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In this paper we establish a relation between the spread of infectious diseases and the dynamics of so
called M=G=1 queues with processor sharing. The relation between the spread of epidemics and branch-
ing processes, which is well known in epidemiology, and the relation between M=G=1 queues and birth
death processes, which is well known in queueing theory, will be combined to provide a framework in
which results from queueing theory can be used in epidemiology and vice versa.

In particular, we consider the number of infectious individuals in a standard SIR epidemic model at the
moment of the first detection of the epidemic, where infectious individuals are detected at a constant per
capita rate. We use a result from the literature on queueing processes to show that this number of infec-
tious individuals is geometrically distributed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Epidemiological motivation for the paper

In real-life, the knowledge that an infectious disease is spread-
ing may change the further spread of the disease. Both deliberate
intervention measures and non-mandatory behavioural changes
can contribute to this phenomenon [1]. Examples are the 2002–
2003 SARS epidemic, during which people avoided crowded
places; the nosocomial pathogen methicillin-resistant Staphylococ-
cus aureus (MRSA), where in the Nordic countries and The Nether-
lands hospitalised patients known to be colonised with MRSA are
treated in single-bed isolation rooms and all patients who might
have had contact with the index case, i.e., at least all patients in
the same hospital ward as the detected patient, are screened for
colonisation [2]; or contagious animal diseases like Foot and
Mouth Disease or Classical Swine Fever, where farms are depopu-
lated at the moment the disease is detected [3]. The distribution of
the number of infectious individuals at the moment of the first
detection of the epidemic is important. Not only because the
disease dynamics before the first detection is not influenced by
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control measures and, therefore, can be a measure for the true
spreading capacity of the disease but also because this distribution
informs us on the amount of control required to curtail the
outbreak.

In this paper we deal with the change of the epidemic process at
detection, by exploring an obvious but among epidemiologists not
so well-known relationship between epidemics and queueing the-
ory. By using this relationship and results from queueing theory we
are able to derive the distribution of the number of infectious
individuals at the moment of the first detection in a broad class
of epidemics in large populations, i.e., not only for Markovian
models. Furthermore, the approach of tackling problems from
epidemiology by using queueing theory is promising itself and
might lead to results on epidemics that are beyond the scope of
this paper.

1.2. The stochastic processes

We first consider an SIR (Susceptible ? Infectious ? Removed/
Recovered) epidemic model [4,5] with detections in a fixed popu-
lation of size n. The population has no demographic turnover, i.e.,
there is no emigration, immigration, birth or death of individuals.
In this model each pair of individuals contacts each other at a con-
stant rate of k=ðn� 1Þ. This implies that every individual makes
contacts at a total rate k, i.e., the number of pairs it belongs to times
the contact rate per pair. If a contact is made between an infectious
and a susceptible individual, then the susceptible individual
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becomes infectious. Note that we define contacts as events at
which infection will take place if one of the individuals is infectious
and the other is susceptible. These contacts need not be the same
as physical contacts. If the physical contact rate is k0=n� 1 and
the probability of transmission during a physical contact is c, then
k ¼ ck0.

After an infectious period which is distributed as the random
variable L, and independent of other infectious periods, an infec-
tious individual becomes removed, which means that the individ-
ual does not play any role in the epidemic process anymore,
because it becomes immune, dies, is isolated or, in case of animal
diseases, is culled. A removed individual stays so forever. During
its infectious period an individual might be detected, which hap-
pens at a per capita rate of d. At the moment of a detection, the pro-
cess might change. However, because we are interested in the
number of infectious individuals at the moment of a detection, it
is in the context of this paper not important what happens after
the detection.

This process can be related to a branching (birth–death) process
[6], by interpreting an individual (say j) that is infected by another
individual (say i) as a child of i. This interpretation relates the num-
ber of infectious individuals at time t to the number of individuals
in the branching process at time t. For finite population size n, this
is not a proper branching process, because the distribution of chil-
dren per individual changes over time because of depletion of sus-
ceptibles. However, for large n, the probability that during the
initial phase of the epidemic contacts are made between individu-
als that are both non-susceptible is small and, therefore, the start
of an epidemic can be analysed using the corresponding branching
process [4,7]. In this branching process individuals have indepen-
dent random life lengths, all distributed as L. During their lifetime
they get children at a constant rate k. As in the epidemic process,
detections take place at a per capita rate of d.

Remark 1. For definition purposes we only consider the SIR
epidemic in this paper. However, all results of this paper hold for
all types of epidemics in which the number of infectious individ-
uals, can be approximated by the number of living individuals in a
branching process in which both the per capita birth rate and
the per capita detection rate are constant over the lifetime. So, also
SIS (Susceptible ? Infectious ? Susceptible) epidemics, in which
recovered individuals are immediately susceptible again, SIRS
(Susceptible ? Infectious ? Removed/Recovered ? Susceptible)
epidemics, in which recovered individuals become susceptible
again after some (possibly random) time period or epidemics in
homogeneous populations in which deaths and births are taken
into account may be considered.

From queueing theory, we know that we can relate the so-called
M(emoryless)/G(eneral)/1-queue with a Processor Sharing service
discipline (or M=G=1-PS) queue [8–11] to a branching process.
The M=G=1 queue is defined as follows. Customers enter a queue
at a constant rate k and they require a random amount of serving
time (their workload) from a server. The workloads of the custom-
ers are independent and distributed as L. A single server is serving
the queue.

