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Abstract

In this bachelor thesis we try and update the model from [Morotti et al., 2014] with
recently found experimental data from [Capel et al., 2015] and [Aston et al., 2017]. The
model in [Morotti et al., 2014] revolved around the excitability of a myocardiocyte and
the modeling of the calcium (Ca?") currents during this excitability. Experimental data
suggests that the lysosome has influence on these Ca?* currents. Because the model
in [Morotti et al., 2014] does not include the lysosome, we will try and model the lysoso-
mal Ca?" current into this model to get a better understanding of the influence on the
mathematical problem. Our goal is to theoretically reproduce two of the experimental
data-sets from [Capel et al., 2015]. To encounter this problem, we first need to under-
stand how these currents are modeled. After specifying these currents and modeling
of different channel- and receptor-mediated currents, we state our constructed models
including parameters. We give the results of these models, discuss them and compare
them to the model from [Morotti et al., 2014] and to the experimental data from [Capel
et al., 2015]. We conclude that the models works in the long run, but still needs some
optimization. Therefore, we suggest that a newer model must be used for further in-
vestigation on these Ca?* currents. Finally we state this model, and what assumptions
have to be made to be sufficient to model the current knowledge of Ca®" currents.
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1 Biomedical Introduction

1.1 How does the heart work?

The heart is essential for mammals as it pumps the blood through the vessels throughout
the body. The blood works as a pathway for necessary substances such as nutrients and
oxygen to be transported to the organs and transport waste products away from the
organs such as carbon-dioxide (COs) and even heat. The heart is the driving force that
keeps this process going. When the heart stops pumping blood through the body, waste
product accumulates in the organs and in particular cells which causes malfunction and
can result in death.

The pumping of the heart is caused by contraction of specific heart cells (myocardiocytes)
in a specific order. This process is known as the cardiac cycle. The cardiac cycle revolves
around two compartments: the atria and the ventricles. The atria and the ventricles are
itself classified by their position in the heart as ”left” or "right”. The right atrium and
the right ventricle are in the right part of the body and are responsible for pumping the
blood to the lungs and back to the heart, this is called the pulmonary circulation. The
pulmonary circulation carries deoxygenated blood away from the heart, to the lungs,
and returns oxygenated blood back to the heart. The left atrium and left ventricle are
responsible for pumping the blood to the other organs and back to the heart, this is
called the systemic circulation. The systemic circulation carries oxygenated blood away
from the heart to all parts of the body except the lungs and carries deoxygenated blood
back to the heart.
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Figure 1.1: Schematic overview of the heart and how components of the heart are called.

The cardiac cycle begins with an electric pulse which is generated in the so called sinoa-
trial node (SN) located in the upper wall of the right atrium. This causes the atria to
contract, raising the pressure in the atrium to such a level that it is higher than the pres-
sure in the ventricles. The pressure difference is needed such that the atrioventricular
(AV) valves open and blood flows into the ventricles. As blood flows into the ventricles,
the atria pressure lowers until the pressure is again lower than the ventricle pressure.
This causes the AV valves to close again. The electric pulse now reaches both the ven-
tricles causing them to contract. Ventricle pressure is raised until this pressure is higher
than the pressure in the pulmonary artery for the right ventricle and higher than the
pressure in the aorta for the left ventricle (see Figure (1.1)). When this pressure level
has been overcome, the blood is pushed into the pulmonary artery and into the aorta
and starts to flow to the organs. During this process, the atria started to fill with blood
such that another electrical pulse can start the cardiac cycle again. Thus, the pressure
is essential for the working of the heart to pump the blood around.

An electrocardiogram (ECG) can measure the voltage through the heart as it beats.
Each part in the ECG has its own label and corresponds to activation of the atria or
the ventricles. The P-wave represents the activation of the atria. The QRS-complex
represents the activation of the ventricles in downwards direction while the S-wave rep-
resents the activation of the ventricles but in upwards direction (see Figure (1.2)). For
a normal patient the ECG has a characteristic sinus wave with the PQRST-tops visible.
Medical conditions involving the heart are partly diagnosed by interpreting the ECG of
the patient.



Mormal Heartbeat

Fast Heartbeat

Qs
QRS Complex T Wave

Slow Heartbeat

Actication of the Activation of tha Recovery wayve | = i T A
atria vertricles

Figure 1.2: Schematic overview of the cardiac cyle.

1.2 How do myocardiocytes work?

The contraction of the myocardiocytes gives rise to higher pressure in the atria or the
ventricles. The contraction of a myocardiocyte is caused by a series of processes within
the myocardiocyte itself. The electrical pulse is passed from one myocardiocyte to
another via an cardiac action potential. This cardiac action potential has five phases
based on the flux of ions in and out of the myocardiocyte. The cardiac action potential
follows a certain pattern, which we will describe here.

e Phase 4: the myocardiocyte is in resting state, with a membrane potential of -90
mV.

e Phase 0: so called quick-sodium-channels (QSC) open, such that sodium (Na™)
flows into the myocardiocyte making the membrane potential about +50 mV. This
is called depolariation.

e Phase 1: the QSC close such the flow of Nat into the myocardiocyte is termi-
nated while potassium (K*) channels briefly open such that K* flows out of the
myocardiocyte.

e Phase 2: KT still flows out of the cell while a flow through the so called L-
type Ca*" channels of calcium (Ca*") into the myocardiocyte starts. This flow



of Ca?*into the myocardiocyte not only causes the contraction of the myocardio-
cyte but also activates chloride (C17) channels. These channels allow Cl~ to enter
the myocardiocyte.

e Phase 3: the L-type Ca?* channels close while K* channels remain open. These
remain open until the membrane potential is restored to -90 mV. This is called
repolarisation.

4 4

Figure 1.3: Schematic overview of the phases of a cardiac action potential.

1.3 Ventricular fibrillation

Ventricular fibrillation is a medical condition involving the myocardiocytes. As we have
seen previously, the ventricles have to produce pressure to pump the blood. The my-
ocardiocytes contract at the same time. A patient with ventricular fibrillation does have
myocardiocytes that contract, but not at the same time. This results into failure of the
ventricles to pump the blood around the body effectively. This is a major risk for the
patient and can cause death. Ventricular fibrillation thus stands for the disorganized
pumping of the heart. This can be seen in the ECG of a patient where most of the time
the amplitude of the PQRST-tops are smaller than normal. The disorganized pumping
of the heart can also have another cause, which we will discuss in the next subsection.
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Figure 1.4: Ventricular fibrillation can be diagnosed by interpreting the ECG of a pa-
tient.

