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ii

“While the telescope revealed deep simplicities in the cosmos, the microscope revealed previously unseen
complexities in life. The same dichotomy between the simple and the complex has bedevilled the biological
sciences ever since. Biologists, with some justification, argue that the life sciences are fundamentally harder
than the physical sciences”

Ian Stewart



Abstract

Metabolism is the sum of chemical transformations that allow life to sustain itself. It can be de-
scribed by a network of chemical reactions that happen inside the cells. In this thesis a model
for the metabolism of bacteria is investigated numerically. Several examples of it are considered
which include the presence of stress factors such as toxins. The problem is modeled as a set
of differential equations describing the change of the concentrations of the chemical compounds
present inside cell. The system is composed of 2n+ 1 differential equations, n metabolite variables
and n + 1 enzyme variables. The system is supplied with one additional algebraic equation which
specifies the growth rate which is equivalent to assuming constant osmotic pressure. The growth
rate is optimised to find the optimal allocation of ribosome among the enzymes which gives rise to
maximal growth. Several scenarios and specific systems are considered and metabolic adaptation
is observed. This study shows the versatility and applicability of this model and that a growth rate
optimisation approach also allows to understand microbial adaptation and processes that restrain
growth such as stress management.
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Chapter 1

Introduction

Biology is the natural science that studies life. It deals not only with the structure, function, devel-
opment and reproduction of living organisms but also with their interaction with the environment
around them. It is not easy to state a universal definition of life but there are some characteristics
that are observed in all living beings.

They possess some kind of dynamic, physical and chemical organisation that unlikely would oc-
cur randomly and that is not found in inanimate objects. Although some inanimate things such
as crystals often have some kind or regularity and structural organisation, they do not possess a
dynamic kind of organisation: if regularity is broken it is not restored. To some extent regularity
tends to be restored in living organisms.

Inanimate things also usually lack clear bounds. In contrast living organisms always posses some
kind of clearly identifiable boundary. Moreover, living organisms not only possess internal or-
ganisation but most importantly posses homeostasis, a feature which allows them to maintain a
stable state and organisation by means of biological processes such as signalling and feedback
mechanisms.

Other important and characterising features of living organisms are their ability to grow, evolve,
reproduce and adapt. All living organisms are composed of cells. Each cell contains genes which
store genetic information. This allows the cells to carry out all the necessary life-sustaining pro-
cesses including replication.

Living organisms can be divided into two subsets: unicellular and multicellular organisms. It is
not fully understood how life first developed on earth but it is known that unicellular organisms
have preceded by far multicellular organisms which have developed from them.

Microbes are unicellular organisms which have been discovered only recently after the invention
of the microscope. They are at the basis of the food chain. They are eaten by bigger organisms
and their metabolic waste products often contitute nutriment for plants. They are the first forms
of life that have appeared on the planet and since then they have been ubiquitous. Wherever there
is life microbes are also present. They not only outnumber macroscopic multicellular organisms
in number but also form a comparable part of the total living mass on the planet.

Microbes can be either prokaryotes or eukaryotes. Eukaryotes contain a defined nucleus while
prokaryotes do not. Unicellular microbes can be divided into protists, bacteria and archea. Pro-
tists are eukaryote organisms while bacteria and archea are prokaryotes. All multicellular organ-
isms are composed of eucaryote cells. Prokaryotes are the most simple forms of life and also the
first to have appeared on earth. Eukaryotes have then probably developed from prokaryotes by
symbiosis (margulis, 1998). It is this more simple kind of organisms (prokaryote bacteria) that is
modeled in this thesis.

Biology has made great progresses by means of a reductionistic approach: functioning of parts of
the organism or of the cell are studied in detail. The different parts are studied separately from
each other with the idea that the more complex whole can be described as a sum of the different
parts. This idea has undoubtedly been successful to explain lots of phenomena but sometimes has
also failed to explain more complex and global ones.
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Only in recent times, and very recently with the advent of systems biology and bioinformatics,
also a more holistic approach has been more widely used: the complex system needs to be ap-
proached as a whole in order to explain some of its global properties. The two approaches are
not necessarily in contraposition. In the light of deterministic dynamical systems which showed
how simple deterministic rules can lead to complex and unexpected phenomena such as emer-
gence and pattern formation, it is possible that the considered system is indeed not more than the
sum of its parts, but still not all its global features can be described by only studying its compos-
ing parts separately. Progress in this direction have also been possible due to the availability of
computers.

We will now briefly describe some general biological facts about bacteria metabolism that are
relevant to this model. Bacteria are unicellular organisms which are virtually found in any en-
vironment where there is presence of water. They are confined by a cell membrane. The cell
membrane is constituted usually by a double layer of lipids and some transport proteins that al-
low the passage only of selected nutrients from the exterior. The interior of the bacteria contains
the cytoplasm, a highly concentrated liquid composed of water in which all the chemical com-
pounds that are used for its functions and growth are diluted. Inside the cell membrane most of
the compounds wander randomly and react with each other only if they run into the ones the can
react with and at the angle that allow them to magnetically interact and bind. Although it might
at first it might be surprising that the reactions happen randomly, they occur regularly given their
presence in high concentrations. The nucleoid is present In the center of the cell. The nucleoid
contains one or more chromosomes. Chromosomes contain the information that allows the cell
to built proteins and all the macromolecules needed for growth. The genetic information present
in the nucleotid control the expression of proteins that catalyse metabolic reactions. As more nu-
trients are imported from outside the cell membrane and are converted in precursor metabolites
and later into macromolecules, the pressure inside the cell rises which leads to the intake of water
and eventually allows the cell to grow. While the cell grows the cell membrane is extended and
the nucleoid containing the chromosome(s) is duplicated. The end result is the splitting of the cell
in two nearly identical cells which contain the same genetic information. An important role in the
whole process is the one of enzymes and of the the ribosome. Enzymes act as catalysers for specific
reactions. Ribosomes are complex molecules which contain RNA information aswell as protein
parts, it catalyses the production of proteins including enzymes and of itself. Image 1.1 shows a
simplified version of the prokaryote cell structure. In the presence of enzymes reactions can speed
up by a factor of several orders of magnitude. The cell implements regulatory mechanisms which
allow to choose the amount of ribosome which is used to catalyse the production of each enzyme.
In this way the cell regulates genes expression which in turn depends also on the availability of
external nutrients. An average bacterial cell contains about 500 different metabolites in its interior
and a much greater number of reactions is possible. However not all the reactions need to take
place at the same time. Which reaction subnetworks actually are expressed depends on which
nutrients are available. We will see that in the presented model, even if we restrict to a system
with only few metabolite variables, we will be able to observe relatively complex behaviour like
adaptation and stress response.

The quick growth of bacteria is an evolutionary strategy. When a minimum sufficient set of nutri-
ents for growth is available bacteria always maximise their growth rate. Most of their metabolism
is addressed towards growth. This is because bacteria usually find themselves competing for the
nutrients with other microorganisms. Being able to grow quicker than other competitors makes
the difference for survival. This has lead to evolutionary preference for quickly growing strains
of bacteria. When the needed nutrients are available, after a short settling stage, bacteria opti-
mise their growth rate and grow exponentially quick until the sources are depleted. This is well
documented both in vitro and in nature [2].

In this master thesis a model of bacteria metabolism is investigated numerically. The model is
derived in a top-down manner: the whole cell is modeled based on first principles. The model
is kept as simple as possible but specified enough so that feedback mechanisms such as gene
regulation and expression are included. Metabolism is the sum of all the chemical reactions that
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FIGURE 1.1: This diagram shows the simplified version of the structure of a prokary-
ote cell

happen inside the cell. It can be described by a network of reactions that can occur inside the
cell membrane. The presented model consists of a set of differential equations that describe the
change of the concentrations of the compounds which are present inside the cell. Also, the system
of differential equations is supplied with one algebraic equation with describes the growth rate
and hence allows its maximisation.

In the model that we present we are interested in the exponential growth stage of bacterial growth.
Hopefully this research will give theoretical insight not only on how to choose the best substrate
concentrations which allow bacteria to grow as fast as possible in the applications, but also on
how the bacteria are able to successfully deal with growth maximisation themselves. Possible
biotechnology applications include the ones where bacteria are selected or driven to produce some
specific compound or to fulfil some specific task. Insight on how bacteria deal with growth opti-
misation can be useful in applications where it is needed that bacteria grow as fast as possible for
example the production of yoghourts or the purification of waters and oils.

Previous mathematical studies of bacteria [5], [6], [7], [9], [10], have showed that cell implements
feedback mechanisms in order to face limited resources. Even in a growth permissive environ-
ment cells have finite resources available so they have to implement strategies that allow them to
fine tune how these resources are used. Cells need then to possess mechanisms that allow them
to quickly change gene expression and ribosome allocation according to changing external con-
ditions. For example if one substrate runs out, the enzyme that metabolises it does not need to
be produced anymore. Possibly other enzymes that catalyses other substrates present in the envi-
ronment that was not used before needs to start to be sythesised. In another scenario, a toxin gets
introduced in the environment and the cell needs to start producing the toxin-removing enzyme,
at the expense of the production of other enzymes. Previous mathematical models have found
out that in the light of the tradeoffs and economy of resources that the cell needs to implement,
metabolic networks can be decomposed into minimal subnetworks called elementary flux modes
(EFM’s) [7]. Every flux profile which maximise the flux through the entire network can be de-
composed into a convex sum of these minimal networks. As we have seen, not all the reactions
in the network have to happen at the same time, some fluxes can be zero at some point in time.



4 Chapter 1. Introduction

For example if some substrate nutrient is not present, the flux of the reaction that metabolises
that particular substrate will be zero. EFM’s are minimal because they can not be decomposed
into smaller subnetworks by discarding some reaction. They are the minimal networks that allow
steady state solutions. EFMs are often used to maximise biomass synthesis flux. The model that
we present introduces an additional algebraic equation which defines the growth rate which is
equivalent to assuming constant osmotic pressure. This additional equation which specifies the
growth in terms of the metabolites’ molecular volume allows its maximisation. In the setting that
this model proposes maximal growth rate is also attained in an equivalent concept of EFM’s. We
will call these elementary self-replicating networks Elementary Growth Modes (EGM’s).

The main goal of this thesis is to undestand if it is possible to understand stress management of
cells from a fitness perspective. The usual approach is that cells have to choose either to invest
resources in their growth or in their stress management. Stresses such as toxin, radiation and
temperature prevent growth and hence are considered ’orthogonal’ to growth. For this reason
models of stress management and models of growth are usually been developed separately. In
this thesis we wish to show that a growth rate optimization framework can be used to explain
stress management. Both these aspects of bacterial life are studied in one unified theory where
the cell uses gene expression to change dynamically the allocation of its recources according to
varying environmental conditions.

This thesis is composed of 6 sections. In section 2 we introduce the model in which the growth
rate is to be maximised. Maximizing the growth rate leads to minimal self-replicating networks,
EGMs. For a given EGM, the identity of the reactions is known. Within one EGM, the metabolite
and enzyme concentrations are tuned to find the maximal growth rate. In section 3 we maximise
the growth rate numerically within one EGM. We are interested to see if this theory can also be
applied to stress management systems. In this section we describe the numerical problem that we
wish to study and present four different examples. The first one does not involve the presence of
toxins while the following three model the presence of a toxin in three different ways. In section 4
we present the results relative to the examples introduced in section 3 and some background tests
that have been performed to check the functionality of the programs. In section 5 we describe
the Matlab codes that have been developed in order to numerically investigate the examples. In
section 6 we conclude and describe what we have learned from this study and recount what this
model was able to predict.
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Chapter 2

EGM theory: Derivation Of The Model
Equations

In this chapter, after having explored the relevant biological background in the previous one, we
derive the main model that we will study and investigate. Several examples of this model will be
investigated numerically in the following chapters. This section is based on the paper "Metabolism
and Growth Rate in Microbiology" (Planqué and Bruggerman, 2017) [1]. Before deriving the model
from general principles we make a summary of the content of this chapter and of its sections.

In section 2.1 we consider some definitions and first principles and use them to derive the mod-
eling equations of our problem. The model is composed of a system of differential equations and
an algebraic equation which specifies the growth rate and allows its maximisation. In section
2.2 we further specify the model (we will call it the whole cell model) by making a distinction
between metabolites and enzymes. We do this because we want the system to be able to model
mechanisms which involve the allocation of the ribosome among the different enzymes. In the
whole cell model the number of metabolites and enzymes is in general different, however, in the
examples that we will introduce in the next chapter we consider only systems where the num-
ber of metabolites equals the number of enzymes. This is because we will consider only systems
composed of only one Elementary Growth Mode or EGM. We will define EGM’s as minimal self-
replicating networks which can not be reduced to smaller networks by discarding reactions. We
will see that these minimal networks share the property that the number of metabolites equals the
number of enzymes.

We wish to solve the maximisation problem of finding the metabolite and enzyme concentrations
which are such that the system attains maximum growth. We know that cells attain maximum
growth when they are in balanced exponential growth where all copy number of the compounds
grow at the same rate. For this reason in section 2.3 we derive a set of algebraic equations, we will
call them the Balanced Growth Equations, that need to hold when the system is in steady state.
Hence by requiring that the system is in steady state, keeping in mind that we want to maximise
the growth rate, we derive a static set of algebraic equations from the set of differential equations
which describe a dynamical system. The resulting set of equations (the Balanced Growth Equa-
tions) will be non-linear in the concentrations variables and in the growth rate and hence difficult
to tackle.

We then will proceed in steps and ’decompose’ the maximisation problem into non-linear and
linear parts. First we fix the metabolite concentrations, then we will treat the growth rate which
appears in the denominator differently from the one that appears in the numberator in the equa-
tions. This will allow to transform the problem into a standard linear programming problem. We
will then use a fixed-point argument to find the maximum growth rate for fixed metabolites con-
centrations. Lastly, we will maximise over the metabolites concentrations to find the maximum
growth rate of the problem. In section 2.5 we derive another set of algebraic equations, the Op-
timality Equations. This set of equations characterize critical points in the space of solutions of
the Balanced Growth Equations (for fixed metabolites concentrations) and is derived by imposing
that the a vector tangent to the solution set of the Balanced Growth Equations must be normal to
the gradients of the functions in the Balanced Growth Equations. We will use this set of equations
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in two ways, firstly to check that the point we have found with the maximisation procedure is in-
deed a critical point and hence a candidate to be the point where maximum growth rate is attained
(if the point has such property it must be a solution of the Optimality Equations). Secondly we
will use the Optimality Equations to continue the solution respect to one external concentration.
We can not use only the Balanced Growth Equations to do this continuation step. The algebraic
system which includes only the Balanced Growth Equations is underdetermined and hence will
not allow to do so. We will instead continue the solution in the space of both Balanced Growth and
Optimality Equations. This will allow to find a one-parameter curve of solutions parametrized by
one external concentration. It is important to notice that to derive the Optimality Equations we
make the assumption that for fixed metabolites concentrations the Balanced Growth Equations
have a unique local solution. Althougth this seems reasonable it has not been proved and we take
it as an assumption.

In section 2.6 we introduce the µORAC framework. We know that bacteria are able to change
quickly ribosome allocation and enzymes expression according to changes in the external concen-
trations. The µORAC setting attempts to model this ability of bacteria to adapt to changing exter-
nal conditions. We assume that the cell uses some internal metabolites as sensor metabolites. Also
we assume that it possesses some feedback mechanism that allows it to use the internal sensor in-
formation (the concentration of the sensor metabolites) to predict external evironmental changes
and quickly change gene espression accordingly. Specifically we will supply the differential equa-
tions system with one or more functions, which we have calculated using the continuation, and
which allow to supply the system with predicted optimal ribosomial fractions. We assume that
cells have gene regulatory networks that allow to make such predictions. The controlling circuit
(which allows to estimate optimal ribosomial fractions using sensor metabolites) does not use any
external concentrations as known parameters but only internal ones. We will then run the system
of differential equations and continously change the ribosome allocation according to the predic-
tions offered by the sensor metabolites concentrations. We will see that in this setting the system is
then able to steer itself to the steady state of maximum growth and steer itself to a new maximum
after the external substrate concentrations are changed. All this will be further explained in the
respective sections.

2.1 General Model Derivation

We are now ready to derive the model based on first principles. We start by considering the
following definitions [2]:

• Steady state growth: when all the intensive properties of the cell, such as relative volume
increase and concentrations, are time-independent.

• Balanced growth: when all extensive properties of the cell, such as copy number of com-
pounds and volume, increase by the same factor over a given time interval.

• Exponential growth: when the multiplication factor (of the number of cells) is time indepen-
dent. Steady state growth is equivalent to exponential balanced growth.

We can recall these modeling assumptions and observations:

• Growth of bacteria is defined as an increase of the bacterial biomass. This happens when se-
lected nutrients (or in general any chemical compound including water) cross the cell mem-
brane and reach the cell interior.

• In order to sustain growth, cells need to make the enzymes which in turn catalyse the re-
actions that import and transform the nutrients into all the needed organic compounds of
which the cell is composed. This means that the reaction network has to have some degree
of self-consistency: if some reaction is present and catalysed by one enzyme, the reaction
which creates that specific enzyme has to be present further downstream in the reaction net-
work. This is because, differently from smaller molecules like aminoacids, macromolecules
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such as proteins and in particular enzymes can not be imported from the cell exterior and
have to be metabolised internally from smaller molecules.

• Dilution by growth has to be taken into account: as the chemical compounds are transported
inside the cell, the osmotic pressure inside the cell grows. This leads to the intake of water by
osmosis. As a results the cell grows. On the other hand this means that as the cell grows, the
concentrations are diluted and the reaction rates drop. This observation shows that dilution
by growth needs to be included in the model. Cells therefore need to keep making the
enzymes needed to maintain reaction rates constant.

• Lastly, since we are interested in the maximisation of the growth rate, we assume that the
cell is in exponential balanced growth. Which we will usually refer to simply as balanced
growth.

In what follows we consider the growth of an individual cell rather than a population. Our model
is one of average cells in a population. We make this assumption because balanced growth is
the only state in which extensive properties of the cell such as composition and growth rate are
well-defined. Cells populations converge to balanced growth when conditions allow growth, this
is the only well-defined time-invariant state in microbial growth.

