
Supporting Information
Liu et al. 10.1073/pnas.1222339110
SI Text

SI Materials and Methods
Derivation of a General Equation Describing Density-Dependent
Movement. We now derive a general equation describing the rate
of change of local density M of a population of organisms, in our
case mussels. In principle, we consider a general n-dimensional
case; we will later restrict ourselves to a 2D space, i.e., where n= 2.
We study a population of organisms that perform a random

walk with an individual movement speed that is a function of the
local density M, denoted by V ðMÞ. The organisms change di-
rection with a density-dependent turning rate τðMÞ. Because the
speed of the particles depends on M, the flux Jv is given by the
following:

Jv = −
V ðMÞ
nτðMÞ∇ðV ðMÞMÞ; [S1]

as derived by Schnitzer (1) (equation 4.14 of ref. 1). This relation
is valid under the assumptions that V j∇τj � τ2, which states that
the fractional change of the turning rate over the typical distance
traveled between turning must be small (1). More complicated
forms of the population flux depends not only on close-neighbor-
hood densities but also on spatial third-order derivatives of pop-
ulation densities (arising from the nonlocal interactions). We
incorporate the effect of long-range movement in the model
which results in a second contribution to the flux (2, 3) (see
ref. 2, pp 408–416 for details),

Jnl = κ∇ðΔMÞ; [S2]

for some constant κ> 0 (here Δ=∇2). See refs. 2 and 4 for a
similar approach.
We study the population on relatively short timescales of

maximally 1 d, at which birth and mortality processes play a rel-
atively minor role. For this reason, we do not consider de-
mographic processes in our model analysis. Combining the above
assumptions, changes in the local density of organisms can be
described by the following:

∂M
∂t

= −∇ðJv + JnlÞ;

in which M is—by construction—a conserved quantity. Combin-
ing Eqs. S1 and S2 leads to the following:

∂M
∂t

=∇½ f ðMÞ∇M − κ∇ðΔMÞ�; [S3]

where f ðMÞ= 1
2τV

�
V +M ∂V

∂M

�
, and V and τ are, in general, func-

tions of M.
For simplicity, we consider the turning rate τ to be independent

of M. Moreover, we restrict the problem to two dimensions, and
hence n= 2. Note that because V is the speed of the organisms
in the population, V ðMÞ> 0, for all M, and because f ðMÞ=
1
2τV

�
V +M ∂V

∂M

�
, the occurrence of zeros in f ðMÞ is controlled by

V +M ∂V
∂M, and thus by the parameters in V.

The Derivation of the Mussel Movement Model (Eq. 4 in Main Text).
Based on the data obtained from the experiments and the analysis

provided in the main text, we assume a parabolic relation between
speed V and density M as follows:

V ðMÞ= aM2 − bM + c;

where the values of the constants a, b, and c can be obtained from
the experimental data. The quadratic term model is highly pref-
erable over the linear one from all statistical results in Table S1.
With this definition of V, we can derive function f ðMÞ as

follows:

f ðMÞ= 1
2τ

�
aM2 − bM + c

��
3aM2 − 2bM + c

�
;

so that by introducing m=
ffiffia
c

p
M and β= bffiffiffiffi

ac
p , Eq. S3 can be writ-

ten as follows:

∂m
∂t

=D0∇½gðmÞ∇m− κ1∇ðΔmÞ�; [S4]

where gðmÞ= ðm2 − βm+ 1Þð3m2 − 2βm+ 1Þ; with D0 = c2
2τ, κ1 =

2τκ
c2 , and β2 < 4 [because V ðmÞ> 0].
The Standard Cahn–Hilliard Equation. The original Cahn–Hilliard
(from here abbreviated as CH) equation describes the separation
of a binary fluid into two phases. Assuming s is the concentration
of this fluid, it follows the general structure:

∂s
∂t

=D∇2½PðsÞ− κΔs�; [S5]

where in the most standard setting, proposed by Cahn and Hill-
iard in 1958 (5), PðsÞ= s3 − s, and D is the diffusion coefficient.
This equation generates patterns of the type shown in Fig. S2,
consisting of two phases characterized by s+ = 1 and s− = − 1.
(Notice the striking similarity between Fig. 1D and Fig. S2.)
Mathematically, the values s+ and s− are given by the minima
of the potential function QðsÞ, where Q′ðsÞ=PðsÞ. For PðsÞ=
s3 − s, this potential function is given by QðsÞ= 1

4s
4 − 1

2s
2 + 1

4, where
QðsÞ has a symmetric double-well shape.
For the generation of CH-type patterns, it is not strictly nec-

essary that QðsÞ has the precise standard form given above. The
condition needed is that two minima exists in QðsÞ (6, 7), sepa-
rated by a local maximum that acts as a third, unstable state, s0.
This implies thatQ′ðsÞmust have three—and no more than three—
zeros, at s− < s0 < s+.
In the context of model Eq. S5, this means that one expects