The processor sharing service discipline may be interpreted as
the limit of a round robin service discipline. In that discipline,
the server serves a customer either for a time length h, or if the
remaining amount of serving time is less than h, until the customer
is completely served. After this time length the server moves on to
the next customer. Customers that are not completely served yet
stay in the queue, while completely served customers leave the
queue. After serving the last customer in the queue, the server re-
turns to the first customer that is still in the queue. The processor
sharing discipline is obtained by taking the limit h& 0.
For the M=G=1 queue with round robin service discipline, we
may consider customers that arrive during the time that the server
was serving customer i as children of i. In this way we obtain a
branching process, in which individuals can give birth to other
individuals during a random period distributed as L and during
which it gets children at a constant rate k. Note that time in the
queueing process is not the same as time in the branching process,
because in the branching process the individuals all grow older at a
constant speed, while in the queueing process, customers are
served one by one, where the server has a constant speed. So, if
the number of customers in the queue is increasing, the service
per time unit for a given individual in the queue is decreasing.
However, if h& 0, the order of events (arrivals/births and depar-
tures/deaths) in the processes is the same. Another difference be-
tween the queueing process and the corresponding branching
process is that for the branching process the state without individ-
uals is absorbing, while in the queueing process customers may ar-
rive in an empty queue, but up to the first time the queue becomes
empty, the two processes are in direct correspondence.

We add a ‘catastrophe’ process [12] to the queueing process in
which catastrophes occur at a constant rate d, i.e., independent of
the number of customers in the queue. At the time of a catastrophe,
a sudden change might happen to the queue, e.g., the queue might
be emptied or a fraction of the queue might leave the queue. How-
ever, in this paper we are only interested in the number of custom-
ers in the queue at the moment of a catastrophe. Therefore, we do
not need to specify what happens at the time of a catastrophe. Yet
in the epidemic context we shall assume that detection has no im-
pact at all, as this helps to keep the notation simple.

The catastrophes are incorporated in the branching process cor-
responding to the M=G=1-PS queue as follows: Consider the M=G=1
queue with round robin service discipline. If a catastrophe occurs
at a moment customer i is served, then it can be seen as a detection
of individual i in the branching process. The M=G=1-PS queue with
catastrophes is obtained by h& 0, where h is the time a server
stays with the same customer. The order of events (arrivals/births,
departures/deaths and catastrophes/detections) in the branching
process with detections and the M=G=1-PS queue is still main-
tained. So, the number of individuals alive at the moment of the
first detection in a branching process has the same distribution
as the number of customers in the M=G=1-PS queue at the first
catastrophe.

We use a result from Kitaev [11], to show that the number of
customers in a queue at the first catastrophe, conditioned on the
queue being in its first busy period, i.e., the period in which the ser-
ver was non-stop working, starting at the arrival of the first cus-
tomer, is geometrically distributed. This implies that the number
of infectious individuals at the moment of the first detection for
an SIR epidemic in a large randomly mixing population is also geo-
metrically distributed. So, the distribution of this number can be
described by one parameter, while the process itself is described
by 2 parameters and an unspecified distribution. This implies that
if the only observations available, are the number of infectious
individuals at the moment of the first detection in different out-
breaks of the same disease, then we can only estimate 1 parameter
and we cannot provide estimates for k, d and the distribution of L
separately.

1.3. Earlier work

The relation between M=G=1 queues and birth and death pro-
cesses has already been discussed by Kendall in [9,10]. In [11] a
discussion on the relation between birth and death processes and
the M=G=1 queues with processor sharing can be found. References
to earlier work on this subject are also given in that paper.
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We are aware of only a few references to queueing theory in the
epidemiological literature. In [7] results for the M=M=1 queue (the
queue with exponentially distributed workloads) are used to
compute the total cost of an epidemic, which is interpreted as a
constant times the total number of infection days (i.e., it is inter-
preted as a constant times the integral of the number of infecteds
over time). In [13] (see also [4, p. 12]) a construction for an SIR epi-
demic is given, which is very close to interpreting the epidemic as
an M=G=1 queue with processor sharing, however the relation is
not made explicit there. The random time change discussed here
was also applied in [14], but in that paper is no explicit reference
to queueing theory.

1.4. Outline of the paper

In the next section, we define the SIR epidemic with detections,
the corresponding branching process with detections and the
M=G=1-PS queue with catastrophes in mathematical language, in
order to show the relationship between epidemics and queues
in a rigorous way. In Section 3 we will provide a random time
change argument to establish the relation between SIR epidemics
and M=G=1-PS queues and we show that the number of infectious
individuals at the moment of first detection in a large population
is geometrically distributed. We use explicit computations or refer
to literature in which the results are already proven rigorously.
However, if possible, we also give heuristic and intuitive argu-
ments for the claims made, which might be helpful for further
use of queueing theory in epidemiology. In particular, in Section
4 we provide an intuitive proof for the geometric distribution of
the number of infectious individuals at the moment of first detec-
tion if the infectious periods are exponentially distributed. Some
applications of the results of this paper are discussed in Section
5. In the final section we discuss possible extensions and some
limitations of the use of queueing theory in epidemics. In partic-
ular, we discuss whether the coupling between branching pro-
cesses and M=G=1 queues can be made for branching processes
corresponding to epidemic models in which the infectivity/con-
tact rate of an individual is not constant during its infectious
period.

2. Definitions and notation

Before we formally describe the relevant processes for this pa-
per, we give some definitions. We define 1=0 :¼ limx&01=x ¼ 1,
1=1 :¼ limx!11=x ¼ 0 and 0�1 ¼ limx!10� x ¼ 0. Furthermore,
the maximum/supremum of an empty set is 0, while the mini-
mum/infimum of an empty set is 1. The indicator function 1ðAÞ
takes value 1 if the event A occurs and 0 if the event A does not oc-
cur. For a function f ðxÞ, we define f ðxÞ ¼ oðxÞ if limx&0f ðxÞ=x ¼ 0.
The natural numbers, not including 0, are denoted by N and
N0 :¼ N [ f0g. Finally, with some abuse of notation, for all pro-
cesses under consideration, we will use fFt ; t P 0g to denote
the filtration to which the process is adapted [15, p. 475]. So, all
information on the process available at time t is contained in Ft .

Throughout this paper we may deviate from standard notation
in literature, because we want to relate different processes, which
all have different standard notations for quantities that are related
in this paper. In our notation we want to make clear which quan-
tities in the different processes are related.