After having stated some of the modeling assumptions we can further proceed in the derivation
of the model based on these assumptions. We will at first derive a model where we do not make
distinction between metabolites, enzymes and ribosome. We will introduce this distinction later
when we further specify the model in the next section. We consider the vector n = (n1, . . . , nN)
of copy number of N compounds in a cell volume V. The concentrations inside the cell are then
defined as: ck = nk/V, the concentration of compound k. We assume that the change in copy
numbers of the compounds inside the cell change only according to the reactions that import and
export molecules from and to the exterior of the cell and to the reactions that occur inside the
cell. Furthermore we assume that the compounds can be consumed when they take part in some
reaction (when they come to form other compounds or are transformed into some form of energy)
but do not degrade due to other reasons.

Since the concentrations change only due to the reactions that occur inside the cell we assume that

ṅk = V ∑
j

Nkjvj(ccc) ∀k

where N is the stoichiometry matrix and vj(ccc) is the j-th reaction rate, which is assumed to be a
function of the concentrations inside the cell. It is reasonable to assume that the volume V is a
function of the compounds: V = V(nnn). We choose to specify this function as

V(nnn) = ∑
k

ρknk

where the ρl are the osmotic activities of the compounds (the molar volumes). So the volume is
a sum of the copy numbers of each compound multiplied with the corresponding osmotic ativity
(hence multiplied by the volume each compound occupies in the cell). We make this assumption
as it seems to be the most reasonable physically. Furthermore, we define the instantaneous growth
rate as

µ(t) :=
V̇
V

it is defined as the rate of change of volume per volume unit (so it is defined similarly to the
istantaneous speed in physics). Now, since we defined the concentrations as ck = nk/V, we have
that nk = Vck ∀k. Hence, if we calculate the derivative ṅk we have that
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ṅk =
d
dt
(Vck) = V̇ck + Vċk = V ∑

j
Nkjvj(ccc) ∀k

Using the last two terms of the previous chain of equalities we obtain the first main equation of
the model

ċk = ∑
j

Nkjvj(ccc)−
V̇
V

ck ∀k

which, using the definition of the istantaneous growth rate can be rewritten as

ċk = ∑
j

Nkjvj(ccc)− µck ∀k (2.1)

and in vector notation reads as

ċcc = Nvvv(ccc)− µccc.

We notice that the concentration of each compound is diluted by volume growth (this is accounted
by the last term). We derive now the second main equation of the model, a closed form for the
growth rate which will allow later its maximization. Using the formula for the volume V(nnn) =

∑
l

ρlnl and dividing by V, we can easily see that

1 = ∑
k

ρkck (2.2)

this means that if we take the derivative respect to time and substitute the formula in equation
(2.1) we get

0 =
d
dt

(
∑

k
ρkck

)
= ∑

k
ρk ċk

= ∑
k

ρk

(
∑

j
Nkjvj(ccc)− µck

)
= ∑

k
ρk ∑

j
Nkjvj(ccc)−∑

k
ρk(µck)

= ∑
k

ρk ∑
j

Nkjvj(ccc)− µ ∑
k

ρkck

= ∑
k

ρk ∑
j

Nkjvj(ccc)− µ

where in the last but one step we have used equation (2.2) . Hence we have derived the second
main equation of the model. A closed form for the growth rate
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µ = ∑
k

ρk ∑
j

Nkjvj(ccc). (2.3)

Equation (2.3) specifies the growth rate in terms of the metabolic reactions that happen inside the
cell. It is a weighted sum of all the chemical reactions, each weighted according the molecules’
molar volumes. Equations (2.1) and (2.3) together are the main modeling equations. We notice
that, at this point, equation (2.1) does not allow any further analysis, it is too general.

Since we know that cells attain maximum growth when they are in (exponential) balanced growth,
we now attempt to impose that the system is in (exponential) balanced growth. Hence we impose
that the system is in steady state. We start from the general relation for the concentrations (2.1)

ċk = ∑
j

Nkjvj(ccc)− µck ∀k

by imposing that the system is in steady state, hence by imposing ċk = 0 we get the equation for µ

µ =
∑j Nkjvj(ccc)

ck
.

We now combine this last equation with the other equation for µ that we have previously found,
equation (2.3)

µ = ∑
k

ρk ∑
j

Nkjvj(ccc)

so we get

∑
k

ρk ∑
j

Nkjvj(ccc) =
∑j Nkjvj(ccc)

ck
.

This leads to the following closed identity that involves the concentrations

∑
j

(
Nkj − ck ∑

k
ρkNkj

)
vj(ccc) = 0 ∀k.

This is a non-linear set of equations in the concentrations that needs to hold in steady state in the
general case. We notice that this set of equations has too little structure to work with, solving for
the concentrations using this equation is not an easy task so this set of equations is not useful in this
form. In order to be able to find balanced growth solutions, and in particular the one which has
maximum growth rate among these, we need to solve the equations for both the concentrations
and the fluxes at the same time. This is in contrast with EFM models where, since the growth
rate is not considered, it is possible to first solve the equations for the fluxes and then for the
concentrations.

In the next section we will hence specify the system further and introduce more biological struc-
ture. This will both make the equations more manageable and solvable and make the model more
realistic and able to account for regulatory mechanisms. In particular we will make a distinction
between metabolites, enzymes and ribosomes. We will call the resulting system the Whole Cell
Model.
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2.2 Derivation of the Whole Cell Model

After having derived the main general equations for the model (2.1) and (2.3), we further specify
it by making a distinction between metabolites, enzymes and ribosomes. We make this distinction
because we want the model to be specified enough so that mechanisms which involve how the
ribosome is allocated among the enzymes can be observed. We assume that to each reaction is
associated one and only one enzyme. The ribosome is associated to the synthesis of each of the
enzymes and of itself. So we have now that the vector of concentrations is ccc = (xxx, eee, r), where xxx is
a vector of length m and eee is a vector of length n (so in total we have n + m + 1 concentations). We
make also a distinction between the ρρρ and the σσσ, respectively the osmotic activities of the metabo-
lites and of the the enzymes and σr the osmotic activity of the ribosome (these were previously all
called ρρρ). Finally, we also assume that there are more reactions than metabolites (in order to keep
the network connected).

The stoichiometry matrix N is now divided into blocks. The P block is the metabolites reactions
block while the M block is relative to the enzyme synthesis reactions

N =

[
P −M
0 I

]
P is an m × n matrix with m < n with both positive and negative entries, M is an m × (n + 1)
matrix with positive or zero entries and I is a (n + 1)× (n + 1) identity matrix. The P block has
entries of different signs because it accounts for reactions which use metabolites to produce other
metabolites, the M block has a minus sign in front because metabolites are consumed to produce
the enzymes.

The vector of reaction rates is now specified as:

~v = (v1, . . . , v2n+1) = (v1, . . . , vn, w1, . . . , wn, wr)

where the (v1, . . . , vn) are the metabolic reaction rates, (w1, . . . , wn) are the enzyme synthesis rates
and wr is the ribosome synthesis rate (we will then set vn+j = wj and use subscript r in the place
of n + 1 for the w reaction rates).

Since reaction j is catalyzed by enzyme j we have that

vj = ej f j(xxx)

where the functions f j(xxx) depend on the metabolites concentrations. Also, for the enzymes syn-
thesis we have

wj = rαjgj(xxx)

where the functions gj(xxx) are such that gj(xxx) ≥ 0 and dependent on the metabolites concentrations
while the αj are the fractions of ribosome allocated to catalyse the production of enzyme j. The ej
and r appear as a product to model the catalysing property of the enzymes and ribosomes [11].
Also, their linear dependence introduces the linear structure in the model that we will exploit later
when we will derive the Balanced Growth and Optimality Equations.

The properties of the enzymes and of the ribosome dictate the form of the kinetics functions f j(xxx)
and gj(xxx). In this thesis we consider functions approximately proportional to the metabolites
involved but saturating for high concentrations of the metabolites (in particular we consider the
standard reversible Michaelis-Menten form for these functions).
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The complete whole cell model can now be stated as



ẋk =
n
∑

j=1
Pkjej f j(xxx)−

n+1
∑

j=1
Mkjrαjgj(xxx)− µxk , ∀k = 1, . . . , m

ėj = rαjgj(xxx)− µej , ∀j = 1, . . . , n
ṙ = rαn+1gn+1(xxx)− µr

µ =
m
∑

k=1
ρk

n
∑

j=1
Pkjvj +

n+1
∑

j=1

(
σj −

m
∑

j=1
ρk Mkj

)
wj

α1 + . . . + αn + αn+1 = 1

(2.4)

where the first n + m + 1 are differential equations, the last but one equation specifies the growth
rate and the last one states that all the ribosome is occupied all the time to produce the enzymes.
The αj in the equation

α1 + . . . + αn + αn+1 = 1 (2.5)

are the fractions of the ribosome that is used to synthesise each enzyme. The terms −µxk, −µej
and −µr account for the dilution by growth. As previously mentioned, we have made a distinc-
tion between the ρρρ, the σσσ and σr. These are the molar volumes of the metabolites, enzymes and
ribosome respectively.

2.3 Deriving the Balanced Growth Equations

In balanced growth the dynamical system is in steady state. We wish to find the steady state with
maximal growth rate, since cells seem able to find such maxima experimentally [12,13,14,15,16,17].
In this section we derive a set of equations that need to hold when the system is in steady state for
the Whole Cell Model, we will call these the Balanced Growth Equations. At the end of section
2.1 we have imposed that the system is in steady state for the general model. As we have seen
this has lead to closed form equations that do not allow much analysis. We will see now that after
having introduced the biology in the whole cell model, this derivation will allow to simplify the
resulting equations. However, this is non-trivial because of the definition of µ in equation (2.3).
By imposing that the system is in steady state (hence by imposing that the left hand side of the
differential equations in the system definition (2.4) equals zero), we wish to derive a simplified
algebraic set of equations which depends only on the metabolite concentrations xxx and on the
growth rate µ and not anymore on the enzyme eee and ribosome r concentrations. If we manage to
obtain a sytem that is linear we will then be able to use the techniques from linear programming
to maximise the growth rate. We will find out that the resulting set of equations will be linear in
all the variables except the growth rate µ. This will allow to split the algebraic system into a linear
and a non-linear part. The linear optimization problem is then solved using linear programming
taking care of the non-linear part using a fixed-point technique which is reported in section 2.4.

We are now ready to derive the Balanced Growth Equations for the Whole Cell Model. We will
see that it is indeed possible to simplify the set of equations that we will find and get rid of some
of the variables (the xxx metabolite concentrations and the r). This will make the system of algebraic
equations more manageable and easy to solve.

In what follows, in order to make the notation more concise, we introduce the constants aj, bj and
the functions β j(xxx).
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aj =
m

∑
k=1

ρkPkj

bj =
m

∑
k=1

ρk Mkj

β j(xxx) = αjgj(xxx).

We will see that this notation will allow to separate the f j(xxx) and gj(xxx) better in the resulting
equations. Notice that we have αj ≥ 0∀j as the αj are fractions that express how the ribosome is
allocated and sum up to 1. Since we have also that gj(xxx) ≥ 0, (gj(xxx) < 0 is biologically impossible),
we have also that the β j(xxx) ≥ 0. Now, since we assume the system is in steady state we have that
ċ̇ċc = 0, in particular we have for the ribosome that

ṙ = 0

which implies

µ = βr(xxx)

and for the enzymes

ėj = 0

which implies

µej = rβ j(xxx)

so we have

ej =
rβ j(xxx)

µ
.

Using the last identities and the introduced notation we have also then that

vj = ej f j(xxx) =
rβ j

µ
f j(xxx)

and

wj = rαjgj(xxx) = rβ j(xxx).

Consider now the equation for the growth rate in the Whole Cell Model which explicitly reads as

µ =
m

∑
k=1

ρk

n

∑
j=1

Pkjvj +
n+1

∑
j=1

(
σj −

m

∑
k=1

ρk Mkj

)
wj.

We can rewrite this equation as
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µ =
m

∑
k=1

ρk

n

∑
j=1

Pkj
rβ j(xxx)

µ
f j(xxx) +

n+1

∑
j=1

σjrβ j(xxx)−
n+1

∑
j=1

rβ j(xxx)
m

∑
j=1

ρk Mkj

then, dividing by r we get

µ

r
=

m

∑
k=1

ρk

n

∑
j=1

Pkj
β j(xxx)

µ
f j(xxx) +

n+1

∑
j=1

σjβ j(xxx)−
n+1

∑
j=1

β j(xxx)
m

∑
j=1

ρk Mkj

which, using the notation introduced above, reads as

µ

r
=

n

∑
j=1

(
aj f j(xxx)

µ
+ σj − bj

)
β j(xxx) + (σr − br)µ. (2.6)

We will use this equation later in this section. We have previously imposed that the derivative of
the ribosome concentration and of the enzymes concentrations is zero (we impose that the system
is in steady state). We now do the same for the first m equations in the system of differential
equations, those relative to the metabolites. So we set ẋk = 0 and in the model equations and we
get the m equations

µxk =
n

∑
k=1

Pkjej f j(xxx)−
n+1

∑
k=1

Mkjrαjgj(xxx)

which, using the new notation for the aj, bj and for the β j(xxx), reads as

µxk =
n

∑
k=1

Pkj
rβ j(xxx)

µ
f j(xxx)−

n+1

∑
k=1

Mkjrαjgj(xxx).

Dividing by r we get

µ

r
xk =

n

∑
k=1

Pkj
β j(xxx)

µ
f j(xxx)−

n+1

∑
k=1

Mkjαjgj(xxx).

Now, recalling that αrgr(xxx) = βr(xxx) = µ we get

µ

r
xk =

n

∑
j=1

(
Pkj f j(xxx)

µ
−Mkj

)
β j(xxx)−Mkrµ ∀k = 1, . . . , m.

Substituting the expression in equation (2.6) we get the set of equations

xk

[ n

∑
j=1

(
aj f j(xxx)

µ
+ σj − bj

)
β j(xxx) + (σr − br)µ

]
=

n

∑
j=1

(
Pkj f j(xxx)

µ
−Mkj

)
β j(xxx)−Mkrµ ∀k = 1, . . . , m.

(2.7)

The ribosome allocation equation (2.5) now reads
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n

∑
j=1

β j(xxx)
gj(xxx)

+
µ

gr(xxx)
= 1 (2.8)

Equations (2.7) and (2.8) together form the Balanced Growth Equations. Our goal is to find a solution
of these equations for which the growth rate of the modeled cell is maximum. The result of the
manipulations in this section is that in the equations that we have derived the β j appear linearly
everywhere, except for βr = µ, which appears quadratically. This allows, as we will see in the
next section, to set up a Linear Programming Problem.

2.4 Maximising the Growth Rate

Now that we have derived a set of equations that need to hold when the cell is in balanced growth,
the Balanced Growth Equations, in this section we focus on maximising the growth rate. We will
do this by splitting the optimization procedure into three steps.

First we fix the xxx vector of concentrations and solve the resulting system of algebraic equations
for the β j.

Second we use a trick, we treat the µ that appears at the denominator in the equations differently
from the ones that appear linearly and call it µ̃, to set up a Linear Programming Problem. We
hence obtain a function H which, for fixed concentrations xxx, takes as argument µ̃ and gives as
image the maximum µ relative to these values. At this step, in general we will have that H(µ̃) 6= µ̃
so the vector we have found does not correspond to a balanced growth solution and will not
satisfy equation (2.7). For this reason next we look for a fixed point µ̂ of the function H, that is a
point where H(µ̂) = µ̂. This point will satisfy the Balanced Growth Equations (2.7) and (2.8) and
will be the maximiser of the problem (for fixed xxx) that we are looking for.

The third and last step is to vary the xxx values and repeat this procedure for each combination of
xxx (we restrict to the range of xxx where the concentrations are positive and such that the fluxes are
also positive). With the last step we maximise over the xxx values and find the set of concentrations
such that the full system attains maximum growth.

In what follows we will explain these steps in more detail. We will consider steps one and two in
this section and step three in the following one. Recall the Balanced Growth Equations (2.7) and
(2.8)

xk

[ n

∑
j=1

(
aj f j(xxx)

µ
+ σj − bj

)
β j(xxx) + (σr − br)µ

]
=

n

∑
j=1

(
Pkj f j(xxx)

µ
−Mkj

)
β j(xxx)−Mkrµ

n

∑
j=1

β j(xxx)
gj(xxx)

+
µ

gr(xxx)
= 1.

This is a set of non-linear equations, because the f j(xxx) and the gj(xxx) are non-linear in the xxx vector.
We wish to solve this set of algebraic equations and find the set of concentrations such that the
system attains maximum growth rate µ. The difficulty of this problem lies mainly in the non-
linearity in the concentrations xxx and in the non-linearity in the growth rate µ which appears in the
denominator in the first m equations. The first step, now, is to fix the xxx concentrations. For fixed
xxx we can treat the functions β j(xxx) as variables (for fixed xxx they are just a rescaling of the αj). The
equations then become the following set of equations where we have dropped the dependancy on
xxx in the β j, in the f j and gj (hence we use the notation β j = β j(xxx), f j = f j(xxx) and gj = gj(xxx) for
fixed xxx)
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xk

[ n

∑
j=1

(
aj f j

µ
+ σj − bj

)
β j + (σr − br)µ

]
=

n

∑
j=1

(
Pkj f j

µ
−Mkj

)
β j −Mkrµ

n

∑
j=1

β j

gj
+

µ

gr
= 1.

We notice that the equations are linear in the β j but non-linear in µ. They would be linear in µ
except for the µ terms that appear in the denominator. We therefore decide to treat the µ that
appears in the denominator differently from the one that appears linearly. We call it µ̃

xk

[ n

∑
j=1

(
aj f j

µ̃
+ σj − bj

)
β j + (σr − br)µ

]
=

n

∑
j=1

(
Pkj f j

µ̃
−Mkj

)
β j −Mkrµ (2.9)

n

∑
j=1

β j

gj
+

µ

gr
= 1. (2.10)

For fixed µ̃ and fixed xxx concentrations this problem is now linear in the β j and in µ. We also
have that the β j ≥ 0 because they relate to ribosomial fractions. We can then solve this prob-
lem for the β j and µ as a linear optimisation problem using standard linear programming meth-
ods. We wish to solve the linear optimisation problem for the vector βββ = (β1, β2, · · · βn, βn+1) =
(β1, β2, · · · βn, βr) = (β1, β2, · · · βn, µ) where we have substituted, µ = βn+1 = βr. The linear
programming problem is then expressed as

max
βββ
{µ|A(xxx, µ̃)βββ = 0, β j ≥ 0}

where as we said βββ is the vector βββ = (β1, β2, · · · βn, βr) and A is the µ̃ dependent (and xxx dependent)
matrix associated with the linear problem and defined using equations (2.9) and (2.10). That is, A
is the matrix whose j-th row contains the coefficients of the βββ that appear in the j-th equation of
(2.9), and the last row contains the coefficients of the βββ relative to equation (2.10). The matrix A is
explicitly expressed as follows (notice that the µ̃ is still present in the matrix)

A =



x1

(
a1 f1

µ̃ + σ1 − b1

)
− P11 f1

µ̃ + M11 x1

(
a2 f2

µ̃ + σ2 − b2

)
− P12 f2

µ̃ + M12 . . . x1(σr − br)−M1r

x2

(
a1 f1

µ̃ + σ1 − b1

)
− P21 f1

µ̃ + M21 x2

(
a2 f2

µ̃ + σ2 − b2

)
− P22 f2

µ̃ + M22 . . . x2(σr − br)−M2r

...
...