1.4 The role of Ca’" in the myocardiocytes

It is known that Ca?* has an important role in the myocardiocytes. During action poten-
tial phase 2 mentioned before leads the influx of Ca?* to a so called Calcium-induced cal-
cium release (CICR). This means that the little influx of extracelluair-Ca?* into the cy-
tosol of the myocardiocyte induces a bigger influx of intracellulair-Ca®* into the cytosol.
The bigger influx of Ca?* comes out of the Sarcoplasmic Reticulum (SR), an organel in
the cytosol of the myocardiocyte, which stores massive amounts of Ca?Tcompared with
the cytosol. The result of this bigger influx into the cytosol is that the myofilaments,
the fibers that perform the actual physical contraction, are activated, as the threshold
of Ca?" is reached.

Thus, the small influx of Ca?* leads to a physical contraction, or in other words, a
small change in the concentration gradient of Ca?" in the cytosol leads to a physical
contraction. Therefor, the concentration of Ca?" in the myocardiocyte should always
be closely regulated. The disorganised pumping of the heart seems to be a result of an
unwanted influx of Ca?t into the cytosol. We will describe in the next section what a
reason could be of unwanted influx of Ca?* and thus unintentional contraction which
causes ventricular fibrillation.



1.5 Involvement of the lysosome in ventricular
fibrillation

The lysosome is an membrane-bound organelle found in every animal cell. Because
of its membrane it can engulf all sort of biomolecules, such as peptides, nucleic acids,
carbohydrates and lipids. The internal cytosol of the lysosome is called the lumen. The
lumen contains a variety amount of enzymes, such that it can break down all biomolecules
it engulfs. It is known that the lumen also contains a great storage of Ca*, just like the
SR. It has been proposed that the lysosome plays a part in ventricular fibrillation [Capel
et al., 2015] because there seems to be an influx of Ca®" into the cytosol, originated from
the lysosome. This relies on the activation of molecules that are integrated into the
lysosome membrane, the so called Ca*"-permeable type 2 Two-pore channels (TPC).
The activation of TPC is caused by a widely used messenger-molecule called Nicotine
Acid Adenine Dinucleotide Phosphate (NAADP) that binds to the TPC. It has been
found that the TPC is essential for a NAADP-induced lysosomal-Ca?* influx [Capel
et al., 2015].
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Figure 1.5: Shows superimposed Ca?" transients in myocardiocytes before and after ap-
plication of NAADP-AM (240 nM) from [Capel et al., 2015].

This has been tested by [Capel et al., 2015] who used a membrane-permeant ace-
toxymethyl ester of NAADP called NAADP-AM to stimulate both wild-type (WT) mice
myocardiocytes and modified mouse myocardiocytes which did not have working TPCs.
The latter are called TPC-knockout mice. These tests were performed and showed that
when NAADP-AM was used to stimulate WT mice, the amplitude of Ca?* transient
was significantly increased, while NAADP-AM failed to increase the Ca?* transient in
TPC-knockout mice. This can be seen in Figure (1.5).



Our main goal is to see if we can make a mathematical model that can reproduce
these curves. We will extend the mathematical model given in [Morotti et al., 2014]
with information from [Capel et al., 2015] and [Aston et al., 2017]. This extension
will revolve around the addition of the lysosome and NAADP dependent lysosomal
Ca?* current that has been experimentally observed, like in [Aston et al., 2017] and
Figure (1.6). Experimental data suggested that the lysosome interacts in close range
with the SR see Figure (1.7) .
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Figure 1.6: The model of [Capel et al., 2015] that suggests positive NAADP influences
on TPC-Ca?*t currents.

Figure 1.7: 3D Electron Tomography reconstruction of rabbit ventricular myocardio-
cytes, from [Aston et al., 2017].
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2 Mathematical Introduction

2.1 Modeling of the cell membrane

The models of Alan Hodgkin and Andrew Huxley form the basis of all currently used
mathematical models of electrophysiology of the heart or neuronal cells. They modeled
the excitable cell as an electrical circuit, giving each component an electrical element.
Charged ions account mostly for the signaling in and around the cell. Currents of these
ions can be used to determine change of voltage. These currents are mostly mediated
by channels and receptors. Because these also depend on the voltage itself, we will get
a differential equation for voltage.
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Figure 2.1: Electrical circuit representing the membrane.

Back to the model, the Hodgkin-Huxley model interprets the lipid layer as a capacitance
(Cpn, a constant), Voltage-gated ion channels as electrical conductances (g,, where the
n stands for the specific ion channel and g, is dependent of voltage and time), as well
as for the Leak channels in the cell membrane (g;). The Leak-channels (and the Leak-
current accordingly) stand for all the channels (and currents accordingly) apart from
Na®™ and K%, because the currents of all the other ions are in this model are small.
Hodgkin & Huxley also defined the difference between the membrane potential (E) and
the potential for the Na™ ions (Ey,). From the Coulomb’s law and the observation that
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the capacitance is defined as the ratio of the charge across the capacitor to the voltage
potential necessary to hold that charge, thus Cy; = Q/V, we get that the capacitance
current [, = C;—Cf = C’M%. There is also an ionic current in the cell. Assumed is that
there is no buildup of charge on either the out- and the inside of the cell. Therefore,
the sum of both the capacitance current and the ionic current should be zero, leading
to Equation (2.1).

%
I=1I+1=Cygr +1;=0 (2.1)

where

e [ is the total membrane current density;

e [, is the capacitance current;

I; is the ionic current density;

V' is the displacement of the membrane potential from its resting value;

C) is the membrane capacity per unit area;

t 1s time.

The next step is to divide the ionic current into the sum of Nat, K* and Leak currents,
thus
I = Ing + I + I,

Hodgkin & Huxley then continued to reason by using the Nerst-equation that the ion
specific current is in linear form of

INa :gNa(V - VNCL)7
Ik =g (V — Vk),
I, =g (V = V).

