̄ exp(σ−ξ),
(17)

where k is an arbitrary complex number. If we require

v(0) = μ+w(0),

v(l) = μ−w(l),
(18)

to determine the unknown k and l, it seems that we have one real unknown too much, as
k counts for two. Note, however, that the system (18) is real homogeneous of degree one:
If k satisfies the equation, so does every real multiple of k. This reflects the fact that for
the linear system (16), the “time” (i.e., the length of the independent variable interval)
needed to cross the area between the lines v = μ±w is independent of the starting point
on the line v = μ+w. So, we may add to (18) a condition that serves to normalize k. As
such we choose


(k) = 1. (19)

The first equation of (18) then implies that

�(k) = 
(σ+) − μ+
�(σ+)

, (20)
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Fig. 4 Graphical representation of the condition (22) and the condition c < 2
√

r . A solution exists for
parameter combinations in the domain “above” the depicted graph and to the left of the cylinder c = 2

√
r .

and now that k is known, we can consider the second equation of (18) as determining l.
After some manipulation, it can be rewritten as

tan
(�(σ+)l

) = (μ+ − μ−)�(σ+)


2(σ+) + �2(σ+) − 
(σ+)(μ− + μ+) + μ+μ−
, or

tan

(√
r −

(
c

2

)2

l

)
=

2
√

1 + ( c
2 )2

√
r − ( c

2 )2

r − c2

2 − 1
.

(21)

Provided we adopt the convention that the function arctan takes its values in (0,π ] we can
now formulate the conditions for the existence of a traveling wave solution as c < 2

√
r

and

L >
1√

r − ( c
2 )2

arctan

(
2
√

1 + ( c
2 )2

√
r − ( c

2 )2

r − c2

2 − 1

)
. (22)

These conditions are summarized in Fig. 4. Thus, for c = √
2(r − 1) the right-hand side

takes the value π√
2(r+1)

, while for c ↑ 2
√

r the right-hand side goes to infinity like π√
r−( c

2 )2
.

Using the scaling relations (7), we can rewrite (22) in terms of the original parameters as

L > Lcrit,
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where

Lcrit = 1√
r
D

− c2

4D2

arctan

(
2
√

r̃ + c2

4D

√
r − c2

4D

r − c2

2D
− r̃

)
, (23)

which should hold for c < 2
√

rD.
We shall rewrite the expression for Lcrit in a somewhat more informative form which,

moreover, facilitates the comparison with the formula at the end of Section 4 in Potapov
and Lewis (2004). To do so, we introduce

c0 = 2
√

rD

and recall that this so-called Fisher-speed is the asymptotic speed of propagation of dis-
turbances (also called spreading or invasion speed) if all of the real line corresponds to
favorable habitat (see Aronson and Weinberger, 1978). At the same time c0 is the lowest
speed for which for such a homogeneous favorable habitat, traveling wave solutions exist.
The expression

Lcrit =
√

D
r√

1 − ( c
c0

)2
arctan

{
2
√

1 − ( c
c0

)2
√

r
r̃
+ ( c

c0
)2

1 − r̃
r
− 2( c

c0
)2

}
(24)

has a factor
√

D
r

with the dimension of length, but is otherwise in terms of dimensionless
quantities. The function arctan takes here values in [0,π). Using the doubling formula

tan(2θ) = 2 tan(θ)

1 − tan2(θ)

we can derive the alternative expression

Lcrit =
2
√

D
r√

1 − ( c
c0

)2
arctan

(√
r̃
r
+ ( c

c0
)2√

1 − ( c
c0

)2

)
, (25)

where now arctan takes values in [0, π
2 ). The corresponding expression in Potapov and

Lewis (end of Section 4) has an extra factor
√

D in the denominator of the argument of
arctan, but is otherwise identical. We claim that this factor should not be there.

In the limit of an extremely hostile environment outside of the favorable patch, i.e., in
the limit r̃ → ∞, we obtain the much simpler expression

Lcrit =
π

√
D
r√

1 − ( c
c0

)2
. (26)

Formula (26) is related to the classical critical domain size problem when c = 0 see Okubo
and Levin (2001), Sections 9.1 and 10.2.2, and the references given therein. Indeed, the
results there are recovered from ours by putting c = 0.
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Fig. 5 Critical length L(D,c), as a function of the diffusion coefficient D for different values of the
imposed speed c.

Note that here for 1
2 < ( c

c0
)2 < 1 the right-hand side of (26) decreases as a function

of D, meaning that a species can survive on a smaller patch provided it increases its
dispersal propensity, whereas for small c it has to decrease D. (See also Fig. 5.) The
reader should not be misled by the notation when verifying this statement: c0 actually
also depends on D. We can also rewrite the inequality L > Lcrit in the form

rL2

2π
−

√
r2L4

4π4
− c2L2

4π2
< D <

rL2

2π
+

√
r2L4

4π4
− c2L2

4π2
.

From this it easily follows that in order to see persistence of the species, the diffusion
constant should be neither too small nor too large, depending on c. This is illustrated
in Fig. 5 which shows L(D) achieving a minimum at a positive value of D, depending
on c, for any c > 0. Figure 6 displays the curve Lcrit(r̃) for various values of r with the
asymptotic value as r̃ → ∞ given by formula (26) above. It further shows that for given
L, r has to have a minimum size for persistence.

Additional information can be obtained by computing the shape of the moving profile.
Under our assumptions, the profile is symmetric when the climate does not move. In
particular, there is no shape difference between the north and the south tail which are both
maintained by migration from the favorable into the unfavorable area. The movement of
the climate introduces asymmetry. As far as the tails are concerned, this is reflected in (9),
which in terms of the original parameters and variables, implies that the spatio-temporal
features of the tails are described by the expressions

e
(− c

2D
±

√
r̃
D

+ c2

4D2 )(x−ct)
. (27)
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Fig. 6 Critical length L = L(r̃) for various values of r .

