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Abstract. Using multimedia identification tools is considered as one
of the most promising solutions to help bridge the taxonomic gap and
build accurate knowledge of the identity, the geographic distribution and
the evolution of living species. Large and structured communities of na-
ture observers (e.g., iSpot, Xeno-canto, Tela Botanica, etc.) as well as
big monitoring equipment have actually started to produce outstanding
collections of multimedia records. Unfortunately, the performance of the
state-of-the-art analysis techniques on such data is still not well under-
stood and is far from reaching real world requirements. The LifeCLEF
lab proposes to evaluate these challenges around 3 tasks related to mul-
timedia information retrieval and fine-grained classification problems in
3 domains. Each task is based on large volumes of real-world data and
the measured challenges are defined in collaboration with biologists and
environmental stakeholders to reflect realistic usage scenarios. For each
task, we report the methodology, the data sets as well as the results and
the main outcomes.

1 LifeCLEF Lab Overview

Identifying organisms is a key for accessing information related to the ecology
of species. This is an essential step in recording any specimen on earth to be
used in ecological studies. But unfortunately, this is difficult to achieve due to
the level of expertise necessary to correctly record and identify living organisms
(for instance plants are one of the most difficult group to identify with more
than 300.000 species). This taxonomic gap has been recognized since the Rio
Conference of 1992, as one of the major obstacles to the global implementation
of the Convention on Biological Diversity. Among the diversity of methods used
for species identification, Gaston and O’Neill [21] discussed in 2004 the potential
of automated approaches typically based on machine learning and multimedia



data analysis methods. They suggested that, if the scientific community is able
to (i) overcome the production of large training datasets, (ii) more precisely
identify and evaluate the error rates, (iii) scale up automated approaches, and
(iv) detect novel species, it will then be possible to initiate the development of
a generic automated species identification system that could open up vistas of
new opportunities for pure and applied work in biological and related fields.

Since the question raised in [21], “automated species identification: why
not?”, a lot of work has been done on the topic [46,9,69,62,1,68,38,20,17] and it is
still attracting much research today, in particular on deep learning techniques. In
parallel to the emergence of automated identification tools, large social networks
dedicated to the production, sharing and identification of multimedia biodiver-
sity records have increased in recent years. Some of the most active ones like
iNaturalist®, iSpot [58], Xeno-Canto” or Tela Botanical® (respectively initiated
in the US for the two first and in Europe for the two last), federate tens of thou-
sands of active members, producing hundreds of thousands of observations each
year. Noticeably, the P1@ntNet initiative was the first one attempting to com-
bine the force of social networks with that of automated identification tools [38]
through the release of a mobile application and collaborative validation tools.
As a proof of their increasing reliability, most of these networks have started to
contribute to global initiatives on biodiversity, such as the Global Biodiversity
Information Facility (GBIF'!) which is the largest and most recognized one.
Nevertheless, this explicitly shared and validated data is only the tip of the ice-
berg. The real potential lies in the automatic analysis of the millions of raw
observations collected every year through a growing number of devices but for
which there is no human validation at all.

The performance of state-of-the-art multimedia analysis and machine learn-
ing techniques on such raw data (e.g., mobile search logs, soundscape audio
recordings, wild life webcams, etc.) is still not well understood and is far from
reaching the requirements of an accurate generic biodiversity monitoring sys-
tem. Most existing research before LifeCLEF has actually considered only a few
douzen or up to hundreds of species, often acquired in well-controlled environ-
ments [28,50,43]. On the other hand, the total number of living species on earth
is estimated to be around 10K for birds, 30K for fish, 300K for flowering plants
(cf. ThePlantlist'?) and more than 1.2M for invertebrates [3]. To bridge this gap,
it is required to boost research on large-scale datasets and real-world scenarios.

In order to evaluate the performance of automated identification technolo-
gies in a sustainable and repeatable way, the LifeCLEF!3 research platform was
created in 2014 as a continuation of the plant identification task [39] that was
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run within the ImageCLEF lab ! the three years before [28,29,27]. LifeCLEF
enlarged the evaluated challenge by considering birds and fishes in addition to
plants, and audio and video contents in addition to images. In this way, it aims
at pushing the boundaries of the state-of-the-art in several research directions
at the frontier of information retrieval, machine learning and knowledge en-
gineering including (i) large scale classification, (ii) scene understanding, (iii)
weakly-supervised and open-set classification, (iv) transfer learning and fine-
grained classification and (v), humanly-assisted or crowdsourcing-based classi-
fication. More concretely, the lab is organized around three tasks, each based :
PlantCLEF: an image-based plant identification task making use of
Pl@ntNet collaborative data

@ BirdCLEF: an audio recordings-based bird identification task making use
of Xeno-canto collaborative data

SeaCLEF': a video and image-based identification task dedicated to sea
organisms (making use of submarine videos and aerial pictures).

As described in more detail in the following sections, each task is based on
big and real-world data and the measured challenges are defined in collaboration
with biologists and environmental stakeholders so as to reflect realistic usage
scenarios. The main novelties of the 2016th edition of LifeCLEF compared to
the previous years are the following:

1. Introduction of new contents types: Both the plant and the bird tasks
introduced new types of contents in their respective test sets so as to focus on
more automated biodiversity monitoring scenarios. The test set of the plant
task was composed of the raw image search logs of the Pl@ntNet mobile
application (whereas previous editions were based on explicitly shared and
collaboratively validated citizen sciences data). For the bird task, the novelty
was the inclusion of soundscape recordings, i.e. continuous recordings of a
specific environment over a long period.