2.1. The SIR epidemic with detections

We consider an SIR epidemic in a homogeneous and randomly
mixing population without demographic turnover of size n. Let
SðnÞðtÞ be the number of susceptible individuals in the population
at time t, IðnÞðtÞ the number of infectious individuals at time t and
RðnÞðtÞ the number of removed/recovered individuals at this time.
The epidemic starts with one infectious individual in a further sus-
ceptible population, i.e., SðnÞð0Þ ¼ n� 1, IðnÞð0Þ ¼ 1 and RðnÞð0Þ ¼ 0.
Furthermore, we assume that the initial infectious individual was
infected itself at time 0.

Every pair of individuals makes contact at a constant, strictly
positive, rate k=ðn� 1Þ, i.e., contacts between a pair of individuals
are made according to a Poisson process with parameter
k=ðn� 1Þ. If a contact is made between an infectious and a suscep-
tible individual, the susceptible individual becomes immediately
infectious.

An infected individual stays infectious for a random infectious
period, which is distributed as the random variable L, which is al-
most surely (a.s.) positive, i.e., Pð0 < L 61Þ ¼ 1. The infectious
periods are independent and identically distributed (i.i.d.). After
the infectious period individuals become immune and stay so
forever.

We extend the standard SIR epidemic model by adding a detec-
tion process. In this process, infectious individuals are detected at a
constant per capita rate d. Mathematically, the detection process
corresponds to a Poisson process with parameter d > 0, which is
defined on all infectious periods. Let DðnÞi denote the random time
of the ith detection in the population. If the number of infectious
individuals is 0 before the ith detection takes place, we say
DðnÞi ¼ 1. As mentioned before, in this paper we are interested in
the number of infectious individuals at the time of first detection
IðnÞðDðnÞ1 Þ, conditioned on DðnÞ1 <1.
2.2. The branching process

Let ZðtÞ :¼ Zk;bðsÞ;dðtÞ be a branching process [6] with detections
in which individuals have i.i.d. life lengths, distributed as L, with
moment generating function bðsÞ :¼ Eðe�sLÞ and give birth at a con-
stant per capita rate k > 0. So new individuals are born at a total
rate of kZðtÞ. The process starts with one individual, whose age at
time 0 is 0. There is a detection process on top of this process of
births and deaths, which is a homogeneous Poisson process with
rate d > 0, which is defined on the life times of the individuals.
So, detections happen at a total non-constant rate dZðtÞ. Again,
detections do not influence the further course of the branching
process. We only use the subscripts in Zk;bðsÞ;dðtÞ if we want to stress
the dependence on these parameters.

We use Di to denote the time of the ith detection in real-time
in the branching process. If the branching process goes extinct
before the ith detection, then Di ¼ 1. We label the individuals
in the epidemic by the real-time order in which they appear in
the branching process, so the ancestor in the branching process
gets label 1, its first child gets label 2, then the next individual
to be born (which is either a child or grand-child of the ances-
tor) gets label 3, and so on. Note that in general, it is not individ-
ual i that is detected at time Di. The random life length of
individual i is denoted by Li and its time of birth by Ti. So,
T1 ¼ 0. We define AiðtÞ, the age of individual i at time t, as
AiðtÞ ¼ ðt � TiÞ1ðTi < tÞ for t < Ti þ Li and AiðtÞ ¼ 1 if t P Ti þ Li.
So, d

dt AiðtÞ ¼ 1ð0 < AiðtÞ < LiÞ.
Observe that

ZðtÞ ¼
X1
i¼1

1ðTi 6 tÞ � 1ðAiðtÞ ¼ 1Þð Þ ð1Þ

is defined in terms of events occurring no later than t, so ZðtÞ 2Ft .
For i 2 N, the random variables Ti and Di are such that both of

the sequences are increasing in i and
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P Ti 2 ðt; t þ hÞjFt ; ZðtÞ ¼ k;
X1
j¼1

1ðTj 6 tÞ ¼ i� 1

 !
¼ kkhþ oðhÞ;

P Di 2 ðt; t þ hÞjFt ; ZðtÞ ¼ k;
X1
j¼1

1ðDj 6 tÞ ¼ i� 1

 !
¼ dkhþ oðhÞ;

P
X1
i¼1

1ðTi 2 ðt; t þ hÞÞ þ
X1
i¼1

1ðDi 2 ðt; t þ hÞÞ > 1

 !
¼ oðhÞ:

ð2Þ

If ZðtÞ ¼ 0 and
P1

j¼11ðTj 6 tÞ ¼ i (resp.
P1

j¼11ðDj 6 tÞ ¼ i), then
Tk ¼ 1 (resp. Dk ¼ 1) for k > i.

2.3. The MðkÞ=GðbðsÞÞ=1 queue with Processor Sharing and
catastrophes

We define the MðkÞ=GðbðsÞÞ=1 queue with Processor Sharing
with catastrophes or M=G=1-PS queue with catastrophes,
QðtÞ :¼ QPSðtÞ :¼ QPS

k;bðsÞ;dðtÞ, as follows. Customers arrive in a queue
according to a homogeneous Poisson process on the positive half
line ð0;1Þ, with rate k. Each customer brings in a workload, which
is independent of the arrival process and workloads of other cus-
tomers and distributed as the random variable L, with moment
generating function bðsÞ. We assume that Pð0 < L 61Þ ¼ 1. The
customers in the queue are labelled according to the order in
which they arrived in the queue. The time of arrival of the ith cus-
tomer is denoted by eT i. Unless specified otherwise, we assume that
no customers are in the queue at time t ¼ 0.

The total workload customer i brings in is denoted by Li. The
amount of service time customer i already received at time t, is de-
noted by eAiðtÞ, where we define eAiðtÞ ¼ 0 for t 6 eT i. Customer i
leaves the queue at supft; eAiðtÞ < Lig and from that time on
(including the time of departure) eAiðtÞ ¼ 1.