Each ionic conductance can be expressed in terms of a ion-specific constant times ion-
specific functions to the power an ion-specific integer estimated to fit the best to exper-
imental data where this ion-specific function is determined by a differential equation.
These formulas are given in the following subsections.

2.1.1 The potassium conductance: gy

First thing Hodgkin & Huxley did was describing gx. They assumed that gx would
obey to a differential equation dependent on voltage and time:

dgx
W = f(’l],t)

12
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Figure 2.2: Experimental data from [Hodgkin and Huxley, 1952] for the pottassium con-
ductance in a long giant squid axon from a squid nerve cell.

To fit the experimental data (see Figure (2.2)) that increased sigmoidal and decreased
exponential, Hodgkin & Huxley reasoned that the potassium conductance should satisfy
the formula

9K = grn’, (2.2)
where the fourth power was chosen to obtain the smallest error to fit to the experimental
data in Figure (2.2) and g is some constant. The n function in Equation (2.2) satisfies
the differential equation

Tn(v)é—? = Noo (V) — n, (2.3)
where n.,(v) and 7,(v) are defined as
. an (V)
Moo (V) “on(v) + ﬁ_n(v)a (2.4)
1
RO} 7

To solve this differential equation, Hodgkin & Huxley opposed some (boundary) condi-
tions, namely

e At t =0, v was elevated from 0 to vy and after that held constant.
e 1 is at steady state when t = 0, i.e, n(0) = n(0)
e n,=20
Solving Differential Equation (2.3) with these conditions gives
n(t) = neo(vg)[1 — e~/ (0)], (2.6)

which should be powered to the fourth to fit the sigmodial increasing. To fit the expo-
nential decreasing, Hodgkin & Huxley solved Differential Equation (2.3) as

n(t) = noo(vg)e ™0 (2.7)
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where again n had to be powered to the fourth.

For any given voltage step, the time step 7,, and the final value of n, namely n.,, can
be determined by fitting Equation (2.6) to the experimental data. After experimenting
with many voltages, Hodgkin & Huxley fitted a continuous functions for n., and for
7, in Equations (2.4) and (2.5) respectively to the discrete data-sets. Fitting of these
functions have even lead to exact descriptions for a,,(v) and 3, (v) as in Equation (2.4).

2.1.2 The sodium conductance: gy,

Hodgkin & Huxley used for the sodium conductance with the same method which they
used for the potassium conductance, although the sodium conductance seemed more
complex. The equation should not only take account for the activation of the Na™ cur-
rent, but also inactivate the Na* current. Because of this, Hodgkin & Huxley reasoned
that the equation for potassium conductance gy, would be

gNa = g]:/amglu

with m and h obeying the same equation as n in Differential Equation (2.3), with their
own voltage dependent functions. The function m activates the Na® current, while A
inactivates the Nat current. Again by fitting to experimental data, one can obtain
continuous functions for these discrete data-sets.

2.2 Modeling of flux in the cell through
compartments

Mathematical modeling of a cell is done through compartments. We treat each organelle
as a compartment with its own characteristics. The more compartments, the more can
be taken into account and that makes the model closer to reality. But more compart-
ments does give rise to more variables which makes the model harder to interpret. The
compartment model used in [Morotti et al., 2014] can be seen in Figure (2.3)

14



m buffer’

Bulk Cytosol
cl K K K K K

Sub-Sarcolemma ; Sub-Sarcolemma Bulk Cytosol
Sarcolemma | ]
| 1 | | | |

Cica 55 K.slow o K1 Kr

Myofilaments

T-tubule
Sarcolemma
g ‘
- H
'}
=

Figure 2.3: The model with interactions suggested in [Morotti et al., 2014].

We have seen in Section (2.1) that the cell membrane can be modeled as one compart-
ment of the cell. Other compartments that we look at are the SR, the Cytosol, the
Sarcolemma (SL), the Bulk-Sarcolemma and the Lysosome. Although there are around
50 to 1000 lysosomes in mammalian cells with different sizes, we define the Lysosome-
compartment as only one lysosome with specific characteristics. The same modeling
thought accounts for the SR. The cytosol of the cell is a fluid where proteins and other
substances are dissolved and all organelles are in contact with. That is a reason to treat
the cytosol as well as a compartment of the cell.

Statistical data suggest that some organelles do have certain affinity to specific places
in the cytosol [Capel et al., 2015]. Electron microscopy showed that tight gaps are
formed between the lysosome and the SR and between the sarcolemma and the SR as
well. We call these tight gaps between organelles junctions. Because the model utilizes
concentration of ions, concentrations can differ in these junctions as the volume of a
junction is significantly less than the Cytosol. We model these junctions separate of
the cytosol, for this reason. Because physically the Junction and Cytosol compartments
consist of the same fluid there is diffusion between them. One more reason of separating
the Cytosol compartment is that a small difference of concentration in the Junction com-
partment causes an bigger flux in the Junction compartment compared to the Cytosol
compartment because of the bigger volume of the Cytosol compartment. This is im-
portant because some ion-channels are activated through difference of concentration in
their neighborhood of a certain substance, which we will discuss in the next subsection.
A widely used term for this event is that the the ion-channel has a specific activating
threshold.

To describe the interaction between such compartments we will explain an adaption of
a model used in [Penny et al., 2014], which we will use for our models. We define the
compartments as followed: the Cytosol, the Junction, the Lysosome and the Endoplas-
mic Reticulum (ER). Because the ER and the SR have common characteristics we can
use this model for our own model. Their model was based around the Ca?* flux between
these compartments. The Cytosol and the Junction consist as previously explained of
the same fluid, and therefore there is some diffusion of Ca?t between these compart-
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ments. In general is flux given by the symbol J and is sometimes through a membrane.
When this is the case, a mediator molecule is used to pass through this membrane. The
mediators that we model are the TPC, the inositol triphosphate receptor (IPR) and
the Sarco/endoplasmic reticulum Ca?*t-ATPase (SERCA). The mediators are somewhat
modeled differently, which we will discuss in the next section.

-

Jiyseve Jiysj
Lysosome

L

Cytosol (Can)

Figure 2.4: Adaption of the model in [Penny et al., 2014].