2. Identification of the individual level: Previous editions of LifeCLEF were
only concerned with species identification, i.e. retrieving the taxonomic name
of an observed living plant or animal. The sea task conducted in 2016, how-
ever, included an identification challenge at the individual level. For some
groups, notably whales, it is actually preferable to monitor the organisms at
the individual level rather than at the species level. This problem is much less
studied than species recognition and, to the best of our knowledge, Whale-
CLEF is the first system-oriented evaluation dedicated to this challenge in
the literature.

Overall, more than 130 research groups from around the world registered to
at least one task of the lab. Fourteen of them finally crossed the finish line by
participating in the collaborative evaluation and by writing technical reports
describing in details their evaluated system.

" http://www.imageclef .org/



2 Taskl: PlantCLEF

Image-based plant identification is the most promising solution towards bridging
the botanical taxonomic gap, as illustrated by the proliferation of research work
on the topic [33,10,41,35,2] as well as the emergence of dedicated mobile applica-
tions such as LeafSnap [43] or P1@ntNet [38]. As promising as these applications
are, their performance is still far from the requirements of a real-world’s eco-
logical surveillance scenario. Allowing the mass of citizens to produce accurate
plant observations requires to equip them with much more effective identification
tools. As an illustration, in 2015, 2,328,502 millions queries have been submit-
ted by the users of the Pl@ntNet mobile apps but only less than 1% of them
were finally shared and collaboratively validated. Allowing the exploitation of
the unvalidated observations could scale up the world-wide collection of plant
records by several orders of magnitude. Measuring and boosting the performance
of automated identification tools is therefore crucial. As a first step towards eval-
uating the feasibility of such an automated biodiversity monitoring paradigm,
we created a new testbed entirely composed of image search logs of the P1@ntNet
mobile application (contrary to the previous editions of the PlantCLEF bench-
mark that were only based on explicitly shared and validated observations).

As a concrete scenario, we focused on the monitoring of invasive exotic plant
species. These species represent today a major economic cost to our society
(estimated at nearly 12 billion euros a year in Europe) and one of the main
threats to biodiversity conservation [71]. This cost can even be more important
at the country level, such as in China where it is evaluated to be about 15 billion
US dollars annually [72], and more than 34 billion US dollars in the US [52]. The
early detection of the appearance of these species, as well as the monitoring of
changes in their distribution and phenology, are key elements to manage them,
and reduce the cost of their management. The analysis of Pl@ntNet search logs
can provide a highly valuable response to this problem because the presence of
these species is highly correlated with that of humans (and thus to the density
of data occurrences produced through the mobile application).

2.1 Dataset and evaluation protocol

For the training set, we provided the Plant CLEF 2015 dataset enriched with the
ground truth annotations of the test images (that were kept secret during the
2015 campaign). In total, this data set contains 113,205 pictures of herb, tree
and fern specimens belonging to 1,000 species (living in France and neighboring
countries). Each image is associated with an XML file containing the taxonomic
ground truth (species, genus, family), as well as other meta-data such as the
type (fruit, flower, entire plant, etc.), the quality rating (social-based), the author
name, the observation Id, the date and the geo-loc (for some of the observations).

For the test set, we created a new annotated dataset based on the image
queries that were submitted by authenticated users of the Pl@ntNet mobile
application in 2015 (unauthenticated queries had to be removed for copyright
issues). A fraction of that queries were already associated to a valid species



name because they were explicitly shared by their authors and collaboratively
revised. We included in the test set the 4633 ones that were associated to a
species belonging to the 1000 species of the training set (populating the known
classes). Remaining pictures were distributed to a pool of botanists in charge
of manually annotating them either with a valid species name or with newly
created tags of their choice (and shared between them). In the period of time
devoted to this process, they were able to manually annotate 1821 pictures that
were included in the test set. Therefore, 144 new tags were created to qualify
the unknown classes such as for instance non-plant objects, legs or hands, UVO
(Unidentified Vegetal Object), artificial plants, cactaceae, mushrooms, animals,
food, vegetables or more precise names of horticultural plants such as roses,
geraniums, ficus, etc. For privacy reasons, we had to remove all images tagged
as people (about 1.1% of the tagged queries). Finally, to complete the number
of test images belonging to unknown classes, we randomly selected a set of 1546
image queries that were associated to a valid species name that do not belong
to the France flora (and thus, that do not belong to the 1000 species of the
training set or to potentially highly similar species). In the end, the test set was
composed of 8,000 pictures, 4633 labeled with one of the 1000 known classes
of the training set, and 3367 labeled as new unknown classes. Among the 4633
images of known species, 366 were tagged as invasive according to a selected list
of 26 potentially invasive species. This list was defined by aggregating several
sources (such as the National Botanical conservatory, and the Global Invasive
Species Programme) and by computing the intersection with the 1000 species
of the training set. Based on the previously described testbed, we conducted a
system-oriented evaluation involving different research groups who downloaded
the data and ran their system. To avoid participants tuning their algorithms on
the invasive species scenario and keep our evaluation generalizable to other ones,
we did not provide the list of species to be detected. Participants only knew that
the targeted species were included in a larger set of 1000 species for which we
provided the training set. Participants were also aware that (i) most of the test
data does not belong to the targeted list of species (ii) a large fraction of them
does not belong to the training set of the 1000 species, and (iii) a fraction of
them might not even be plants. In essence, the task to be addressed is related to
what is sometimes called open-set or open-world recognition problems [5,56], i.e.,
problems in which the recognition system has to be robust to unknown and never
seen categories. Beyond the brute-force classification across the known classes of
the training set, a big challenge is thus to automatically reject the false positive
classification hits that are caused by the unknown classes i.e., by the distractors).
To measure this ability of the evaluated systems, each prediction had to be
associated with a confidence score in p € [0, 1] quantifying the probability that
this prediction is true (independently from the other predictions).