...
1
g1

1
g2

. . . 1
gr


For each fixed µ̃ (and for fixed concentrations xxx), either the linear programming problem has no
feasible solutions, or it does. If it does have solutions, we can find a maximiser, the maximized
growth rate relative to µ̃ and we call it µ

opt
µ̃ . For each µ̃ the maximizer lies on an extreme ray

of the cone spanned by the matrix operator A and the constraints β j ≥ 0. This solution can in
general have a µ value different from µ̃ and therefore will not be a solution of the Balanced Growth
Equations. So, in order to find the maximum growth (for fixed xxx) we need to find a point such that
µ

opt
µ̃ = µ̃. In order to do this we consider the function H : < → < , H(µ̃) = µ

opt
µ̃ . If we can find

a fixed point of the function H, that is some µ̃ such that µ̃ = µ
opt
µ̃ , then we will have a maximiser

which is also a solution of the Balanced Growth Equations (2.9) and (2.10). This particular µ̃ lies
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also on an extreme ray of the cone associated with the linear problem (since every such µ̃ does lie
on an extreme ray of the cone associated with the linear programming problem, also this particular
µ̃ does). This particular µ̃ corresponds also to a solution of the Balanced Growth Equations (for
fixed xxx), hence it is the maximum growth rate that we were looking for.

Any extreme ray of the cone will have many β j = 0. Hence, the corresponding metabolic network
has only those enzymes for which β j ≥ 0. From Linear Programming theory we know that the
number of nonzero entries in the maximiser is minimal [12]. We call such pathways Elementary
Growth Modes, (in correspondence with the Elementary Flux Modes). They are minimal pathways
in which it is not possible to discard any reaction without making the network disconnected. We
will explore the last step of this procedure in the following section.

2.5 Deriving the Optimality Equations

In this section we continue with the last step from the previous one, namely maximizing within
one EGM. Then we derive a set of equations, the Optimality Equations, which need to hold for a
point in the xxx and βββ space which has the maximum growth rate.

The last maximizing step of the procedure we have seen in the previous section is to maximise
the growth rate µ within one EGM. We hence wish to maximise over the xxx concentrations in
order to find the maximum growth rate of the full problem. For each xxx we find a set of β j such
that the growth rate µ is maximum. We repeat this procedure for each combination of xxx in the
range where the xxx concentrations are positive and allow positive fluxes and choose the maximum
growth rate µ over all the combinations (clearly we first discretize the space of concentrations xxx).
If this maximisation procedure will prove out to be effective, the maximum growth rate µ over the
xxx that we will find will be the maximum growth rate of the problem.

We are now ready to derive the Optimality Equations. In order to do this we restate the problem in
more abstract terms. We are looking for the maximum

max
xxx,βββ
{µ = βr|Fi(xxx, β1, · · · , βn, βr), i = 1, · · · , n + 1}

where the Fi(xxx, βββ) functions are the Balanced Growth Equations (2.7) and (2.8)

Fi(xxx, βββ) = xi

[ n

∑
j=1

(
aj f j(xxx)

µ
+ σj − bj

)
β j(xxx) + (σr − br)µ

]
−

n

∑
j=1

(
Pij f j(xxx)

µ
+ Mij

)
β j(xxx)−Mkrµ

∀i = 1, · · · , n

Fr(xxx, βββ) = Fn+1(xxx, βββ) =
n

∑
j=1

β j(xxx)
gj(xxx)

+
µ

gr(xxx)
− 1.

We are looking for a point in the (xxx, βββ) space which has maximum µ = βr. This means that if we
consider the set

S := {(xxx, βββ) ∈ <2n+1|Fi(xxx, βββ) = 0, i = 1, · · · , n + 1}

we look for clitical points on the surface S. Each vector that is tangent to a point in this set is
normal to all the gradients of the functions Fi(xxx, βββ). Specifically, since we want to maximise µ, we
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look for points where all tangent vectors do not have a µ component. In particular every such
vector which is normal to a point in this set which has maximum µ = βr will have 0 value in the
last component: v = (v1, · · · , v2n, 0). So we have the relation

v1


F1
F2
...

Fn+1


x1

+ · · ·+ v2n


F1
F2
...

Fn+1


βn

= 0

where the subscripts mean the partial derivative respect to that variable. This means that these
column vectors are linearly dependent, that is, the matrix C with these 2n vectors as columns has
not maximal rank. The matrix C has dimensions (n + 1)× 2n so we have that rank(C) ≤ n.

Now, to obtain a set of algebraic equations we need to make a further assumption. We assume
that, for fixed xxx the Balanced Growth Equations have a unique local solution. Then, by the Implicit
Function Theorem, the matrix

B =

(
∂Fi

∂β j

)
i,j=1,··· ,n

which occurs as a submatrix of C, is invertible and has maximal rank (rank(B) = n). In the light
of this we can say that the matrix C has rank n, but since C has n + 1 rows it means that all the
(n + 1) × (n + 1) submatrices of C have zero determinant. This is equivalent to saying that the
following matrices must have zero determinant at the maximal point

Di =




F1
F2
...

Fn+1


xi


F1
F2
...

Fn+1


β1

· · ·


F1
F2
...

Fn+1


βn


We have then derived the Optimality Equations

detDi = 0, ∀i = 1, · · · , n (2.11)

These are a set of n equations that, in addition to the Balanced Growth Equations, need to hold
when a point is a critical point of the problem. We note that the whole set of Balanced Growth
and Optimality Equations is a square system: it has as many equations as unknowns, hence its
solutions are generically isolated. We will use the Optimality Equations to double check that
the point we have found is actually a maximum and to continue the solution respect to some
parameters in the problem.

2.6 The µORAC framework

In this section we introduce the µORAC framework which is associated to the qORAC framework
(specific flux Optimisation by Robust Adaptative Control [10]) but in the setting of growth rate
optimisation. We know that bacteria are able to quickly adapt to changes in external conditions.
For example when a substrate has been consumed, the cell has to be able to readily change the
ribosome allocation in order to produce the enzymes used to metabolise other possible substrates.
The cell has the ability to sense some external conditions but it is inconvenient to rely only on
this kind of sensitivity. It instead relies on internal sensor metabolites which are used to predict
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optimal ribosomial fractions αj. This ribosome allocation is then used to steer the cell to a new
optimum relative to the new external concentrations. The predicted optimal ribosomal fractions
are steady state optimal fractions, this means that if the system is not yet in steady state, it is not yet
optimal. As long as there are dynamics, the ribosomal fractions also change, and it seems plausible
that the only possible steady state the system can attain is the real optimum, corresponding to
external concentrations (which were not used in the predictions of the ribosomal allocation).

We now construct an adaptive control, in which predicted optimal ribosomal allocation is inte-
grated with the Whole Cell Model. We restrict ourselves to system that contain only one EGM.
To do this we consider the Whole Cell Model (2.4), where we have substituted the ααα with the
corresponding βββ expressions



ẋk =
n
∑

j=1
Pkjej f j(xxx)−

n+1
∑

j=1
Mkjrαjgj(xxx)− µxk , ∀k = 1, . . . , m

ėj = rβ j(xxx)− µej , ∀j = 1, . . . , n
ṙ = rβr(xxx)− µr

µ =
m
∑

k=1
ρk

n
∑

j=1
Pkjvj +

n+1
∑

j=1

(
σj −

m
∑

j=1
ρk Mkj

)
wj

In order to complete the Whole Cell Model, we need to supply the ribosomal allocation, βββ, which
need to be determined by internal sensor metabolite values xxxS, so we set βββ = βββ(xS(t)). These
ribosomal allocations are to be the optimal ribosomal allocation parameters in steady state, if xxxS is
optimal itself. They may be computed by solving the Balanced Growth Equations (2.7) and (2.8)
and the Optimality Equations (2.11) in which the metabolite concentrations have been substituted
by dummy variables ξξξ (including the external concentrations, which are unknown to the adap-
tive control we are constructing here). The ξξξ variables contain both the xxx and external substrate
variables. We will then prescribe some of the variables to make the system square again.

ξk

[ n

∑
j=1

(
aj f j(ξξξ)

µ
+ σj − bj

)
β j(ξξξ) + (σr − br)µ

]
=

n

∑
j=1

(
Pkj f j(ξξξ)

µ
−Mkj

)
β j(ξξξ)−Mkrµ

β1

g1(ξξξ)
+ · · ·+ βn

gn(ξξξ)
+

βn+1

gn+1(ξξξ)
= 1

Di =




F1
F2
...

Fn+1


ξi


F1
F2
...

Fn+1


β1

· · ·


F1
F2
...

Fn+1


βn


detDi = 0, ∀i = 1, · · · , n

ξξξS = xxxS

In order to estimate the optimal βββ values we have introduced dummy variables which allow to
estimate the optimal solution from the values of the internal metabolites. The dummy variables ξξξ
correspond to an optimal solution as estimated by the sensor values, under the assumption that
the system is in steady state. The differential equation is then run and the ribosome allocation
is allowed to dynamically change according to the sensor concentrations and relative optima we
have supplied it with. At each time step, the system of Balanced Growth and Optimality Equa-
tions is a square system if we supply sensor values from the metabolic system ξξξS(t) = xxxS(t). The
external concentrations are variables in these equations, and are therefore determined (predicted)
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by xxxS(t). They are the values at which xxxS(t) would be the optimal steady state values. The pre-
dicted step gives the optimal steady state ribosomial fractions, which are fed into the metabolic
system. This gives rise to changing enzyme levels, and hence changing metabolite levels. In this
way, the sensor changes again, and we repeat. We assume that the cell stores this information
in the genetic code and implements regulatory networks to make such predictions. This models
how the cell is able to steer itself to the optimum while adapting to changing external conditions.
Because of limited time we will implement the µORAC for the example without toxin only. In the
numerical simulations, we first compute the steady state optimisers (ξξξ, βββ) and store them. Then
we look up and update the correct value at each time point, on the basis of the sensor values.
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Chapter 3

Maximising The Growth Rate µ within
one EGM

In this thesis we wish to investigate numerically several low dimensional examples of the model
described by equations (2.4). We will include the presence of stress factors such as toxins. We
investigate these examples with the use of programs written in MATLAB. We wish to maximise
the growth rate in this setting with the methods and procedure explained in chapter 2 and we
expect that the cell will invest more resources into the enzymes that clean up the toxins as the
toxin level increases in order to maintain high growth rate. Because of this we expect the toxin
level to be low and the toxin-removing enzymes to have higher concentrations than the other ones
in the optimum steady state.

We start with one example without toxins. The first example contains five variables: two metabo-
lites, two enzymes and the ribosome. The following example contains seven variables: three
metabolites, three enzymes and the ribosome. In the following example we model the toxin dif-
ferently from the other ones, as a parameter. This example also contains seven variables: three
metabolites, three enzymes and the ribosome. In the last example we attempt to investigate a case
where the toxin diffuses over the cellular membrane. This scenario differs from the others as there
will not be an enzyme responsible for importing the toxin, if such an enzyme was present, the
optimal solution would be one where that enzyme is not produced. All the examples that we in-
vestigate consist of one EGM only, so in each of the three first examples we have that the number
of metabolites equals the number of enzymes wich equals the number of import reactions (there
is one additional reaction for the production of the ribosome). The last example deviates from this
setting as the number of reactions does not equal the number of metabolites.

For each example, for fixed parameters that describe the system, we wish to find the optimal
metabolite and enzyme concentrations. This means we wish to find metabolites and enzymes
concentrations for which the system is in steady state and which has maximum µ value. This is a
static problem, dynamics of the differential equations are not involved. We wish instead to find a
specific steady state of the system.

This is done with the methods we have introduced in chapter 2. We first create a function which
solves the linear programming problem maxβββ{µ|AAA(xxx, µ̃)βββ = 0, β j ≥ 0}. That is a function that
solves the linear optimization problem for fixed µ̃. We have then a function H : < → < , H(µ̃) =

µ
opt
µ̃ which associates an optimum solution µ

opt
µ̃ to each µ̃.

We then find a fixed point of this function µ̂. This is a point such that H(µ̃) = µ̃. In this way we
have found the optimal growth rate for fixed metabolite concentrations. We then use an optimisa-
tion routine which finds the maximum growth rate in the metabolites space. We restrict our search
in the range of metabolites which make the fluxes positive so that they happen from the exterior to
the interior of the cell (because we want the cell to grow). We also impose that the cell has constant
osmotic pressure so we include equation (2.3) and we have ρρρ · xxx < 1. Once we find the optimal
solution we check for optimality using the Balanced Growth Equations (2.7) and the Optimality
Equations (2.8). That is, we check if the found solution is a zero of both sets of equations. At the
end of the first example we use pseudo-arc length continuation to continue the solution and find
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a curve of different optima at different substrate concentrations. We then include the continuation
data in the system of differential equations to implement the µORAC framework for this example.

In order to solve the problem we have used some inbuilt functions, in particular one that solves
the linear optimisation problem, one that finds the minimum of a non linear function and two
root finding functions. We found out that the algorithm relies heavily on the parameters in these
functions.

During this work we have encountered some numerical difficulties. We will now briefly explain
the main numerical techniques we have used and where the numerical difficulties have arisen.

In order to investigate the examples numerically we wish to create an algorithm that maximises
the growth rate, that is, an algorithm that finds the optimal metabolite and enzyme concentrations
for which the system attains optimal growth rate. To fulfil this task we will at first make a function
that maximises the growth rate for fixed metabolite concentrations (using linear programming as
we have seen in Chapter 2) and then we will maximize the growth rate over all possible metabo-
lite concentrations making a grid in the xxx. The first maximisation function makes use of linear
programming and of the inbuilt function linprog. The second one is a composite routine that uses
a grid method and the inbuilt minimisation function fminsearch. We will see that the solution will
depend on the parameters in the model.

While working on the minimisation routine some difficulties have arisen. We explain these in
what follows. In order for the minimisation routine function fminsearch to find a solution we need
to supply it with a starting point to start the search from. If the initial point is not enough close
to the maximum, fminsearch might just fail to find a solution, or may be attracted to a different
basin of attraction. We found out that this is a crucial step in the algorithm architecture because
fminsearch highly depends on the choice of the initial point. We could provide this initial point in
some cases but we are left with the general problem to find a solution for every problem.

In order to overcome this difficulty of finding a starting point (in the metabolite space) we first
use a routine that creates a grid in the metabolite concentrations. We describe it now in the setting
of the first example with five variables, where the grid is then two dimensional (we have two
metabolites xxx in the example without toxin). We create a grid n× n in the rectangle of metabolite
concentrations where all the fluxes are positive. We tried with different values of n but we found
out by running some tests that the value that is more efficient computationally is n = 5 so in what
follows we will always use a grid which divides each coordinate range in 4 equal segments and 5
grid points. We then calculate the growth rate in each of the n2 grid points points and choose the
maximum. We then continue this process by choosing a small box around the found grid point of
length 1

n (the point is in the interior of the grid and taking care to define it properly if the point
lies on the edge of the box). We then continue this process iteratively until the maximum length of
the small box we found at the current step is smaller than a chosen precision value. We have then
found an approximation of the solution with the desired precision. After that we use the point we
have found to further maximise the solution using the minimisation routine fminsearch. We found
out that the minimising routine fminsearch relies heavily on the grid routine. If the the grid refining
of the solution is stopped too early (that is the required precision is low), fminsearch often fails to
find the optimal growth rate and settles on a lower value. One hypotesis is that function we wish
to minimise has several isolated local minima, however, as we will see in the results chapter, it
is probable that the maximisation routine that we have used is not fully reliable. The composite
routine seems to be able to find a solution but only to some degree of approximation, if we try to
magnify the H function around the maximum in the grid routine we will find a pattern of points
where the value of µ is close to zero and points where µ is close to the maximum. According to this
the plot of the function H seems to be noisy. At the end of the results section we will see that this
function is probably not noisy at all and instead the it appears noisy because the algorithm that
we have used (the optimisation routine) is not reaiable. Moreover the complexity of the routine is
exponential.

We have tried to find a better routine to find the initial point as it is clear that the complexity of
the grid method is exponential respect to the number of (metabolite) variables. Here we briefly
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describe another attempt we tried to improve the grid method, this is a random search method.
The function still makes a grid 5× 5 but then visits these points randomly until it finds a point
where the growth rate is ’big enough’ to use as a starting point. Clearly the problem here is that
we do not know what is a good candidate for ’big enough’. In particular we found out that in the
second example where the grid is 5× 5× 5, if we choose the 5 points where the growth rate is
the biggest (which happen to be close to each other), and we use each of these points as a starting
point we get significantly different results for each of the points. The growth rate that we find
when we supply fminsearch with the point that has biggest growth rate is significantly bigger than
the growth rate we find when we supply the other 4 points. It appears that the minimisation
routine fminsearch depends on the starting point when used to find a minimum for this problem.
These computational difficulties will be more evident when we will plot the function in the results
chapter.

In the remainder of this Chapter we introduce and state the full description of the four exam-
ples of the model that we have studied. In Chapter 4 we describe the results we have found by
numerically investigating them.

