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The origin of regular spatial patterns in ecological systems has
long fascinated researchers. Turing’s activator–inhibitor principle
is considered the central paradigm to explain such patterns.
According to this principle, local activation combined with long-
range inhibition of growth and survival is an essential prerequisite
for pattern formation. Here, we show that the physical principle of
phase separation, solely based on density-dependent movement
by organisms, represents an alternative class of self-organized
pattern formation in ecology. Using experiments with self-orga-
nizing mussel beds, we derive an empirical relation between the
speed of animal movement and local animal density. By incorpo-
rating this relation in a partial differential equation, we demon-
strate that this model corresponds mathematically to the well-
known Cahn–Hilliard equation for phase separation in physics.
Finally, we show that the predicted patterns match those found
both in field observations and in our experiments. Our results re-
veal a principle for ecological self-organization, where phase sep-
aration rather than activation and inhibition processes drives
spatial pattern formation.

mussels | mathematical model | spatial self-organization | animal
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The activator–inhibitor principle, originally conceived by Turing
in 1952 (1), provides a potential theoretical mechanism for

the occurrence of regular patterns in biology (2–6) and chemistry
(7–9), although experimental evidence in particular for biological
systems has remained scarce (3, 4, 10). In the past decades, this
principle has been applied to a wide range of ecological systems,
including arid bush lands (11–15), mussel beds (16, 17), and boreal
peat lands (18, 19). The principle, in which a local positive acti-
vating feedback interacts with large-scale inhibitory feedback to
generate spatial differentiation in growth, birth, mortality, respi-
ration, or decay, explains the spontaneous emergence of regular
spatial patterns in ecosystems even under near-homogeneous
starting conditions. Physical theory offers an alternative mecha-
nism for pattern formation, proposed by Cahn and Hilliard in
1958 (20). They identified that density-dependent rates of dis-
persal can lead to separation of a mixed fluid into two phases
that are separated in distinct spatial regions, subsequently lead-
ing to pattern formation. The principle of density-dependent
dispersal, switching between dispersion and aggregation as local
density increases, has become a central mathematical explana-
tion for phase separation in many fields (21) such as multiphase
fluid flow (22), mineral exsolution and growth (23), and bi-
ological applications (24–28). Although aggregation due to in-
dividual motion is a commonly observed phenomenon within
ecology, application of the principles of phase separation to ex-
plain pattern formation in ecological systems is absent both in
terms of theory and experiments (25, 26).
Here, we apply the concept of phase separation to the for-

mation of spatial patterns in the distribution of aggregating
mussels. On intertidal flats, establishing mussel beds exhibit

spatial self-organization by forming a pattern of regularly spaced
clumps. By so doing, they balance optimal protection against pre-
dation with optimal access to food, as demonstrated in a field ex-
periment (29). This self-organization process has been attributed to
the dependence of the speed of movement on local mussel density
(29).Musselsmove at high speedwhen they occur in low density and
decrease their speed of movement once they are included in small
clusters. However, when occurring in large and dense clusters, they
tend to move faster again, due to food shortage. Mussel pattern
formation is a fast process, giving rise to stable patterning within the
course of a few hours, and clearly is independent from birth or death
processes (Fig. 1 A and B). Although mussel pattern formation at
centimeter scale was successfully reproduced by an empirical in-
dividual-basedmodel (29), to date no satisfactory continuousmodel
has been reported that can identify the underlying principle in
a general theoretical context.
In this paper, we present the derivation and analysis of a partial

differential equation model based on an empirical description of
density-dependent movement in mussels, and demonstrate that it
is mathematically equivalent to the original model of phase sep-
aration by Cahn and Hilliard (20). We then compare the pre-
dictions of this model with observations from real mussel beds and
experiments with mussel pattern formation in the laboratory.

Results
Model Description. Mussel speed of movement was observed to
initially decrease with increasing mussel density, but to increase
when the density exceeded that typically observed in nature (Fig.
1C). The movement speed data were fitted to the following
equation:

V ðMÞ= aM2 − bM + c; [1]

with a= 2:30; b= 2:19; and c= 0:62 (Fig. 1C, blue line). A linear
model proved not significant (P = 0.449). The quadratic model
was overall significant (P < 0.001), where the coefficient for the
second-order term was highly significant (t = 5.717, P < 0.0001),
and the Akaike information criterion test showed that the qua-
dratic model was highly preferable over the linear one (see Table
S1 for details). Note that we used a quadratic equation not be-
cause it provides the most optimal fit, but because it is the most
simple polynomial function.
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Based on this formulation, we now derive an equation for the
changes in local density M of a population of mussels, in a 2D
space. As the model describes pattern formation at timescales
shorter than 24 h, growth and mortality (as factors affecting local
mussel density) can be ignored. Local fluxes of mussels at any
specific location can therefore be described by the generic con-
servation equation:

∂M
∂t

= −∇ · J: [2]

Here, J is the net flux of mussels, and ∇= ð∂x; ∂yÞ is the gradient
in two dimensions.
To derive the net flux J, we assume that mussel movement can

be described as a random, step-wise walk with a step size V that is
a function of mussel density, and a random, uncorrelated reor-
ientation. In the case of density-dependent movement, the net
flux arising from the local gradient in mussel density can be
expressed as follows (SI Text):

Jv = −
1
2τ

�
V
�
V +M

∂V
∂M

��
∇M; [3]

where τ is the turning rate, following Schnitzer (30) (equation
4.14 of ref. 30). The “drift” term M∂V=∂M accounts for the
effect of spatial variation in local mussel density on the spatial
flux of mussels. This term does not appear in the case of density-
independent movement, but its contribution is crucial when up-
scaling the density-dependent movement of individuals to the
population level.
Following earlier treatments of biological diffusion as a result

of individual movement (2), we complement this local diffusion

term with a term that accounts for the long-distance movement
by including nonlocal diffusion as Jnl =∇ðkΔMÞ with nonlocal
diffusion coefficient k. The nonlocal diffusion process has a rel-
atively low intensity, and hence parameter k is much smaller in
magnitude than the local movement coefficient in Eq. 3. We can
now gather both fluxes into the total net flux rate in Eq. 2,
J = Jv + Jnl, to define the general rescaled conservation equation
as follows (SI Text):

∂m
∂t

=D0∇½ gðmÞ− k1∇ðΔmÞ�: [4]

Here, gðmÞ= vðmÞ
�
vðmÞ+m ∂vðmÞ

∂m

�
, where vðmÞ=m2 − βm+ 1

is a rescaled speed. D0 is a rescaled diffusion coefficient that
describes the average mussel movement, and k1 is the rescaled
nonlocal diffusion coefficient. Rescaling at the basis of Eq. 4
is given by the following relations: gðmÞ= ðm2 − βm+ 1Þð3m2 −
2βm+ 1Þ with m=

ffiffiffiffiffiffiffi
a=c

p
M, D0 = c2

2τ, k1 = 2τk
c2 , and β= b=

ffiffiffiffiffi
ac

p
.

Here, β captures the depression of diffusion at intermediate
densities in a single parameter. In this model, spatial patterns
develop once the inequalities β>

ffiffiffi
3

p
and β< 2 are satisfied, lead-

ing to a negative effective diffusion (aggregation) gðmÞ at inter-
mediate mussel densities. Thus, if mussel movement is significantly
depressed at intermediate density, then effective diffusion gðmÞ
becomes negative, mussels aggregate, and patterns emerge. If
the depression of mussel movement speed at intermediate mussel
density is weak, then gðmÞ remains positive, and no aggregation
occurs at intermediate biomass (Fig. S1). Under these conditions,
no patterns emerge. The fitted values for a, b, and c reveal that the
effective diffusion clearly can become negative (as β= 1:8339), as
shown in Fig. 1C (red line). Eq. 4 predicts the formation of regular
patterns (Fig. 1D), in close agreement with the patterns as

A B

C D

Fig. 1. Pattern formation in mussels and statistical properties of the density-dependent movement of mussels under experimental laboratory conditions.
(A and B) Mussels that were laid out evenly under controlled conditions on a homogeneous substrate developed spatial patterns similar to “labyrinth-like”
after 24 h (images represent a surface of 60 cm × 80 cm). (C) Relation between movement speed and density within a series of mussels clusters (mussel density
is rescaled, where 128 equals to 1). The blue line describes the rescaled second-order polynomial fit with Eq. 1. The red line depicts the effective diffusion gðmÞ
of mussels as a function of the local densities according to the diffusion-drift theory. The open circles show the original experiment data, and the solid squares
represent the average speed of each group. (D) The numerical simulation of Eq. 4 implemented with parameters β= 1:89, D0 = 1:0, and k1 = 0:1, simulating the
development of spatial patterns from a near-uniform initial state.
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observed in our experiments (Fig. 1B). Using the precise param-
eter setting obtained from our experiments, we are able to dem-
onstrate that reduced mussel movement vðmÞ at intermediate
mussel density results in an effective diffusion gðmÞ that can
change sign, which leads to the observed formation of patterns.