By analogy with c0, the Fisher speed of invasion into the favorable habitat, we introduce
a speed c̃0 defined by the formula

c̃0 = 2
√

r̃D. (28)

This speed can be thought of as representing the speed of retreat from the unfavorable
region. Then we measure c in terms of c̃0 by putting

c = αc̃0 (29)

and write (27) in the form

e(−α±
√

1+α2)(

√
r̃
D

x−2αr̃t) (30)

and conclude that the decay for positive x is faster than the decay for negative x by a
factor

α + √
1 + α2

−α + √
1 + α2

. (31)

Numerical results (see Fig. 7) show that when c is increased, the point at which the
population achieves its maximum density shifts toward the south boundary of the patch.
However, due to a tracking lag, it becomes closer to the north boundary of the population
profile. Clearly this “body” effect strongly reinforces the asymmetry exhibited by the tails.
Note that the steepness of the north front will make it relatively easy to determine from
population census data that a shift took place and that in contrast, it may be much harder
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Fig. 7 Population profiles for various values of c, showing clearly that the north front can be a lot steeper
than the south tail, that range size can both increase and decrease and that the point of maximum population
density shifts toward the south boundary when c increases. (The interval [0,3] represents the patch of
favorable habitat.)

to do so on the basis of a time series of observations in the south tail. This asymmetry is
particularly visible on the two panels corresponding to the values c = 5 and c = 6.05 of
Fig. 7. Parmesan et al. (1999) find exactly such a north-south asymmetry in a sample of
35 non-migratory European butterflies. They offer some speculations on possible causes.
As explained above, our results provide a simple explanation on the basis of just the way
in which the climate shift manifests itself in the (moving) population distribution. (See
also the concluding remarks below.)

Another consequence of the asymmetry is that the range of the species may increase
when the climate starts moving, when one defines the range as the spatial domain in which
the population density exceeds a certain, somewhat arbitrarily chosen, lower bound (see
Fig. 7). This phenomenon too derives from the relatively slow decay in the south tail.
From Fig. 8, it is clear that the range keeps increasing until close to the critical speed,
after which the range collapses fast. A distressing consequence of this threshold behavior
is that a relatively small increase in climate speed can cause extinction with little advance
warning.

The shape of the moving population profile is one aspect, total population size is an-
other. A numerical “shooting” method to compute the total size of the “traveling” popu-
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Fig. 8 Length of range {x;w(x) ≥ ε} for ε = 0.01.

lation as a function of the parameters is the following. Solve, for positive values of the
parameter Q, the initial value problem

dw

dξ
= v, w(0) = Q,

dv

dξ
= −rw(1 − w) − cv, v(0) = μ+Q,

(32)

up to ξ = L. If v(L)

w(L)
< μ−, then Q is too high. If v(L)

w(L)
> μ−, then Q is too low. By using

a bisection-type technique, one can find an approximate solution for Q to the equation
v(L)

w(L)
= μ−. In the last step of this iterative procedure, one adds to (32) the equation

dN

dξ
= w, N(0) = 0. (33)

The total population size then is given by

Ntot = Q

μ+
+ N(L) − w(L)

μ−
, (34)

where the three contributions correspond to, respectively, the left tail, the middle part, and
the right tail (see also Fig. 9).

The (counter intuitive) conclusion is that an increase in c may lead to an increase of the
total population size whenever the unsuitable area outside the favorable core area is not
too harsh. This is due to a lag effect in the left tail: the decay of the population in the region
that was favorable until recently may be slow while meanwhile, the rise of the population
in the right region that just became favorable is relatively fast. This possibility of increases
in both range and population size was not shown in the related work of Potapov and Lewis
(2004).
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Fig. 9 Graphs of the total population size as a function of the speed c at which the climate shifts. Left
panel: r̃ = 0.1 and L = 3; right panel: r̃ = 1 and L = 3.

In conclusion of this section, we formulate an insight deriving from (23): for small c,
an increase of D entails an increase of the minimal interval length, since diffusion creates
a net loss over the boundary of the favorable region. For larger c, however, the influence
of D on the minimal interval length may be opposite, since increased mobility helps to
track the moving climate.

3. The linearization at zero

In this section, we investigate formally the stability of the extinct state. We find that the
principal eigenvalue switches sign exactly at the codimension one manifold in parameter
space that separates the domain of existence of a nontrivial solution from the domain of
nonexistence. In the next section, we shall see that the principal eigenvalue for a general
equation characterizes the existence and nonexistence of nontrivial solutions and deter-
mines as well the large time dynamics of this model. Note that within the domain of
non-existence this eigenvalue further yields information about the rate of decay to zero,
i.e., the rate at which the population declines on its way to extinction.

Returning to the general problem (1) with f of the form (2), we note that the lineariza-
tion at the trivial steady state u ≡ 0 is given by

∂u

∂t
= D

∂2u

∂x2
+ g(0, x − ct)u. (35)

To investigate the stability of u ≡ 0, we focus on solutions of (35) of the particular form

u(x, t) = eλtφ(x − ct). (36)

By substitution we deduce that such a solution exists if and only if φ is an eigenfunction
corresponding to eigenvalue λ for the linear differential operator L defined by

(Lφ)(ξ) = Dφ′′(ξ) + cφ′(ξ) + g(0, ξ)φ(ξ). (37)
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In the next section, we will see that the sign of the principal (or dominant) eigenvalue
of this operator, when properly defined, yields the long term dynamics in Eq. (1). Its sign
gives a criterion for either extinction or persistence.