The metric used to evaluate the performance of the systems is the classi-
fication Mean Average Precision (MAP-open), considering each class ¢; of the
training set as a query. More concretely, for each class ¢;, we extract from the run
file all predictions with PredictedClassld = c;, rank them by decreasing prob-



ability p € [0,1] and compute the average precision for that class. The mean
is then computed across all classes. Distractors associated to high probability
values (i.e., false alarms) are likely to highly degrade the MAP, it is thus crucial
to try rejecting them. To evaluate more specifically the targeted usage scenario
(i.e., invasive species), a secondary MAP was computed by considering as queries
only a subset of the species that belong to a black list of invasive species.

2.2 Participants and results

94 research groups registered to LifeCLEF plant challenge 2016 and downloaded
the dataset. Among this large raw audience, 8 research groups succeeded in
submitting runs, i.e., files containing the predictions of the system(s) their ran.
Details of the methods and systems used in the runs are synthesised in the
overview working note of the task [26] and further developed in the individual
working notes of the participants (Bluefield [34], Sabanci [22], CMP [64], LIIR,
Floristic [30], UM [47], QUT [48], BME [4]). We give hereafter a few more details
of the 3 systems that performed the best:

Bluefield system: A VGGNet [59] based system with the addition of Spatial
Pyramid Pooling, Parametric ReLU and unknown class rejection based on the
minimal prediction score of training data (Run 1). Run 2 is the same as run 1
but with a slightly different rejection making use of a validation set. Run 3 and 4
are respectively the same as Run 1 and 2 but the scores of the images belonging
to the same observation were summed and normalised.

Sabanci system: Also a CNN-based system with 2 main configurations.
Run 1: An ensemble of GoogleLeNet [66] and VGGNet [59] fine-tuned on both
LifeCLEF 2015 data (for recognizing the targeted species) and on 70K images
of the ILSCVR dataset (for rejecting unknown classes). Run 2 is the same than
Run 1 but without rejection.

CMP system: A ResNet [36] based system with the use of bagging in Run
1 (3 networks) and without bagging (in Run 2).

We report in Figure 1 the scores achieved by the 29 collected runs for the two
official evaluation metrics (MAP-open and MAP-open-invasive). To better assess
the impact of the distractors i.e., the images in the test set belonging to unknown
classes), we also report the MAP obtained when removing them (and denoted
as MAP-closed). As a first noticeable remark, the top-26 runs which performed
the best were based on Convolutional Neural Networks (CNN). This definitely
confirms the supremacy of deep learning approaches over previous methods, in
particular the one bases on hand-crafted features (such as BME TMIT Run
2). The different CNN-based systems mainly differed in (i) the architecture of
the used CNN, (ii) the way in which the rejection of the unknown classes was
managed and (iii), various system design improvements such as classifier ensem-
bles, bagging or observation-level pooling. An impressive MAP of 0.718 (for the
targeted invasive species monitoring scenario) was achieved by the best system
configuration of Bluefield (run 3). The gain achieved by this run is however more
related to the use of the observation-level pooling (looking at Bluefield run 1 for
comparison) than to a good rejection of the distractors. Comparing the metric
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Fig. 1. Scores achieved by all systems evaluated within the plant identification task
of LifeCLEF 2016, M AP-open: mean Average Precision on the 1000 species of the
training set and distractors in the test set, MAP-open-invasive: mean Average Pre-
cision with distractors but restricted to 26 invasive species only, M AP-closed: mean
Average Precision on the 1000 species but without distractors in the test set

MAP-open with MAP-closed, the figure actually shows that the presence of the
unknown classes degrades the performance of all systems in a roughly similar
way. This difficulty of rejecting the unknown classes is confirmed by the very low
difference between the runs of the participants who experimented their system
with or without rejection (e.g., Sabanci Run 1 vs. Run 2 or FlorisTic Run 1 vs.
Run 2). On the other side, it is noticeable that all systems are quite robust to
the presence of unknown classes since the drop in performance is not too high.
Actually, as the CNNs were pre-trained on a large generalist data set beforehand,
it is likely that they have learned a diverse enough set of visual patterns to avoid
underfiting. Now it is important to notice that the proportion of unknown classes
in the test set was still reasonable (actually only 42%) because of the procedure
used to create it. In further work, we will attempt to build a test set closer to
the true statistics of the queries. This is however a hard problem. Even experts
are actually doubtful of the true label of many images that do not not contain
enough visual evidences. Thus, they tend to annotate only the contents they are
sure of i.e., the less confused ones. To build a more complete ground truth, it
is required to take into account this doubt, during the annotation process, but
also when measuring the accuracy of the evaluated systems.

