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Abstract

In biology, it is widely known that the ribosomal fraction of all the enzymes, including
the ribosomes, in a cell is affinely connected to the cell’s growth rate. It is however poorly
understood why this is the case. The theory of EGMs, minimal networks connecting
metabolites, enzymes and ribosomes, does give plenty insight in this so-called bacterial
growth law. A redundant network can, through the use of this theory, be reduced to a
minimal network in which the optimal growth rate is obtained. In the relatively simple
case of five metabolites and seven enzymes, it is shown what the minimal network,
consisting of equal metabolites and enzymes, is and that the ribosomal fraction of all
the enzymes is affinely connected to the growth rate.

Title: A bacterial growth law modelled by EGMs
Author: Wander van der Meer, wanderv.dmeer@gmail.com, 2537538
Supervisor: dr. Bob Planqué
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1 Introduction

For around sixty years, biologists have known about the relation between the growth rate
of a bacterial cell and one of the so-called bacterial growth laws. It has been observed
that the fraction of ribosomes in a cell is an affine function of the growth rate [6] [8].
This observation will from now on be called the bacterial growth law. There are other
growth laws, but those are not taken into consideration.
This bacterial growth law is not fully understood. Various models have been proposed

to explain it [7] [2], but these are incorrect as they all try to describe kinetics whereas
their first assumption is that there are no kinetics in the cell. The kinetics in the cell
occur due to dilution in the cell. We will see later on that this dilution is essentially the
growth rate. Therefore, neglecting kinetics will be followed by a skewed definition of the
growth rate, which is meaningless.
The metabolism of (bacterial) cells is most easily modeled by grouping their con-

tituents into three subgroups: the metabolites, the enzymes and the ribosomes [1]. The
metabolites are converted into other metabolites by the enzymes through a chemical
reaction. This is done until the metabolites become amino acids, which are a subgroup
of the metabolites. These amino acids are converted by the ribosomes to constitute the
enzymes, including the ribosome. This way, the interior of the cell is capable of making
everything in its interior. A detailed map showing how the various metabolites and
enzymes work together can be found at [4].
The theory of Elementary Growth Modes, in short EGMs, tries to remedy aforemen-

tioned shortcoming. An EGM is a minimal type of network, consisting of metabolites
and an equal amount of enzymes in which the maximal growth rate is achieved. In this
framework, some interesting features arise. One of them is that knowing the growth rate
in steady state means that the composition of the entire cell is known.
The goal of this thesis is to understand the theory of EGMs and use this to show the

bacterial growth law in a relatively simple, artificial pathway.
Most of the theory discussed in this thesis is based on Growth and Metabolism by dr.

B. Planqué and dr. F. Bruggeman, which is not published.
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2 Theory

First, we will first discuss in a basic way some of the principles of growth rate and
stoiciometry. Then, we will introduce degrees of freedom because this simple view doesn’t
allow us to optimise the growth rate. We can tweak these degrees of freedom to optimize
the growth rate, from which a framework will follow in which we can calculate metabolite
and enzyme concentrations in metabolic pathways.

2.1 Basic

Let us denote the copy number of a compound k as nk. The concentration of compound
k is then defined as ck = nk/V , where V = V (n) is the volume of the cell, as a function
of the copy number of the various compounds n in the cell. We assume that the cell
is well-stirred and that all changes copy number of the compounds are due to chemical
reactions which take place in the cell, so that

ṅk = V
∑

j

Nkjvj(c) for all k. (2.1)

Here N denotes the stoichiometry matrix, which tells us the amounts of molecules that
are needed for and produced by every chemical reaction, and vj denotes the j-th reaction
rate, as a function of the concentrations c. Since nk = V ck we can rewrite this as

V̇ ck + V ċk = V
∑

j

Nkjvj(c) for all k. (2.2)

At balanced growth, all concentrations are constant in time, so

V̇ ck = V
∑

j

Nkjvj(c) for all k. (2.3)

We can use the chain rule to rewrite V̇ =
∑
l

∂V
∂nl

ṅl such that

(
∑

l

∂V

∂nl
V
∑

j

Nljvj(c)

)
ck = V

∑

j

Nkjvj(c) for all k. (2.4)

The right-hand side of eq. (2.4) is constant in time, and as such, the left-hand side as
to be as well. In particular, ∂V