One server serves the people in the queue in such a way that all
customers in the queue receive the same amount of service per
time unit. Thus, d

dt
eAiðtÞ ¼ 1ð0 < eAiðtÞ <1Þ=QðtÞ, where QðtÞ is the

number of customers in the queue at time t.
Independently of the ordinary M=G=1-PS queueing process as

defined above, we define a catastrophe process. Catastrophes occur
according to a Poisson process on ð0;1Þwith rate d. The time of the
ith catastrophe is denoted by eDi.

Note that

QðtÞ ¼
X1
i¼1

1ðeT i 6 tÞ � 1ðeAiðtÞ ¼ 1Þ
� �

: ð3Þ

So, QðtÞ is (as is ZðtÞ) defined in terms of events occurring no later
than t, i.e., QðtÞ 2Ft . For i 2 N, the random variables eT i and eDi

are defined such that both of the sequences are increasing in i and

P eT i 2 ðt; t þ hÞjFt;
X1
j¼1

1ðeT j 6 tÞ ¼ i� 1

 !
¼ khþ oðhÞ;

P eDi 2 ðt; t þ hÞjFt ;
X1
j¼1

1ðeDj 6 tÞ ¼ i� 1

 !
¼ dhþ oðhÞ;

P
X1
i¼1

1ðeT i 2 ðt; t þ hÞÞ þ
X1
i¼1

1ðeDi 2 ðt; t þ hÞÞ > 1

 !
¼ oðhÞ:

ð4Þ

Note that, while Z(0) –0, Qð0Þ ¼ 0.

3. The relationship between the SIR-epidemic with detections
and the M=G=1-PS queue with catastrophes

In this section we show that for the SIR epidemic with infection
rate k, detection rate d and moment generating function of the
infectious period bðsÞ ¼ Eðe�sLÞ,
lim
n!1

P IðnÞðDðnÞ1 Þ ¼ kjDðnÞ1 <1
� �

¼ P Zk;bðsÞ;dðD1Þ ¼ kjT1 ¼ 0;D1 <1
� �

:

So, in the large population limit, the number of infected individuals
at the time of first detection is distributed as the number of alive
individuals at the time of first detection in the corresponding
branching process.

After that we prove that

P Zk;bðsÞ;dðD1Þ ¼ kjT1 ¼ 0;D1 <1
� �
¼ P Q PS

k;bðsÞ;dðeD1Þ ¼ kjQ PS
k;bðsÞ;dð0Þ ¼ 0;QPS

k;bðsÞ;dðeD1Þ > 0
� �

: ð5Þ

and finally we use this result to show that there is a p :¼ pðk;bðsÞ; dÞ
such that for k 2 N,

P Zk;bðsÞ;dðD1Þ ¼ kjT1 ¼ 0;D1 <1
� �

¼ pð1� pÞk�1
: ð6Þ
3.1. The relationship between the epidemic process and the branching
process

Ball and Donnelly [7] proved that the epidemic process IðnÞðtÞ for
n 2 N and the branching process ZðtÞ can be coupled in such a way
that there exists a constant c > 0 such that

sup
0<t<c logðnÞ

jIðnÞðtÞ � ZðtÞj ! 0 a:s: for n!1:

Furthermore, observe that if DðnÞ1 <1, then IðnÞðtÞP 1 for
0 < t < DðnÞ1 , and

PðDðnÞ1 < tjDðnÞ1 <1ÞP 1� e�dt :

This, in turn, implies that for c > 0,

lim
n!1

P DðnÞ1 < c logðnÞjDðnÞ1 <1
� �

¼ 1: ð7Þ

Combining the result by Ball and Donnelly with (7) gives that for
any k 2 N,

lim
n!1

P IðnÞðDðnÞ1 Þ ¼ kjDðnÞ1 <1
� �

¼ lim
n!1

P IðnÞðDðnÞ1 Þ ¼ kjDðnÞ1 < c logðnÞ
� �

PðDðnÞ1 < c logðnÞjDðnÞ1 <1Þ

þ lim
n!1

P IðnÞðDðnÞ1 Þ ¼ kjDðnÞ1 P c logðnÞ
� �

� P DðnÞ1 P c logðnÞjDðnÞ1 <1
� �

¼ lim
n!1

P IðnÞðDðnÞ1 Þ ¼ kjDðnÞ1 < c logðnÞ
� �

¼ lim
n!1

P ZðD1Þ ¼ kjDðnÞ1 < c log n
� �

¼ P ZðD1Þ ¼ kjD1 <1ð Þ:

The above results allow us to analyse the branching process ZðtÞ, in-
stead of the SIR epidemic in large populations. So, from now on we
will consider ZðtÞ instead of IðnÞðtÞ.

3.2. A random time change: from branching processes to the M=G=1-
PS queue

In this subsection we use a random time change to show that
Eq. (5) holds. Let

sðtÞ ¼
Z t

0
1=Zðt0Þdt0:

We see that for i 2 N and sðtÞ 6 Ti, AiðsðtÞÞ ¼ 0. Furthermore,

d
dt

AiðsðtÞÞ ¼ 1ð0 < AiðsðtÞÞ <1Þ
dsðtÞ

dt
¼ 1ð0 < AiðsðtÞÞ <1Þ=ZðtÞ;

where T1 ¼ 0 and for i < j, Ti < Tj a.s. The random time change does
not change the fact that the random variables Li are i.i.d., distributed
as L and independent of Tj for 1 6 j 6 i. Furthermore,
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ZðsðtÞÞ ¼
X1
i¼1

1ðTi 6 sðtÞÞ � 1ðAiðsðtÞÞ ¼ 1Þð Þ; ð8Þ

and

P Ti 2 ðsðtÞ; sðt þ hÞÞjFsðtÞ; ZðsðtÞÞ ¼ k;
X1
j¼1

1ðTj 6 sðtÞÞ ¼ i� 1

 !
¼ kkðsðt þ hÞ � sðtÞÞ þ oðhÞ ¼ kkðh=kþ oðhÞÞ þ oðhÞ
¼ kh1ðk > 0Þ þ oðhÞ:

ð9Þ

Similarly, we deduce

P Di 2 ðsðtÞ; sðt þ hÞÞjFsðtÞ; ZðtÞ ¼ k;
X1
j¼1

1ðDj 6 sðtÞÞ ¼ i� 1

 !
¼ dh1ðk > 0Þ þ oðhÞ;

P
X1
i¼1

1ðTi 2 ðsðtÞ; sðt þ hÞÞÞ þ
X1
i¼1

1ðDi 2 ðsðtÞ; sðt þ hÞÞÞ > 1

 !
¼ oðhÞ:

ð10Þ

Note that, as long as ZðsðtÞÞ > 0, the description of the process
Zk;bðsÞ;dðsðtÞÞ is the same as the description of QPS

k;bðsÞ;dðtÞ, with Ti (re-
sp. Di) replaced by eT i (resp. eDi). So,

P Zk;bðsÞ;dðD1Þ ¼ kjT1 ¼ 0; Zk;bðsÞ;dðD1Þ > 0
� �

¼ PðQ PS
k;bðsÞ;dðeD1Þ

¼ kjeT 1 ¼ 0; min
06t6eD1

Q PS
k;bðsÞ;dðtÞ > 0Þ: ð11Þ

We proceed by showing that

P QðeD1Þ ¼ kjeT 1 ¼ 0; min
06t6eD1

QðtÞ > 0

 !

¼ P QðeD1Þ ¼ kjQð0Þ ¼ 0;QðeD1Þ > 0
� �

:

We use the following notation for the starting and stopping times of
the busy periods of the queue:

r1 :¼ minft P 0; QðtÞ > 0g;
r�n :¼ minft > rn; QðtÞ ¼ 0g; for n 2 N;

rn :¼ minft > r�n�1; QðtÞ > 0g for n 2 N n f1g:

Furthermore, let NðtÞ :¼ maxfn P 1;r�n 6 tg, be the number of
times the queue becomes empty in the interval ð0; tÞ. Observe that

PðQðt þ sÞ ¼ kj
X1
i¼1

1ðri ¼ sÞ ¼ 1;FsÞ ¼ PðQðtÞ ¼ kjT1 ¼ 0Þ;

and that eD1 is exponentially distributed and independent of the
queue length up to time eD1. Therefore,

P QðeD1Þ ¼ kjQð0Þ ¼ 0;QðeD1Þ > 0
� �

¼
P1
n¼0

P QðeD1Þ ¼ kjNðeD1Þ ¼ n;Qð0Þ ¼ 0;QðeD1Þ > 0
� �

P NðeD1Þ ¼ njQð0Þ ¼ 0;QðeD1Þ > 0
� �

¼
P1
n¼0

P QðeD1Þ ¼ kjNðeD1Þ ¼ n;0 < rnþ1 < eD1;QðeD1Þ > 0
� �

P NðeD1Þ ¼ njQð0Þ ¼ 0;QðeD1Þ > 0
� �

¼
P1
n¼0

P Qð½eD1 � rnþ1� þ rnþ1Þ ¼ kjNðeD1Þ ¼ n;0
�

¼ eT 1 < rnþ1 < eD1;QðeD1Þ > 0
�

P NðeD1Þ ¼ njQð0Þ ¼ 0;QðeD1Þ > 0
� �

¼
X1
n¼0

P QðeD1Þ ¼ kjNðeD1Þ ¼ 0; eT 1 ¼ 0;QðeD1Þ > 0
� �

P NðeD1Þ ¼ njQð0Þ ¼ 0;QðeD1Þ > 0
� �

¼P QðeD1Þ ¼ kjeT 1 ¼ 0; eD1 6 r�1
� �

¼P QðeD1Þ ¼ kjeT 1 ¼ 0; min
06t6eD1

QðtÞ > 0

 !
: ð12Þ

Combining this result with Eq. (11) leads to Eq. (5).

3.3. The distribution of QðeD1Þ in the M=G=1-PS queue

By [11, eq. (2.6)], we know that for QðtÞ ¼ QPS
k;bðsÞ;d,Z 1

0
e�dtEðsQðtÞjQð0Þ ¼ 0Þdt ¼ 1

dþ ð1� sÞkð1� pÞ ;

where p is the smallest root of the equation p ¼ bðdþ kð1� pÞÞ :¼
Eðe�ðdþkð1�pÞÞLÞ. Since gðxÞ :¼ Eðe�ðdþkð1�xÞÞLÞ � x, is convex and
gð0Þ > 0 and gð1Þ < 0, p is the unique root of gðxÞ ¼ 0 in ½0;1�.

We observe that

E sQðeD1ÞjQð0Þ ¼ 0
� �

¼ d
Z 1

0
e�dtEðsQðtÞjQð0Þ ¼ 0Þdt

¼ d
dþ ð1� sÞkð1� pÞ

and that if the random variable X is geometrically distributed with
parameter p, then EðsX�1Þ ¼

P1
k¼0pð1� pÞksk ¼ pð1� ð1� pÞsÞ�1. By

combining these observations with the fact that the probability
generating function determines a distribution on the positive inte-
gers completely [15], we deduce that

P QðeD1Þ ¼ kjQð0Þ ¼ 0;QðeD1Þ > 0
� �

¼ pð1� pÞk�1 ð13Þ

with

p ¼ d=ðdþ ð1� pÞkÞ; ð14Þ

and p is the root in ½0;1� of p ¼ Eðe�ðdþð1�pÞkÞLÞÞ. This means that con-
ditioned on Qð0Þ ¼ 0 and QðeD1Þ > 0, QðeD1Þ is geometrically distrib-
uted (this has already been observed in [8]).

Combined with the results of the previous subsection, we come
to the main result of this paper: For k 2 N

PðZk;bðsÞ;dðD1Þ ¼ kjD1 <1Þ ¼ pð1� pÞk�1
; ð15Þ

with p as above.