3 Task2: BirdCLEF

The general public as well as professionals like park rangers, ecological consul-
tants and of course the ornithologists themselves are potential users of an auto-



mated bird identifying system, typically in the context of wider initiatives related
to ecological surveillance or biodiversity conservation. Using audio records rather
than bird pictures is justified by current practices [9,69,68,8]. Birds are actually
not easy to photograph as they are most of the time hidden, perched high in
a tree or frightened by human presence, and they can fly very quickly, whereas
audio calls and songs have proved to be easier to collect and very discriminant.
Before LifeCLEF started in 2014, three previous initiatives on the evalua-
tion of acoustic bird species identification took place, including two from the
SABIOD'S group [25,24,7]. In collaboration with the organizers of these previ-
ous challenges, BirdCLEF 2014, 2015 and 2016 challenges went one step further
by (i) significantly increasing the species number by an order of magnitude, (ii)
working on real-world social data built from thousands of recordists, and (iii)
moving to a more usage-driven and system-oriented benchmark by allowing the
use of meta-data and defining information retrieval oriented metrics. Overall,
the task is much more difficult than previous benchmarks because of the higher
confusion risk between the classes, the higher background noise and the higher
diversity in the acquisition conditions (different recording devices, contexts di-
versity, etc.). It therefore produces substantially lower scores and offers a better
progression margin towards building real-world general identification tools.
The main novelty of the 2016 edition of the task with respect to the two pre-
vious years was the inclusion of soundscape recordings in addition to the usual
xeno-canto recordings that focus on a single foreground species (usually thanks
to mono-directional recording devices). Soundscapes, on the other hand, are gen-
erally based on omnidirectional recording devices that continuously monitor a
specific environment over a long period. This new kind of recording fits better
to the (possibly crowdsourced) passive acoustic monitoring scenario that could
augment the number of collected records by several orders of magnitude.

3.1 Data and task description

The training and test data of the challenge consists of audio recordings collected
by Xeno-canto (XC)6. Xeno-canto is a web-based community of bird sound
recordists worldwide with about 3,000 active contributors that have already col-
lected more than 300,000 recordings of about 9550 species (numbers for June
2016). Nearly 1000 (in fact 999) species were used in the BirdCLEF dataset,
representing the 999 species with the highest number of recordings in October
2014 (14 or more) from the combined area of Brazil, French Guiana, Suriname,
Guyana, Venezuela and Colombia, totalling 33,203 recordings produced by thou-
sands of users. This dataset includes the entire dataset from the 2015 Bird CLEF
challenge [32], which contained about 33,000 recordings.

The newly introduced test data in 2016 contains 925 soundscapes provided by
7 recordists, sometimes working in pairs. Most of the soundscapes have a length
of (more or less) 10 minutes, each coming often from a set of 10-12 successive

!5 Scaled Acoustic Biodiversity http://sabiod.univ-tln.fr
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recordings collected from one location. The total duration of new testing data
to process and analyse is thus equivalent to approximately 6 days of continuous
sound recording. The number of known species (i.e belonging to the 999 species
in the training dataset) varies from 1 to 25 species, with an average of 10.1
species per soundscape.

To avoid any bias in the evaluation related to the used audio devices, each
audio file has been normalized to a constant bandwidth of 44.1 kHz and coded
in 16 bits in wav mono format (the right channel was selected by default). The
conversion from the original Xeno-canto data set was done using ffmpeg, sox
and matlab scripts. The optimized 16 Mel Filter Cepstrum Coefficients for bird
identification (according to an extended benchmark [15]) were computed, to-
gether with their first and second temporal derivatives on the whole set. They
were used in the best systems run in ICML4B and NIPS4B challenges. However,
due to technical limitations, the soundscapes were not normalized and directly
provided to the participants in mp3 format (shared on the xeno-canto website,
the original raw files being not available).

All audio records are associated with various meta-data including the species
of the most active singing bird, the species of the other birds audible in the
background, the type of sound (call, song, alarm, flight, etc.), the date and
location of the observations (from which rich statistics on species distribution
can be derived), some text comments of the authors, multilingual common names
and collaborative quality ratings. All of them were produced collaboratively by
the Xeno-canto community.

Participants were asked to determine all the active singing birds species in
each query file. It was forbidden to correlate the test set of the challenge with
the original annotated Xeno-canto data base (or with any external content as
many of them are circulating on the web). The whole data was split in two
parts, one for training (and/or indexing) and one for testing. The test set was
composed of (i) all the newly introduced soundscape recordings and (ii), the
entire test set used in 2015 (equal to about 1/3 of the observations in the whole
2015 dataset). The training set was exactly the same as the one used in 2015
(i.e., the remaining 2/3 of the observations). Note that recordings of the same
species done by the same person on the same day are considered as being part
of the same observation and cannot be split across the test and training set. The
XML files containing the meta-data of the query recordings were purged so as to
erase the taxon name (the ground truth), the vernacular name (common name
of the bird) and the collaborative quality ratings (that would not be available
at query stage in a real-world mobile application). Meta-data of the recordings
in the training set were kept unaltered.

The groups participating in the task were asked to produce up to 4 runs
containing a ranked list of the most probable species for each query record of the
test set. Each species was associated with a normalized score in the range [0, 1]
reflecting the likelihood that this species is singing in the sample. The primary
metric used was the Mean Average Precision averaged across all queries.



3.2 Participants and results

84 research groups registered for the bird challenge and downloaded the data and
6 of them finally submitted runs. Details of the systems and the methods used in
the runs are synthesised in the overview working note of the task [31] and further
developed in the individual working notes of the participants ([18,45,51,67,54]).
We give hereafter more details of the 3 systems that performed the best.