Flux From To Mediator
Jj eyt Junction | Cytosol | None
Jeytj | Cytosol | Junction | None

Jij Lysosome | Junction | TPC
eyt Lysosome | Cytosol | TPC
Jer; | ER Junction | IPR
JEReyt | ER Cytosol | IPR
Jier | Junction | ER SERCA
Jeyt.Er | Cytosol ER SERCA

Table 2.1: Table of the flux variables and its mediators.

These fluxes are then modeled by the following equations:

Jjeyt = Dc(Cj — Ceye),
Jeytj = Do (Coye — Cj),
J1j = kiPorpc(Cr — C)),

Jieyt = ki Porpc (Cp — Ceyr),
Jerj = kiprPorpr(Cgr — C}),
Jereyt = kiprPorprR(Cer — Coyt),

Vks*ERc,axojl'75
TR = K ea + O

VsproaCLT®

J - cyt
cyt, FER —
! K§fpoa + Cogt”’

where D¢ is a diffusion- or rate-constant for Ca?* in the cytosol and parameters k are
rate-constants related to the density of the specific ion-channels. The term P,rp¢ is the
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fraction of TPCs that are activated and open, this term is modeled in Section (2.3).
The concentration of lysosomal Ca*"™ (C;) and the concentration of ER-Ca?t (Cgg)
are assumed constant and therefore no differential equations will be modeled for these
concentrations. All the fluxes have unit concentration over time.

Assuming no flux across the cell membrane, we get the following differential equations

for Cey:

dccyt
dt

= JER,cyt + Jl,cyt - cht,ER + Jj,cyt-

For the equation of Junction Ca** | the fact that the volume of the Junction is different
from the volume of the Cytosol has to be taken into account. This leads to the differential
equation for C; to be

dcC;
e = Ry Jgr; + RvJi; — RvJjpr + Ry Jey .
The parameter Ry represents the ratio of the volumes of the compartments Ry = V%Jyt

2.3 Modeling of ion mediator in the organelles

We encountered in the previous subsection three different ion mediators: the TPC, the
IPR and the SERCA. The flux via these big mediators can be mathematically modeled
in different ways. We will discuss both models for these mediators.

2.3.1 Modeling of the TPC and the IPR

Because the TPC and the IPR are modeled the same way we will only work out the
model for the TPC. We begin with assuming that the TPC has two ports, but only that
the TPC is open when both of these are activated.

We assume that these ports switch independently of each other between open and closed.
We define a binary counter that tells us in what state the port is, whether a port is
activated or not, and also define X as the TPC as whole. X;j; thus means that both
ports are activated and the TPC is open, while Xy; means that the first port is activated
and the second is not which means the TPC is not open. Because there is no biological
difference between Xy, and X;¢ we can define a new variable H that represents the TPC
with a counter that tells us how many ports are activated. The TPC switches from one
combination of states to another with some rate. We define these rates o when a port
is activated and [ when a port is deactivated.

Because we are more interested in the fraction of TPCs that are open, and not the
amount, we normalize each variable H with the total amount of H and define this the
variable S: 5; = A& - for i = {0,1,2}. Obviously because of our definition of S we have
that Sy + S7 + Sg 2 1. The chemica) reaction scheme then looks like this:

17



So =2 512 5,
B 2

This gives rise to the three differential equations for Sy, S; and S5. Because of Sy +
S1 + S = 1 we can drop the differential equation for S;. We will only have to look at
differential equations for Sy and Ss:

dS

d_to = 351 — 2aSy,

dS

dt2 = aS; — 2[9,. (2.8)

What determines the flux from the Lysosome through the TPC to the Junction? This
flux is dependent of the difference of C; and C; and of the rate k; but this assumes that
the TPC is open all the time. This is certainly not true. Differential equation (2.8)
says that the fraction of TPC that is open, changes over time. Thus, S,, the fraction
of TPCs that is open has influence on the flux through the TPC. We call the factor Sy
the open probability for TPC and is denoted by P,rpc. This leads to the flux from the
Lysosome through the TPC to the Junction to be

Jij = ki Poyrpc(Cp — Cj). (2.9)

This model can be extended for channels that have for example more ports and even a
new variable that determines whether a port is activated or not. The IPR model makes
use of three equivalent and independent ports. Each port has three different properties
that can determine its state. The first is an IP3 binding site, which is the activator of the
IPR. Second is an activating Ca?* binding site and an Ca?* inactivating binding site.
Therefor each port can be labeled as H;;, where i, j, k indicate the properties previously
and have either value 0 for unoccupied and 1 for occupied. Once again we can make a
new S variable for the fraction of total IPRs, and write down the differential equations for
those. Experimental data indicates that each port works cooperative, which means for
the Ca?t current that when all three ports is in state S119, Ca?* flux is possible. Because
each port is independent of each other, the open probability of IPR is P,rpr = S3,.-

2.3.2 Modeling of the SERCA

The model for the SERCA uses another base model. We start with a model that describes
the interaction of an enzyme with two substrate molecules. The enzyme can exist in
unbounded, bounded with one molecule of substrate and bounded with two molecules
of substrate. The complex of enzyme and substrate(s) can degrade into the free enzyme
and a product or the complex and a product. We define again the rates and thus the
reaction chain looks like
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k
S+E=C, B E+P
k_1

k3
S+C =0 B+ P (2.10)

k_3

Determining this system gives five differential equations for S, F, C, C5 and P. Because
of the conservation of the amount of enzyme and the differential equation for P can be
solved manually by integrating, we can decrease the model to three differential equations

d
d_f — _kiSE + k1Cy — ksSCy + k_sCs,
dC
d_tl = k1 SE — (k_1 + k2)Cy — k3SCy + (kg + k_3)C, (2.11)
dC:
d_t2 = k:gSCl - (kll + k—3)02‘ (2]‘2)

49 and 92 both equal to zero. This has been proposed by Briggs &

Next we set < o

Haldane in 1925 who assumed that the rates of formation and breakdown of complexes
are essentially equal at all times, disregarding the beginning of the reaction [Briggs and
Haldane, 1992]. Thus, % =0 = %. This method is called the quasi-steady-state
approximation. Assuming the quasi-steady-state approximation and solving for C; and