3.1 Example Without Toxin

The first example we describe contains two metabolites, two enzymes and the ribosome. With this
example we wish illustrate the model we have introduced in Chapter 2 with a simple system that
contains at least two different enzymes. The reaction network is depicted by the diagram below:

S1 x1

r

S2 x2

e1(r)

e2(r)

where the arrows correspond to the reactions. Also the expression e1(r) is not a functional depen-
dency but expresses that the production of that enzyme is catalysed by (a fraction) of the ribosome.
In this case the total ribosome is split into three parts: α1 + α2 + αr = 1. The first two catalyses
the production of the two enzymes that catalyse each import reaction and the rest catalyses the
production of the ribosome itself. To be noticed is that the cell membrane is not showed but it is
understood that in this case x1, x2 and r lie inside the cell while the substrates S1 and S2 lie outside
the cell.

We see that we have two different substrates which are imported and metabolised into two metabo-
lites, each import reaction is catalysed by one enzyme whose production is catalysed by a fraction
of the ribosome, while the rest of the ribosome is used to catalyse the production of itself. Also
we see that to produce both the ribosome r and the other enzymes e1 and e2 both metabolites are
used.

The differential equations system associated to this example is then



ẋ1 = v1 −M11w1 −M12w2 −M1rwr − µx1

ẋ2 = v2 −M21w1 −M22w2 −M2rwr − µx2

ė1 = w1 − µe1

ė2 = w2 − µe2

ṙ = wr − µr

and the matrix associated to it is



24 Chapter 3. Maximising The Growth Rate µ within one EGM


1 0 −M11 −M12 −M1r
0 1 −M21 −M22 −M2r
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




v1
v2
w1
w2
wr

 = µxxx.

We have chosen also the formula for the functions f1 and f2. The shape of these functions could be
arbitrary, we assume them to be direct proportional respect to the metabolite(s) but also saturating
respect to both metabolite(s) and substrate(s). The formula we have chosen is the classic reversible
Michaelis-Menten reaction formula. The functions f1 and f2 are

f1(S1, x1) = kcat
S1 − k f 1x1

1 + S1 + x1
v1 = e1 f1(x1, x2)

f2(S2, x2) = kcat
S2 − k f 2x2

1 + S2 + x2
v2 = e2 f2(x1, x2).

The functions g1, g2 and gr are chosen to be approximately proportional respect to the two metabo-
lites x1 and x2 but also saturating for high concentrations of these. The reaction rate grows linearly
for small increasing concentrations of x1 and x2 but this dependence slows down and tends to
some constant for higher concentrations of the metabolites

g1(x1, x2) =
kg1x1x2

1 + x1 + x2 + x1x2
w1 = rα1g1(x1, x2)

g2(x1, x2) =
kg2x1x2

1 + x1 + x2 + x1x2
w2 = rα2g2(x1, x2)

gr(x1, x2) =
krx1x2

1 + x1 + x2 + x1x2
w1 = rα1gr(x1, x2)

with:
α1 + α2 + αr = 1

We have chosen the constants M11 = 2, M12 = 4, M1r = 3, M21 = 3, M22 = 4 and M2r = 2. From
the network we have P11 = P22 = 1 and P12 = P21 = 0. With this choice the formula for the growth
rate is:

µ = ρ1 · v1 + ρ2 · v2 + (σ1 − 2ρ1 − 3ρ2)w1 + (σ2 − 4ρ1 − 4ρ2)w2 + (σr − 3ρ1 − 2ρ2)wr

Finally the Balanced Growth Equations for this example are

F1(x1, x2, β1, β2, βr) = x1

[(
a1 f1

µ
+ σ1 − b1

)
β1 +

(
a2 f2

µ
+ σ2 − b2

)
β2 + (σr − br)µ

]
+

−
(

P11 f1

µ
+ M11

)
β1 −

(
P12 f2

µ
+ M12

)
β2 −M1rµ
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F2(x1, x2, β1, β2, βr) = x2

[(
a1 f1

µ
+ σ1 − b1

)
β1 +

(
a2 f2

µ
+ σ2 − b2

)
β2 + (σr − br)µ

]
+

−
(

P21 f1

µ
+ M21

)
β1 −

(
P22 f2

µ
+ M22

)
β2 −M2rµ

Fr(x1, x2, β1, β2, βr) =
β1

g1(x1, x2)
+

β2

g2(x1, x2)
+

µ

gr(x1, x2)
− 1

3.2 Examples Modeling The Presence Of A Toxin

We will now investigate three examples that model the presence of a toxin in three different ways.
The first one has 3 metabolites (one of them is the toxin), 3 enzymes, the ribosome and two ex-
ternal substrates. Two enzymes import and catalyse the metabolic reactions of the two substrates
respectively. In this case the toxin import is enzymatic, it is ’involuntarily’ imported by the second
enzyme while importing the second substrate (we can imagine that the toxin binds to the substrate
and then the substrate is imported or that the import reaction changes the substrate, so that a toxin
is created), the third enzyme catalyses then the elimination of the toxin and the the ribosome that
catalyses the production of each enzyme and of itself as usual.

In the second example, the toxin is modeled as a parameter that affects the efficiency of one of the
import reactions. In this case we have 3 metabolites, 3 enzymes which catalyse the import and
metabolism of one substrate each (hence we have 3 substrates) and the ribosome that catalyses
the production of each enzyme. We suppose that in this case the cell membrane is completely
permeable for the toxin. That is, as the concentration of the toxin changes outside the cell it in-
stantaneously changes inside. The toxin parameter affects the efficiency of the import of one of the
substrates: we have 3 substrates S1, S2 and S3. The idea is that the cell can sustain itself using just
two of the substrates, S1 and S2 or S2 and S3, S1 and S3 are interchangeable. However, in absence
of the toxin, the import of the substrate S1 is much more efficient while, for increasing values of the
toxin, the import of substrate S1 becomes less and less efficient. We will expect that for increasing
values of the toxin, the cell will adapt and use less ribosome for the production of the enzyme that
catalyses the import of S1 and more for the production of the enzyme that catalyses the import of
S3. We will model this example in two slightly different ways, one where the cell needs all three
metabolites to survive and one where it needs just a pair of them.

In the last example we still have 3 metabolites (one is the toxin) and 3 enzymes and the ribosome
but the toxin now diffuses over the membrane and is not imported by any enzyme. One of the en-
zymes is again responsible for the elimination of the toxin while the other two catalyse the import
of the two substrates. Lastly we have the ribosome that is responsible of catalysing the production
of each enzyme and of itself. We will see that this example presents unforeseen difficulties because
it deviates from the setting we have been working in, where each reaction is catalysed by exactly
one enzyme. For this reason the equations of this example are derived but it is not investigated
numerically.

3.2.1 Enzymatic Toxin Transport

The first example of this section is depicted by the following diagram:



26 Chapter 3. Maximising The Growth Rate µ within one EGM

S1 x1

r

S2 x2

T∗ T

e1(r)

e2(r)

e2(r)

e3(r)

The network is similar to the one we have studied in the previous section, except that we have one
additional metabolite, namely the toxin, which is imported ’involuntarily’ by the reaction which
imports and metabolises the second substrate, we have then also one additional enzyme whose
task is to remove the toxin from the interior of the cell and to transport it back to the outside
across the cell membrane (possibly in a metabolised form). As we will see from the reaction rates
functions, the modeled cell needs both metabolites to survive. They are both used to synthesise
each of the enzymes. The system of differential equations for this example is the following



ẋ1 = v1 −M11w1 −M12w2 −M13w3 −M1rwr − µx1

ẋ2 = v2 −M21w1 −M22w2 −M23w3 −M2rwr − µx2

Ṫ = v2 − v3 − µT
ė1 = w1 − µe1

ė2 = w2 − µe2

ė3 = w3 − µe3

ṙ = wr − µr

and the matrix associated to it is



1 0 0 −M11 −M12 −M13 −M1r
0 1 0 −M21 −M22 −M23 −M2r
0 1 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





v1
v2
v3
w1
w2
w3
wr


= µxxx

The functions that describe the reactions are then

f1(S1, x1) = kcat
1

KT + T
S1 − k f1 x1

1 + S1 + x1
v1 = e1 f1(x1, x2)

f2(S2, x2, T) = kcat
S2 − k f2 Tx2

1 + T + S2 + x2 + Tx2
v2 = e2 f2(x1, x2, T)

f3(T) = kd
T

1 + T
v3 = e3 f3(T)

g1(x1, x2) =
kg1 x1x2

1 + x1 + x2 + x1x2
w1 = rα1g1(x1, x2)
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g2(x1, x2) =
kg2 x1x2

1 + x1 + x2 + x1x2
w2 = rα2g2(x1, x2)

g3(x1, x2) =
kg3 x1x2

1 + x1 + x2 + x1x2
w3 = rα2g3(x1, x2)

gr(x1, x2) =
krx1x2

1 + x1 + x2 + x1x2
w1 = rα1gr(x1, x2)

with
α1 + α2 + α3 + αr = 1

We have added a term to the first function f1 so that we have an inverse proportional relation
with the toxin: the toxin slows down the import and metabolism of the first substrate. Also, the
third function f3 models the depletion of the toxin, it is chosen to be approximately proportional
respect to the toxin but also saturating for increasing concentration of it.

For this example we have chosen the constants M11 = 3, M12 = 4, M13 = 2, M1r = 2, M21 = 2,
M22 = 4, M23 = 3, M2r = 2 and M31 = M32 = M33 = M3r = 0 (since no metabolites are used
to produce the toxin). From the network we have P11 = P22 = P32 = 1, P12 = P13 = P21 =
P23 = P31 = 0 and P33 = −1 (since the transport happens from the inside to the outside of the cell
membrane) so the formula for the growth rate is

µ = ρ1 · v1 + ρ2 · v2 + ρ3(v2 − v3)+

+(σ1 − 3ρ1 − 2ρ2)w1 + (σ2 − 4ρ1 − 4ρ2)w2 + (σ3 − 2ρ1 − 3ρ2)w3 + (σr − 2ρ1 − 2ρ2)wr.

Lastly we have that the Balanced Growth Equations for this example are

F1(x1, x2, T, β1, β2, β3, βr) =

x1

[(
a1 f1

µ
+ σ1 − b1

)
β1 +

(
a2 f2

µ
+ σ2 − b2

)
β2 +

(
a3 f3

µ
+ σ3 − b3

)
β3 + (σr − br)µ

]
+

−
(

P11 f1

µ
+ M11

)
β1 −

(
P12 f2

µ
+ M12

)
β2 −

(
P13 f3

µ
+ M13

)
β3 −M1rµ

F2(x1, x2, T, β1, β2, β3, βr) =

x2

[(
a1 f1

µ
+ σ1 − b1

)
β1 +

(
a2 f2

µ
+ σ2 − b2

)
β2 +

(
a3 f3

µ
+ σ3 − b3

)
β3 + (σr − br)µ

]
+

−
(

P21 f1

µ
+ M21

)
β1 −

(
P22 f2

µ
+ M22

)
β2 −

(
P23 f3

µ
+ M23

)
β3 −M2rµ

F3(x1, x2, T, β1, β2, β3, βr) =

T
[(

a1 f1

µ
+ σ1 − b1

)
β1 +

(
a2 f2

µ
+ σ2 − b2

)
β2 +

(
a3 f3

µ
+ σ3 − b3

)
β3 + (σr − br)µ

]
+

−
(

P31 f1

µ
+ M31

)
β1 −

(
P32 f2

µ
+ M32

)
β2 −

(
P33 f3

µ
+ M33

)
β3 −M3rµ

Fr(x1, x2, x3, β1, β2, β3, βr) =
β1

g1(x1, x2)
+

β2

g2(x1, x2)
+

β3

g3(x1, x2)
+

µ

gr(x1, x2)
− 1
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3.2.2 Toxin Presence Leads To Substrate Use Switch

The second example that we consider models the toxin as a parameter. The network for this
example is depicted by the following diagram:

S1 x1

r

S2 x2

r

S3 x3

e1(r,T)

e2(r)

e3(r)

The two r’s are both the same ribosome, the diagram expresses that the ribosome can be produced
using just metabolites x1 and x2 or just metabolites x2 and x3, our intention is to set the reaction
functions so that that the cell can ’survive’ using only the first two metabolites or only the second
two. Moreover, for low concentrations of toxin, the import of the first substrate is more efficient
than the import of the others, while for increasing values of toxin, the first import reaction be-
comes less and less efficient. We will see how this is expressed in the functions f ’s and g’s. The
differential equations system for this examples is



ẋ1 = v1 −M11w1 −M12w2 −M13w3 −M1rwr − µx1

ẋ2 = v2 −M21w1 −M22w2 −M23w3 −M2rwr − µx2

ẋ3 = v3 −M31w1 −M32w2 −M33w3 −M3rwr − µx3

ė1 = w1 − µe1

ė2 = w2 − µe2

ė3 = w3 − µe3

ṙ = wr − µr

and the matrix associated to it is



1 0 0 −M11 −M12 −M13 −M1r
0 1 0 −M21 −M22 −M23 −M2r
0 0 1 −M31 −M32 −M33 −M3r
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





v1
v2
v3
w1
w2
w3
wr


= µxxx

We have chosen the same form as before for the import functions of each of the substrates/metabo-
lites, each of them is direct proportional in the substrate and inverse proportional in both the sub-
strate and the metabolite, however, in order to model the effect of the toxin we add one term 5

1+T
to the first import reaction f1. We can see that when the toxin is not present T = 0, the first import
reaction is 5 times more efficient than the others, for T = 4 the reaction is as efficient as the other
two, while for increasing values of T ≥ 4 the efficiency of this reaction becomes less and less. So
the chosen import reactions are
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f1(S1, x1) = kcat
5

1 + T
S1 − k f1 x1

1 + S1 + x1
v1 = e1 f1(x1)

f2(S2, x2) = kcat
S2 − k f2 x2

1 + S2 + x2
v2 = e2 f2(x2)

f3(S3, x3) = kcat
S3 − k f3 x3

1 + S3 + x3
v3 = e2 f2(x3)

We have used two slightly different sets of enzyme production functions g’s, the first set is

g1(x1, x2, x3) =
kg1 x1x2x3

1 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 + x1x2x3
w1 = rα1g1(x1, x2, x3)

g2(x1, x2, x3) =
kg2 x1x2x3

1 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 + x1x2x3
w2 = rα2g2(x1, x2, x3)

g3(x1, x2, x3) =
kg3 x1x2x3

1 + x1 + x2 + x3 + x1x2 + x1x3 + x2x3 + x1x2x3
w3 = rα3g3(x1, x2, x3)

gr(x1, x2, x3) =
krx1x2

1 + x1 + x2 + x1x2
+

krx2x3

1 + x2 + x3 + x2x3
wr = rαrgr(x1, x2, x3)

with
α1 + α2 + α3 + αr = 1

In this set of equations we can see that the cell is able to synthesise the ribosome using only two
metabolites (x1 and x2 or x2 and x3), however it needs all three metabolites to synthesise the other
enzymes, we will see in the simulation that for high values of the toxin the cell adapts but also the
growth rate becomes smaller as metabolite x1 becomes less available. This is why we have then
substituted the equations with the set

g1(x1, x2, x3) =
kg1 x1x2

1 + x1 + x2 + x1x2
+

kg1 x2x3

1 + x2 + x3 + x2x3
w1 = rα1g1(x1, x2, x3)

g2(x1, x2, x3) =
kg2 x1x2

1 + x1 + x2 + x1x2
+

kg2 x2x3

1 + x2 + x3 + x2x3
w2 = rα2g2(x1, x2, x3)

g3(x1, x2, x3) =
kg3 x1x2

1 + x1 + x2 + x1x2
+

kg3 x2x3

1 + x2 + x3 + x2x3
w3 = rα3g3(x1, x2, x3)

gr(x1, x2, x3) =
krx1x2

1 + x1 + x2 + x1x2
+

krx2x3

1 + x2 + x3 + x2x3
wr = rαrgr(x1, x2, x3)

with
α1 + α2 + α3 + αr = 1

In this second set of equations we can see that now the variables are separated in each function,
hence the cell is able to use just a pair of metabolites to synthesise each enzyme. We should expect
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that with this modified set of equations the modeled cell will adapt without significantly reducing
the growth rate for high values of toxin. All the following simulations except the first one have
been done with this set of equations (the first set of equations is commented in the code).

For this example we have chosen the constants M11 = 3, M12 = 2, M13 = 4, M1r = 1, M21 = 2,
M22 = 1, M23 = 3, M2r = 1 and M31 = 4, M32 = 3, M33 = 1, M3r = 2. From the network we have
P11 = P22 = P33 = 1, P12 = P13 = P21 = P23 = P31 = P32 = 0. The formula for the growth rate in
this case is

µ = ρ1v1 + ρ2v2 + ρ3v3+

+(σ1− 3ρ1− 2ρ2− 4ρ3)w1 +(σ2− 2ρ1− ρ2− 3ρ3)w2 +(σ3− 4ρ1− 3ρ2− ρ3)w3 +(σr− ρ1− ρ2− 2ρ3)wr.