Cube system was based on a CNN architecture of 5 convolutional layers
combined with the use of a rectify activation function followed by a max-pooling
layer. Based on spectrogram analysis and some morphological operations, silent
and noisy parts were first detected and separated from the birds song (or call)
parts. Spectrograms were then split into chunks of 3 seconds that were used
as inputs of the CNN after several data augmentation techniques. Each chunk
identified as a bird song was first concatenated with 3 randomly selected chunks
of background noise. Time shift, pitch shift and randomized mixes of audio files
from the same species were then used as complementary data augmentation
techniques. All the predictions of the distinct chunks are finally averaged to
get the prediction of the entire test record. Run 1 was an intermediate result
obtained after only one day of training. Run 2 differs from run 3 by using 50%
smaller spectrograms in (pixel) size for doubling the batch size and thus allowing
to have more iterations for the same training time (4 days). Run 4 is the average
of predictions from run 2 and 3 and reaches the best performance, showing the
benefit of bagging (as for the plant identification task).

TSA system: As in 2014 and 2015, this participant used two hand-crafted
parametric acoustic features and probabilities of species-specific spectrogram
segments in a template matching approach. Long segments extracted during
BirdCLEF2015 were re-segmented with a more sensitive algorithm. The seg-
ments were then used to extract Segment-Probabilities for each file by calculat-
ing the maxima of the normalized cross-correlation between all segments and the
target spectrogram image via template matching. Due to the very large amount
of audio data, not all files were used as a source for segmentation (i.e., only good
quality files without background species were used). The classification problem
was then formulated as a multi-label regression task solved by training ensembles
of randomized decision trees with probabilistic outputs. The training was per-
formed in 2 passes, one selecting a small subset of the most discriminant features
by optimizing the internal MAP score on the training set, and one training the
final classifiers on the selected features. Run 1 used one single model on a small
but highly optimized selection of segment-probabilities. A bagging approach was
used consisting in calculating further segment-probabilities from additional seg-
ments and to combine them either by blending (24 models in Run 3). Run 4 also
used blending to aggregate model predictions, but the predictions were included
that after blending resulted in the highest possible MAP score calculated on the
entire training set (13 models including the best model from 2015).

WUT system: like the Cube team, they used a CNN-based learning frame-
work. Starting from denoised spectrograms, silent parts were removed with per-
centile thresholding, giving thus around 86.000 training segments varying in



length and associated each with a single main species. As a data augmentation
technique and for fitting the 5 seconds fixed input size of the CNN, segments
were adjusted by either trimming or padding. The 3 first successive runs are
produced by deeper and deeper or/and wider and wider filters. Run 4 is as an
ensemble of neural networks averaging the predictions of the 3 first runs.

Figure 2 reports the performance measured for the 18 submitted runs. For
each run (i.e., each evaluated system), we report the overall mean Average Pre-
cision (official metric) as well as the MAP for the two categories of queries: the
soundscapes recordings (newly introduced) and the common observations (the
same as the one used in 2015). To measure the progress over last year, we also
plot on the graph the performance of last year’s best system [44] (orange dotted
line). The first noticeable conclusion is that, after two years of resistance of bird
song identification systems based on engineering features, convolutional neural
networks finally managed to outperform them (as in many other domains). The
best run based on CNN (Cube Run 4) actually reached an impressive MAP
of 0.69 on the 2015 testbed to be compared to respectively 0.45 and 0.58 for
the best systems based on hand-crafted features evaluated in 2015 and 2016.
To our knowledge, Bird CLEF is the first comparative study reporting such an
important performance gap in bio-acoustic large-scale classification. A second
important remark is that this performance of CNNs was achieved without any
fine-tuning contrary to most computer vision challenges in which the CNN is
generally pre-trained on a large training data such as ImageNet. Thus, we can
hope for even better performance, e.g., by transferring knowledge from other
bio-acoustic contexts or other domains. It is important to notice that the second
system based on CNN (WUT) did not perform as well as the Cube system and
did not outperform the system of TSA based on hand-crafted features. Look-
ing at the detailed description of the two CNN architectures and their learning
framework, it appears that the way in which audio segments extraction and
data augmentation is performed does play a crucial role. The Cube system does
notably include a randomized background noise addition phase which makes it
much more robust to the diversity of noise encountered in the test data.

If we now look at the scores achieved by the evaluated systems on the sound-
scape recordings only (yellow plot), we can draw very different conclusions.
First of all, we can observe that the performance on the soundscapes is much
lower than on the classical queries, whatever the system. Although the classical
recordings also include multiple species singing in the background, the sound-
scapes appear to be much more challenging. Several tens of species and even
much more individual birds can actually be singing simultaneously. Separating
all these sources seem to be beyond the scope of state-of-the-art audio repre-
sentation learning methods. Interestingly, the best system on the soundscape
queries was the one of TSA based on the extraction of very short species-specific
spectrogram segments and a template matching approach. This very fine-grained
approach allows the extracted audio patterns to be more robust to the species
overlap problem. On the contrary, the CNN of Cube and WUT systems were
optimized for the mono-species segments classification problem. The data aug-



mentation method of the Cube system was in particular only designed for the
single species case. It addressed the problem of several individual birds of the
same species singing together (by mixing different segments of the same class)
but it did not address the multi-label issue (i.e., several species singing simulta-
neously [16]), and is getting close to the simple reference MFCC model provided
for comparison to the baseline [54].
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Fig. 2. Scores of the LifeCLEF 2016 Bird Identification Task

4 Task3: SeaCLEF

The SeaCLEF 2016 task originates from the previous editions of the fish identi-
fication task (in 2014 and 2015), i.e., video-based coral fish species identification
for ecological surveillance and biodiversity monitoring. SeaCLEF 2016 extends
the previous ones in that it does not only consider fish species, but sea organ-
isms in general. The need of automated methods for sea-related visual data is
driven by the advances in imaging systems (in particular underwater) and their
employment for marine ecosystem analysis and biodiversity monitoring. Indeed
in recent years we have assisted an exponential growth of sea-related visual data,
in the forms of images and videos, for disparate reasoning ranging from fish bio-
diversity monitoring to marine resource managements to fishery to educational
purposes. However, the analysis of such data is particularly expensive for human
operators, thus limiting greatly the impact of that the technology may have in
understanding and sustainably exploiting the sea.