4. A special case: Markovian models

The proof of the result by Kitaev [11] discussed in (3.3) is rigor-
ous, but we did not succeed in finding a intuitive argument for why
it should be true. However, if the queueing process has the Markov
property, then we can provide an intuitive proof. This will be done
in this section.

If L is exponentially distributed with parameter l, then the SIR
epidemic, the branching process and the queueing process under
consideration are all Markovian. The branching process then be-
comes a simple birth–death process [15, p. 251] with detections,
described by the following equations:

PðZðt þ hÞ ¼ kþ 1jZðtÞ ¼ kÞ ¼ kkhþ oðhÞ;
PðZðt þ hÞ ¼ k� 1jZðtÞ ¼ kÞ ¼ lkhþ oðhÞ;
PðDi 2 ðt; t þ hÞjDi�1 6 t < Di; ZðtÞ ¼ kÞ ¼ dkhþ oðhÞ;
Pðmore than 1 event in ðt; t þ hÞjZðtÞ ¼ kÞ ¼ oðhÞ:

ð16Þ
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The MðkÞ=Gð l
lþsÞ=1-queue with exponentially distributed workloads

with parameter l, is usually referred to as the MðkÞ=MðlÞ=1 queue
[15, p. 420] and [9]. A property of this model is that service disci-
plines for which no knowledge on the remaining workload of the
customer is used, lead to the same process QðtÞ, because no matter
which customer is served, the served customer will leave the queue
with probability lhþ oðhÞ during an interval of length h. In partic-
ular, the First-In-First-Out (FIFO) discipline (in which customers are
served one by one until they are fully served in the order of arrival),
the Last-In-First-Out (LIFO) discipline (in which the server always
serves the customer that arrived last out of the customers still in
the queue) and the Processor Sharing discipline for M=M=1 queues
with catastrophes all lead to the equations

P Qðt þ hÞ ¼ kþ 1jQðtÞ ¼ kð Þ ¼ khþ oðhÞ;
P Qðt þ hÞ ¼ k� 1jQðtÞ ¼ kð Þ ¼ lh1ðk > 0Þ þ oðhÞ;

P eDi 2 ðt; t þ hÞjeDi�1 6 t < eDi

� �
¼ dhþ oðhÞ;

P more than 1 event in ðt; t þ hÞð Þ ¼ oðhÞ:

ð17Þ

We continue by considering an M=G=1 queue with catastrophes if
the server uses a LIFO discipline, Q LIFOðtÞ ¼ Q LIFO

k;bðsÞ;dðtÞ. We deduce
that for k 2 N and some 0 < p0 < 1,

PðQ LIFOðeD1Þ ¼ kjeD1 <1Þ ¼ p0ð1� p0Þk:

It will turn out that p0 ¼ p, [8]. If L is exponentially distributed, then
this result applies also to the processor sharing discipline, because
as stated above, Q LIFOðtÞ and QPSðtÞ have the same law for M=M=1
queues.

4.1. The distribution of QðeD1Þ in the M=G=1-LIFO queue with
catastrophes

For the M=G=1-LIFO queue with catastrophes, the event

feT 1 ¼ 0;min
06t6eD1

QðtÞ > 0g is the same as the event feT 1 ¼ 0; cus-

tomer 1 is still in the queue at time eD1g. Furthermore, note that if a
LIFO service discipline is applied and customer i is not in the queue

at time eD1, then none of the customers that arrived between the
arrival and departure of customer i, will be in the queue at timeeD1. So, we may ignore the arrival of such customers. Therefore,
we say that the only two ‘good’ events are arrivals of new custom-

ers, that will be in the queue at time eD1 and catastrophes. The first

‘good’ event after eT 1 occurs during the period that customer 1 is
served and the probabilities are d=ðdþ ð1� p0ÞkÞ and ð1� p0Þk=
ðdþ ð1� p0ÞkÞ for a catastrophe and an arrival, respectively, where

p0 :¼ P min
06t6eD1

QðtÞ ¼ 0jeT 1 ¼ 0

 !

is the probability that the queue is empty before the first catastro-
phe occurs. If this ‘good’ event is a catastrophe, then QðeD1Þ ¼ 1. If
the first good event is an arrival, then customer 1 will not be served
any more before eD1, and because eD1 is exponentially distributed,
the number of individuals that arrived strictly after eT 1 and will
add to QðeD1Þ, is distributed as QðeD1Þ. So,

P QðeD1Þ ¼ 1jeT 1 ¼ 0; min
06t6eD1

QðtÞ > 0

 !
¼ d

dþ 1� p0ð Þk

and for k 2 N,

P QðeD1Þ ¼ kþ 1jeT 1 ¼ 0; min
06t6eD1

QðtÞ > 0

 !

¼ ð1� p0Þk
dþ ð1� p0ÞkP QðeD1Þ ¼ kjeT 1 ¼ 0; min

06t6eD1

QðtÞ > 0

 !
:

Combining this with the result of Eq. (12) in Section 3.2 gives
that for k 2 N, P QðeD1Þ ¼ kjQð0Þ ¼ 0;QðeD1Þ > 0

� �
¼ p0ð1� p0Þk�1,

where

p0 ¼ d=ðdþ ð1� p0ÞkÞ: ð18Þ

The same argument can be used to show that PðQðeD1Þ ¼ 0jQð0Þ ¼
0Þ ¼ p0. Note that p0 is the probability that during the period cus-
tomer 1 is served, neither catastrophes nor arrivals of customers
that are still in the queue at eD1, occur. Catastrophes occur at rate
d and arrivals of customers that are still in the queue after an expo-
nentially (d) distributed time occur at rate ð1� p0Þk. So, p0 is the
smallest (and unique) root in ½0;1� of

p0 ¼ E e�ðdþð1�p0 ÞkÞL� �
: ð19Þ

This is the same equation as the equation for p given in the previous
section and thus,

P QPSðeD1Þ ¼ kjQ PSð0Þ ¼ 0
� �

¼ PðQ LIFOðeD1Þ ¼ kjQ LIFOð0Þ ¼ 0Þ:

In particular, we have provided a straightforward proof for the fact
that P QðeD1Þ ¼ kjQð0Þ ¼ 0;QðeD1Þ > 0

� �
¼ pð1� pÞk, in the M=M=1

queue with catastrophes and PðZðD1Þ ¼ kjD1 <1Þ ¼ pð1� pÞk�1 in
the simple birth–death process.