Therefore, methods to determine the sign of the dominant eigenvalue are of great in-
terest, as are methods to give more quantitative estimates in case it is negative (at which
time scale will the extinction happen?).

For the caricatural case of Section 2, we can derive an explicit equation for the dom-
inant eigenvalue. The derivation follows the same pattern as the analysis leading to (22).
In particular, we adopt the same scaling, which allows us to take D = 1 in (37) and

g(0, ξ) =
{

−1 ξ < 0 and ξ > L,

r 0 ≤ ξ ≤ L.
(38)

Hence, the bounded solution of

Lφ = λφ, (39)

which is normalized by the condition

φ(0) = 1, (40)

is given by

φ(ξ) = e(− c
2 +

√
( c

2 )2+λ+1)ξ , (41)

for ξ < 0 whenever the expression under the square root is positive. For 0 ≤ ξ ≤ L, on the
other hand, the solution is represented by

φ(ξ) = ke(− c
2 +

√
( c

2 )2+λ−r)ξ + k̄e(− c
2 −

√
( c

2 )2+λ−r)ξ , (42)

where k is a complex number and, by assumption, the expression under the square root is
now negative. Finally, for ξ > L, we should have

φ(ξ) = Ce(− c
2 −

√
( c

2 )2+λ+1)ξ . (43)

It remains to determine k and C from linking conditions that should guarantee that φ is
continuously differentiable at both ξ = 0 and ξ = L. From the smoothness condition at
ξ = 0, we deduce

k = 1

2
− i

√
( c

2 )2 + λ + 1

2
√

r − λ − ( c
2 )2

. (44)

Eliminating C from the smoothness condition at ξ = L, we end up with one equation for
the unknown λ. This equation is the analogue of (21). It reads

tan

{√
r − λ −

(
c

2

)2

L

}
=

2
√

1 + λ + ( c
2 )2

√
r − λ − ( c

2 )2

r − 2λ − c2

2 − 1
. (45)
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As a consequence of the more general results in the next section, it can be shown, that
the condition λ = 0 in (45) is equivalent to the critical length condition of the previous
section.

Note that λ and c only occur in the combination λ + ( c
2 )2. In terms of the unscaled

time and parameters, this means that

λ(c) = λ(0) − c2

4D
. (46)

In other words, the dominant eigenvalue is a quadratically decreasing function of c, with
a coefficient of the quadratic term which is inversely proportional to D but independent
of all other parameters. The relation (46) can be derived by a Liouville transformation
φ(x) = exp(− c

2D
x)ψ(x) which eliminates the first order derivative from the eigenvalue

problem Lφ = λφ. So, it holds for general functions g(0, ξ), not just for (38).

4. Analysis of a general class of equations

So far, we have considered a particular type of heterogeneity, that which is obtained
by juxtaposing two homogeneous media—the favorable and unfavorable ones—with an
abrupt transition at the two end points of the favorable interval. Are the results which
we have derived previously robust? And is the co-moving nontrivial solution stable if it
exists? Here we give very strong affirmative answers to both these questions in a rather
general setting. The motivation for considering general types of nonlinearities is twofold.
First, the assumptions made in Section 2 are rather contrived from a modeling point of
view and one would like to consider more complex transitions e.g. gradual transitions
between recognizable but not necessarily strictly homogeneous zones. Second, a general
mathematical theory sheds much more light on the underlying mechanisms, since the
proofs reveal the role that various assumptions play in yielding the conclusions. Here, for
instance, the linearization at the trivial steady state, in particular the sign of the associ-
ated principal eigenvalue, will be seen to fully account for the ability to keep pace with a
shifting climate.

In this section, we consider Eq. (1). As was already mentioned, there is no loss in
generality in assuming that D = 1, which we do henceforth.

The functions f and g (related through (2)) will be assumed to satisfy the following
set of conditions.

(a) Negative density dependence: u �→ g(u, x) is decreasing for all x ∈ R and strictly
decreasing for x ∈ I0, where I0 is a nonempty open interval.

(b) Allow for multiple discontinuities, e.g., several patches: there is a finite set of
points F = {a1, . . . , ap} in R such that g is continuous on R+ × (R\F) and both
limx↑ai

g(u, x) and limx↓ai
g(u, x) exist, uniformly for u in compact subsets of R+.

(c) Existence of a linearization: There exists δ > 0 such that u �→ g(u, x) is C1 on
[0, δ] for all x ∈ R, gu is continuous on [0, δ] × (R\F) and both limx↑ai

gu(u, x)

and limx↓ai
gu(u, x) exist, uniformly for u ∈ [0, δ].

(d) Unfavorable outer regions: g(0, x) → −1 as x → ±∞.
(e) Saturation: There exists M > 0 such that g(u, x) ≤ 0 for all x ∈ R whenever u ≥ M .
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The properties formulated in (a)–(e) above are the standing hypotheses on the function g

throughout this section. The last one means that everywhere the population declines when
it exceeds some level M, i.e., negative density dependence guarantees that the population
stays bounded. The limits at ±∞ in (d) are taken to be the same in order to simplify the
formulation, but the statements and proofs can readily be adapted to the case of different
limits. Note that the values of the limit can be changed by a scaling of the time variable t .
Accordingly, the value −1 is representative for general negative values. Similarly it is no
restriction that we take D = 1, as this can always be achieved by a scaling of the spatial
variable x (after the scaling of time). Since g may have discontinuities with respect to x,
we consider generalized solutions. These are functions u which, as a function of x, are
globally of class C1 and piecewise of class C2 and satisfy the equation at each point with
x �= ai, i = 1, . . . , p.