Cs gives

o KaEoS
'K Ky + KuS + 5%
EyS?
Cr= 2.13
P T KKy + Ky + 5 (2.13)
where K,K, and Ej are constants given by K; = —k*};“'”, Ky = —k‘*:;“% and

Ey = FE + C; + Cs. This leads to the flux being

(ko K5 + kyS)EoS
K Ky + KS + 52

J - kgol + k4CQ -

Now we can put some conditions on the rate values: let us say that k; — 0 and k3 — oo
while keeping k; ks constant. The biological meaning of this is that the enzyme and the
first substrate bind very slowly, but when the complex is formed it immediately binds
another substrate. This results into the flux being

. kiEoS®  VipasS?
K Ky + 5?2 K2 4+ S5?
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where we define V,,,o, = k4Ey and K2 = K; K,. This basic model for one substrate can
be extended to n substrates under the condition that £ — 0 and k,, — oo while keeping
k1k, constant, which gives

Vmaa:Sn

=+

Kp + 5"
where K] = II? ;K;. This n is called the Hill-coefficient and can be found through
experimental data. It is not unusual that the best fit for n to be non-integer, which

explains our value of n = 1.75 which has been suggested in [Pitt et al., 2010]. This leads
to the flux being

VseroaC}™

JiEr = , (2.14)
! K§ghoa +C; ™
VsercaCyi”
cht,ER =

175 175
Kggroa + Copi

These fluxes are similar to the fluxes that will be used in the [Morotti et al., 2014] model,
of course applied on the SR instead of the ER.
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3 Our Models

The modeling of Ca?* flux in a myocardiocyte with a junction that is formed between
the SR and the Sarcolemma was first done in 2004 [Shannon et al., 2004]. Over the
years this model was extended with more compartments in it through several papers. A
recent one was [Morotti et al., 2014], which we will be using as foundation of our models.
All these papers used a computational model programmed in MatLab. All our models
are based around the placement of the newly defined Lysosome compartment and the
following lysosomal Ca?" current into the existing model of [Morotti et al., 2014]. For
each model we define new differential equations and new parameters that are involved.

—

‘ Myofilaments

T-tubule

Sub-Sarcolemma

Sarcolemma J

Figure 3.1: Schematic figure of Model 1 and 2, only changed parts compared with [Mo-
rotti et al., 2014] are shown.

Because the lysosome is a storage of Ca?t we will also model whether we keep the
lysosomal Ca2?" concentration fixed or variable. First of all we have to know some
geometry of the lysosome to define our Lysosome compartment. We define the volume
of the Lysosome compartment as in [Penny et al., 2014]. The call the parameter that
determines the diffusionrate from Ca?* between the Junction and the Lysosome D¢ as
found in [Allbritton et al., 1992]. We estimate the parameter that represents the rate of
the flow from the Lysosome to the Junction ky, by averaging kr ¢ values from Penny et al
2014 [Penny et al., 2014], Table 1. Next we define the concentration of NAADP, which
we choose to fit to the experimental methods used in [Capel et al., 2015] and the open
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probability of TPC P,rpc. The relation between P,rpc and the NAADP was found to
be bell-shaped. The optimum of P,rpc was 0.014 at 23 nM NAADP as in [Pitt et al.,
2010]. We choose, as in [de Jong, 2016], the standard deviation of this formula to be 1.5
such that it would fit the data of [Pitt et al., 2010].

0.014

0012

o
2

0.008 -

Open probability of TPC
2
3

°
=
g

0.002

0 50 100 150 200 250 300
NAADP in nM

Figure 3.2: The bell-shaped relation between the openprobability of the TPC and the
concentration of NAADP.

We define the rate of the flow of Ca?* through the TPC induced by NAADP k,. We
estimate this parameter by data of [Fameli et al., 2014], which says that a typical flow
of CICR is about 300nM in 0.3ms. This is equal to 1.0 - 1073mM /ms. Therefore we
can estimate parameterk, using the formula J,,1s = ki Pyrpc(Carys,init — Ctjinit). We
let the distance from the Lysosome to the Junction be distLysjunc corresponding to
the findings [Capel et al., 2015]. The parameter D qiysjune g0t the value of the average
of the values of Degisreyto ad Dearuncyto in [Morotti et al., 2014]. Finally, we define the
parameter Jeq junciys Which we calculate with the same constructed formula as in [Morotti
et al., 2014]. See for all values, units, formulas and sources Table (3.1).
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Parameters | Formula Value Unit

Vigs 0.0V, 3.3006- 105 | L

kY kP + k) /2 0.01125- 102 | ms~!

JO AlCat)®) 1) 1073 1.0-1073 mM /ms

NAADP® |- 240 nM

P&, 0.014 - ¢~ AP0 0.004 -

) i /(Cal. i — Calhi) Porrpe | 04854 ms~!

AD e |- 251073 pim

DY - 2231073 pm? /ms
£22lysjunc (Dézlzgchyto + DgtlzzJuncyto)/ 2 1.34-107° cm?/s

Table 3.1: Table of parameters for the Lysosome. (0): Our own method for estimating
parameter. (1): Value from [Morotti et al., 2014]. (2): Value fitted to data
of [Penny et al., 2014]. (3): Value from [Capel et al., 2015]. (4): Value
from [Allbritton et al., 1992]. (5): Fitted to data of [Pitt et al., 2010]. (6):
Value and method from [Fameli et al., 2014]. (7): Method from [de Jong,
2016].