5. Possible applications

5.1. Within herd spread of contagious animal diseases

The spread of very contagious animal diseases like Classical
Swine Fever (CSF), Foot and Mouth Disease (FMD) and Avian
Influenza (AI) within farms usually progresses as follows: the
pathogen is imported in a farm and one animal in the farm be-
comes infected. Then an SIR epidemic starts to spread within
the farm. At a certain moment the farmer observes that an animal
is diseased. Upon this detection the whole herd will be culled to
prevent spread to other farms. In general the number of animals
within a farm is large and the number of infectious animals at the
moment of detection is small enough to accept the branching
process approximation.

In [3] the following model for the spread of CSF within a farm is
used. The spread starts with one infectious individual at time t ¼ 0.
Every infected animal ‘brings forth’ new infected individuals at rate
k. Infectious animals recover at rate l and are detected at rate d.
Upon detection all animals in the farm are culled. Because the ani-
mals are immediately culled upon detection, the distribution of the
number of infectious individuals at the moment of detection is the
best information we can hope for to obtain if we only consider the
within-farm spread. However, questions on this distribution are
not addressed in [3].

In this setting with an exponentially distributed infectious per-
iod, some straightforward algebra (14) leads to

p ¼
lþ dþ k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ dþ kÞ2 � 4kl

q
2k

and

p ¼ 1�
lþ dþ k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ dþ kÞ2 � 4kl

q
2l

:

Because the distribution of the number of infectious animals at the
moment of detection is described by 1 parameter, more information
than the number of infectious animals in a detected herd is needed
in order to estimate r :¼ k� l and R :¼ k=l (respectively, the expo-
nential growth rate of the expected number of infected individuals
and the basic reproduction number [5] within a farm). Possible
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further information should be obtained by contact tracing (by
which we may obtain estimates for the real time between the first
infection within a farm and the moment of detection), or by looking
for traces of immune response in all culled animals on a farm and
obtain the total number of animals infected before detection. Note
that this total number is geometrically distributed with parameter
d=ðkþ dÞ, because every time a detection, infection or recovery oc-
curs, the probability that a detection occurs is d=k times as high
as the probability that an infection occurs.

5.2. Spread of nosocomial pathogens like MRSA

The spread of infectious diseases in hospitals is usually different
from the spread of diseases in the general community. Because of
antibiotic pressure and because of the weak immune responses of
hospitalised patients, these people are more susceptible to many
pathogens, than healthy people. We will use the following model
for the spread of methicillin-resistant Staphylococcus aureus
(MRSA) in hospitals in countries with low prevalence of MRSA (like
The Nordic countries and The Netherlands): At very low rate MRSA
carriers enter a hospital. Say that the MRSA is brought in at time
t ¼ 0 and carriers arrive as single patients, so Ið0Þ ¼ 1. Because
the rate at which MRSA carriers enter the hospital is very low,
we exclude further introductions from outside the hospital during
the outbreak started by the first entering of an MRSA carrier. Every
infected patient infects other patients at rate k, is discharged from
the hospital at rate l and is detected at rate d. As long as IðtÞ is
small compared to the total number of patients in the hospital or
ward, the constant infection rate is reasonable.

Upon detection all patients in the hospital (or ward) are
screened for MRSA colonisation and all infectious patients still in
the hospital will be detected and isolated. Ideally this would make
further infections within the hospital impossible. So IðtÞ increases
by 1 at rate kIðtÞ, decreases by 1 at rate lIðtÞ and detection occurs
at rate dIðtÞ. The dynamics of IðtÞ in this model are exactly the same
as the dynamics of IðtÞ in the model for the within farm spread of
contagious animal diseases. Therefore, all results of the previous
Section 5.1 can be used for the spread of low prevalence nosoco-
mial pathogens. Note that the assumption that patients leave the
hospital at a constant rate is not necessary for applying the results
of this paper.

5.3. Change of behaviour because of knowledge of the epidemic

If an infectious disease is known to spread in a certain region,
physicians will be more alert on symptoms of the disease and peo-
ple will avoid crowded places or try to prevent their selves to be-
come infected in other ways, like wearing masks as people did
during the SARS epidemic in Asia. Therefore, it is reasonable to as-
sume that the first detection of an infected person will lead to an
increased rate of detection and a decreased rate of infection.

Assume that the infection rate before the first detection was
k1IðtÞ and that the detection rate was d1IðtÞ, while after the first
detection the infection (resp. detection) rate will be k2IðtÞ (resp.
d2IðtÞ). We assume that the recovery rate per individual, l does
not change because of the first detection. From previous
subsections we know that the number of infectious individuals at
the moment of the first detection is geometrically distributed with

parameter p1 :¼ 1� lþd1þk1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþd1þk1Þ2�4k1l
p

2l .
From [15, p. 252] we deduce that the distribution of the number

of individuals in a birth–death process at time s, IðsÞ, with per ca-
pita birth rate k2 and death rate l (for the moment assumed to be
not equal to k2), which started with 1 infectious individual is given
by PðZðsÞ ¼ kÞ ¼ qkðsÞ for k 2 N0, with
q0ðsÞ ¼
er2s � 1

R2er2s � 1
;

qiðsÞ ¼ ð1� q0ðsÞÞð1� R2q0ðsÞÞðR2q0ðsÞÞ
i�1 for all i P 1;

where r2 ¼ k2 � l and R2 ¼ k2
l (see [15] for the case k2 ¼ l).