The task aims at evaluating two kinds of automated identification scenarios:
species recognition and individuals recognition. Whereas species recognition is



the most common practice, it is preferable for some groups to monitor the or-
ganisms at the individual level rather than at the species level. This is notably
the case of big animals, such as whales and elephants, whose population might
be scarce and travelling for long distances. Monitoring individual animals allows
gathering valuable information about population sizes, migration, health, sexual
maturity and behavior patterns.

4.1 Coral Reef Species Identification in Underwater Videos

The goal of the task was to automatically detect and recognize coral reef species
in underwater videos. The typical usage scenario of automated underwater video
analysis tools is to support marine biologists in studying thoroughly the marine
ecosystem and fish biodiversity. Also, scuba divers, marine stakeholders and
other marine practitioners may benefit greatly from these kinds of tools. Re-
cently, underwater video and imaging systems have been employed since they
do not affect fish behavior and may provide large amounts of visual data at
the same time. However, manual analysis as performed by human operators is
largely impractical, and requires automated methods. Nevertheless, the develop-
ment of automatic video analysis tools is challenging because of the complexities
of underwater video recordings in terms of the variability of scenarios and factors
that may degrade the video quality such as water clarity and/or depth.
Despite some preliminary work, mainly carried out in controlled environ-
ments (e.g., labs, cages, etc.) [49,19], the most important step in the auto-
mated visual analysis has been done in the EU-funded Fish4Knowledge (F4K)'"
project, where computer vision methods were developed to extract informa-
tion about fish density and richness from videos taken by underwater cameras
installed at coral reefs in Taiwan [62,63,6,61]. Since the FAK project, many re-
searchers have directed their attention towards underwater video analysis [53,55],
including some recent initiatives by the National Oceanographic and Atmo-
spheric Administration (NOAA) [57] and the fish identification task at LifeCLEF
2014 and 2015 [12,13,60]. Although there are recent advances in the underwater
computer vision field, the problem is still open and needs several (joint) efforts
to devise robust methods able to provide reliable measures on fish populations.
Data. The training dataset consists of 20 videos manually annotated, a list
of fish species (15) and for each species, a set of sample images to support the
learning of fish appearance models. Each video is manually labelled and agreed
by two expert annotators and the ground truth consists of a set of bounding
boxes (one for each instance of the given fish species list) together with the
fish species. In total the training dataset contains more than 9,000 annotations
(bounding boxes + species) and more than 20000 sample images. However, it is
not a statistical significant estimation of the test dataset rather its purpose is
as a familiarization pack for designing the identification methods. The training
dataset is unbalanced in the number of instances of fish species: for instance it

7 http://www.fishdknowledge.eu/



contains 3165 instances of “Dascyllus Reticulates” and only 72 instances of “Ze-
brasoma Scopas”. This was done not to favour nonparametric methods against
model-based methods. For each considered fish species, its fishbase.org link is
also given so as to give access to more detailed information about fish species
including complementary high quality images. In order to evaluate the identi-
fication process independently from the tracking process, temporal information
was not be exploited. This means that the annotators only labelled fish for which
the species was clearly identifiable regardless from previous identifications. Each
video is accompanied by an XML file containing instances of the provided list
species. For each video, information on the location and the camera recording
the video is also given.

The test dataset consists of 73 underwater videos. The list of considered fish
species is the same than the one released with the training dataset (i.e., 15 coral
reef fish species). The number of occurrences per fish species is provided in Table
4.1. Tt is noticeable, that for three fish species there were no occurrences in the
test set, and also that in some video segments there were no fish at all. This was
done to evaluate the method’s capability to reject false positives.

Task Description. The main goal of the video-based fish identification task
is to automatically count fish per species in video segments (e.g., video X con-
tains N1 instances of fish of species 1, ..., N, instances of fish species N). How-
ever, participants were also asked to identify fish bounding boxes. The ground
truth for each video (provided as an XML file) contains information on fish
species and location. The participants were asked to provide up to three runs.
Each run had to contain all the videos included in the set and for each video the
frame where the fish was detected together with the bounding box, and species
name (only the most confident species) for each detected fish.

Table 1: Fish species occurrences in the test set.

Fish Species Name Occurrences||Fish Species Name Occurrences
Abudefduf vaigiensis 93 Acanthurus nigrofuscus 129
Amphirion clarkii 517 Chaetodon lunulatus 1876
Chaetodo speculum 0 Chaetodon trifascialis 1317
Chromis chrysura 24 Dacyllus aruanus 1985
Dascyllus reticulatus 5016 Hemigymnus melapterus 0
Myripristis kuntee 118 Neoglyphidodon nigroris 1531
Pempheris vanicolensis 0 Plectrogly-phidodon dickii 700
Zebrasoma scopas 187

Metrics. As metrics, we used the “Counting Score (CS)” and the “Normalized
Counting Score (NCS)”, defined as:

d
CS=e — 1
N (1)



with d being the difference between the number of occurrences in the run (per
species) and, Ny, the number of occurrences in the ground truth. The Nor-
malised Counting S instead depends on precision Pr:

TP

NCS—CSxPr—CSxTP+FP (2)

with TP and FP being the True Positive and the False Positive. As detection

was considered a true positive if the intersection over union score of its bounding

box and the ground truth was over 0.5 and the species was correctly identified.