∂nk
must be independent of time for all k, such that they

cannot dependent explicitly on n, so we can write

∂V

∂nk
= ρk for all k, (2.5)
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for some constants ρk. Therefore, we must set V =
∑

k ρknk, in balanced growth. A self-
evident interpretation of this definition of V is that ρk is the molar volume of compound
k and that volume increases to keep osmotic pressure constant as copy numbers of the
various compounds in the cell grow through inflow of water.
With this definition of V , we also have

∑

k

ρkck =
1

V

∑

k

ρknk = 1, (2.6)

at balanced growth. We define the growth rate as the relative increase of volume,

µ(t) =
V̇

V
. (2.7)

Since ρ · c = 1 we write

0 =
d

dt
ρ · c =

∑

k

ρkċk

=
∑

k

ρk

(
∑

j

Nkjvj(c)−
V̇

V
ck

)

= ρ ·Nv(c)− ρ · (µ(t)c)
= ρ ·Nv(c)− µ(t)

(2.8)

from which we can conclude that

µ(t) = ρ ·Nv(c). (2.9)

However, we are now unable to optimize the growth rate through this equation. Simply
put, this is because there are no degrees of freedom in the model. The model is fully
described by all the concentrations, the molar volume of every compound, the stoichiom-
etry matrix and the various reaction rates, making the growth rate a property of the
system in which everything is fixed when considering steady state.

2.2 Advanced

2.2.1 Whole-cell model

To add degrees of freedom, we seperate the enzymes and the ribosomes from the metabo-
lites, so c = (x, e, r), see also [5]. There are m different metabolites with concentrations
x1, x2, . . . , xm, n different enzymes with concentrations e1, e2, . . . , en and one type of ri-
bosome with concentration r. The dynamical system for all concentrations is still given
by eq. (2.2), rewritten as

ċ = Nv(c)− µc. (2.10)
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We divide N into four different matrices corresponding to metabolism and the synthesis
of enzymes and ribosomes through

N =

(
P −M
O I

)
, (2.11)

where P is anm×nmatrix, m < n, M is anm×(n+1) matrix with non-negative entries,
O is an (n+1)×nmatrix with entries all equal to zero and I is the (n+1)×(n+1) identity
matrix. The matrix P corresponds to the stoichiometric matrix in a metabolic pathway,
i.e. in column j the metabolites corresponding to the rows with the negative entries are
converted into metabolites corresponding to the rows with the positive entries, catalysed
by enzyme j. The matrix M has on the jth column the quantities of metabolites,
corresponding to their row numbers, needed to construct enzyme j.
The vector of reaction rates v = (v1, . . . , v2n+1) is also split up into the metabolic

reaction rates v1, . . . , vn, enzyme synthesis rates (w1, . . . , wn) and the ribosome synthesis
rate wr = wn+1, which are all functions of the concentrations c. Each reaction has an
enzyme associated to it, which not only makes the reaction possible but also catalyses
it. We will therefore write for the metabolic reaction rates

vj(c) = ejfj(x) for j = 1, . . . , n. (2.12)

For enzyme synthesis, we know that they are synthesised by the ribosome, which can
only synthesise one enzyme or ribosome at a time. We therefore write αj as the fraction
of the ribosomes that synthesise enzyme j and αn+1 as the fraction of the ribosomes
that synthesise ribosomes. Evidently, this means that

α1 + · · ·+ αn+1 = 1, (2.13)

assuming that the ribosomes always synthesise something. These αj are the aforemen-
tioned degrees of freedom. For the enzyme synthesis rates we write

wj(c) = rαjgj(x) for j = 1, . . . , n+ 1. (2.14)

One more step is needed, and that is subdividing the molar volumes ρ into ρ1, . . . , ρm
for the m metabolites, σ1, . . . , σn for the n enzymes and σr = σn+1 for the ribosome.
The full model, using eqs. (2.2) and (2.9), can now be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi =
∑n

j=1 Pijejfj(x) −
∑n+1

j=1 Mijrαjgj(x) − µxi, for i = 1, . . . ,m,
ėj = rαjgj(x) − µej, for j = 1, . . . , n,
ṙ = rαn+1gn+1(x) − µr,
µ =

∑m
i=1 ρi

∑n
j=1 Pijejfj(x) +

∑n+1
j=1 (σj −

∑m
i=1 ρiMij) rαjgj(x).

(2.15)
In the next sections, some characterisations and properties of balanced growth are

treated.
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2.2.2 At balanced growth all copy numbers increase at the
same rate

From the steady state equations

0 = ċk =
d

dt

nk

V
=

ṅk

V
− V̇ nk

V 2
=

ṅk

V
− µ

nk

V
for all k, (2.16)

it follows that

µ =
ṅk

nk
for all k, (2.17)

in other words, the copy number of all compounds increases at the same rate, namely
the growth rate, in steady state.