A Physical Principle. We now show that Eq. 4 is mathematically
equivalent to the well-known Cahn–Hilliard equation for phase
separation in binary fluids (see SI Text for detailed discussion).
The original Cahn–Hilliard equation describes the process by
which a mixed fluid spontaneously separates to form two pure
phases (20, 27). The Cahn–Hilliard equation follows the general
mathematical structure:

∂s
∂t
=D∇2½PðsÞ− kΔs�=D∇

	
P′ðsÞ∇s− k∇ðΔsÞ�; [5]

where PðsÞ typically has the form of the cubic s3 − s. In SI Text,
we show that density-dependent functions of gðmÞ of Eq. 4 and
its corresponding expression P′ðsÞ in Eq. 5 have the same math-
ematical shape (concave upward) with two zero solutions, pro-
vided that movement speed V ðMÞ remains positive for all values
of M, which is inevitably valid for any animal. Hence, in a similar
way as described in the Cahn–Hilliard equation, net aggregation
of mussels at intermediate densities generates two phases, one
being the mussel clump, the other having such a low density that
it can be identified with open space, given the discrete nature of
the mussels. This occurs due to a decrease in movement speed at
intermediate density, leading to net aggregation when gðmÞ< 0,
similar to what is predicted by the Cahn–Hilliard equation (Fig.
S2). Hence, we find that pattern formation in mussel beds fol-
lows a process that is principally similar to phase separation,
triggered by a behavioral response of mussels to encounters
with conspecifics.

Comparison of Experimental Results and Model’s Predictions. Eq. 4
yields a wide variety of spatial patterns with increasing mussel
density, which are in close agreement with the patterning ob-
served in the field (Fig. 2), as well as in laboratory experiments
(Fig. S3). Theoretical results demonstrate that, with the specific
value of β determined in our experiment, four kinds of spatial
patterns can emerge, depending on mussel density. When mussel
numbers are increased from a low value, a succession of patterns
develops from sparsely distributed dots (Fig. 2E) to a “labyrinth
pattern” (Fig. 2F) and a “gapped pattern” (Fig. 2G), and finally
the patterns weaken before disappearing (Fig. 2H). Note that the
theoretical results closely match the patterns observed in the
field (Fig. 2 A–D). Moreover, a similar succession of patterns has
been found under controlled experimental conditions (29) when
the number of mussels is increased (Fig. S3). The spatial cor-
relation function of the images obtained during the experiments
generally agrees with that of the patterns predicted by Eq. 4,
displaying a damped oscillation that is characteristic of regular
patterns (Fig. S4 and SI Text).
A similar agreement was found in the emergence and disap-

pearance of spatial patterns with respect to changing mussel
numbers when we compared a numerical analysis with an ex-
perimental bifurcation analysis. The mathematical simulation
predicts that the amplitude of the aggregative pattern (i.e., the
maximal density observed in the pattern) dramatically increases
with increasing overall mussel densities, but decreases again
when mussel density becomes high (Fig. 3A). Most significantly,
these predictions are qualitatively confirmed by our laboratory
experiments, as shown in Fig. 3B. We observed an increase in the
amplitude when the number of mussels in the arena was low, but
a rapid decline of the amplitude with increasing overall mussel
numbers when mussel numbers were high, in agreement with the
general predictions of the model. It should be noted that,

although spatial homogeneity can easily be obtained in simulated
patterns, the discrete nature of living mussels precludes this in
our experiments, especially at low mussel density. Hence, the
agreement should only be sought in qualitative terms.
As a final test of equivalence to the Cahn–Hilliard model, we

investigated whether pattern formation in mussels exhibits a
coarsening process referred to as the Lifshitz–Slyozov (LS) law
(21, 31). Here, the spatial scale of the patterns, ℓðtÞ, grows in a
power-law manner as ℓðtÞ∝ tγ , where the growth exponent γ= 1=3
was found to be characteristic of the Cahn–Hilliard equation
(31–33). Our experimental results reveal that this scaling law also
holds remarkably well during early pattern formation in mussel
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Fig. 2. Pattern formation of mussels in the field and numerical results for
2D simulations with varying densities. (A–D) Mussel patterns in the field
varying respectively from isolated clumps, “open labyrinth,” “gapped pat-
terned” to a dense, near-homogeneous bed. (E–H) Changes in simulated
spatial patterning in response to changing overall density, closely follow the
field observed patterns. The color bar shows values of the dimensionless
density m of Eq. 4. Simulation parameters are the same as for Fig. 1D apart
from the overall density of mussels.
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beds, where we found a scaling exponent very close to 1/3 during
the first 6 h of self-organization, independent of mussel density
(Fig. 4). Moreover, this behavior is independent of mussel den-
sity. However, the LS scaling law collapses at a later stage as the
mussels settle and attach to each other with byssus threads. The
theoretical model (Eq. 4) matches this result, displaying the
same scaling exponent as our experiments, of course without the
collapse of the scaling law, because the model does not take into
account other long-term biological processes.