For studies of solutions of (1) on bounded domains, without an imposed translation
speed (i.e., c = 0), we refer to Murray and Sperb (1983), Cantrell and Cosner (1991,
1998, 2003), Cano-Casanova and López-Gómez (2003) and the references given there.
Recently, the effect of a heterogeneous but spatially periodic environment has been stud-
ied by Berestycki et al. (2005a, 2005b). Lastly, periodic stochastic environments are con-
sidered by Roques and Stoica (2007).

The problem we study here involves a lack of compactness (the problem is set on the
whole real line) as well as the difficulty deriving from the fact that c is imposed.

Our first aim is to give necessary and sufficient conditions for the existence of a trav-
eling wave solution, that is, of a bounded solution w > 0 of (5). We shall find that such a
solution exists if and only if the zero steady state of the equation

∂u

∂t
= ∂2u

∂ξ 2
+ c

∂u

∂ξ
+ f (u, ξ) (47)

(which is just (1) rewritten in terms of a moving coordinate system) is linearly unstable in
the sense that an associated dominant eigenvalue is positive. Next, we settle the unique-
ness issue by showing that there is at most one traveling wave solution. Concerning the
large time asymptotic behavior of solutions of the initial value problem for (1), we then
formulate a dichotomy:

– If no traveling wave solution exists, every positive solution of (1) converges to zero for
t → ∞, uniformly in x.

– If a traveling wave solution w exists, every nontrivial positive solution u(t, x) of (1)
converges for t → ∞ to w(x − ct), uniformly in x.

4.1. A priori estimates for the “far out” asymptotic behavior of traveling waves

We will replace the symbol ξ by the symbol x in order to facilitate the reference to the
literature. Thus, we write (5) with D = 1 as

wxx + cwx + wg(w,x) = 0. (48)

We start by analyzing the limiting behavior as x → ±∞ that any bounded positive so-
lution necessarily has. Indeed, note that no conditions at infinity, other than being bounded
are imposed here on solutions.



Can a Species Keep Pace with a Shifting Climate? 417

Recall that the quantities μ± are defined in (9) and that they are the roots of λ2 + cλ −
1 = 0. It is tempting to conjecture that for some positive constants a, b, w(x) ∼ aeμ+x for
x → −∞ and w(x) ∼ beμ−x for x → +∞. This is indeed true if, for instance, g(0, x) =
−1 for large |x| as was the case in Sections 2 and 3 above. (More general results in this
direction can be found in Berestycki and Nirenberg, 1991.) But, in general, it is not so.
Indeed, if g(0, x) converges slowly to −1 we do not, in general, obtain exact exponential
behavior. For instance,

w(x) = (1 + x) e−(1+√
2)x

is a solution on R+ of the equation

wxx + cwx + h(x)w = 0

with

h(x) = −1 + 2
√

2

1 + x
.

This observation motivates us to formulate that w(x) behaves like eμ+x for x → −∞ and
like eμ−x for x → +∞ in a weaker sense that we now make precise.

Proposition 4.1. Let w be a bounded positive solution of (48). Then w(x) → 0 for x →
±∞. In fact, for any ε > 0

w(x)e(−μ−−ε)x → 0 for x → ∞ (49)

and

w(x)e(−μ++ε)x → 0 for x → −∞. (50)

Proof: We start by proving that w(x) → 0 for x → ∞. There exists R > 0 such that for
all x ≥ R the inequality

g(0, x) ≤ −ν

holds for, say, ν = 1
2 . Hence, (a) implies that for x > R,

wxx + cwx − νw ≥ 0

and, by the maximum principle, it follows that for all a > 0, for x ∈ (R,R + a) the
inequality

w ≤ ψa

holds where ψa is defined by the boundary value problem{
ψa

xx + cψa
x − νψa = 0, R < x < R + a,

ψa(R) = M = ψa(R + a)
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with

M := supw.

It should be noted here, also for future use, that even though f may be discontinuous,
the maximum principle still applies to the C1 solutions that we consider. In the present
one-dimensional setting, this can be verified rather directly. More general statements in
Gilbarg and Trudinger (1998) also cover the multi-dimensional situation.

A direct computation shows that

ψa(x) = M

(
1 − eρ−a

eρ+a − eρ−a

)
eρ+(x−R) + M

(
eρ+a − 1

eρ+a − eρ−a

)
eρ−(x−R),

where

ρ+ = −c + √
c2 + 4ν

2
,

ρ− = −c − √
c2 + 4ν

2

(i.e., ρ± are the roots of r2 + cr − ν = 0 with ρ− < 0 < ρ+). Since

ψa(x) → Meρ−(x−R) for a → ∞
we obtain, by taking the limit a → ∞, the inequality

w(x) ≤ Meρ−(x−R) for x ≥ R (51)

which shows that w(x) → 0 for x → ∞.
Similarly, one derives for some R the inequality

w(x) ≤ Meρ+(x+R) for x ≤ −R (52)

and concludes from this that w(x) → 0 for x → −∞.
Next, in order to derive the more precise description of the limiting behavior of w

given by (49) and (50), we first observe that in the previous argument ν should be less
than 1, but can otherwise be chosen as close to 1 as we wish: For all ν with 0 < ν < 1,

there exists R = R(ν) such that g(0, x) ≤ −ν for x ≥ R. Since ρ± → μ± as ν ↑ 1, it
follows from (50) and (51) that for all δ > 0 there exists R = R(δ) > 0 such that

w(x) ≤ Me(μ−+δ)x for x ≥ R,

w(x) ≤ Me(μ+−δ)x for x ≤ −R. �

Next, we want to derive lower bounds. We first formulate an auxiliary result that will
also be used later.