Participants and Results Figure 3 shows, respectively, the average (per

video and species) normalized counting score, precision and counting score ob-

tained by the two participating teams (CVG [37] and BMETMIT [14]) who
submitted one run each.
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Fig. 3. SeaCLEF 2016 Results.

Figure 4 gives the detailed normalized counting scores per fish species. In
addition to the results obtained in 2016, the graphs also show the best per-
formance achieved on the same dataset in 2015. This comparison shows that,
unfortunately, none of the 2016 approaches outperformed the one by SNUMED
INFO, which performed the best in 2015 (described in details in [11]). This sys-
tem was based on the GoogLeNet [65] Convolutional Neural Network (CNN).
Potential fish instances were previously segmented from the video through a
stationary foreground detection using background subtraction and a selective
search strategy [70]. Producing the final output counts was finally achieved by
grouping the temporally connected video segments classified by the CNN. The
system used in 2016 by CVG [37] was inspired by a region-based convolutional
neural network (R-CNN [23]), with the difference that it employed background
subtraction instead of selective search for bounding box proposal generation.
More specifically, CVG’s method used off-the-shelf AxelNet CNN [42] for fea-
ture extraction (7th hidden layer relu7), and then trained a multiclass support
vector machine (MSVMs) for species classification. Its achieved performance, in



terms of counting score of 0.83, over the 15 considered fish species was fairly
good. Its lower value with respect to SNUMED INFO’s one (0.89) can be ex-
plained with the fact that CVG did not apply any domain-specific fine tuning
of CNN. In the case of normalised counting score, the gap between CVG and
SNUMED INFO was higher, and this is due to the fact that CVG employed
background subtraction for proposal generation, which is known to be prone to
false positives, instead of the more effective selective search used by SNUMED
INFO. For a similar reason BMETMIT achieved the lowest normalised counting
score, while its lower counting score can be ascribed to the used shallow classifier
operating on SURF features, while the other two methods (CVG and SNUMED
INFO) resorted on deep-learning methods.

NORMALIZED COUNTING SCORE PER FISH SPECIES

888 BOVG_lena Fulda  mCVG_lena_Fulda 82015’ Best resuts

o o S & © > o o o “ o >
N & # &
K &
K
&

Fig. 4. Normalised Counting Score detailed by fish species.

4.2 Individual Humpback Whale Identification

Using natural markings to identify individual animals over time is usually known
as photo-identification. This research technique is used on many species of marine
mammals. Initially, scientists used artificial tags to identify individual whales,
but with limited success (most tagged whales were actually lost or died). In
the 1970s, scientists discovered that individuals of many species could be rec-
ognized by their natural markings. These scientists began taking photographs
of individual animals and comparing these photos against each other to identify
individual animal’s movements and behavior over time. Since its development,
photo-identification has proven to be a useful tool for learning about many ma-
rine mammal species including humpbacks, right whales, finbacks, killer whales,
sperm whales, bottlenose dolphins and other species to a lesser degree. Nowa-
days, this process is still mostly done manually making it impossible to get an
accurate count of all the individuals in a given large collection of observations.



Researchers usually survey a portion of the population, and then use statistical
formulae to determine population estimates. To limit the variance and bias of
such an estimator, it is however required to use large-enough samples which still
makes it a very time-consuming process. Automating the photo-identification
process could drastically scale-up such surveys and open brave new research
opportunities for the future.

Data and related challenges The dataset used for the evaluation consisted
of 2005 images of humbpack whales caudals collected by the CetaMada NGO
between 2009 and 2014 in the Madagascar area. Each photograph was manually
cropped so as to focus only on the caudal fin that is the most discriminant pattern
for distinguishing an individual whale from another. Figure 5 displays six of such
cropped images, each line corresponding to two images of the same individual. As
one can see, the individual whales can be distinguished thanks to their natural
markings and/or the scars that appear along the years. Automatically finding
such matches in the whole dataset and rejecting the false alarms is difficult for
three main reasons. The first reason is that the number of individuals in the
dataset is high, around 1, 200, so that the proportion of true matches is actually
very low (around 0.05% of the total number of potential matches).
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Fig. 5. 3 good matches (each line corresponds to 2 images of the same individual whale)

The second difficulty is that distinct individuals can be very similar at a first
glance as illustrated by the false positive examples displayed in Figure 6. To
discriminate the true matches from such false positives, it is required to detect



very small and fine-grained visual variations such as in a spot-the-difference
game. The third difficulty is that all images have a similar water background of
which the texture generates quantities of local mismatches.

Fig. 6. 3 false positives (each line corresponds to 2 distinct individual whales)

Task Description The task was simply to detect as many true matches
as possible from the whole dataset, in a fully unsupervised way. Each evalu-
ated system had to return a run file (i.e., a raw text file) containing as much
lines as the number of discovered matches, each match being a triplet of the
form imageX.jpg;imageY.jpg;score where score is a confidence score in [0, 1] (1
for highly confident matches). The retrieved matches had to be sorted by de-
creasing confidence score. A run should not contain any duplicate match (e.g.,
1magel.jpg;image2.jpg;score and image2.jpg;imagel.jpg;score should not appear
in the same run). The metric used to evaluate each run is the Average Precision:

SR P(k) x rel(k)

AveP =
ve %

where M is the total number of true matches in the groundtruth, & is the rank in
the sequence of returned matches, K is the number of retrieved matches, P(k) is
the precision at cut-off k in the list, and rel(k) is an indicator function equaling
1 if the match at rank k is a relevant match, O otherwise. The average is over all
true matches and the true matches not retrieved get a precision score of 0.