Discussion
The results reported here establish a general principle for spatial
self-organization in ecological systems that is based on density-

dependent movement rather than scale-dependent activator–
inhibitor feedback. This principle is akin to the physical process
of phase separation, as described by the Cahn–Hilliard equation
(20). Density-dependent movement has until now not been rec-
ognized as a general mechanism for pattern formation in ecology,
despite aggregation by individual movement being a commonly
described phenomenon in biology (28, 34–37). Recent theoreti-
cal studies highlight similar aggregative processes as a possible
mechanism behind pattern formation in microbial systems (26,
38, 39), insect migration (25), or passive movement as found in
stream invertebrates (40). Furthermore, studies on ants and
termites have shown that self-organization can result from indi-
viduals actively transporting particles, aggregating them onto
existing aggregations to form spatial structures ranging from
regularly spaced corps piles (41) to ant nests (42). Also, a number
of studies highlight that, beyond food availability (43), behavioral
aggregation in response to predator presence is an important
determinant of the spatial distribution of birds (44). These
studies indicate there may be a wide potential for application of
the Cahn–Hilliard framework of phase separation in ecology and
animal behavior that extends well beyond our mussel case study.
A fundamental difference exists between pattern formation as

predicted by Turing’s activator–inhibitor principle and that pre-
dicted by the Cahn–Hilliard principle for phase separation.
Characteristic of Turing patterns is that a homogeneous “back-
ground state” becomes unstable with respect to small spatially
periodic perturbations: this so-called Turing instability is the
driving mechanism behind the generation of spatially periodic
Turing patterns. Moreover, the fixed wavelength of these pat-
terns is determined by this instability. In the Cahn–Hilliard
equation, there is no such “unstable background state” that can
be seen as the core from which patterns grow. As we have seen
(Fig. 4), the Cahn–Hilliard equation, as well as our model, exhibits
a coarsening process: the wavelength slowly grows in time. Hence,
Cahn–Hilliard dynamics have the nature of being forced to in-
terpolate between two stable states, or phases, whereas a Turing
instability is “driven away from an unstable state.”
Strikingly, in mussels, both processes may occur at the same

time. Mussels aggregate because they experience lower mortality
due to dislodgement or predation in clumps (29). This explains
why, on the short term, they aggregate in a process that, as we
argue in this paper, can be described by Cahn and Hilliard’s
model for phase separation. On the long term, however, they
settle and attach to other mussels using byssal threads, a process
that arrests pattern formation, thereby disabling the coarsen-
ing nature of “pure” Cahn–Hilliard dynamics by a biological

A B

Fig. 3. Bifurcation of the amplitude of patterns as a function of mussel density as predicted by the theoretical model (A) and found in the experimental
patterns (B). (A) Parameter values are β= 1:89, D0 = 1:0, and k1 =0:1, apart from mussel density; letters indicate position on the plot corresponding to the four
snapshots E, F, G, and H in Fig. 2. The mussel density represents values of the dimensionless density. (B) Laboratory measurement of patterned amplitudes
with different densities on surface of 30 cm × 50 cm, where the number of mussels ranges from 100 to 1,400 individuals. Amplitude versus the mean density is
depicted as symbol lines with solid squares; the red lines depict average density.