Proposition 4.2. Let v : R → R be positive, piecewise C2 and such that for all but at
most finitely many, x in an interval of the form (R,∞) the inequality

vxx + cvx − νv ≤ 0
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holds, where c and ν are such that ( c
2 )2 + ν > 0. Then there exists a positive constant K

such that

v(x) ≥ Ke(− c
2 −

√
( c

2 )2+ν)x for x ≥ R.

If, similarly, the differential inequality holds for x in an interval of the form (−∞,−R)

then there exists a positive constant K such that

v(x) ≥ Ke(− c
2 +

√
( c

2 )2+ν)x for x ≤ −R.

We omit the (easy) proof, since it follows exactly the same line of argumentation that
we used to prove the preceding proposition. Now let w be a bounded positive solution
of (48). Then since w(x) → 0 for x → ±∞, for every δ > 0, there exists a R = R(δ)

such that

wxx + cwx − (1 + δ)w ≤ 0

for x ≥ R and for x ≤ −R. Thus, as a corollary of Proposition 4.2, we obtain the following
proposition.

Proposition 4.3. Let w be a bounded positive solution of (48). Then for any ε > 0, we
have that

w(x)e(−μ−+ε)x → ∞ for x → ∞
and

w(x)e(−μ+−ε)x → ∞ for x → −∞.

To conclude this subsection, we formulate an estimate for the derivative of w.

Proposition 4.4. Let w be a bounded positive solution of (48). For every ε > 0, there
exists R = R(ε) > 0 such that∣∣wx(x)

∣∣ ≤ e(μ−+ε)x for x ≥ R,∣∣wx(x)
∣∣ ≤ e(μ+−ε)x for x ≤ −R.

Proof: We restrict our attention to large positive x, the case of negative x being the same.
From (48), we get

wx(z) − wx(y) + cw(z) − cw(y) = −
∫ z

y

w(x)g
(
w(x), x

)
dx.

This shows that the limit of wx(z) exists when z → ∞, hence that wx(∞) = 0. Therefore,
letting y → ∞ in this relation yields the identity

wx(x) + cw(x) +
∫ x

∞
w(y)g

(
w(y), y

)
dy = 0.

The result now follows from the properties of g and the estimates for w obtained in
Proposition 4.1. �
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4.2. The eigenvalue problem

As another preparatory step, we shall make precise how, in the present case, the principal
(or dominant) eigenvalue of the linearized problem at w ≡ 0 is defined. Since we consider
solutions defined on the whole real line, some special care is needed.

Let LR denote the differential operator:

LRφ = φxx + cφx + g(0, ·)φ. (53)

Let λR denote the principal eigenvalue of LR associated with zero Dirichlet boundary
conditions

φ(−R) = 0 = φ(R). (54)

Then the corresponding eigenfunction φR is strictly positive on (−R,R). It is well known
that R �→ λR is increasing (see, for instance Berestycki et al., 1994 for a monotonicity
proof in a more general framework). So, it is meaningful to formulate the following defi-
nition.

Definition 4.5.

λ∞ := lim
R→∞

λR. (55)

There are alternative ways to define λ∞, see Berestycki et al. (1994), Pinsky (1995),
or Berestycki et al. (2007) for a formula that applies to general operators in unbounded
domains. As a special case of the results established in Berestycki et al. (1994), we obtain
the characterization

λ∞ = sup
{
t ∈ R : ∃φ ∈ W

2,∞
loc (R) such that φ > 0

and φ′′ + cφ′ + g(0, ·)φ + tφ ≤ 0 on R
}
.

Note that the φ that we consider here are allowed to grow beyond any bound for
|x| → ∞. By restricting the “test” functions φ to those that are bounded on R, we ob-
tain a different generalized eigenvalue that may be smaller. For instance, if g(0, x) = −1
for all x, then λ∞ = 1+ c2

4 while the additional requirement that the functions be bounded
yields a generalized eigenvalue equal to 1; so when c �= 0, these are not equal. We refer
to Berestycki et al. (2007) for a general study of these themes.

In the current context, the motivation to call λ∞ the principal eigenvalue derives from
the results presented in the next subsection and in Section 4.5. In the proof, we shall need
that a positive φ∞ ∈ W

2,∞
loc exists such that

φ∞
xx + cφ∞

x + g(0, ·)φ∞ = λ∞φ∞ (56)

on R\F . Such a φ∞ is obtained as the limit, uniformly on compact subsets, of a sequence
φRj for some sequence Rj such that Rj → ∞ as j → ∞. The idea is to first normalize
φR by requiring that for instance, φR(0) = 1. Next, we invoke the Harnack inequality (see
Ladyz̆enskaja et al., 1968, Section III.10, p. 209 or Krylov, 1987, Section 4.2, p. 130),
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stating that on a given bounded interval (−A,A) and for R sufficiently large, the maxi-
mum of φR is bounded by a constant (depending on A, but not on R) times the minimum
of φR . Since the minimum of φR is bounded by 1, we obtain an R independent bound on
the maximum of φR . The regularity theory of elliptic equations next guarantees that any
sequence has a converging subsequence and that we can pass, for such a subsequence, to
the limit in the differential equation.

We conclude this subsection by describing, in a crude manner, the “far out” asymptotic
behavior of φ∞ when λ∞ is either negative or zero. We only state the properties that we
shall use in the next subsection.

Proposition 4.6. Let φ∞ be positive and satisfy (56) on R\F with λ∞ < 0. For every δ

with max{0,−1 − λ∞} < δ, there exist R(δ) and K(δ) such that

φ(x) ≥ Ke(− c
2 −

√
( c

2 )2+1+δ+λ∞)x for x ≥ R, (57)

φ(x) ≥ Ke(− c
2 +

√
( c

2 )2+1+δ+λ∞)x for x ≤ −R. (58)

Proof: Again, we restrict our attention to large positive x. For any δ > 0, the function
φ∞ satisfies for large enough x the differential inequality

φxx + cφx − (1 + δ + λ∞)φ ≤ 0.