3.1 Model 1: Lysosome - consisting compartment -
fixed Ca*"

In this model we define the Lysosome compartment and let it only interact with the
Junction compartment that is modeled in [Morotti et al., 2014]. We assume that the
Lysosomal Ca?t concentration does not change in time, which means it becomes a
parameter and we define this parameter as C'apys ;e = 0.5 in unit mM as in [Pitt et al.,
2010]. We define the leak flux through the TPC between the Lysosome and the Junction
like in [Penny et al., 2014] as JyLsieak = kLs - (Carysinit — Ca;) which has unit mA/ms.
We also introduce the flux of Lysosomal Ca** through the TPC into the Junction that
is caused by NAADP like in [Penny et al., 2014]: J,,1s = krsPorpc - (Carys,init — Ca;)
with unit mM /ms. This leads to a new differential equation for Ca;

dCCLj 1 Cmem 1
= - I a,tot,junc + —Jca juncs Oas - CG' - J aB,junction
‘/8’/‘ Vm o VL S VL s
+ Jsrcarel + 2 JsRieak + ——JmLs + —— JmLslea 3.1
V}unc Shcarel V}unc SHleak V}'unc g V}unc Lsteak ( )
VL s
+ Y DCJca,junclys(CaLys,init - Caj)a

V}unc

with unit mM /ms.
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3.2 Model 2: Lysosome - consisting compartment -
variable Ca’"

In this model we define the Lysosome compartment and let it only interact with the
Junction compartment that is modeled in [Morotti et al., 2014]. While we assumed
in model 1 that the Lysosomal Ca?" concentration does not change in time, we will
assume in model 2 that it does change in time. We conclude that we should compose
a differential equation for Car,s. This also means that the parameter C'apys ini¢ in the
flux equations described in model 1 should for model 2 be the variable Car,s. The
initial condition of it will still be 0.5mM. We define the leak flux through the TPC
between the Lysosome and the Junction as Jyrsiecak = krs - (Carys — Ca;) which has
unit mM /ms. We also introduce the flux of Lysosomal Ca*" through the TPC into the
Junction that is caused by NAADP: J,,1.s = krsPorpc- (Carys —Ca;) with unit mM /ms.
Both definitions are again in line with the method in [Penny et al., 2014]. This leads to
a new differential equation for Ca;

dCa, 1 Chem 1
dt L= _V 9. FrdyICa,tot,junc + cha,juncsl(casl - Caj) - JCaB,junction
Junc junc
V:er Vm o VL s VL s
+ JSRCaT’el + —yJSRleak + —meLs + —meleeak (32)
‘/junc V}'unc ‘/junc V}'unc
Vigs
+ VLy DCJca,junclys(CaLys - Caj)u
junc

with unit mM /ms.

To model the differential equation for C'ar,s we only need to specify the variable Icq tot, 1ys-
We choose this variable to be zero because we could not determine from the the formu-
las how to define this this variable. Related variables were near zero but not did not
have the same sign. Therefore we choose the variable to equal zero all the time, thus
Icatot,Lys = 0. The total differential equating then followed to be

dCCLLyS o 1 Cmem V}unc V}'unc

- I a,to s —Jm sleak — Jm S
dt VLys 9. F?"dy Ca,tot,Ly VLys Lsleak VLys L (3 3)
V‘unc )
+ ‘}—DCJca,junclys(CG/j - CaLys)
Lys

with unit mM /ms.
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4 Results & Discussion

After numeric solving of the system, we made several plots for both the junction concen-
tration C'a; and the cytosol concentration Cac,; as well as the lysosomal concentration
Carys for model 2. The lysosomal concentration is a parameter for model 1 and there-
for not important for comparing with the plots generated in [Capel et al., 2015], which
we can see in Figure (4.1) and (4.2). Figure (4.1) shows the Ca** transient in TPC-
knockout myocardiocytes and TPC-knockout myocardiocytes stimulated with 240 nM
NAADP-AM.

In all experiments in [Capel et al., 2015] observation of Ca®" is done by a probe called
Fluor-5F and makes use of fluorescence. When the cytosol Ca?* concentration raises, the
fluorescence which is observed raises linearly as well. Therefor, fluorescence can describe
the behavior of Ca?t concentration. They subtracted the background fluorescence of
myocardiocytes from the changing fluorescence over time and is denoted F'. This value
F' is then scaled by the factor F'0 which is the diastolic fluorescence value, such that
the data is relative to the diastolic fluorescence for analytical reasons. This is the usual
way of determining concentration differences over time. Because we do not have any
fluorescence, obviously, we will be scaling the cytosol and junction Ca?* concentration
with their own initial value concentrations. This way we get a plot that we can compare
on overall behavior to the plots generated in [Capel et al., 2015].

Now we can state our results for each model. We have made plots for both Ca?* concen-
tration with two different timescales: the first 5 seconds for overall behavior and then
(timescale chosen by inspection) the first 0.05 seconds to obtain a closer look of the
first period of the contraction. For comparing our results with the experimental data
from [Capel et al., 2015], we adjust our timescale to 0.4 seconds, which resembles the

= Tpcn2*
-WT = 81—+ NAADP-AM
= 87— +NAADP °
2 _6 -AM % E‘;
c o =N
NS E 200 ms
200 ms
Figure 4.2: Shows Ca?" transient in TPC-
Figure 4.1: Shows Ca?" transient in Wild- knockout myocardiocytes and
type myocardiocytes and Wild- TPC-knockout myocardio-
type myocardiocytes stimulated cytes stimulated with 240 nM
with 240 nM NAADP-AM from NAADP-AM from [Capel et al.,
[Capel et al., 2015]. 2015].
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data in [Capel et al., 2015], see Figure (4.1) and Figure (4.2).

4.1 Model 1

First observation is that the relative concentration of junction Ca?* and cytosol Ca?* be-
have very similar, but not enough to discuss only one. So we will discuss all plots for
each concentration.

00 T T T T T T T T T

— Without lysosomal Ca-current through TPC
450 — With lysosomal Ca-current through TPC -
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Figure 4.3: Results of comparing junction Ca?*Wildtype myocardiocytes like in Morotti
without lysosomal Ca?" current with junction Ca?* Wildtype myocardio-
cytes with lysosomal Ca?* current like in Model 1.

26



SDD T T T T T T T T T
— Without lysosomal Ca-current through TRC

450 F — With lysosomal Ca-current through TPC -

B

=2

=
T
1

W
5]
[
T
1

[
=
=
T
1

250 1 1

2001 y

[CalJunction /[Ca]Junctioninitial

=

on

(=]
T
I

=5

=]

[
T
1

n
=]
T

1

D 1 1 1 1 1 I T
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02

Time (s)

Figure 4.4: Results of comparing junction Ca?*Wildtype myocardiocytes like in Morotti
without lysosomal Ca?t current with junction Ca?* Wildtype myocardio-
cytes with lysosomal Ca?* current like in Model 1.