2.2.3 Relation between the growth rate and the enzyme and
ribosome concentrations

In steady state, it follows from eq. (2.15) that

rαn+1gn+1(x) = µr, rαjgj(x) = µej, for j = 1, . . . , n, (2.18)

from which it follows that, first, µ = αn+1gn+1(x), and by adding all n + 1 of these
equations that

r

(
µ+

n∑

j=1

αjgj(x)

)
= µ

(
r +

n∑

j=1

ej

)
, (2.19)

from which it follows that

µ

µ+
∑n

j=1 αjgj(x)
=

r

r +
∑n

j=1 ej
. (2.20)

Recall the definition of the growth rate in terms of metabolism in eq. (2.15). Using
aj =

∑m
i=1 ρiPij and bj =

∑m
i=1 ρiMij to make notation more concise, we rewrite this as

µ =
m∑

i=1

ρi

n∑

j=1

Pijejfj(x) +
n+1∑

j=1

(
σj −

m∑

i=1

ρiMij

)
rαjgj(x)

=
m∑

i=1

ρi

n∑

j=1

Pijr
αjgj(x)fj(x)

µ
+

n+1∑

j=1

(
σj −

m∑

i=1

ρiMij

)
rαjgj(x)

= r

(
(σn+1 − bn+1)µ+

n∑

j=1

(
aj
fj(x)

µ
+ (σj − bj)

)
αjgj(x)

)
,

(2.21)

such that the steady state ribosome concentration is given by

r =
µ

(σn+1 − bn+1)µ+
∑n

j=1

(
aj

fj(x)
µ + (σj − bj)

)
αjgj(x)

(2.22)
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and the enzyme concentrations are given by

ej =
rαjgj(x)

µ
=

αjgj(x)

(σn+1 − bn+1)µ+
∑n

j=1

(
aj

fj(x)
µ + (σj − bj)

)
αjgj(x)

. (2.23)

2.2.4 Growth rate versus ribosomal fraction of enzymes

Recall equation (2.20). In our model, we assume that gj(x) = g(x) for all j = 1, . . . , n+1,
and we know that µ = αn+1gn+1(x), so this fraction reduces to

r

r +
∑

j ej
=

αn+1g(x)

αn+1g(x) + g(x)
∑

j αj
=

αn+1g(x)

g(x)
∑n+1

j=1 αj

= αn+1. (2.24)

Likewise, since ej =
rαjg(x)

µ , we find

ej
r +

∑
j ej

=
αjg(x)

µ

r

r +
∑

j ej
= αj

g(x)

µ
αn+1 = αj, (2.25)

since µ = αn+1g(x). Therefore, the fractions of enzymes and ribosomes is independent
of the growth rate. A non-optimized system (a system with fixed α) can therefore not
explain the bacterial growth law.
This is different in optimized growth, since in that case, we find that the αj are

dependent on how much the cell if ‘fed’ with a substrate with concentration x0 outside
of the cell and we will then find different fractions of enzymes and a different growth
rate at different x0.
Note that it doesn’t matter if we speak of the fraction of ribosomal concentration of

the total concentration of enzymes or of the copy number, since from

r

r +
∑

j ej
=

V r

V
(
r +

∑
j ej
) =

nr

nr +
∑n

j=m+1 nj
, (2.26)

it follows that they are the same quantity. This quantity is therefore concisely called
‘the ribosomal fraction of enzymes’.
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2.2.5 Turning the model into a Linear Program

Figure 2.1: In blue the curve µ(µ̃) for non particular, fixed x governed by eq. (2.31). In
orange, the identity curve. At the intersection, we find µ̃ = µ.

Recall eq. (2.22). We rewrite this into the quadratic equation for µ

µ

r
= (σn+1 − bn+1)µ+

n∑

j=1

(
aj
fj(x)

µ
+ (σj − bj)

)
αjgj(x). (2.27)

Following eq. (2.15), in steady state, i.e. ċ = 0 and ej = rαjgj(x)
µ , the metabolic

concentration of xi for i = 1, . . . ,m is described by

µxi

r
=

n∑

j=1

Pij
ej
r
fj(x)−

n+1∑

j=1

Mijαjgj(x)

=
n∑

j=1

Pij
αjgj(x)

µ
fj(x)−

n∑

j=1

Mijαjgj(x)−Mirαrgr(x)

=
n∑

j=1

(
Pijfj(x)

µ
−Mij

)
αjgj(x)−Mirµ.