While the Balanced Growth Equations for this example are

F1(x1, x2, x3, β1, β2, β3, βr) =

x1

[(
a1 f1

µ
+ σ1 − b1

)
β1 +

(
a2 f2

µ
+ σ2 − b2

)
β2 +

(
a3 f3

µ
+ σ3 − b3

)
β3 + (σr − br)µ

]
+

−
(

P11 f1

µ
+ M11

)
β1 −

(
P12 f2

µ
+ M12

)
β2 −

(
P13 f3

µ
+ M13

)
β3 −M1rµ

F2(x1, x2, x3, β1, β2, β3, βr) =

x2

[(
a1 f1

µ
+ σ1 − b1

)
β1 +

(
a2 f2

µ
+ σ2 − b2

)
β2 +

(
a3 f3

µ
+ σ3 − b3

)
β3 + (σr − br)µ

]
+

−
(

P21 f1

µ
+ M21

)
β1 −

(
P22 f2

µ
+ M22

)
β2 −

(
P23 f3

µ
+ M23

)
β3 −M2rµ

F3(x1, x2, x3, β1, β2, β3, βr) =

x3

[(
a1 f1

µ
+ σ1 − b1

)
β1 +

(
a2 f2

µ
+ σ2 − b2

)
β2 +

(
a3 f3

µ
+ σ3 − b3

)
β3 + (σr − br)µ

]
+

−
(

P31 f1

µ
+ M31

)
β1 −

(
P32 f2

µ
+ M32

)
β2 −

(
P33 f3

µ
+ M33

)
β3 −M3rµ

Fr(x1, x2, x3, β1, β2, β3, βr) =
β1

g1(x1, x2, x3)
+

β2

g2(x1, x2, x3)
+

β3

g3(x1, x2, x3)
+

µ

gr(x1, x2, x3)
− 1

3.2.3 Toxin Over Membrane

In this section we attempt to investigate one example where the toxin diffuses over the cell mem-
brane. The setting is similar to the last two examples we have seen. We have three metabolites
(one is the toxin) and four enzymes, two enzymes import and metabolise one substrate each, one
enzyme responsible of the depletion of the toxin and the ribosome which catalyses the production
of each enzyme and of itself. The presence of the toxin changes the reaction rates of the import of
both metabolites. This is expressed in the functions f1 and f2. The difference in this example is
that there is not an enzyme associated with the import of the toxin. This deviates from the setting
we specified where the number of reactions is the same as the number of enzymes. We will see
that this difference will result in unforeseen difficulties. For this reason only the mathematical
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setting of this example is described, no simulations are run for it. The network for this example is
depicted by the following diagram

S1 x1

r

S2 x2

e1(r)

e2(r)

T∗

T

Tex

e3(r)

The matrix associated to it is the following



1 0 0 0 −M11 −M12 −M13 −M14 −M1r
0 1 0 0 −M21 −M22 −M23 −M24 −M2r
0 0 −1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





v1
v2
v3
vT
w1
w2
w3
wT
wr


= µxxx

We can see that the P matrix is not a square matrix anymore. The differential equations system for
this example is then the following



ẋ1 = v1 −M11w1 −M12w2 −M13w3 −M14wT −M1rwr − µx1

ẋ2 = v2 −M21w1 −M22w2 −M23w3 −M24wT −M2rwr − µx2

Ṫ = vT − v3 − µT
ė1 = w1 − µe1

ė2 = w2 − µe2

ė3 = w3 − µe3

ṙ = wr − µr

.

The −v3 term in the third equation models the depletion of the toxin. The functions that specify
the reactions rates are

f1(S1, x1) = kcat
1

KT + T
S1 − k1 f x1

1 + S1 + x1
v1 = e1 f1(x1, x2)

f2(S2, x2, T) = kcat
1

KT + T
S2 − k2 f x2

1 + S2 + x2
v2 = e2 f2(x1, x2, T)

f3(T) = kd
T

1 + T
v3 = e3 f3(T)
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gi(x1, x2) =
kig x1x2

1 + x1 + x2 + x1x2
wi = rα1gi(x1, x2) for i = 1, 2, 3, r

We now wish to derive the Balanced Growth Equations. Since the toxin is not imported in the cell
by any enzyme, we need to modify the derivations in Chapter 2. We start with the definition of
the growth rate (2.3) which in general is

µ = ∑
l

ρl ∑
l

Nl jvj(ccc)

and is further specified by the formula

µ =
m

∑
k=1

ρk

n

∑
j=1

Pkjvj +
n+1

∑
j=1

(
σj −

m

∑
k=1

ρk Mkj

)

We simplify the expression

m

∑
k=1

ρn

n

∑
j=1

Nkjvj =
n

∑
j=1

( m

∑
k=1

ρkNkj

)
vj =

n

∑
j=1

ajvj

by introducing the term aj =
m
∑

k=1
ρkNkj as in the general setting. We then have for the growth rate

µ =
n

∑
j=1

ajvj +
n

∑
j=1

(
σj − bj

)
wj −

(
σn+1 − bn+1

)
wn+1

= aTvT +
n−1

∑
j=1

ajvj +
n−1

∑
j=1

(
σj − bj

)
wj −

(
σn+1 − bn+1

)
wn+1

= aTvT + r ·
[ n−1

∑
j=1

(
aj f j

µ
+ σj − bj

)
β j +

(
σn+1 − bn+1

)
µ

]

Which gives the formula for r as in the general setting, except that we have now the additional
term −aTvT

r =
µ− aTvT

n−1
∑

j=1

( aj f j
µ + σj − bj

)
β j +

(
σn+1 − bn+1

)
µ

.

To simplify the notation, in the following we set

γj = σj − bj

So we have the formula for the growth rate is

µ = aTvT + r
n−1

∑
j=1

(
aj f j

µ
+ γj

)
β j + rγµ.

We now derive separately the two cases, one for x1 and x2 and one for the toxin T. For the first
two metabolites we have the formula:
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µ

r
xk =

n−1

∑
j=1

(
Nkj f j

µ
−Mkj

)
β j −Mk,n+1µ k = 1, 2

while for the toxin (k = 3)

µT = vT − v3 =
4

∑
j=1

Nkjvj = vT − e3 f3 k = 3

µT = vT −
rβ3

µ
f3 k = 3

Again for the first two metabolites we have

xkµ = xkaTvT + rxk

[ n−1

∑
j=1

(
aj f j

µ
+ γj

)
β j + γjµ

]
k = 1, 2

xkµ = r
( n−1

∑
j=1

(
Nkj f j

µ
−Mkj

)
β j −Mk,n+1µ

)
k = 1, 2

which implies

xkaTvT + rxk

[ n−1

∑
j=1

(
aj f j

µ
+ γj

)
β j + γjµ

]
=

= r
( n−1

∑
j=1

(
Nkj f j

µ
−Mkj

)
β j −Mk,n+1µ

)

while for the toxin

µT = vT − r
β3

µ
f3 k = 3

µT = aTvTT + rT
(( n−1

∑
j=1

aj f j

µ
+ γj

)
β j + γn+1µ

)
k = 3

which implies

vT − r
β3

µ
f3 = aTvTT + rT

(( n−1

∑
j=1

aj f j

µ
+ γj

)
β j + γn+1µ

)
k = 3

Combining the equations above we finally have the formulas of the Balanced Growth Equations
for both x1, x2 and T

xk

[ n−1

∑
j=1

(
aj f j

µ
+ γj

)
β j + γjµ

]
−

n−1

∑
j=1

(
Nkj f j

µ
−Mkj

)
β j + Mk,n+1µ = − xk

r
aTvT k = 1, 2

vT

r

(
1− aTT

)
= T

(( n−1

∑
j=1

aj f j

µ
+ γj

)
β j + γn+1µ

)
+

β3

µ
f3 k = 3.
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In this case we need to supply these with one additional equation for r as r appears explicitly in
the right hand side of the linear programming problem

µ− aTvT = r
(( n−1

∑
j=1

aj f j

µ
+ γj

)
β j + γn+1µ

µ− r
(( n−1

∑
j=1

aj f j

µ
+ γj

)
β j + γn+1µ

)
= aTvT

We have then the linear programming problem

(L(x1, x2, T, r)µ̃)


β1
β2
β3
µ

 =


− x1

r aTvT
− x2

r aTvT
1−a1T

r vT
aTvT


We notice that the matrix L is now not only x1, x2 and T dependent as in the previous case but also
r dependent. Moreover it is not a square matrix as in the other cases. Because of these difficulties
we did not have enough time to investigate this example example numerically.

In the following Chapter we investigate numerically the examples above and report the results
we have found.
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Chapter 4

Results

In this section we discuss the results we have obtained using the MATLAB programs we have im-
plemented for the examples we have described in the previous section. In the first three sections
of this chapter we report the results we have obatined by investigating the first three examples. In
the last section we will calculate the maximum growth rate for the first example in a different way,
using the ODE dynamics to test the results we had. We will see that this last result will suggest
that the optimisation algorithm that we have used seems to be not reliable. It is able to find the
metabolite values for which the system attains maximum growth rate but it is not able to improve
the precision of the solution. Moreover the graph of the H function calculated with our maximi-
sation routine seems to have a high number of discontinuities. This is in contrast with our expec-
tation that the H function should be continous (since the functions in the system are continous we
expect that the maximum should be a continous respect to the metabolites concentrations). The
test that we report in the last section will suggest that the dependancy of the maximum growth
rate on the metabolites concentrations is indeed continous and hence the discontinous graph of
the H function we have obtained should not be trusted. Due to lack of time, we could not consider
this more robust technique in more detail for the other examples.

4.1 Example Without Toxin

As we have seen in the previous chapter for this example we have chosen the constants in the en-
zymes ’stoichiometry’ matrix M as M = (2, 4, 3; 3, 4, 2). Also there are eleven constants in this ex-
ample. The constants that appear in the functions that describe the reactions: kkk = (kcat, k f1 , k f2 , kg1 ,
kg2 , kr) and the osmotic constants of the metabolites, enzymes and ribosomes, ρρρ = (ρ1, ρ2) and
σσσ = (σ1, σ2, σr).

In what follows we will always keep kcat = 0.25 while the other constants will be a slight pertur-
bation of kkk = (0.25, 0.5, 0.5, 0.5, 0.5, 0.5), ρρρ = (1, 1) and σσσ = (10, 10, 10). In particular the values
that we use are:

kkk = (0.2500, 0.4785, 0.5173, 0.5164, 0.4623, 0.4907)

ρρρ = (0.9775, 1.0217)

σσσ = (9.783, 10.396, 10.327).

Also we use both external substrate concentrations S1 = S2 = 1. When called with these parame-
ters the optimisation routine gives the result vector

(x1, x2, β1, β2, µ) = (0.2073, 0.1985, 0.0045, 0.0044, 0.0050).
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As expected from the symmetry of the system we can see that the x1 and x2 concentrations are
almost the same in the optimal steady state. This is the same for β1 and β2 (the constants are only
a slight perturbation of the constants that make the system symmetric). We also notice that the
β factors are smaller by about two order of magnitude. This result have been found with a grid
precision of 10−5 (that is, we used a grid that gets refined until the stated precision is reached, then
the result is further maximised using fminsearch).

The image of the optimum we have found when plugged in the Balanced Growth (2.7) and Op-
timality Equations (2.11) is (0.0000, 0.0000,−0.0000, 0.0468, 0.0820). The first three entries of the
vector are the image of the point found using the Balanced Growth Equations while the last two
entries are the image of the point found using the Optimality Equations. We notice that all the
entries of the image relative to the Balanced Growth Equations are zero up to the fourth decimal
while the entries relative to the Optimality Equations are zero only up to the first decimal. This is
probably because the Optimality Equations involve matrices and eigenvalues which can lead to
multiplication of numerical errors while the Balanced Growth Equations do not.

Image 4.1 shows a plot of the function H calculated using the maximisation routine we have in-
troduced in chapter 2 on a 121× 121 grid of (x1, x2) values for the fixed constants above. For each
point of the grid, hence for fixed metabolites values we have plotted the maximum µ value rela-
tive to this choice of metabolite concentrations. We notice that, althougth it has been calculated
with high precision, the plot looks very noisy and discontinous. This is in contrast with our expec-
tation that the H function is smooth (according to the functions we have chosen in the system, for
small changes in the metabolite concentrations we expect small changes in the maximum growth
rate that can be attained for these metabolites concentrations). In particular we expect that the H
function has only one global maximum. The plot of the H function as calculated with the optimi-
sation procedure seem to have several local maxima. We hence hypothesize that the maximisation
procedure that we have used, althougth seems to be able to find the maximum, is not reliable and
the discontinuity of the H function is a numberical artefact of the algorithm we have used. In the
last section of this chapter, when we will calculate this function in a different way, we will have
more evidence that seem to confirm this hypotesis.

Next we report the result that we have obtained by continuing the solution optimum we have
found respect to substrate S1 as a solution of the Balanced Growth and Optimality Equations using
pseudo arc-length continuation. We use the combined set of Balanced Growth and Optimality
Equations to calculate a one-parameter curve of optima parametrized by the substrate S1. We have
first adjusted the solution to a point very close to it which is a better zero of the combined set of
equations using the function fsolve and we have then continued the solution on the curve defined
by the combined set of equations of the Balanced Growth and Optimality Equations. Images
4.2 and 4.3 show the plot of the optimal β concentrations versus the substrate S1. Because of
convergence issues we were able to continue the solution only in a small interval, this issues were
probably caused by the level of precision that the Optimality Equations provide. In the small
interval considered the dependancy appears approximately linear.

Next we report a plot obtained by running the system of differential equations. Image 4.4 shows
the evolution of each variable in the system when the system is run 20 times, each time with the
same initial condition [0.1, 0.1, 0.1, 0.1, 0.1] but with with random αi.

We notice, as expected from the biological intuition but not necessarily from a system of non-linear
differential equations, that for each random α’s the system reaches a steady state. We can also see
that for few sets of α’s, the steady state of the ribosome is much bigger. These are choices of α’s
close to the values that give optimal growth rate.

Next we report the result of the µORAC control of this example. Image 4.5 shows the evolution of
each variable in the system controlled using the continuation data.

We can see that, despite the small continuation interval that we have provided, the system reaches
a stead state adjusting dynamically according to the internal sensor concentrations. We have in-
cluded a dummy variable as the sixth variable to track the growth rate. The steady state that the
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FIGURE 4.1: Example without toxin: image showing a surface plot of the result of
growth rate maximizer routine seen from above. x and y axis are x1 and x2 variables
respectively. The z axis is the value of the growth rate. The plot looks very noisy, dis-
continous and with lots of local maxima despite our expectation that the H function
is continous. This graph seems to suggest that the maximisation routine we have

used is not reliable.
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FIGURE 4.2: Example without toxin: image showing the plot of the optimal enzyme
concentration β1 versus the substrate concentration S1. The plot has been produced

using pseudo arc-length continuation
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concentration β2 versus the substrate concentration S1. The plot has been produced

using pseudo arc-length continuation
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FIGURE 4.4: Example without toxin: image showing the evolution of the metabolites
and enzymes. Each picture corresponds to a variable ordered as (x1, x2, β1, β2, µ).
The picture has been produced by running the differential equations 20 times with
random α’s. We can notice that as expected, but differently from the oscillating or
chaotic evolution nonlinear differential equations often present, for each random αi

the system reaches a steady state.
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FIGURE 4.5: Example without toxin: image showing a the evolution of the metabo-
lites and enzymes in the µORAC setting. Each picture corresponds to a variable

ordered as (x1, x2, β1, β2, µ).
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FIGURE 4.6: Example without toxin: image showing the evolution of the system in
the µORAC setting for changing external concentrations of substrate S1

system reaches is

qqq = (x1, x2, e1, e2, r, µ) = (0.1917, 0.2047, 0.0179, 0.0187, 0.0227, 0.0050).

We can see that the x1, x2 and µ values coincide with the ones we have found with the maximi-
sation routine. This means that the system was able to steer itself to the maximum by continually
updating the ribosome allocation for the production of the enzymes according to the sensor value.
The system is able to do this using the continuation data we have supplied it with and that we
assume the cell stores internally.

Image 4.6 shows what happens to the evolution of the system in the µORAC setting when we
change external substrate concentration S1. We have first run the system in the time range [0, 2000]
as in picture 4.5 where the S1 concentration is kept at value S1 = 1. We have then increased the
external S1 concentration to the value S1 = 2 and run the system on the time range [2000, 4000].
After that we have decreased the S1 value to S1 = 0.5 and run the system again on the time
range [4000, 6000]. We can see that the µORAC framework is able to explain adaptation of the
cell to changing external conditions only using internal sensor metabolite concentrations for this
example. In the last section of this chapter we will redo this using optimal data that we have
calculated with a different method (we will call it the dynamic optimization). With the second
method we will be able to supply the system with a dependancy function which covers a much
bigger interval.

Image 4.7 is the same as image 4.6 where we have added asymptota to better appreciate the con-
vergence to the steady state after each change in the exteral substrate S1.
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FIGURE 4.7: Example without toxin: image showing the evolution of the system in
the µORAC setting for changing external concentrations of substrate S1 with asymp-

tota
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4.2 Enzymatic Toxin Transport

For the first toxin example we have chosen the constants in the enzymes ’stoichiometry’ matrix M
as M = (3, 4, 2, 2; 2, 4, 3, 2; 0, 0, 0, 0). Also there are sixteen constants in this example: the constants
that appear in the functions that describe the reactions, kkk = (kcat, KT, k f1 , k f2 , kd, kg1 , kg2 , kg3 , kr)
and the osmotic constants of the metabolites, enzymes and ribosomes: ρρρ = (ρ1, ρ2, ρ3) and σσσ =
(σ1, σ2, σ3, σr). Again we will keep kcat = 0.25 and use a perturbation of the other constants from
the fixed values: kkk = (0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), ρρρ = (1, 1, 1) and σσσ = (1, 1, 1, 1). In
particular the values that we use are:

kkk = (0.2500, 0.4881, 0.5023, 0.4863, 0.4998, 0.4977, 0.5234, 0.5089, 0.5090)

ρρρ = (0.9711, 1.0404, 1.0225)

σσσ = (0.9992, 1.0311, 0.9748, 1.0167).

Also, we use both external substrate concentrations S1 = S2 = 1. When called with these param-
eters the optimisation routine gives the result vector

(x1, x2, T, β1, β2, β3, µ) = (0.7748, 0.7225, 0.1813, 0.0231, 0.0267, 0.0314, 0.0119).

We notice that in the optimal steady state the concentration of the toxin is much lower than the
concentration of the other two metabolites (but not zero because the second substrate is neces-
sary for growth so it has to be imported and consequently the toxin is also imported). Also the
enzyme systhesis rate β3 of the enzyme e3 which removes the toxin is higher than the other two
enzyme syntesis rates. The model was able to predict that in this case, in order to obtain maximal
growth rate, the toxin is eliminated continuously from the cell by producing more toxin-removing
enzyme. This result has been found with a grid precision of 0.00001 (which has then been refined
with fminsearch).

The image of the optimum we have found, when plugged in the Balanced Growth (2.7) and Opti-
mality Equations (2.8), in this case is (0.0000, 0.0000, 0.0000, 0.0000, 0.1652, 0.0755, 0.0154). The first
four entries of the vector are the image of the point found using the Balanced Growth Equations
while the next three entries are the image of the point found using the Optimality Equations. We
notice that also in this case all the entries of the image relative to the Balanced Growth Equations
are zero up to the fourth decimal while the entries relative to the Optimality Equations are zero
only up to the first decimal (in one case only up to the integer value). This is probably because in
this case the matrices used in the Optimality Equations are bigger than in the previous case.

Next, Image 4.8 shows a plot of the maximization routine calculated on a 95 × 95 × 9 grid of
(x1, x2, T) values for the fixed constants above. For each point of the grid, hence for fixed metabo-
lites values we have plotted the maximum µ value relative to this choice of metabolite concentra-
tions.

As in the previous example, the plot of the H function calculated using the optimisation routine
looks noisy and discontinous, in contrast with our expectation that the H function is smooth.