CH-type dynamics in case PðsÞ has three zeros. This implies that
P′ðsÞ must have two zeros, and one negative minimum between
these points. Vice versa, if P′ðsÞ does not have zeros, Eq. S5
cannot generate patterns because the associated potential well
does not have two preferred stable states.
Translating the Mussel Model to an Extended Cahn–Hilliard Model. Based
on the data obtained from the experiments given in Fig. 1C of the
main text, we adopted a general form of the relation between
movement speed V ðMÞ and mussel density M in which V ðMÞ is
minimal at a certain density Mp: V increases as M moves away
from Mp. Hence, we consider V ðMÞ with V ′ðMÞ< 0 for M <Mp

and V ′ðMÞ> 0 for M >Mp. In this case, it can be shown that
f ðMÞ has one global minimum. The position of this minimum
with respect to M is controlled by the precise structure of V ðMÞ.
Thus, the general shape of V ðMÞ found in the experiments is such
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that Eq. S4 could generate phase separation and spatial patterns,
but patterns arise only when the minimum of f ðMÞ is negative.
Eq. S4 can be written in the CH form Eq. S5 with PðmÞ such

that P′ðmÞ= gðmÞ (see Eq. S6 in Remark for details). Because
gðmÞ is a quartic polynomial with respect to m, PðmÞ will be
a quintic: significantly different from the standard CH case in
which PðmÞ is a cubic polynomial. However, in the model that we
consider, f ðMÞ can have at most one minimum that lies below the
axis because of the condition on movement speed that V ðMÞ> 0.
This can be deduced by straightforward arguments from the
observational fact that V ðMÞ only has one minimum at M =Mp

(and decreases, respectively increases, for M <Mp, respectively,
M >Mp). Thus, in the present model only CH-type patterns may
develop. This is also typical behavior if we drop the assumption
that the turning rate τ is constant, and take it to depend on the
mussel concentration M. Because the turning rate must remain
positive for all M, it is not possible to create additional zeroes in
f ðMÞ by varying τ. Hence, also in this more general case, the
dynamics generated by Eq. S3 remain of CH type.
It is straightforward to “control” the appearance of zeros of gðmÞ:

gðmÞ> 0 for all m when β<
ffiffiffi
3

p
. As β crosses through

ffiffiffi
3

p
, two

zeros appear: thus, CH-like patterns will appear as β2 increases
through 3. This is confirmed by our simulations in the bifurcation
analysis in Fig. S1 and the simulated pattern in Fig. 1D.

Remark: We can easily obtain the exact expression of the CH
formula of mussel model Eq. S4 as follows:

∂m
∂t

=D0∇2½PðmÞ− κ1Δm�; [S6]

with PðmÞ= 3m5

5 − 5βm4

4 + ð4+ 2β2Þm3

3 − 3βm2

2 +m+H. Here, H∈R is
a (essentially irrelevant) new parameter.

Correlations Analysis.The comparison of images obtained from the
mussel beds on the tidal flats nearMenai Bridge with results of the
numerical solution of model Eq. S4 reveals a remarkable simi-
larity of the real mussel beds with the model prediction (Fig. 2 in
main text). Of course, due to the inherent stochastic nature of
the real mussel ecological system, the snapshots do not match
precisely. To reach a quantitative assessment on the validity of
the model Eq. S4 to describe the spatial properties of the mussel
system in the short timescale, we have computed spatial corre-
lation function for the system’s spatial patterns.
We consider equal-time spatial correlation functions (in fact,

the system displays coarsening at long timescale, then we must
choose the appropriate timescale), which yield information about
the size of the emerging patterns. Here, we focus on the corre-

lation function, where GðrÞ= hmðr+ r′ÞmðrÞi− hmðr;tÞi2
hmðr;tÞ2i− hmðr;tÞi2 , which expressed

how the value at position mðr; tÞ is related to data points at some
distance r′ (8). The spatial correlation function, GðrÞ, averaged
for specie distance classes over the entire density field, reveals
the global behavior of the pattern as a function of spatial scale.
The position of the first peak gives the mean wavelength of
spatial patterns. In Fig. S4, we show the spatial correlation
function obtained for both field patterns and from the predicted
patterns of model Eq. S4, after a timescale of about 24 h, re-
vealing an excellent agreement.
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Fig. S1. Bifurcation diagram of Eq. S4 on spatial pattern formation.
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Fig. S2. Spatial pattern of CH Eq. S5 with κ= 0:01.

Fig. S3. Laboratory images of mussels pattern formation on a surface of 30 cm × 50 cm, where the number of mussels is equal to 200, 400, 600, and 1,100
individuals in the arena from A to D, respectively.
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Fig. S4. Correlation functions of the patterns. The spatial correlation as function of r comes from the experimental aggregation patterns and simulation
patterns about 24-h timescale. Results were obtained from the experiment in Fig. 1B, and numerical solutions of the model Eq. S4, and show an excellent
agreement.

Fig. S5. The numerical schemes of the kernel ∇4 was used on Eq. S4 in 2D space.

Table S1. Likelihood-ratio test, AIC weights, adjusted R2, and
significant level of the fitted functions for mussel movement
speed data

Model LRT AIC weights Adjusted R2 P values

Quadratic 5.4194 2.838788 0.43030 0.00001 (t = 5.717)*
Linear −7.4215 20.84295 0.00999 0.44900 (t = −0.764)

The observed data are best fitted by a quadratic function. AIC, Akaike
information criterion; LRT, likelihood-ratio test.
*The significant difference is referred to second-order term of Eq. 1 in the
main text.
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