Participants and Results Two research groups participated to the evalu-
ation and submitted a total of 6 run files. Table 4.2 provides the scores achieved
by the six runs. Details of the systems and methods used can be found in the
individual working notes of the participants (INRIA [40], BME-MIT [14]). We
give hereafter a synthetic description of the evaluated systems/configurations:

INRIA system: This group used a large-scale matching system based on
local visual features, approximate k-nn search of each individual local feature
via multi-probe hashing, and a RANSAC-like spatial consistency refinement
step used to reject false positives (based on a rotation-and-scale transforma-
tion model). The run named ZenithINRIA_SiftGeo used affine SIFT features
whereas the one named ZenithINRIA_GoogleNet_3layers_borda used off-the-shelf
local features extracted at three different layers of GoogLeNet [65] (layer conv2-
8r3: 3136 local features per image, layer inception_3b_output: 784 local features
par image, layer inception_4c_output: 196 local features per image). The matches
found using the 3 distinct layers were merged through a late-fusion approach
based on Borda. Finally, the last run ZenithINRIA_Sift Geo_QueryFExpansion dif-
fers from ZenithINRIA_SiftGeo in that a query expansion strategy was used to
re-issue the regions matched with a sufficient degree of confidence as new queries.

BME-MIT system: This group used aggregation-based image representa-
tions based on SIFT features (extracted either on a dense grid or around Laplace-
Harris points), a GMM-based visual codebook learning (256 visual words),and
Fisher Vectors (FVs) for the global image representation. A RBF kernel was
used to measure the similarity between image pairs. Runs bmetmit_whalerun_2
and bmetmit_whalerun_3 differ from bmetmit_whalerun_1 in that segmentation
propagation was used beforehand so as to separate the background (the water)
from the whale’s caudal fin. In bmetmit_whalerun_8 the segmentation mask was
applied only for filtering the features during the codebook learning phase. In run
2 the mask was also used to when computing the FVs of each image.

Table 2: Individual whale identification results: AP of the 6 evaluated systems
Run name AP

ZenithInria SiftGeo 0.49
ZenithInria SiftGeo QueryExpansion|0.43
ZenithInria GoogleNet 3layers borda|0.33

bmetmit whalerun 1 0.25
bmetmit whalerun 3 0.10
bmetmit whalerun 2 0.03

The main conclusion we can draw from the results of the evaluation (cf. table
4.2) is that spatial consistency of the local features is crucial for rejecting the
false positives (as proved by the much higher performance of INRIA system).
As powerful as aggregation-based methods such as Fisher Vectors are for fine-
grained classification, they do not capture the spatial arrangement of the local
features which is a precious information for rejecting the mismatches without



supervision. Another reason explaining the good performance of the best run
ZenithINRIA_SiftGeo is that it is based on affine invariant local features con-
trary to ZenithINRIA_GoogleNet_3layers_borda and BME-MIT runs that use
grid-based local features. Such features are more sensitive to small shifts and
local affine deformations even when learned through a powerful CNN. Finally,
neither segmentation nor query expansion succeeded in improving the results.
Segmentation is always risky because of the risk of over segmentation which
might remove the useful information from the image. Query expansion is also
a risky solution in that it is highly sensitive to the decision threshold used for
selecting the re-issued matched regions. It can be considerably increase recall
when the decision threshold is well estimated but at the opposite, it can also
boost the false positives when the threshold is too low.

5 Conclusions and Perspectives

With more than 130 research groups who downloaded LifeCLEF 2016 datasets
and 14 of them who submitted runs, the third edition of the LifeCLEF evalua-
tion did confirm a high interest in the evaluated challenges. The main outcome
of this collaborative effort is a snapshot of the performance of state-of-the-art
computer vision, bio-acoustic and machine learning techniques towards build-
ing real-world biodiversity monitoring systems. The results did show that very
high identification success rates can be reached by the evaluated systems, even
on large number of species (up to 1000 species). The most noticeable progress
came from the deployment of deep Convolutional Neural Networks for the bird
songs identification challenge. We observed a similar performance gap to the
one observed in many domains beforehand (in particular the LifeCLEF plant
identification task two years ago). Interestingly, this was achieved without any
fine-tuning which means that the xeno-canto dataset is sufficiently rich to al-
low the CNN learning relevant audio features. This opens the door to transfer
learning opportunities in other bio-acoustic domains for which training data are
sparser. Regarding the plant task, the main conclusion was that CNNs appeared
to be quite robust to the presence of unknown classes in the test set. The propor-
tion of novelty was however still moderate, near 50% and might be increased in
further evaluations so as to better fit reality. Finally, the two newly introduced
scenarios, i.e., soundscape-based monitoring of birds and unsupervised identifi-
cation of individual whales appeared to be quite challenging. Bird soundscapes,
in particular, seem to be out of reach for current audio representation learning
methods because of the very large number of overlapping sound sources in single
recordings. The identification of individual whales was more effective (thanks
to the use of spatial verification) but there is still room for improvement before
fully automating the Photo-identification process used by biologists.
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