So the inequality (57) follows from Proposition 4.2, provided the argument of the square-
root is positive. This requires that δ > −1 − λ∞ and since we already required that δ > 0,
we should restrict to δ > max{0,−1 − λ∞}. �

Proposition 4.7. Let φ∞ be positive and satisfy (56) on R\F with λ∞ = 0. Then φ∞ has
the properties formulated in terms of w as (49), (50), and in Proposition 4.4.

Sketch of the proof: The proof is essentially identical to the proofs of Propositions 4.1
and 4.4. Here, however, we do not a priori know that φ∞ is bounded. The idea is to replace
the ψa from the proof of Proposition 4.1 by functions zR which satisfy{

zxx + czx − νz = 0, p < x < R

z(p) = α, z(R) = 0

where p is such that g(0, x) ≤ −ν for x > p and α := supR φR(p). One then combines
the inequality φR(x) ≤ zR(x), for x ∈ (p,R), with the fact that for R → ∞

zR(x) → αeρ−(x−p) for x ≥ p. �

4.3. The solvability condition

Theorem 4.8. Equation (48) has a bounded positive solution if and only if λ∞ > 0.

Proof: Assume that λ∞ > 0. We shall prove that a solution exists by constructing both
a sub- and a supersolution. Recall that λR denotes the principal eigenvalue of LR defined
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by (53)–(54). Again, we denote by φR the associated positive eigenfunction, but this time
we normalize by requiring that the maximum of φR equals one. Now define

v(x) =
{

εφR(x) for − R ≤ x ≤ R,

0 for |x| ≥ R.

Then for −R < x < R,

vxx(x) + cvx(x) + g
(
v(x), x

)
v(x) = [

g
(
v(x), x

) − g(0, x)
]
v(x) + λRv(x).

We claim that for R large enough and for ε > 0 small enough, v is a subsolution, i.e., the
right-hand side is positive. To substantiate the claim, we first note that λR > 0 for large R

since λR → λ∞ for R → ∞ and λ∞ > 0. Next, observe that g(v(x), x)− g(0, x) → 0 for
ε ↓ 0. Lastly, it is known, that since φR(±R) = 0, extending εφR by 0 outside (−R,R)

yields a subsolution v.
Assumption (e) guarantees that the constant function taking the value M is a superso-

lution. Clearly, v(x) < M for small ε. We conclude that a solution exists.
It remains to verify the necessity of the condition λ∞ > 0. We assume that a bounded

positive solution w of (48) exists and that λ∞ ≤ 0 and then try to reach a contradiction.
We start by making the stronger assumption λ∞ < 0. Let φ∞ be positive and satisfy (56)
on R\F . We claim that

lim
x→±∞

φ∞(x)

w(x)
= ∞.

Indeed, this follows by combining (57) with (48) and (58) with (49), if we choose δ in
Proposition 4.6 such that not only δ > max{0,−1 − λ∞} but also δ < −λ∞. The point is

that in this case
√

( c
2 )2 + 1 + δ + λ∞ <

√
( c

2 )2 + 1 so that by choosing next ε in Propo-

sition 4.1 sufficiently small, the quotient φ∞(x)/w(x) has a positive exponent for large
positive x and a negative exponent for large negative x.

Since φ∞ > 0, w > 0, and for large |x|, the function w is “dominated” by φ∞, the set

{α : αφ∞ ≥ w on R}
is nonempty. Let α0 be the infimum of this set. Then α0 > 0 and by continuity, α0φ

∞ ≥ w

on R, i.e., α0 belongs to the set. Since φ∞(x)/w(x) → ∞ for |x| → ∞, there exists
R > 0 such that αφ∞ ≥ w for |x| ≥ R and 1

2 α0 < α < α0. If min{α0φ
∞(x) − w(x) :

−R ≤ x ≤ R} would be positive, we arrive at a contradiction with the definition of α0.
So, this minimum must be zero, i.e., the positive function v := α0φ

∞ − w assumes its
minimum value zero. Since

vxx + cvx + g(0, ·)v = (
g
(
w(·), ·) − g(0, ·))w + λ∞α0φ

∞

and the right-hand side of this identity is nonpositive, the strong maximum principle states
that this is only possible if v ≡ 0, which is clearly impossible. So, λ∞ < 0 precludes the
existence of w.

Now assume that λ∞ = 0. We rewrite the equation for φ∞ in self-adjoint form as(
ecxφ∞

x

)
x
+ g(0, x)ecxφ∞ = 0.
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The analogue form of the equation for w reads(
ecxwx

)
x
+ g

(
w(x), x

)
ecxw = 0.

If we multiply the equation for w by φ∞, the equation for φ∞ by w, integrate by parts
over [−A,A] and then subtract, we obtain the identity

[−ecxφ∞
x w + ecxwxφ

∞]x=+A

x=−A
=

∫ A

−A

(
g(0, x) − g

(
w(x), x

))
ecxφ∞(x)w(x)dx.

Now g(0, x) − g(w(x), x) ≥ 0 for all x, but with strict inequality for x ∈ I0 (compare
condition (4.1)). Hence, the right-hand side is strictly positive as soon as (−A,A) ∩
I0 �= ∅. The estimates presented in Propositions 4.1, 4.4, and 4.7 guarantee that the left-
hand side tends to zero for A → ∞. But the right-hand side is an increasing function of A

which takes positive values, so is bounded away from zero for large A. We thus reached
a contradiction and conclude that the existence of a positive bounded solution of (48)
implies that λ∞ > 0. �

4.4. Uniqueness of traveling waves

Theorem 4.9. Equation (48) has at most one bounded positive solution.