Fig. 4. Scaling properties of the coarsening processes. The relation between
spatial scale versus temporal-increasing on the pattern formation in double-
logarithmic scale. The colored solid lines indicate the experimental data for
different mussel densities and the theoretical simulation. The dashed lines fit
the experimental data with a power law ℓðtÞ∝ tγ at early stages. We found
only a slight deviation from the theoretically expected γ= 1=3 growth. No
dominant wavelength emerges from the spectral analysis for the first
minutes of the experiment, and hence no data could be plotted. Note that,
as the simulation starts with a very fine-grained random distribution, pat-
tern development takes longer in the model.
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mechanism that acts on intermediate timescales and has not
been taken into account in the present model that focuses on the
first 6 h of the process (Fig. 4). Moreover, at an even longer
timescale, mortality and individual growth further shapes the spatial
structure of mussel beds, unless a disturbance leads to large-scale
dislodgement, which is likely to reinitiate aggregative movement.
Hence, on the long run, both demographic processes (16) and ag-
gregative movement (29) shape the patterns that are observed in
real mussel beds.
Finally, our results demonstrate that, to understand complexity

in ecological systems, we need to recognize the importance of
movement as a process that can create coherent spatial structure
in ecosystems, rather than just dissipate them. Unlike the growth/
mortality-based Turing mechanism, the movement-based Cahn–
Hilliard mechanism has short timescales. It may thus allow for
fast adaptation and generate transient spatial structures in eco-
systems. In natural ecosystems, both processes occur, sometimes
even within the same ecosystems. How the interplay between
these two mechanisms affects the complexity and resilience of
natural ecosystems is an important topic for future research.

Materials and Methods
Laboratory Setup and Mussel Sampling. The laboratory setup followed that of
a previous study by Van de Koppel et al. (29). Pattern formation by mussels
was studied in the laboratory within a 130 cm × 90 cm × 27 cm polyester
container filled with seawater. Mussel samples were obtained from wooden
wave-breaker poles on the beaches near Vlissingen, The Netherlands
(51.458713N, 3.531643E). They were kept in containers and fed live cultures
of Phaeodactylum tricornutum daily. In the experiments, mussels were laid
out evenly on a surface of either concrete tiles or a red PVC sheet. The
container was illuminated using fluorescent lamps. Fresh, unfiltered sea-
water was supplied to the container at a rate of ∼1 L/min.

Imaging Procedures and Mussels’ Tracking. The movement of individual mussels
was recorded by taking an image every minute using a Canon PowerShot D10,
which was positioned about 60 cm above the water surface, and attached to
a laptop computer. Each image contained the entire experimental domain at
a 3,000 × 4,000 pixels resolution. We tested the effect of increasing mussel
densities on movement speed. We set up a series of mussel clusters with 1, 2, 4,
6, 8, 16, 24, 32, 48, 64, 80, 104, and 128 mussels, respectively, on a red PVC
sheet to provide a contrast-rich surface for later analysis. The movement speed
of individual mussels was obtained by measuring the movement distance
along the trajectories during 1 min. All image analysis and tracking programs
are developed in MATLAB (R2012a; The Mathworks).

Field Photos of Mussel Patterns. Field photos of mussel patterns with different
densities were taken on the tidal flats opposite to Gallows Point (53.245238N,
−4.104166E) near Menai Bridge, UK, in July 2006.

Pattern Amplitude Determination. The analysis of the amplitude of the mussel
patterns was based on two experimental series. In the first series, 450, 750,
1,200, and 1,850 mussels were evenly spread over a 60 cm × 80 cm red PVC
sheet. In the second series, 100, 200, 400, 600, 1,100, and 1,400 mussels were
evenly spread over a 30 cm × 50 cm sheet. We analyzed small-scale variation
in mussel density from the image recorded by the webcam after 24 h using
a moving window of 3 cm × 5 cm, in which the mussels were counted. The
maximum density was used as the amplitude of the pattern. Four typical
images are shown in Fig. S2.

Calculation of the Scale of the Patterns. The spatial scale of the patterns were
obtained quantitatively by determining the wavelength of the patterns from
the experimental images. We applied a 2D Fourier transform to obtain the
power spectrum within a square, moving window. Local wavelength was
identified for each window, and the results were averaged for all windows.
This straightforward technique is suitable for identifying the wavelength in
noisy images with irregular patterning (45).

Numerical Implementation. The continuum equation (Eq. 4) was simulated on
a HP Z800 workstation with an NVidia Tesla C1060 graphics processor. For
the 2D spatial patterns, our computation code was implemented in the
CUDA extension of the C language (www.nvidia.com/cuda). The spatial
fourth-order kernel is implemented in 2D space using the numerical schemes
shown in Fig. S5. Spatial patterns were obtained by Euler integration of the
finite-difference equation with discretization of the diffusion (46). The
model’s predictions were examined for different grid sizes and physical
lengths. We adopted periodic boundary conditions for the rectangular
spatial grid. Starting conditions consisted of a homogeneous distribution of
mussels with a slight random perturbation. All results were obtained by
setting Δt = 0:001 and Δx = 0:15.
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