(2.28)

Plugging in eq. (2.27) gives

xi

(
n∑

j=1

(
ajfj(x)

µ
+ σj − bj

)
αjgj(x) + (σr − br)µ

)

=
n∑

j=1

(
Pijfj(x)

µ
−Mij

)
αjgj(x)−Mirµ,

(2.29)
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which are m equations in x and µ only. These equations are generally nonlinear in x and
quadratic in µ. Solving these and eq. (2.13) for x and µ is no straightforward exercise.
Now, denote the µ in the denominators by µ̃. We can construct, for fixed µ̃, a linear

problem in µ. Let us write for i = 1, . . . ,m:

Aij(x, µ̃) =

(
ajfj(x)

µ̃
+ σj − bj

)
xi −

Pijfj(x)

µ̃
+Mij for j = 1, . . . , n,

Ai,n+1(x, µ̃) = (σr − br)xi +Mir.

(2.30)

The linear problem is then, for fixed µ̃ and for α = (α1, . . . ,αn, µ/gn+1(x)),

max
α

{
µ

∣∣∣∣∣A(x, µ̃)α = 0,
n∑

j=1

αj +
µ

gn+1(x)
= 1,αj, µ ≥ 0

}
, (2.31)

which generally is either easily solvable, or has no feasible solutions. The maximiser,
denoted by αopt, is an extreme ray of the cone spanned by the constraints. It will
therefore be on top of some of the inequality constraints, which means as many entries
of αopt as possible are zero. This means that the maximal growth rate will be in an
EGM, since that is the most minimal pathway. We will generally not immediately find
µ̃ = µopt = αopt

n+1gn+1(x). We need to vary both x and µ̃ until we find µ̃ = µopt.

For fixed x, eq. (2.31) gives a vector
(
α1, . . . ,αn,

µ
g(x)

)
, which will hold different µ for

different µ̃, which we can see as a function µ(µ̃). See Figure 2.1 for an example of this
function for fixed x. We need to find the intersection of this curve with the identity to
find µ̃ = µ. We then need to do this for different x to find the optimal growth rate.
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3 Results

In this section, we will look at an example pathway and use the theory of EGMs to find
the bacterial growth law.

3.1 Pathways

We consider five metabolites and seven enzymes, which are (redundantly) connected
through four distinct EGMs given by the pathway given in Figure 3.1. A similar, real-
life example of this pathway can be found at the pathway starting at prephenate in
[4]. The four EGMs that can be distilled from this pathway are given by the following
sequences of reactions:

EGM1 v1, v2, v3, v4, v5
EGM2 v1, v2, v3, v6, v7
EGM3 v1, v2, v4, v6
EGM4 v1, v3, v5, v7

This is of course under the assumption that the stoichiometry allows for these non-
redundant pathways to be possible. Note that in each of these four EGMs, the amount
of metabolites m is equal to the amount of enzymes n. A priori, there is no reason to
expect that optimal growth rate is obtained in the same EGM for different values of
extracellular substrate concentration x0.

Figure 3.1: Five metabolites, x1 through x5, connected by seven different enzyms that
together with the ribosome construct the whole cell. In this case, x4 and x5

can be seen as the amino acids. The substrate outside of the cell from which
it grows is called x0.

We find optimal growth rate through the following procedure: First, we define stoi-
chiometry matrices P and M , flux rates fj(x), gj(x) and the molar volumes ρ, σ and
σr. Since these are properties of the various compounds in consideration, they are fixed.
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Next, we describe the linear problem from section 2.2.5 and solve it for various x and µ̃
until we find the optimal µ and the accompanying concentrations.

3.2 Assumptions

In this section, various assumptions made will be highlighted and explained, if not yet
already done.

3.2.1 Definitions

We use

P =

⎛

⎜⎜⎜⎜⎝

1 −1 −2 0 0 0 0
0 1 0 −1 0 −1 0
0 0 1 0 −2 0 −3
0 0 0 3 0 0 2
0 0 0 0 3 2 0

⎞

⎟⎟⎟⎟⎠
, M =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
30 10 30 0 30 10 0 30
40 40 0 50 20 40 10 30