From Figure (4.3) we see that the results for both data-sets are closely the same until
the time mark of 0.3 seconds and then diverge from each other. Both data-sets grow
exponentially to an output peak of around 470 at the time mark of 0.01 seconds and
then exponentially decay towards zero (see Figure (4.4)).

After this time mark, the lysosomal current data seems to decay more slowly, until at
the time mark of 0.5 seconds this data-set starts to grow unregulated. The data that
excludes the lysosomal Ca?* current still decays during this time interval. After each full
second, a new peak is generated for both. The peaks differ from value significantly, with
the data that includes lysosomal Ca?* current only reaching a consistent peak value of
around 150 while the other data-set reaches consistent 470.

We can see that in the interval between the peaks the data that includes lysosomal
Ca?* current behaves not like the other data-set. The data-set that includes lysosomal
Ca?" current does exponentially decay but then generates in this interval two small
normal-distribution-like tops with both tops at an output value of around 20 (see Figure
(4.5)). This behavior continues in the next periodic intervals after the peak.

This might be because of the way we set the lysosomal Ca?* concentration and the open
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probability of the TPC as parameters. Because these parameters do not change over
time, this might result in an constant outwards flow of Ca?t. We argue that the higher
the concentration is in the junction compared with the lysosomal concentration, the less
Ca?" will flow to the junction.

We described in Subsection (2.3.1) how the open probability of TPC can be modeled.
This was not included on our mathematical model, as we used some earlier found re-
sults from [de Jong, 2016]. For further investigation, we can put this open probability
in the mathematical model, or even extend this model further with activation and in-
activation of open or closed ports. A suggestion might be that the activation of ports
depends on the concentration of NAADP, but the switching of ports to open and closed
state might depend on the Ca?" concentration. Therefore the open probability would
not only depend on NAADP but also on the difference of Ca?* concentration in the
compartments.

4.5 T T T T T T T T T

— Without lysasomal Ca-current through TPC
— With lysosomal Ca-current through TPC

3.5 1

2571

[Ca]Cytosol /[Ca]Cytosollnitial

DS 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time (s)

Figure 4.5: Results of comparing cytosol Ca*tWildtype myocardiocytes like in Morotti
without lysosomal Ca?* current with cytosol Ca?t Wildtype myocardio-
cytes with lysosomal Ca?* current like in Model 1.
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Figure 4.6: Results of comparing cytosol Ca?TWildtype myocardiocytes like in Morotti
without lysosomal Ca?* current with cytosol Ca?t Wildtype myocardio-
cytes with lysosomal Ca®* current like in Model 1.

The Junction analysis holds, in some sort, as well for the Cytosol analysis. Main dif-
ference is the magnitude of the peaks and minimal output value. The maximal output
value of the peak of the junction is around 470 while the maximal output value of the
peak of the Cytosol is just 4.3. Also the steepness of the exponential decay is for the
junction higher than for the cytosol. Both results come from the modeling of the junc-
tion to be much much smaller than the cytosol. Diffusion out of the junction will go
much faster because of its relative small volume.

Now some comparison with the data-set without the lysosomal Ca®" current. After the
peak in the first second, we see like the junction data-sets a divergence between the
data-sets at around 0.2 seconds. The data grows again after 0.5 seconds unregulated.
Each peak generated each second is lower than the data-set that excludes lysosomal
Ca?* current. But what remarkably is, is that peaks (excluding the first peak) of the
data-set that includes lysosomal Ca?' current are not constant but tend to fluctuate at
an output value of 3.7. Once again we see the two normal-distribution-like tops that we
have seen in the data-set from the junction that included lysosomal Ca** current (see
Figure (4.6)).
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Figure 4.8: Results of scaled Ca*" concen-
tration in the cytosol of Wild-
type myocardiocytes and Wild-
type myocardiocytes stimulated
with 240 nM NAADP.

Figure 4.7: Shows Ca?* transient in Wild-
type myocardiocytes and Wild-
type myocardiocytes stimulated
with 240 nM NAADP-AM from
[Capel et al., 2015].

In Figure (4.8) we can see our attempt on replicating the experimental data of Figure
(4.7). If we compare the Wildtype myocardiocytes data from both figures, we can see
they both grow exponentially to an out put peak and then exponentially decay. This is
how we expected it and how it should be, as our Wildtype myocardiocytes data-set was
from [Morotti et al., 2014], confirmed to correspond to Wildtype experimental data-sets.
Next, we compare our data-set of Wildtype myocardiocytes after application of NAADP
to the experimental data-set of [Capel et al., 2015] after application of NAADP-AM.
Firstly we notice that our data-set has relatively smaller peak than the data-set of [Capel
et al., 2015] after application of NAADP-AM, compared with the Wildtype myocardio-
cytes in both plots. Both the peaks of Wildtype myocardiocytes and Wildtype myocar-
diocytes with application of NAADP seem to reach their maximum at the the same
time of about, 0.05 seconds. We compare this to the experimental data-set of [Capel
et al., 2015] and conclude that both peaks reach their maximum at roughly 0.05 seconds.
We conclude that our peak time-mark does correspond to the time-mark found in the
experimental data-set of [Capel et al., 2015].

We can see some difference in the data-sets with NAADP(-AM). The difference between
our data-sets seems to become slowly bigger after the peak at time-mark 0.05 seconds.
This does not apply for the experimental data-sets of [Capel et al., 2015]. The differ-
ence starts out relatively big at the peak time-mark and then becomes smaller as time
progresses.
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Figure 4.10: Results of scaled Ca?" con-
Figure 4.9: Shows Ca’* transient in TPC- centration in the CthSC)l of
knockout myocardiocytes and TPC-knockout myocardiocytes
TPC-knockout myocardio- and TPC-knockout myocardio-
cytes stimulated with 240 nM cytes stimulated with 240 nM
NAADP-AM. NAADP.

In Figure (4.9) we can see the influence of NAADP-AM on TPC-knockout myocar-
diocytes. We simulated these results from [Capel et al., 2015] (see Figure (4.10)).
Our results correspond perfectly: NAADP does not have any influence on the Cytosol
Ca?" concentration from TPC knockout myocardiocytes. From [Capel et al., 2015] we
know that the TPC is essential for the lysosomal Ca?t current. This way, we mathe-
matically validated this conclusion in [Capel et al., 2015].