Proof: The argument follows some ideas in Berestycki (1981). The new difficulty is that
here we have to deal with an unbounded domain.

Assume there are two distinct solutions wi , i = 1,2. Writing the differential equation
in the form(

ecxwi
x

)
x
+ g

(
wi(x), x

)
ecxwi = 0

and manipulating as in the end of the proof of Theorem 4.8 we obtain for any α,β with
−∞ < α < β < +∞, the identity

[−ecxw1
xw

2 + ecxw1w2
x

]x=β

x=α

=
∫ β

α

ecx
[
g
(
w1(x), x

) − g
(
w2(x), x

)]
w1(x)w2(x) dx.

Now assume that {x : w2(x) > w1(x)} is nonempty and let (a, b) be a connected com-
ponent of this set, then w1(a) = w2(a) and w1(b) = w2(b), where it is understood that
−∞ ≤ a < b ≤ +∞ and wi(±∞) = 0 (recall Proposition 4.1). Suppose first that a and b

are finite and take α = a and β = b. Then since u �→ g(u, x) is decreasing, the right-hand
side is positive. In fact, it is strictly positive (because the only way in which it could be
zero is that g(w1(x), x) = g(w2(x), x)) for almost all x ∈ (a, b), but then the wi ’s satisfy
one and the same linear equation, as well as the same boundary conditions, so w1 ≡ w2 on
(a, b)). On the other hand, we must have that w2

x(a) > w1
x(a) and w2

x(b) < w1
x(b), so the

left-hand side is strictly negative which is a contradiction. If either β = +∞ or α = −∞
or both, we use the estimates of Propositions 4.1 and 4.4 to establish that the integral con-
verges and that the corresponding terms at the left-hand side vanish in the limit β → ∞



424 Berestycki et al.

and/or α → −∞. So, then too we arrive at the contradiction that the right-hand side is
strictly positive while the left-hand side is at most zero. �

Corollary 4.10. Equation (48) has exactly one bounded positive solution if λ∞ > 0 and
no such solution if λ∞ ≤ 0.

4.5. Large time behavior

We now return to the evolution Eq. (1) and investigate the asymptotic behavior (for large
time) of solutions of the initial value problem obtained by supplementing (1) by the initial
condition

u(0, x) = u0(x) (59)

where u0 is a given bounded nonnegative function defined on R. Our assumptions on
g guarantee that the initial value problem has a unique, globally defined, solution u =
u(t, x).

Theorem 4.11. Let u be the solution of the Cauchy problem (1)–(59).

(i) If λ∞ ≤ 0, then u(t, x) → 0 for t → ∞, uniformly for x ∈ R. That is, any population
is bound to go extinct, no matter what the initial distribution is.

(ii) If λ∞ > 0 and u0 is nontrivial, then u(t, x) − w(x − ct) → 0 for t → ∞, uniformly
for x ∈ R. Here, w is the unique bounded positive solution of (48). So, any population
is bound to persist by traveling along with the shifting climate.

Proof: Define v(t, x) := u(t, x + ct) then (1) may be reformulated as

vt = vxx + cvx + f (v, x). (60)

Let M ′ > max{M, supx u0(x)} and let z = z(t, x) be the solution of

zt = zxx + czx + f (z, x), z(0, x) = M ′.

Since M ′ is a supersolution of the elliptic operator at the right-hand side of the differential
equation, we know that zt < 0 (see, for instance Sattinger, 1973, p. 33). Since z is bounded
from below by zero, z(t, ·) must converge for t → ∞ to a nonnegative solution of (48).
If λ∞ ≤ 0, the only such solution is zero. So, in that case, z(t, x) converges to zero for
t → ∞. Additional arguments (explained in detail below) lead to the conclusion that the
convergence is uniform for x ∈ R. Since 0 ≤ u(t, x) = v(t, x − ct) ≤ z(t, x − ct), we
conclude that if λ∞ ≤ 0, u(t, x) → 0 for t → ∞, uniformly for x ∈ R.

It remains to prove (ii). If u0 is nontrivial, u(δ, x) is strictly positive for δ > 0, and
hence so is v(δ, x). So, for any given R > 0 and ε sufficiently small we have v(δ, x) ≥
εφR(x) for −R ≤ x ≤ R. Now assume that λ∞ > 0. Recall from the proof of Theorem 4.8
that for R large enough, we obtain a subsolution if we extend εφR(x) by zero outside the
interval [−R,R]. Accordingly, z(t, ·) cannot converge to zero for t → ∞ when λ∞ > 0
and, therefore, the limit must be the unique bounded positive solution w of (48), (compare
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Corollary 4.10). Likewise, the subsolution converges to w and since v is sandwiched in
between; it too must converge to w.

We now show that the convergence is uniform for x ∈ R. Again, we concentrate on the
supersolution z. Suppose z does not converge uniformly to w for t → ∞. This means that
δ > 0 exists as well as sequences tj → ∞ and xj ∈ R such that

z(tj , xj ) − w(xj ) ≥ δ.

By possibly restricting to a subsequence, we may assume that

xj → x∞, for j → ∞

where x∞ is either finite, +∞ or −∞. Define

zj (t, x) = z(t, x + xj )

and note that for each j , zj is a decreasing function of t . Since zj is uniformly bounded,
standard parabolic estimates guarantee that we can extract once more a subsequence,
still denoted by zj , such that zj converges uniformly on compact subsets to a function
z∞(t, x). Clearly z∞ is a nonincreasing function of t and z∞(tj ,0) − w(x∞) ≥ δ.