⎞

⎟⎟⎟⎟⎠

(3.1)
for the metabolic and enzymatic stoichiometry.
We define the sign of x as

sgn(x) =

⎧
⎨

⎩

−1 x < 0;
0 x = 0;
1 x > 0,

(3.2)

then, for the fluxes, we define

f1(x) = kcat,1
x0 − x1/k1∑

l kcat,l + x0 + x1/k1
, (3.3)

where x0 is the concentration of the source metabolite outside the cell. For j = 2, . . . , n
we define

fj(x) = kcat,j

∑
i sgn(xi)xi/ki∑

l kcat,l +
∑

i |sgn(xi)|xi/ki
(3.4)

and
g(x) = gj(x) = kcat,r

x4x5∑
l kcat,l + x4 + x5 + x4x5

for all j. (3.5)

The molar volumes ρ for the metabolites and σ for the enzymes and the ribosome
are chosen in such a way that ρ = k and σ = 10× kcat. This factor 10 means that the
enzymes take up way more space than the metabolites do.

3.2.2 Fluxes

The fluxes fj(x) and g(x) are defined in the way above to resemble the Michaelis Menten
kinetics formula [3]. The fluxes used have to have the following properties:
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1. Larger source metabolite concentration results in a higher flux;

2. Larger target metabolite concentration results in a smaller flux;

3. Maximal flux is obtained when source metabolite concentration is infinite and
target metabolite concentration is zero.

The fluxes have to remain non-negative. We exclude, e.g., the possibility that x3 creates
x4, which creates x2 (requiring negative f4(x)), which creates x5. Starting conditions
which give solutions with negative fj(x) or g(x) must be discarded.
The constants kcat and k typically vary wildly and since it’s not the goal to investigate

the effect of these constants on the ribosomal fraction of enzymes, they are chosen
randomly between 0.3 and 0.8.

3.3 Finding the bacterial growth law

For various concentrations x0 between 7/40 and 11/16 in steps of 1/80, the optimal
growth rate and the fraction of ribosomes of the total enzyme have been calculated.
This is shown in Figure 3.2. The growth rates vary between 1.5× 10−4 and 1.7× 10−4.

Figure 3.2: The optimal growth rate versus the fraction of ribosomes of the total enzymes
for concentrations x0 between 7/40 and 11/16, in steps of 1/80.

When smaller concentrations of x0 than 7/40 are chosen, the system becomes unstable
and an optimum couldn’t be found. When performing linear regression to find a best

14



straight line fit through these data points, the y-axis intercept is found to be at 9.6×10−8,
with an R2 of one. A priori, there is no reason for this line to go through the origin. A
cell that doesn’t grow, still needs ribosomes to sustain itself.
For every x0 considered, we find that α6 = α7 = 0, so the optimal system will always

find itself in EGM1.

3.4 Conclusion

It can be concluded that it is possible to find an affine connection between the growth
rate and the ribosomal fraction of the total enzyme in the theory of EGMs. Although
this is only found for a relatively small range in growth rate, it is done in a relative
large portion of meaningful extracellular substrate concentrations. It can also be seen
that for higher extracellular substrace concentration x0, the optimal growth rate will
barely increase, showing a saturation in the system. Looking at larger x0 than 11/16 is
therefore not meaningful.
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4 Discussion

Previously, we have calculated optimal growth rates, but we haven’t considered the fact

that these are actually locally optimal. Eq. (2.31) gives us a vector
(
α1, . . . ,αn,

µ
g(x)

)

for fixed x and µ̃. Generally, the function µ(µ̃) prescribed by eq. (2.31) is found to be
strictly descending down to the y-axis, see Figure 2.1 for an example. To find the growth
rate µ, we have to equate said curve to the identity curve. It is unknown whether there
is always at most one intersection for positive µ. If there is more than one, we might be
looking at growth rate which isn’t optimal, without knowing it immediately.
On the other hand, it is also unknown whether there is a different set of values for α

that gives the same optimal growth rate µopt. This different vector α′ could even describe
a completely different EGM. Yet, both EGMs must abide to the bacterial growth law.
For such α′ we know that

µopt = αn+1gn+1(x) = α′
n+1gn+1(x

′). (4.1)

Since we know that αn+1 = r/(r +
∑

j ej), this could mean that α′ gives a different
fraction of ribosomes in the cell. If this happens, it would make finding the bacterial
growth law using this model a lot harder.
Furthermore, it has been noted earlier that the system malfunctions for extracellular

substrate concentrations smaller than 7/40. This could be caused by eq. (2.31) being
to close to zero, making it nigh impossible to pinpoint the exact intercept with the
identity function. If this is the cause, then this could be remedied by increasing the
working precision. This will, however, be more time-consuming as this will lead to
slower calculations.
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