Next we report a plot obtained by running the system of differential equations. Image 4.9 shows
the evolution of each variable in the system when the system is run 100 times, each time with the
same initial condition [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] but with with random αi.

Again we notice that, as in the previous example, for each set of random αi the system reaches a
steady state mainly in a monotone way. This is expected from the modeling equations and from
the biological intuition but differs from the oscillating or chaotic evolution often displayed by
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FIGURE 4.8: Enzymatic toxin transport case: image showing a surfaces plot of the
optimisation routine function seen from above. For each image the x and y axis are
x1 and x2 variables respectively. z axis is the growth rate. The sequence of images

corresponds to increasing values of the toxin T.

non-linear differential equations systems. We can also see that for few sets of αi the value of the
ribosome in the steady state is bigger, these are choices of αi close to the values that give optimal
growth rate. As expected, these sets of values are more rare than the others.

4.3 Toxin Presence Leads To Substrate Switch

For this example we have chosen the constants in the enzymes ’stoichiometry’ matrix M as M =
(3, 2, 4, 1; 2, 1, 3, 1; 4, 3, 1, 2). Also in this example there are sixteen constants: the constants that
appear in the functions that describe the reactions, kkk = (kcat, k f1 , k f2 , k f3 , kg1 , kg2 , kg3 , kr), and the os-
motic constants of the metabolites, enzymes and ribosomes: ρρρ = (ρ1, ρ2, ρ3) and σσσ = (σ1, σ2, σ3, σr).
Again we will keep kcat = 0.25 and use a perturbation of the other constants from the fixed values:
kkk = (0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), ρρρ = (1, 1, 1) and σσσ = (1, 1, 1, 1). In particular the values
that we use are

kkk = (0.2500, 0.4981, 0.5023, 0.4963, 0.4998, 0.4977, 0.5134, 0.5089, 0.5090)

ρρρ = (1.0711, 1.0404, 1.0225)

σσσ = (1.0992, 1.0311, 1.0748, 1.0167).

We then run the program for increasing values of T to see if we can observe adaptation. We
would expect that, for increasing values of the toxin, the cell invests more resources to import
the substrate which is not affected by the presence of the toxin. Also, we use external substrate
concentrations levels at S1 = S2 = S3 = 1.

Image 4.10 shows the results of the optimisation routine for 30 equally spaced increasing T values
between 0 and 24 for the first set of gi equations. According to the modeling equations, the toxin
value 0 makes the reaction rate relative to the import of substrate S1 5 times more effective than
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FIGURE 4.9: Enzymatic toxin transport case: image showing a the evolution of
the metabolites and enzymes. Each picture corresponds to a variable ordered as
(x1, x2, T, β1, β2, β3, µ). The picture has been produced by running the diferential
equations 10 times with random α’s. We can see that, as expected and as in the pre-
vious example, the concentrations reach a steady state mainly in a monotone way,
differently from the oscillating or chaotic evolution often displayed by non-linear

differential equations systems



4.4. Checking The Results 47

0 10 20

Toxin Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
o

n
c
e

n
tr

a
ti
o

n
 o

f 
m

e
ta

b
o

lit
e

 x
1

0 10 20

Toxin Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
o

n
c
e

n
tr

a
ti
o

n
 o

f 
m

e
ta

b
o

lit
e

 x
2

0 10 20

Toxin Value

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c
o

n
c
e

n
tr

a
ti
o

n
 o

f 
m

e
ta

b
o

lit
e

 x
3

0 10 20

Toxin Value

0.005

0.01

0.015

0.02

0.025

c
o

n
c
e

n
tr

a
ti
o

n
 o

f 
e

n
z
y
m

e
 e

1

0 10 20

Toxin Value

0.005

0.01

0.015

0.02

0.025

c
o

n
c
e

n
tr

a
ti
o

n
 o

f 
e

n
z
y
m

e
 e

2

0 10 20

Toxin Value

0.005

0.01

0.015

0.02

0.025

c
o

n
c
e

n
tr

a
ti
o

n
 o

f 
e

n
z
y
m

e
 e

3

0 10 20

Toxin Value

0.004

0.006

0.008

0.01

0.012

0.014

0.016

c
o

n
c
e

n
tr

a
ti
o

n
 o

f 
ri
b

o
s
o

m
e

 r

FIGURE 4.10: Substrate switch case: Image showing the results of the optimisation
routine for 30 equally spaced increasing T values between 0 and 24 for the first set

of gi functions.

the others, a toxin level 4 makes this reaction rate equal to the others and a toxin level 24 makes
this reaction rate 1

5 less effective than the others. We have used different scales for the metabolite,
enzyme and ribosome concentrations.

We notice that, for increasing toxin values, the concentrations of the metabolites x1, x2 and x3
seem not to show any trend maybe because we have used not enough toxin values or probably
because of the non reliability of the optimisation procedure. On the other hand, the concentration
of enzyme e1 increases for increasing toxin as expected. This is probably because, using the first
set of gi functions, the cell needs to import each of the three substrates in order grow. The growth
rate however shows a decreasing trend, this is probably because as the cell invests more ribosome
for the sythesis of enzyme e1, it has less resources to invest in the production of the other two
enzymes which in turn show a slightly decreasing trend.

Image 4.11 shows the results of the optimisation routine for 30 equally spaced increasing T val-
ues between 0 and 24 for the second set of gi equations. We notice that as in the previous case
the metabolite concentrations do not show any particular trend while the enzyme e1 shows an in-
creasing trend. Also in this case the growth rate shows a decreasing trend. This might suggest that
the modeled cell adapts to different toxin levels but even if it can grow using only two substrates,
it grows faster when all three are available. In both cases the cell shows adaptation by increasing
the sythesis of enzyme e1 for higher toxin concentrations.

Lastly, images 4.12, 4.13 and 4.14 show three plots of the function H on a 101 × 101 × 9 grid
respectively for toxin values 0, 4 and 24. In this case, the three plots seem to be even more noisy
and discontinous and do not show any particular trend for increasing toxin value. This seem to
give more evidence that the maximisation procedure we have used should not be trusted.

4.4 Checking The Results

In this section we report two tests we have conducted to check the reliability of our optimisation
routine and to test our hypotesis that the maximisation routine we have used is not fully reliable.
Here we show that in cases where the Linear Programming routine gives a positive growth rate
(not very close to zero), the algorithm did in fact work correctly. This shows that we did implement
the Balanced Growth Equations correctly, and that the errors must come from the underlying
algorithm in fminsearch. Somehow this algorithm does not respect the convexity properties of the
problem.
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FIGURE 4.11: Substrate switch case: Image showing the results of the optimisation
routine for 30 equally spaced increasing T values between 0 and 24 for the second

set of gi functions.

FIGURE 4.12: Substrate switch case: image showing the surface plot of the optimi-
sation routine for toxin value 0

In the first test we have run the system with the initial conditions and ribosome allocation given
by the optimum solution we have found. Image 4.15 shows the evolution of the system starting
from the initial conditions and the α’s given by the optimum. We can see that except for very slight
oscillations due probably to numerical errors, the evolution of the system of differential equations
confirms that the found optimum is indeed a steady state of the system (notice that the range of
the oscillations is extremely small). This confirms that the result of our maximisation routine finds
a solution of the Balanced Growth Equations.

Next, we report a test we have conducted which seems to suggest that the maximisation routine
we have used is not fully reliable and that the H function is not noisy and discontinous as it ap-
pears calculated with the maximisation routine we have used. We have calculated the maximum
growth rate µ for the first example in a different way. We have created a grid of (α1, α2) values
and run the system of differential equations for each pair that give constant osmotic pressure. For
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FIGURE 4.13: Substrate switch case: image showing the surface plot of the optimi-
sation routine for toxin value 4

FIGURE 4.14: Substrate switch case: image showing the surface plot of the optimi-
sation routine for toxin value 24

each pair we have have plotted the resulting growth rate against the x1 and x2 coordinates. Im-
age 4.16 shows the result obtained using with a 50× 50 grid of α values. When we calculate the
growth rate in this way we find the maximum value is 0.0051 which coincides with the value we
had found with the optimisation routine. This plot, which has been created using the dynamics of
the system, is very different from the one we have calculated using the maximisation routine, in
particular it is much smoother in accordance with our expectation that the growth rate µ changes
continously with the metabolites concentrations xxx. This test suggests that the H function is indeed
continous and not noisy and it appeared so because of the algorithm that we have used to calcu-
late it (the optimisation procedure). Moreover, if we compare the two plots, we can see that, in
the plot created with the optimisation routine, the points which have value away from zero seem
to follow the same shape of the plot calculated with the ODE dynamics. It seems that for a very
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FIGURE 4.15: Example without toxin: image showing the evolution of the system
starting from the initial conditions and ribosome allocation given by the optimum

solution. The optimum is indeed a steady state of the system

big number of xxx combinations the optimisation procedure fails to calculate the correct value of µ.
We suppose that the problem lies in the algorithm architecture. From this test we can conclude
that the optimisation procedure we have attempted is not reliable and calculating the maximum
growth rate µ using the ODE dynamics is a much more reliable method. However it should be
mentioned that also this second way to calulate the maximum growth rate and the plot of the
growth rate in the xxx space has its limitations. In particular it assumes that for every combination
of α’s, the ODE system has a unique steady state, which has not been proven for the general case.

4.5 Exploring the Dynamic Optimization

In the previous section we have found out that using the dynamics of the system, seems a much
more reliable method for calculating the optimal values that correspond to the maximum growth
rate (at least for the first example without toxin). In the light of this, in this section, we have further
explored this method.

We have used a function that, for fixed set of ααα, runs the system of differential equations for
fixed initial conditions and gives as output the values relative to the steady state that the system
reaches. We have then used the inbuilt function fminsearch to maximize the growth rate given by
this function.

The resulting algorithm proved out to be much more stable and its execution time is much shorter
compared the static optimisation algorithm we have investigated in the previous sections. As we
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FIGURE 4.16: First example without toxin: plot of the growth rate µ in the (x1, x2)
space calculated using the ODE dynamics

have seen from the previous plots (images 4.4, 4.9), when we have run the system for different
combinations of ααα, the system of differential equations seems to always converge one steady state
for each set of parameters. However we have found out that this algorithm seems to have also
convergence issues which happen when the fluxes become too big or too small.

We have then used this algorithm to produce different graphs of the dependancy of the optimal
substrate concentrations, the enzyme concentations, the ribosome concentration, the growth rate
µ, the ααα and the βββ. Lastly we have used this data to implement the µORAC approach for the first
example without toxin, as we did in section 4.1 but now using a bigger interval of optimal values.

In what follows we report and comment these plots.

4.5.1 Example Without Toxin

Image 4.17 shows the the dependancy of x1, x2, e1, e2, r, α1, α2, β1, β2 and µ respect to the substrate
concentrations S1 and S2. We have considered values of S1 and S2 between 0.1 and 5. We notice
that, as expected for increasing values of both substrates, the growth rate µ increases. Also we
notice that when increasing the substrate concentration S1, the enzyme allocation relative to the
import of this substrate decreases, the same happens when increasing the substrate concentration
S2. Similarly when increasing the substrate concentration S1, the enzyme e1 which imports it de-
creases while the enzyme e2 increases, the same happens when increasing substrate concentration
S2.
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FIGURE 4.17: Example without toxin: image showing the dependancy of x1, x2, e1,
e2, r, α1, α2, β1, β2 and µ respect to the substrate concentrations S1 and S2. We have

considered values of S1 and S2 between 0.1 and 5.

Image 4.18 shows the the dependancy of x1, x2, e1, e2, r, α1, α2, β1, β2 and µ respect to the catalyzing
constant kcat. We have considered values of kcat between 0.1 and 5. We can see that, as expected,
when increasing kcat the growth rate µ increases.
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FIGURE 4.18: Example without toxin: image showing the dependancy of x1, x2, e1,
e2, r, α1, α2, β1, β2 and µ respect to the catalyzing constant kcat. We have considered

values of kcat between 0.1 and 5.

Image 4.19 shows the dependancy of x1, x2, e1, e2, r, α1, α2, β1, β2 and µ respect to the catalyzing
constant k1 f . We have considered values of k1 f , between 0.1 and 5. We notice that for increasing
values of k1 f the growth rate decreases.
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FIGURE 4.19: Example without toxin: image showing the dependancy of x1, x2, e1,
e2, r, α1, α2, β1, β2 and µ respect to the catalyzing constant k1 f . We have considered

values of k1 f between 0.1 and 5.

Image 4.20 shows the dependancy of x1, x2, e1, e2, r, α1, α2, β1, β2 and µ respect to the osmotic
constant ρ1. We have considered values of ρ1 between 0.1 and 5. We notice that for increasing
values of ρ1 the growth rate decreases.

Lastly, Image 4.21 shows the result of running the system in the µORAC setting using the data of
the dependancy on substrate S1 that we have obtained with the dynamic optimization method.
As in section 4.1, we have run the system first with S1 = 1 on the time interval [0, 2000], then
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FIGURE 4.20: Example without toxin: image showing the dependancy of x1, x2, e1,
e2, r, α1, α2, β1, β2 and µ respect to ρ1, the osmotic constant relative to x1. We have

considered values of ρ1 between 0.1 and 5.

we have rised the value to S1 = 2 and run it on the time interval [2000, 4000], then decreased the
value to S1 = 0.5 and run the system on the time interval [4000, 6000]. Each time we can see that
the system steers itself to a new optimal state after the external substrate concentration has been
changed.
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FIGURE 4.21: Example without toxin: image showing the result of running the sys-
tem in the µORAC setting using the data of the dependancy on substrate S1 that we

have obtained with the new method.

4.5.2 Enzymatic Toxin Transport

Image 4.22 shows the dependancy of x1, x2, T, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to
the substrate concentration S1. We have considered values of S1 between 0.1 and 5. We notice
that for nearly all values of S1, the toxin value is lower than the other two metabolites x1 and x2.
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Also the toxin removing enzyme e3 is bigger than the other two, the same happens for the enzyme
production allocation, α3 is bigger than α1 and α2 for sufficiently big S1 values. Lastly we notice
that for increasing values of S1 the growth rate µ also increases.
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FIGURE 4.22: Enzymatic toxin transport case: image showing the dependancy of x1,
x2, T, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to the substrate concentration S1.

We have considered values of S1 between 0.1 and 5.

Image 4.23 shows the dependancy of x1, x2, T, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to
the substrate concentration S2. We have considered values of S2 between 0.1 and 5. We notice
that like in the previous case, for sufficiently big values of S2 the toxin value is much lower than
the other two metabolites x1 and x2. Also, the enzyme e2 which imports the substrate S2 becomes
lower and the toxin removing enzyme e3 stays high. Notice that, differently from the previous
plot, the enzyme e1 stays significantly higher, this is probably because the cell relies mostly on the
import of S1 to grow and does not need to use a lot enzyme e2. Even using little enzyme to import
S2 and transform it into metabolite x2, the cell is able to use the requires amount of metabolite x2
necessary for growth when the substrate value S2 becomes higher. We also notice that similarly
to the previous plot, for increasing values of substrate S2 the enzyme allocation changes and α2
becomes small. Lastly we notice that as in the previous plot, for increasing values of S2, the growth
rate µ also increases.

0 1 2 3 4 5

S2

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

x
1

x1

0 1 2 3 4 5

S2

0

0.05

0.1

0.15

0.2

0.25

x
2

x2

0 1 2 3 4 5

S2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

T

T

0 1 2 3 4 5

S2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

e
1

e1

0 1 2 3 4 5

S2

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

e
2

e2

0 1 2 3 4 5

S2

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

x
3

e3

0 1 2 3 4 5

S2

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

r

r

0 1 2 3 4 5

S2

0.14

0.16

0.18

0.2

0.22

0.24

0.26

a
lp

h
a

1

alpha1

0 1 2 3 4 5

S2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

a
lp

h
a

2

alpha2

0 1 2 3 4 5

S2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

a
lp

h
a

3

alpha3

0 1 2 3 4 5

S2

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

b
e
ta

1

×10
-3 beta1

0 1 2 3 4 5

S2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

b
e
ta

2

×10
-3 beta2

0 1 2 3 4 5

S2

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

b
e
ta

3

×10
-3 beta3

0 1 2 3 4 5

S2

3

4

5

6

7

8

9

m
u

×10
-3 mu

Stop Pause

FIGURE 4.23: Enzymatic toxin transport case: image showing the dependancy of x1,
x2, T, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to the substrate concentration S2.

We have considered values of S2 between 0.1 and 5.

Image 4.24 shows the dependancy of x1, x2, T, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to the
catalyzing constant kcat. We have considered values of kcat between 0.05 and 0.65. For values of
kcat outside this interval the algorithm seems not to converge probably because the fluxes become
too small and too big. We notice that, as in the previous plots, for sufficiently high values of kcat
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the toxin values stays lower than the other two metabolites x1 and x2. Also, we can see that the
fraction α3 of the ribosome responsible for the production of the toxin-removing enzyme e3 stays
higher than the other two. The enzyme e3 is also significantly higher than the other two altougth,
unexpectedly, we can see a decreasing trend also for this enzyme for increasing values of kcat.
Lastly, we notice that, as in the previous plots, the growth rate µ also increases for increasing
values of kcat.
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FIGURE 4.24: Enzymatic toxin transport case: image showing the dependancy of x1,
x2, T, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to the catalyzing constant kcat.
We have considered values of kcat between 0.05 and 0.65. For values of kcat outside

this interval the algorithm seems not to converge.

4.5.3 Substrate Switch Case

Image 4.25 shows the dependancy of x1, x2, x3, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to the
substrate concentrations S1, S2 and S3 for toxin value T = 4 which makes the system symmetric.
We have considered values of S1, S2 and S3 between 0.1 and 5. We can see that, as expected, the
three parts of the plot show symmetry. For increasing values of S1, α1 decreases, α2 and α3 increase,
e1 decreases, e2 and e3 increase. For increasing values of S2, α2 decreases, α1 and α3 increase, e2
decreases, e1 and e3 increase. For increasing values of S3, α3 decreases, α1 and α2 increase, but e2
increases, e1 and e3 decrease. As expected in all the three cases for each increasing substrate the
growth rate µ increases.