If x∞ is finite, then z∞ is a solution of

zt = zxx + czx + f (z, x + x∞)

and so its limit for t → ∞ is a nontrivial solution of

w̃xx + cw̃x + w̃g(w̃, x + x∞) = 0.

By uniqueness, we must have

w̃(x) = w(x + x∞)

which, however, would imply that w̃(0) = w(x∞) whereas taking the limit j → ∞ in
z∞(tj ,0)−w(x∞) ≥ δ we deduce that w̃(0)−w(x∞) ≥ δ. So, we ruled out the possibility
that x∞ is finite.

Next, assume that x∞ = ∞. Since g(z, x) ≤ g(0, x) and g(0, x) → −1 for x → ∞,

we now deduce that z∞ satisfies the inequality

zt ≤ zxx + czx − z

and once more taking the limit t → ∞ that

w̃xx + cw̃x − w̃ ≥ 0.

But a function satisfying this inequality cannot have a positive maximum, and hence no
nontrivial bounded positive solution can exist. Since we must have w̃(0) ≥ δ (note that
w(xj ) → 0 for j → ∞ when x∞ = ∞), we conclude that x∞ = ∞ is impossible as well.
The possibility that x∞ = −∞ is ruled out in exactly the same manner.
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So, the assumption that z does not converge uniformly to w for t → ∞ leads to a
contradiction and we conclude that the convergence is, in fact, uniform. The proof that
the subsolution converges uniformly to w follows exactly the same pattern. Hence, the
true solution v, which lies in between, must converge uniformly to w and the proof of (ii)
is completed.

Finally, we note that the proof that z(t, ·) converges uniformly to zero when λ∞ ≤ 0 is
based on precisely the same arguments as used above. �

5. Concluding remarks

Mathematical studies of simplified models can yield ecological insights, and at the same
time, shed light on basic mechanisms. In that spirit, we have analyzed the effect that a
shifting climate may have on the persistence of a species. A patch of favorable habi-
tat, surrounded by unfavorable habitat, is able to sustain a population provided the gain
by reproduction can balance the losses due to mortality inside the patch and dispersal
away from the patch. If the patch itself moves in space, an additional loss term is cre-
ated, since individuals may be left behind. Dispersing individuals, on the other hand, may
be fortunate enough to land where conditions are changing for the better. As a result,
the critical size that a patch should have in order to sustain a population, does not only
depend on reproduction, mortality and dispersal rates, but also on the speed with which
the patch moves through space. In Section 2, we have derived an explicit expression in
formulas (23), (24), and (25) for the dependence which produces valuable insights. In
Section 4 we have rigorously established several mathematical properties for a large class
of models.

Persistence in a moving patch is facilitated when the rate of climate change is low, the
rate of population growth within the patch is high, and the climate outside the patch not
too hostile (Fig. 5). Migration, however, is a double-edged sword. Both too much and too
little dispersal can lead to extinction and the optimal dispersal rate increases with patch
speed (Fig. 5). The results imply that a small latitudinal range diminishes the maximal
rate of climate change a species should be able to track. This means that the conventional
approach (see Skellam, 1951) of using the invasion (Fisher) speed as an estimate of this
maximal rate can lead to a severe overestimation when ranges are small or D is large.

A moving climate can have dramatic effects on the size and form of the population
profile. When the favorable region moves to the north, the population becomes more
concentrated toward the north end of the population profile. Interestingly, if the habitat
outside the favorable patch is not too hostile, the south tail becomes considerably thicker
and longer as a result of the movement, since it takes a while before the marooned local
population disappears. As a consequence, movement may result in increases in both the
total population size and the population range (Figs. 7, 8 and 9).

In unpublished simulations of a metapopulation model, Nagelkerke (2004) obtained
results similar to those reported here on our continuous population model. This demon-
strates the structural robustness of our sometimes counterintuitive findings. For example,
he modeled jump dispersal of propagules. This leads us to believe that our results are
not restricted to movement by simple diffusion. Distance dispersal is relevant for many
organisms.
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Here, we have concentrated on the long time dynamics. Nagelkerke (2004) also studied
the transient dynamics shortly after the climate starts to move. He found that generally the
northern border initially moves faster than the southern border, both for surviving popula-
tions and for those that were doomed to go extinct. In the case of ultimate extinction, the
southern border catches up after a while and then moves even faster than the climate, until
it collides with the northern border. Note that another reason for not being too confident
about an increasing range is the threshold behavior shown in Fig. 8. A small additional
increase in climate speed can cause total collapse. The initial asymmetry between the
velocities of both borders is in agreement with the outcome of an extensive analysis of
butterfly data by Parmesan et al. (1999) that found more evidence for moving northern
borders than for southern borders, suggesting that this is a transient phenomenon (see
also Collingham et al., 1996). In addition, it could be easier to observe the move of the
steep north front than that of the far less steep south back.

Our analysis was relatively simple, since we considered a one-dimensional spatial do-
main. Two-dimensional models give rise to new subtleties. Some mathematical issues
involved in higher-dimensional versions of this problem will be discussed in Berestycki
and Rossi (2008). Of particular interest is to understand the effect of the geometry on the
ability to persist despite a climate change. For instance, a bottle-neck may occur when
the extension of the patch in the lateral direction has a local minimum—giving rise to
a narrow strait. Actually, one could mimic this effect in the one-dimensional setting by
allowing the diffusion coefficient to depend on the spatial variable x; there would then be
both an x and an x-ct dependence, making the problem inhomogeneous even modulo time
translation. We plan to analyze such problems in further works.
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