4.2 Model 2

We also tested some scenarios for model 2 and compared them with results from model
1 and extended the timescale. Consequently, we can see if the changing of the parameter
lysosomal Ca?* to variable has significant influence on the Ca?* concentrations. These
plots can be seen in Figure (4.11), (4.12) and (4.13).
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Figure 4.11: Difference between models 1 and 2, under stimulation of 240 nAM NAADP.
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Figure 4.12: Difference between models 1 and 2, under stimulation of 240 nM NAADP.
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Figure 4.13: Difference between models 1 and 2, under stimulation of 240 nM NAADP.

We can conclude from Figure (4.11) and (4.12) that seems to give overall higher output
values. The peak of contraction are higher than those of model 1, which is makes model
1 better in this point. But model 1 is also in the intervals between these peaks of
contraction consistently higher than model 2. This is not optimally, as both should in
this interval go towards 1, as we have seen in Figure (4.3) and (4.5) from the data-set
from [Morotti et al., 2014]. But from Figure (4.12), it seems that after each peak of
the contraction of model 2 the normal-distribution-like peaks go down in value. This
gave us the indication that they might flatten out. Therefore we tried simulating over
a longer period of time (60 seconds), which results can be seen in Figure (4.14), (4.15)
and (4.16).
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Figure 4.14: Difference between models 1 and 2, under stimulation of 240 nAM NAADP.
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Figure 4.15: Difference between models 1 and 2, under stimulation of 240 nM NAADP.
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Figure 4.16: Difference between models 1 and 2, under stimulation of 240 nM NAADP.

Not only do we see that these normal-distribution-like peaks indeed flatten out. But
surprisingly, the behavior of the contraction peaks also change! Both the Junction
and Cytosol contraction peaks grow towards a maximum peak, then decay a bit and
then the peaks seem to become as high as our first peak of the plots. The Lysosome
Ca?" concentration does still decay, and we can see clearly that this goes towards zero.
Does the height of the peak of the model 2 stay constant? To find out we extended the
timescale some more to 300 seconds.
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Figure 4.17: Difference between models 1 and 2, under stimulation of 240 nAM NAADP.
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Figure 4.18: Difference between models 1 and 2, under stimulation of 240 nM NAADP.
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Figure 4.19: Difference between models 1 and 2, under stimulation of 240 nM NAADP.

We can indeed conclude that the peaks of model 2 seem to converge to, and more spe-
cific, to the values 470 for the Junction and 4.3 for the Cytosol that we have seen in
Figure (4.4) and (4.6). What is noteworthy is that the peaks of model 1 converge as
well, but not to the values of 470 and 4.3. This can be seen clearly in the zoomed-in
versions of Figure (4.17) and (4.18), see Figure (4.20) and (4.21).
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Figure 4.20: Long term difference between models 1 and 2, under stimulation of 240 nM
NAADP.

1
207 275 28
Time (5)

Figure 4.21: Long term difference between models 1 and 2, under stimulation of 240 nM
NAADP.

This convergence might be because we have an uniform stimulation of NAADP. After
the short irregularity, caused by the stimulation, the cell can adjust to this stimulation

and return back to its usual periodic contraction peaks and concentration levels. This
shows the great adaptivity of the system under influences from in- and outside.
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4.3 More optimization of the models

So how can we optimize our models. What we suggest first to optimize in the model, is
to extend the Lysosome compartment with the re-uptake of Ca?* by the H"-Ca?" ex-
changer in the lysosome-membrane which can be seen in Figure (1.6). The Lysosome
Ca?* concentration depletes over time (see Figure (4.19)), which makes sense as this
exchanger was not modeled. This depletion must have negative effect on the lysosomal
Ca?* current, because this current is dependent of the Lysosome Ca?t concentration
(see Equation (2.9)), although this negative effect can not be effectively be concluded
from our results. When this exchanger could be modeled, maybe by the same methods
explained in Section (2.3) we could describe the behavior of this Lysosome Ca®" con-
centration in a better way.

To optimize the results we need to add some more physical information to our model.
In [Aston et al., 2017] was suggested with visual observations that the lysosome not only
is located near the Junction that we used in models 1 and 2, but that it is also located
on the other side of the SR (see Figure 4.22).

Figure 4.22: 3D Electron Tomography reconstruction of rabbit ventricular myocardio-
cytes, from [Aston et al., 2017].

Therefore we suggest to not only have a Junction like in models 1 and 2, but to create
a new Junction (which we refer here to as Cleft) on the other side of the SR near the
SERCA. This does make sense, as Ca?" has been observed to have effect on the RyR
in the modeled Junction and on the SERCA. Previously, the SERCA was located into
the Cytosol, but with the addition of the suggestions of [Aston et al., 2017], we might
model the SERCASs in the newly defined Cleft.

Then, this newly made model consisting of the Junction and the Cleft would be looking
roughly like this.
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Figure 4.23: Suggestion on the newly made model for lysosomal Ca?" current including
the Junction, the Cleft and the HT-Ca?" exchanger.

In this model we suggest that the Lysosome forms a new Junction with the SR called the
Cleft. This leads to a new compartment with new interactions with the other compart-
ments. We suggest that the Cleft only interacts with the SR components like the SERCA|
the Cytosol and the Lysosome. For the Cleft compartment compartment-specific inter-
actions should be modeled, like buffers. This can be done by referring back to [Morotti
et al., 2014]. We might keep the Lysosomal Ca®" concentration again fixed (or as a
variable, depending on workload) in time while we let the Cleft Ca?" concentration be a
new variable C'ac.. We might assume that the dimensions of the Cleft will be the same
as those of the Junction. This means we will have to define some new parameters for
the Cleft with similar values as those of the Junction. This leads to a new differential
equation, namely for the Cleft Ca?* concentration, and a differential equation for the
lysosomal Ca?* as well if we choose this to be a variable.

We have used some methods that do not meet the standard method of fitting to data. In
specific taking the average of two earlier found parameters (see Table (3.1)) and loosely
setting the variable Ioq tor,1ys = 0 for all time. Therefore when this new model will be
used in the future, these two for sure should be reevaluated.
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