Image 4.26 shows the dependancy of x1, x2, x3, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to
the toxin T. We have considered values of the toxin between 0 and 18. Remind that for values
of the toxin between 0 and 4 the toxin presence makes the flux relative to the import of substrate
S1 bigger than the other two, while for toxin values higher than 4 the toxin makes the same flux
smaller and smaller respect to the other two. For values of the toxin higher than approximately 18
the flux becomes too small and the algorithm seems not to converge. We notice that, as expected,
for increasing values of the toxin the growth rate µ decreases. We also notice that, as expected, the
enzyme which imports the first substrate S1 increases, probably because the presence of the toxin
makes the corresponding flux smaller. The same goes for the corresponding α1 and β1.

Image 4.27 shows the dependancy of x1, x2, x3, e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to
the catalyzing constant kcat for three different toxin values: 0, 4 and 24 when keeping the substrate
concentrations fixed as usual at value S1 = S2 = S3 = 1. We considered values of kcat between 0.1
and 5. We notice that for a few values of kcat the algorithm seems to find a wrong solution, however
these seem to be really exceptional cases considering that we have used 200 discretization points.
We also notice that for all three values of the toxin T, the growth rate µ increases for increasing
values of kcat.
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FIGURE 4.25: Substrate switch case: image showing the dependancy of x1, x2, x3, e1,
e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to the substrate concentrations S1, S2 and
S3 for toxin value T = 4 which makes the system symmetric. We have considered

values of S1, S2 and S3 between 0.1 and 5.
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FIGURE 4.26: Substrate switch case: image showing the dependancy of x1, x2, x3,
e1, e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to the toxin T. We have considered
values of the toxin between 0 and 18. Remind that for values of the toxin between 0
and 4 the toxin presence makes the flux relative to the import of substrate S1 bigger
than the other two, while for toxin values higher than 4 the toxin makes the same
flux smaller and smaller respect to the other two. For values of the toxin higher
than approximately 18 the flux becomes too small and the algorithm seems not to

converge.
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FIGURE 4.27: Substrate switch case: image showing the dependancy of x1, x2, x3, e1,
e2, e3, r, α1, α2, α3, β1, β2, β3 and µ respect to the catalyzing constant kcat for three
different toxin values: 0, 4 and 24 when keeping the substrate concentrations fixed
as usual at value S1 = S2 = S3 = 1. We considered values of kcat between 0.1 and 5.
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Chapter 5

Code Description

In this section we briefly describe the code and what it does. We describe only the code for the
non-toxin case as the other cases are similar. The code consists of 13 main functions and 3 aux-
iliary functions and one script. The auxiliary functions are cont.m and multinewton.m (courtesy
of professor J.B. van Den Berg), which continue the solution of a set of algebraic equations and
implements the multi-dimensional Newton method respectively and a small function ran.m that
creates a random number centred at zero (a number between −a and a).

When running the functions, the first one to be run is the script Constants_set which sets all the
constants of the problem. The code for the substrate switch example is slightly different than the
others as the constants are defined inside the main function SOL.m. In the script it is possible to
choose if we want to use some fixed constants or some perturbed ones. It is important to call
both commands clear and clear global if we want to run the functions again with different
constants.

The main functions that solve the problem are: optH.m, fixed_pt.m, Maximizer.m, and SOL.m.
These functions together form the maximization routine. In particular, optH.m solves the lin-
ear program for fixed µ̃ and so maximises µ for fixed metabolites concentrations and fixed µ̃.
fixed_pt.m is a small functions that uses optH.m to find the fixed point of the function H and thus
find the optimal growth rate for fixed metabolites concentrations.

Then we have the two functions, Maximizer.m and SOL.m which solve the problem. Maximizer.m
is a routine that maximizes the growth rate and that uses fixed_pt.m and optH.m to optimize
the solution over the metabolites concentrations. A solution is a set of metabolites and respective
enzymes allocation. However we need to find the optimum only over the metabolites variables as
the enzymes allocation is dependent on the metabolites concentrations. in order to do this we use
first the grid routine and then we refine the solution using the inbuilt function fminsearch (this is a
minimising function so we use it to minimise −µ and thus maximise µ).

The function SOL.m is then the function that find the optimal growth rate. It takes as input the
desired maximum number of iterations of fminsearch and the desired precision of the grid method.

The function contG.m takes as input a solution point and calculates both the Balanced Growth and
Optimality Equations. For the Optimality Equations we don’t calculate the determinant of the
matrices but instead give as output the values of the smallest eigenvalue which is an equivalent
but computationally more stable way to calculate the result.

The function visualH.m creates and visualises the function which has as input the metabolites
concentrations and as output the growth rate (this is the same function that we calculate on the
grid, only this time on a bigger grid in order to plot it).

The other functions are: ContG_S1 which is similar to ContG.m and is used to continue the so-
lution respect to the S1 substrate. input_output.m is the function that creates the continuation
dataset which is used in the µORAC system. run_set.m is the function that we used to calculate
the growth rate in the second background test. Simple_Example_System.m calculates the right
hand side of the system of differential equations and run_system.m runs the system of differen-
tial equations for chosen α’s. We have also the functions Simple_Example_System_morac.m and
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Run_System_morac.m which respectively calculate the right hand side of the differential equations
and run the system of differential equations in the µORAC setting.

Lastly, for the dynamic optimization section we have used two functions and a script:
cal_fixed_alphas.m which takes as input a set of ααα and gives as output the steady state the system
reaches when run from a fixed initial condition, DummyFunction1.m which extracts the growth
rate from the function in order to use fminsearch to maximise it and run_script, a script used to
produce the dependancy plots presented in the relative section.

We summarise next the functions of which the program is composed and how the are called:

• Constants_Set is the script used to set all the constants of the problem.

• [mu_opt,exitflag,b_s_opt] =
optH(x1,x2,mu_tilde) calculates the optimum for fixed µ̃. It takes as input the fixed metabo-
lites concentrations x1 and x2 and µ̃ and gives as output the relative β’s of the optimal solu-
tion for these fixed values, we remind that the β’s say how the ribosome is allocated among
the enzymes. It also gives back the exitflag of the linear programming function linprog

• [s]=fixed_pt(x1,x2) finds the fixed point where µ = µ̃. It then takes as input the metabo-
lites concentrations x1 and x2 and gives as output the value of the optimal growth rate µ

• [B_S_OPT,X_OPT,exitflag_fmin,exitflag_optH,H] =
Maximizer(Substr_con,x1_range,x2_range,max_iter,precision) is the main maximisa-
tion routine, it takes as input the substrates concentrations, the intervals of x1 and x2 where
the maximisation over the metabolites concentrations take place. The maximum number
of iterations of fminsearch and the precision of the grid routine used to find the point to be
supplied to fminsearch. It gives as output the β’s of the optimal solution over x1 and x2, the
exit flag of fminsearch and the exitflag of optH (which is the exitflag of linprog.

• [x0,k_s,ro_s,sigma_s] =
SOL(max_iter,precision,method,in_point) is finally the main problem solving function
that uses all the previous ones. max_iter is again the maximum number of iterations of fmin-
search. The optimum is at first searched with the grid method and then further improved
using fminsearch. After that the optimum which has been found is checked for optimality
using the function contG.m which calculates the Balanced Growth Equations and the Opti-
mality Equations. After that, in order to continue the solution, we try to find a point which
is close to the found optimum but which is a better zero of contG.m, to do this we use the in-
built MATLAB functions gsolve or lsqnonlin, if method = ’gs’ then gsolve is used, otherwise,
if method = ’ls’, lsqnonlin is used. Lastly, if the number of inputs is 4, the grid method
is skipped and fminsearch is supplied directly with an initial point in_point. The function
SOL.m also prints to screen the results and some of the intermediate values it calculates.

• [z] = contG(x) calculates the Balanced Growth and Optimality Equations of the input vec-
tor.

• [H,k_s,ro_s,sigma_s,x1_s,x2_s] =
visualH(n,H_in,X1_RANGE,X2_RANGE,visu) is used to visualise the function that associates
the optimal growth rate to each fixed metabolite pairs, that is, it’s the function we want to
maximise using the grid method and then using fminsearch. If the number of inputs is 2,
the function creates a matrix of the function values, n is a vector of two integers that are the
number of discretisation points for both the ranges of x1 and x2, in this case the range of
visualization is the whole rectangle of the the metabolites values for which both fluxes are
positive. If the number of inputs is 3, the function plots the matrix that we provide as input
(the one that we created with another call to the function). If the number of inputs is 4, the
functions creates again the matrix but for given ranges of the metabolites (used to magnify a
specific region of variables). If the number of inputs is 5 it plots the matrix with given ranges
(the ones that we specified in the previous call).
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• [dx]=Simple_Example_System(t,x,alpha_s) is the function that calculates the right hand
side of the differential equations system for a chosen set of α’s.

• [q,MU] = Run_System(alpha_s,xinit) runs the system of differential equations, if the
number of inputs is 0 the α’s are randomly chosen and the initial point is chosen to be
[0.1, 0.1, 0.1, 0.1, 0.1]. Otherwise both the α’s and inital point can be supplied when the num-
ber of inputs is 2.

• [dx]=Simple_Example_System_morac(t,x) is the function that calculates the right hand side
of the differential equations system in the µORAC setting.

• [q,MU] = Run_System_morac(xinit) runs the system of differential equations in the µORAC
setting.

• [x1,x2,mu] = run_set(N) calculates the graph of the growth rate over the α’s space for the
second background test.

• zopts = input_output(z) takes as input the solution point and gives as output the matrix
of continuation points.

• [r] = contG_S1(x) takes as input the solution vector which includes in this case the sub-
strate variable S1 and calculates the value of the Balanced Growth and Optimality equations
for this point. This function is used for the continuation.
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Chapter 6

Conclusions

In this thesis we have introduced a model for bacteria metabolism and investigated it numerically.
Several examples of the model have been investigated. We have developed a routine which finds
the optimal solution of metabolite and enzyme concentrations which correspond to the maximum
growth rate. Our goal was to gain insight on whether it is possible to understand stress manage-
ment in cells using a growth rate maximization approach.

We have found that the optimisation procedure is able to find the maximum growth rate and it
coincides with the maximum growth rate that we have calculated using the ODE dynamics. How-
ever, evaluating the plot of the growth rate calculated with the optimisation routine and checking
it against our expectation of smoothness and against the plot that we have calulated using the
ODE dynamics, we can conclude that the numerical results we have found should not be trusted
and the optimization procedure is not fully reliable. We have double checked the correctness of
the results for fixed metabolites concentrations. We can conclude that using the ODE dynamics
to calculate the maximum growth rate is a much more reliable method. In the last section of the
results chapter we have investigated this second method that uses the dynamics of the system to
calculate the optimal values that lead to the maximum growth rate. This second method proved
out to be not only more reliable and stable but also computationally more effective.

However, this model and the procedure we have introduced was able to give insight on our ini-
tial research idea to unite a stress management setting with a growth rate optimisation one. We
have modeled a first example without toxin and three examples which include the presence of a
toxin. As expected, we have seen that the cell removes the toxin and invests more energy in the
production of the toxin-removing enzyme in the first toxin case (enzymatic toxin transport).

We have introduced the µORAC framework and implemented it for the first example. We have
seen how this approach is able to model how the cell steers itself to the optimal steady state only
using internal sensor information and the continuation data that we assume is stored inside the
cell. Because of lack of time this is the only example where we have implemented the µORAC
framework.

This study has showed the versatility of this model and how it is able to predict cell adaptation to
stress factors such as toxins and to changing environmental conditions. The results of this study
seem to suggest that it is possible to gain insight on how the cell deals with stress factors using
a fitness perspective. Both growth and stress management are part of bacterial life and the cell
uses feedback mechanisms to choose how to allocate resources between the two according to the
external conditions.

Further research might include the study of examples where the µORAC framework is applied
to an example which models the presence of a toxin or the modeling of other discontinous stress
factors such as damage caused by heat or radiation. Also, the discontinuity of the maximisation
function should be further investigated. Further research could also consider examples with more
variables and model metabolic networks which contain more than one EGM.
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Appendix A

MATLAB codes

A.0.1 Example Without Toxin Codes

Constants_set.m

1 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
2 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
3 S1_c S2_c k_s ro_s sigma_s Enz_con
4

5 rndmz = 'N';
6

7 e = 0.05;
8

9 Network = [1,0;
10 0,1];
11

12 Enz_con = [2,4,3;
13 3,4,2];
14

15 Substr_con = [1 1];
16

17

18 if rndmz == 'Y'
19

20 %disp('Vector of randomization:')
21

22 rad = [ran(e) , ran(e) , ran(e) , ran(e) , ran(e) ,...
23 ran(e) , ran(e) , ran(e) , ran(e) , ran(e)];
24

25 %disp('Original constants:');
26

27 k_s = [0.25,0.5,0.5,0.5,0.5,0.5];
28

29 ro_s = [1,1];
30

31 sigma_s = 10*[1,1,1];
32

33 disp('Perturbed values:');
34

35 k_s = [0.25,0.5+rad(1)/2,0.5+rad(2)/2,0.5+rad(3)/2,0.5+rad(4)/2,0.5+rad(5)/2];
36

37 ro_s = [1+rad(6),1+rad(7)];
38

39 sigma_s = 10*[1+rad(8),1+rad(9),1+rad(10)];
40

41 else
42

43 %disp('Using fixed constants');
44

45 k_s = [0.2500 , 0.4785 , 0.5173 , 0.5164 , 0.4623 , 0.4907];
46
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47 ro_s = [0.9775 , 1.0217];
48

49 sigma_s = 10*[0.9783 , 1.0396 , 1.0327];
50

51 end
52

53 %%%%%%%%%%%%%%%%%%%%% CONSTANTS %%%%%%%%%%%%%%%%
54

55 M11 = Enz_con(1,1);
56 M12 = Enz_con(1,2);
57 M1r = Enz_con(1,3);
58 M21 = Enz_con(2,1);
59 M22 = Enz_con(2,2);
60 M2r = Enz_con(2,3);
61

62 P11 = Network(1,1);
63 P12 = Network(1,2);
64 P21 = Network(2,1);
65 P22 = Network(2,2);
66

67 kcat = k_s(1);
68 k1_f = k_s(2);
69 k2_f = k_s(3);
70 k1_g = k_s(4);
71 k2_g = k_s(5);
72 kr_g = k_s(6);
73

74 ro_1 = ro_s(1);
75 ro_2 = ro_s(2);
76

77 sigma_1 = sigma_s(1);
78 sigma_2 = sigma_s(2);
79 sigma_r = sigma_s(3);
80

81 S1_c = Substr_con(1);
82 S2_c = Substr_con(2);
83

84 a1=ro_1*P11+ro_2*P21;
85 a2=ro_1*P12+ro_2*P22;
86

87 b1=ro_1*M11+ro_2*M21;
88 b2=ro_1*M12+ro_2*M22;
89 br=ro_1*M1r+ro_2*M2r;

optH.m

1 function [mu_opt,exitflag,b_s_opt,Aeq,exit]=optH(Substr_con,x1,x2,mu_tilde);
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
5 S1_c S2_c k_s ro_s sigma_s Enz_con
6

7 S1 = Substr_con(1);
8 S2 = Substr_con(2);
9

10 syms mu beta_1 beta_2
11

12 f1 = @(x1,S1) kcat*((S1-k1_f*x1)/(1+S1+x1));
13 f2 = @(x2,S2) kcat*((S2-k2_f*x2)/(1+S2+x2));
14

15 g1 = @(x1,x2) k1_g*x1*x2/(1+x1+x2+x1*x2);
16 g2 = @(x1,x2) k2_g*x1*x2/(1+x1+x2+x1*x2);
17 gr = @(x1,x2) kr_g*x1*x2/(1+x1+x2+x1*x2);
18

19 %F1_mod = @(beta_1,beta_2,mu) x1*( (a1*f1(x1,S1)/mu_tilde +...
20 % sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu_tilde+sigma_2-b2)*beta_2 + (sigma_r-br)*mu )...