Some algebra yields that if the initial number of infectious indi-
viduals is geometrically distributed with parameter p1, then at
time s the number of infectious individuals YðsÞ will be given by:

PðYðsÞ ¼ 0Þ ¼ q0ðsÞp1

1� ð1� p1Þq0ðsÞ

PðYðsÞ ¼ iÞ ¼ 1� q0ðsÞp1

1� ð1� p1Þq0ðsÞ

� �
ð1� R2q0ðsÞÞp1

1� ð1� p1Þq0ðsÞ

� 1� ð1� R2q0ðsÞÞp1

1� ð1� p1Þq0ðsÞ

� �i�1

for i P 1

In this example an exponentially distributed infectious period is as-
sumed, because then the number of infectious individuals at the
time of first detection contains as much information for the descrip-
tion of the progress of the epidemic after this detection, as knowl-
edge of the whole process up to the time of first detection does.
Note that for the epidemic with general infectious period it is pos-
sible to obtain the distribution of the number of infectious individ-
uals that has been infectious for at least x time units at the moment
of first detection from [11, eq.(2.4)].

6. Extensions, limitations and questions

In the previous sections we have assumed that the infection
rate and detection rate during an infectious period are constant.
It is tempting to conjecture that if the detection rate and infection
rate are changing over time, but stay proportional, the number of
infectious individuals at time D1 is still geometrically distributed.
Or formulated in the terminology of the corresponding branching
process: let kðaÞ be the (possibly random) rate at which an individ-
ual at age a gives birth and dðaÞ the (possibly random) detection
rate of this individual at age a (if it is still alive at age a), where
kðaÞ ¼ cdðaÞ for some non-random constant c.

An example of such a model is the SEIR (Susceptible!
Exposed! Infectious! Removed) epidemic model. In this model
an individual first goes through a latent/exposed state after being
infected, and after some random time, the individual becomes
infectious itself. During the infectious period an individual can be
detected, which happens at rate d. Apart from the latent period
the model is the same as the SIR epidemic model.

If the infectious period is exponentially distributed with param-
eter l, and the latent periods are i.i.d. (according to any distribu-
tion), then in the large population limit the dynamics of
EðtÞ þ IðtÞ are described by:

P Eðt þ hÞ þ Iðt þ hÞ ¼ kþ 1jEðtÞ þ IðtÞ ¼ k; IðtÞ ¼ lð Þ ¼ klhþ oðhÞ;
P Eðt þ hÞ þ Iðt þ hÞ ¼ k� 1jEðtÞ þ IðtÞ ¼ k; IðtÞ ¼ lð Þ ¼ llhþ oðhÞ;
P Di 2 ðt; t þ hÞjDi�1 6 t < Di; IðtÞ ¼ lð Þ ¼ dlhþ oðhÞ;
P more than 1 event in ðt; t þ hÞjIðtÞ ¼ lð Þ ¼ oðhÞ;

ð20Þ

where events are infections, recoveries and detections. The time-
change argument of Section 3 can be applied with

s0ðtÞ ¼
Z t

0
1ðIðt0Þ > 0Þ=Iðt0Þdt0:

and we see that the dynamics of Iðs0ðtÞÞ þ Eðs0ðtÞÞ are exactly the
dynamics of an M=M=1 queue.



Table 1
Results of numerical simulations of 109 detected epidemics for several distributions
of the infectious period. For all simulation, the latency period is exponentially
distributed with a mean of 1 day, and d ¼ 1 and k ¼ 1. The mean duration of the
infectious period is 2 days. The infectious period is either constant, exponentially
distributed or gamma distributed with a variance of 2 days. We tested whether the
outbreak sizes are geometrically distributed (with parameter p ¼ 1=l, with l the
mean outbreak size) using a v2 distribution. C++ code of the simulations is available
from the authors.

k I constant I exponentially distributed I gamma distributed

pk
pkþ1
pk

pk
pkþ1
pk

pk
pkþ1
pk

1 0.5121 0.4937 0.5615 0.4385 0.5429 0.4592
2 0.2529 0.4856 0.2529 0.4384 0.2493 0.4548
3 0.1228 0.4765 0.1228 0.4384 0.1134 0.4543
4 0.0589 0.4743 0.0589 0.4385 0.0515 0.4543
5 0.0281 0.4724 0.0281 0.4384 0.0234 0.4545
6 0.0133 0.4719 0.0133 0.4384 0.0106 0.4545
7 6.3e�3 0.4711 6.3e�3 0.4382 4.8e�3 0.4548
8 3.03�3 0.4710 3.0e�3 0.4395 2.2e�3 0.4548
9 1.4e�3 0.4727 1.4e�3 0.4365 1.0e�3 0.4541
10 6.6e�4 0.4690 6.6e�4 0.4403 4.5e�4 0.4545
Mean 1.936 1.781 1.838
v2 2.0e5 27.1 1.2e4
p-Value <1e(�4e5) 0.40 <1e(�2e3)
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However, simulations suggest that for the general SEIR epi-
demic, with non-exponentially distributed infectious periods,
EðD1Þ þ IðD1Þ is not geometrically distributed in the large popula-
tion limit (see Table 1).

An open question is whether there are SEIR epidemics with non-
exponentially distributed infectious periods, where EðD1Þ þ IðD1Þ is
geometrically distributed in the large population limit? Or if
kðaÞ ¼ cdðaÞ is a deterministic function, for which functions kðaÞ
and which distributions of the infectious period L, IðD1Þ is geomet-
rically distributed? To answer these questions it might be helpful
to have intuitive understanding of why

P QðeD1Þ ¼ kjQð0Þ ¼ 0;QðeD1Þ > 0
� �

¼ pð1� pÞk�1 ð21Þ
holds for the general M=G=1-PS queue with catastrophes. The
search for this intuitive understanding is still ongoing.
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