Appendix A. MATLAB codes 67

21 %- (P11*f1(x1,S1)/mu_tilde-M11)*beta_1 - (P12*f2(x2,S2)/mu_tilde-M12)*beta_2 + M1r*mu;
22 %F2_mod = @(beta_1,beta_2,mu) x2*( (a1*f1(x1,S1)/mu_tilde +...
23 %sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu_tilde+sigma_2-b2)*beta_2 + (sigma_r-br)*mu )...
24 %- (P21*f1(x1,S1)/mu_tilde-M21)*beta_1 - (P22*f2(x2,S2)/mu_tilde-M22)*beta_2 + M2r*mu;
25

26 %Fr = @(beta_1,beta_2,mu) beta_1/g1(x1,x2) + beta_2/g2(x1,x2) + mu/gr(x1,x2);
27

28 f = [0,0,-1];
29 B = -eye(3);
30 b = [0;0;0];
31 beq = [0;0;1];
32

33 Aeq = zeros(3);
34

35 Aeq(1,1) = x1*(a1*f1(x1,S1)/mu_tilde + sigma_1-b1) - (P11*f1(x1,S1)/mu_tilde-M11);
36 Aeq(1,2) = x1*(a2*f2(x2,S2)/mu_tilde + sigma_2-b2) - (P12*f2(x2,S2)/mu_tilde-M12);
37 Aeq(1,3) = x1*(sigma_r-br) + M1r;
38

39 Aeq(2,1) = x2*(a1*f1(x1,S1)/mu_tilde + sigma_1-b1) - (P21*f1(x1,S1)/mu_tilde-M21);
40 Aeq(2,2) = x2*(a2*f2(x2,S2)/mu_tilde + sigma_2-b2) - (P22*f2(x2,S2)/mu_tilde-M22);
41 Aeq(2,3) = x2*(sigma_r-br) + M2r;
42

43 Aeq(3,1)=1/g1(x1,x2);
44 Aeq(3,2)=1/g2(x1,x2);
45 Aeq(3,3)=1/gr(x1,x2);
46

47 Aeq;
48

49 options = optimset('Display','none','maxiter',100);
50

51 LB = [];
52 UB = [];
53

54 [b_s_opt,fval,exitflag,output] = linprog(f,B,b,Aeq,beq,LB,UB,[],options);
55

56 if exitflag == 1 || exitflag == 0
57 mu_opt=b_s_opt(3);
58 exit = 1;
59 else
60 mu_opt=0;
61 b_s_opt = [0;0;0];
62 exit = 0;
63 end
64

65 end

fixed_pt.m

1 function [s]=fixed_pt(Substr_con,x1,x2);
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
5 S1_c S2_c k_s ro_s sigma_s Enz_con
6

7 fixedpt = @(mu_tilde) optH(Substr_con,x1,x2,mu_tilde) - mu_tilde;
8 options = optimset('TolX',1e-7,'TolFun',1e-7,'maxiter',250);
9 s = -fzero(fixedpt,1e-9,options);

Maximizer.m

1 function [B_S_OPT,X_OPT,exitflag_fmin,exitflag_optH,H] =...
2 Maximizer(Substr_con,x1_range,x2_range,max_iter,precision)
3

4 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
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5 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
6 S1_c S2_c k_s ro_s sigma_s Enz_con
7

8 n=5;
9

10 count = 0;
11

12 a_x1 = x1_range(1);
13 b_x1 = x1_range(2);
14 a_x2 = x2_range(1);
15 b_x2 = x2_range(2);
16

17 x1_s = linspace(a_x1,b_x1,n);
18 x2_s = linspace(a_x2,b_x2,n);
19

20 H = zeros(n,n);
21

22 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2));
23

24 f = waitbar(0,'please wait..');
25

26 for i=1:n
27 for j=1:n
28 if ro_1*x1_s(i)+ro_2*x2_s(j) > 1
29 H(i,j)=0;
30 count=count+1;
31 f = waitbar(count/25,f);
32 else
33 H(i,j) = opt_M([x1_s(i),x2_s(j)]);
34 count = count + 1;
35 f = waitbar(count/25,f);
36 end
37 end
38 end
39

40 close(f)
41

42 count = 0;
43

44 [M,I] = min(H(:));
45 [I_row, I_col] = ind2sub(size(H),I);
46

47 disp('Point found from the grid:')
48

49 y = [x1_s(I_row),x2_s(I_col)]
50

51 disp('With minimum:')
52

53 optm = opt_M(y)
54

55 disp('And precision:')
56

57 pres = max(abs(a_x1-b_x1),abs(a_x2-b_x2))/4
58

59 while pres > precision
60

61 if I_row == 1
62 a_x1 = x1_s(I_row);
63 b_x1 = x1_s(I_row+1);
64 else
65 if I_row == n
66 a_x1 = x1_s(I_row-1);
67 b_x1 = x1_s(I_row);
68 else
69 a_x1 = x1_s(I_row-1);
70 b_x1 = x1_s(I_row+1);
71 end
72 end



Appendix A. MATLAB codes 69

73

74

75 if I_col == 1
76 a_x2 = x2_s(I_col);
77 b_x2 = x2_s(I_col+1);
78 else
79 if I_col == n
80 a_x2 = x2_s(I_col-1);
81 b_x2 = x2_s(I_col);
82 else
83 a_x2 = x2_s(I_col-1);
84 b_x2 = x2_s(I_col+1);
85 end
86 end
87

88 x1_s = linspace(a_x1,b_x1,n);
89 x2_s = linspace(a_x2,b_x2,n);
90

91 H = zeros(n,n);
92

93 f = waitbar(0,'please wait..');
94

95 for i=1:n
96 for j=1:n
97 if ro_1*x1_s(i)+ro_2*x2_s(j) > 1
98 H(i,j)=0;
99 count=count+1;

100 f = waitbar(count/25,f);
101 else
102 H(i,j) = opt_M([x1_s(i),x2_s(j)]);
103 count = count + 1;
104 f = waitbar(count/25,f);
105 end
106 end
107 end
108

109 close(f)
110

111 [M,I] = min(H(:));
112 [I_row, I_col] = ind2sub(size(H),I);
113

114

115 disp('Point found from the grid')
116

117 y = [x1_s(I_row),x2_s(I_col)]
118

119 disp('With minimum:')
120

121 optm = opt_M(y)
122

123 disp('And precision:')
124

125 pres = max(abs(a_x1-b_x1),abs(a_x2-b_x2))/4
126

127 count = 0;
128

129 end
130

131 disp('fminsearch starts')
132

133 options = optimset('Display','iter','PlotFcns',@optimplotfval,...
134 'TolFun',0.001,'maxiter',max_iter);
135

136 [x,fval,exitflag_fmin,output] = fminsearch(opt_M,y,options)
137

138 [mu_opt,exitflag_optH,b_s_opt]=optH(Substr_con,x(1),x(2),-fval);
139

140 B_S_OPT = b_s_opt;
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141 X_OPT = x;
142 MU_OPT = mu_opt;
143

144 end

SOL.m

1 function [x0,k_s,ro_s,sigma_s,z] = SOL(max_iter,precision,method,in_point)
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
5 S1_c S2_c k_s ro_s sigma_s Enz_con
6

7 Substr_con = [1 1];
8

9 %%%%%%%%%%%%%%%%%%%%%%%%%% STARTS OPTIMIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%
10

11 if nargin == 4
12

13 disp('fminsearch starts with user-given starting point:')
14

15 y = in_point
16

17 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2));
18

19 options = optimset('Display','iter','PlotFcns',...
20 @optimplotfval,'TolFun',0.001,'maxiter',max_iter);
21

22 [x,fval,exitflag_fmin,output] = fminsearch(opt_M,y,options)
23

24 [mu_opt,exitflag_optH,b_s_opt]=optH(Substr_con,x(1),x(2),-fval);
25

26 B_S_OPT = b_s_opt;
27 X_OPT = x;
28 MU_OPT = mu_opt;
29

30 if MU_OPT == 0
31 disp('Optimization didnt succeed with given starting point')
32 else
33 disp('Optimization succeeded')
34 end
35

36 disp('Solution vector [x1 x2 beta1 beta2 mu] :')
37

38 x0 = [X_OPT , B_S_OPT.']
39

40 disp('Zeros of balanced growth and optimality equations:')
41

42 contG(x0)
43

44 fun = @contG;
45

46 if method == 'fs'
47

48 disp('Point found by fsolve:')
49

50 z = fsolve(fun,x0)
51

52 disp('Image of the point found:')
53

54 contG(z)
55

56 else
57

58 disp('Point found by lsqnonlin:')
59
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60 lb = zeros(size(x0)); %lower bound of zero
61 ub = Inf*ones(size(x0));
62 z = lsqnonlin(fun,x0,lb,ub)
63

64 end
65

66 else
67

68 disp('Please wait! searching for a maximum over the x_s with ranges...
69 for x1 and x2,[0 , S1/k_1] and [0 , S2/k_2]:')
70

71 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
72 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
73

74 t_start = tic;
75

76 [B_S_OPT,X_OPT,exitflag_fmin,exitflag_optH,H] =...
77 Maximizer(Substr_con,x1_range,x2_range,max_iter,precision)
78

79 if B_S_OPT(3) == 0
80 disp('Optimization didnt succeed with given starting point')
81 else
82 disp('optimization succeeded')
83 end
84

85 disp('Minutes it took to find a solution:')
86

87 time = round(toc(t_start)/60,3)
88

89 disp('Solution vector [x1 x2 beta1 beta2 mu] :')
90

91 x0 = [X_OPT , B_S_OPT.']
92

93 disp('Zeros of steady state and optimality equations:')
94

95 contG(x0)
96

97 fun = @contG;
98

99 if method == 'fs'
100

101 disp('Point found by fsolve:')
102

103 z = fsolve(fun,x0)
104

105 disp('Image of the point found:')
106

107 contG(z)
108

109 else
110

111 disp('Point found by lsqnonlin:')
112

113 lb = zeros(size(x0)); %lower bound of zero
114 ub = Inf*ones(size(x0));
115 z = lsqnonlin(fun,x0,lb,ub)
116

117 end
118

119 end
120

121 end

contG.m

1 function [z] = contG(x);
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2 %used to get a point which is on the curve to start the continuation
3

4 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
5 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
6 S1_c S2_c k_s ro_s sigma_s Enz_con
7

8 S_1 = S1_c;
9 S_2 = S2_c;

10

11 x_1 = x(1);
12 x_2 = x(2);
13 B1 = x(3);
14 B2 = x(4);
15 MU = x(5);
16

17 syms x1 x2 S1 S2 mu beta_1 beta_2
18

19 f1 = @(x1,S1) kcat*((S1-k1_f*x1)/(1+S1+x1));
20 f2 = @(x2,S2) kcat*((S2-k2_f*x2)/(1+S2+x2));
21

22 g1 = @(x1,x2) k1_g*x1*x2/(1+x1+x2+x1*x2);
23 g2 = @(x1,x2) k2_g*x1*x2/(1+x1+x2+x1*x2);
24 gr = @(x1,x2) kr_g*x1*x2/(1+x1+x2+x1*x2);
25

26 F1 = @(beta_1,beta_2,mu) x1*( (a1*f1(x1,S1)/mu + sigma_1-b1)*beta_1 +...
27 (a2*f2(x2,S2)/mu + sigma_2-b2)*beta_2 + (sigma_r-br)*mu ) -...
28 (P11*f1(x1,S1)/mu - M11)*beta_1 - (P12*f2(x2,S2)/mu - M12)*beta_2 + M1r*mu;
29 F2 = @(beta_1,beta_2,mu) x2*( (a1*f1(x1,S1)/mu + sigma_1-b1)*beta_1 +...
30 (a2*f2(x2,S2)/mu + sigma_2-b2)*beta_2 + (sigma_r-br)*mu ) -...
31 (P21*f1(x1,S1)/mu - M21)*beta_1 - (P22*f2(x2,S2)/mu - M22)*beta_2 + M2r*mu;
32

33 Fr = @(beta_1,beta_2,mu) beta_1/g1(x1,x2) + beta_2/g2(x1,x2) + mu/gr(x1,x2) - 1;
34

35 dF1dx1 = diff(F1,x1);
36 dF1dx2 = diff(F1,x2);
37 dF1dbeta_1 = diff(F1,beta_1);
38 dF1dbeta_2 = diff(F1,beta_2);
39

40 dF2dx1 = diff(F2,x1);
41 dF2dx2 = diff(F2,x2);
42 dF2dbeta_1 = diff(F2,beta_1);
43 dF2dbeta_2 = diff(F2,beta_2);
44

45 dFrdx1 = diff(Fr,x1);
46 dFrdx2 = diff(Fr,x2);
47 dFrdbeta_1 = diff(Fr,beta_1);
48 dFrdbeta_2 = diff(Fr,beta_2);
49

50 dF1dx1 = matlabFunction(dF1dx1); %@(S1,S2,beta_1,beta_2,mu,x1,x2)
51 dF1dx2 = matlabFunction(dF1dx2); %@(S2,beta_2,mu,x1,x2)
52 dF1dbeta_1 = matlabFunction(dF1dbeta_1); %@(S1,mu,x1)
53 dF1dbeta_2 = matlabFunction(dF1dbeta_2); %@(S2,mu,x1,x2)
54

55 dF2dx1 = matlabFunction(dF2dx1); %@(S1,beta_1,mu,x1,x2)
56 dF2dx2 = matlabFunction(dF2dx2); %@(S1,S2,beta_1,beta_2,mu,x1,x2)
57 dF2dbeta_1 = matlabFunction(dF2dbeta_1); %@(S1,mu,x1,x2)
58 dF2dbeta_2 = matlabFunction(dF2dbeta_2); %@(S2,mu,x2)
59

60 dFrdx1 = matlabFunction(dFrdx1); %@(beta_1,beta_2,mu,x1,x2)
61 dFrdx2 = matlabFunction(dFrdx2); %@(beta_1,beta_2,mu,x1,x2)
62 dFrdbeta_1 = matlabFunction(dFrdbeta_1); %@(x1,x2)
63 dFrdbeta_2 = matlabFunction(dFrdbeta_2); %@(x1,x2)
64

65 A1 = zeros(3);
66 A2 = zeros(3);
67

68 A1(1,1) = dF1dx1(S_1,S_2,B1,B2,MU,x_1,x_2);
69 A1(1,2) = dF1dbeta_1(S_1,MU,x_1);
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70 A1(1,3) = dF1dbeta_2(S_2,MU,x_1,x_2);
71

72 A1(2,1) = dF2dx1(S_1,B1,MU,x_1,x_2);
73 A1(2,2) = dF2dbeta_1(S_1,MU,x_1,x_2);
74 A1(2,3) = dF2dbeta_2(S_2,MU,x_2);
75

76 A1(3,1) = dFrdx1(B1,B2,MU,x_1,x_2);
77 A1(3,2) = dFrdbeta_1(x_1,x_2);
78 A1(3,3) = dFrdbeta_2(x_1,x_2);
79

80 A2(1,1) = dF1dx2(S_2,B2,MU,x_1,x_2);
81 A2(1,2) = dF1dbeta_1(S_1,MU,x_1);
82 A2(1,3) = dF1dbeta_2(S_2,MU,x_1,x_2);
83

84 A2(2,1) = dF2dx2(S_1,S_2,B1,B2,MU,x_1,x_2);
85 A2(2,2) = dF2dbeta_1(S_1,MU,x_1,x_2);
86 A2(2,3) = dF2dbeta_2(S_2,MU,x_2);
87

88 A2(3,1) = dFrdx2(B1,B2,MU,x_1,x_2);
89 A2(3,2) = dFrdbeta_1(x_1,x_2);
90 A2(3,3) = dFrdbeta_2(x_1,x_2);
91

92 r1 = min(abs(eigs(A1)));
93 r2 = min(abs(eigs(A2)));
94

95 FF1 = @(x1,x2,beta_1,beta_2,mu,S1,S2) x1*( (a1*f1(x1,S1)/mu +...
96 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu + sigma_2-b2)*beta_2 +...
97 (sigma_r-br)*mu ) - (P11*f1(x1,S1)/mu - M11)*beta_1 -...
98 (P12*f2(x2,S2)/mu - M12)*beta_2 + M1r*mu;
99 FF2 = @(x1,x2,beta_1,beta_2,mu,S1,S2) x2*( (a1*f1(x1,S1)/mu +...

100 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu + sigma_2-b2)*beta_2 +...
101 (sigma_r-br)*mu ) - (P21*f1(x1,S1)/mu - M21)*beta_1 -...
102 (P22*f2(x2,S2)/mu - M22)*beta_2 + M2r*mu;
103

104 FFr = @(x1,x2,beta_1,beta_2,mu) beta_1/g1(x1,x2) +...
105 beta_2/g2(x1,x2) + mu/gr(x1,x2) - 1;
106

107 y1 = FF1(x_1,x_2,B1,B2,MU,S_1,S_2);
108

109 y2 = FF2(x_1,x_2,B1,B2,MU,S_1,S_2);
110

111 y3 = FFr(x_1,x_2,B1,B2,MU);
112

113 y4 = r1;
114 y5 = r2;
115

116 z = [y1;y2;y3;y4;y5];

visualH.m

1 function [H,k_s,ro_s,sigma_s,x1_s,x2_s] = visualH(n,H_in,X1_RANGE,X2_RANGE,visu)
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
5 S1_c S2_c k_s ro_s sigma_s Enz_con
6

7 Substr_con = [1,1];
8

9 count = 0
10

11 if nargin == 1
12

13 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
14 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
15

16 a_x1 = x1_range(1);
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17 b_x1 = x1_range(2);
18 a_x2 = x2_range(1);
19 b_x2 = x2_range(2);
20

21 x1_s = linspace(a_x1,b_x1,n(1));
22 x2_s = linspace(a_x2,b_x2,n(2));
23

24 H = zeros(n(1),n(2));
25

26 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2));
27

28 f = waitbar(0,'please wait..');
29

30 tot = n(1)*n(2)
31

32 t_start = tic;
33

34 for i=1:n(1)
35 for j=1:n(2)
36 if ro_1*x1_s(i)+ro_2*x2_s(j) > 1
37 H(i,j)=0;
38 count=count+1
39 f = waitbar(count/tot,f);
40 else
41 H(i,j) = opt_M([x1_s(i),x2_s(j)]);
42 count = count + 1
43 f = waitbar(count/tot,f);
44 end
45 end
46 end
47

48 time = round(toc(t_start)/60,3)
49

50 close(f);
51 end
52

53 if nargin == 2
54

55 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
56 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
57

58 a_x1 = x1_range(1);
59 b_x1 = x1_range(2);
60 a_x2 = x2_range(1);
61 b_x2 = x2_range(2);
62

63 x1_s = linspace(a_x1,b_x1,n(1));
64 x2_s = linspace(a_x2,b_x2,n(2));
65

66 figure
67 surf(x1_s,x2_s,-H_in)
68 %title('Plot of the H Function in the x1-x2 plane');
69 xlabel('x1');
70 ylabel('x2');
71 height = [0 -min(H_in(:))];
72 axis([x1_s(1) x1_s(end) x2_s(1) x2_s(end) height])
73 az = 0;
74 el = 90;
75 view(az, el);
76 caxis([0 -min(H_in(:))])
77 colorbar
78

79 end
80

81 if nargin == 4
82

83 x1_range = X1_RANGE;
84 x2_range = X2_RANGE;
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85

86 a_x1 = x1_range(1);
87 b_x1 = x1_range(2);
88 a_x2 = x2_range(1);
89 b_x2 = x2_range(2);
90

91 x1_s = linspace(a_x1,b_x1,n(1));
92 x2_s = linspace(a_x2,b_x2,n(2));
93

94 H = zeros(n(1),n(2));
95

96 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2));
97

98 f = waitbar(0,'please wait..');
99

100 tot = n(1)*n(2)
101

102 t_start = tic;
103

104 for i=1:n(1)
105 for j=1:n(2)
106 %t_start2 = tic;
107 H(i,j) = opt_M([x1_s(i),x2_s(j)]);
108 count = count + 1
109 f = waitbar(count/tot,f);
110 %time_iteration = round(toc(t_start2)/60,3)
111 end
112 end
113

114 time = round(toc(t_start)/60,3)
115

116 close(f);
117 end
118

119 if nargin == 5
120

121 x1_range = X1_RANGE;
122 x2_range = X2_RANGE;
123

124 a_x1 = x1_range(1);
125 b_x1 = x1_range(2);
126 a_x2 = x2_range(1);
127 b_x2 = x2_range(2);
128

129 x1_s = linspace(a_x1,b_x1,n(1));
130 x2_s = linspace(a_x2,b_x2,n(2));
131

132 figure
133 surf(x1_s,x2_s,-H_in)
134 height = [0 -min(H_in(:))];
135 axis([x1_s(1) x1_s(end) x2_s(1) x2_s(end) height])
136 az = 0;
137 el = 90;
138 view(az, el);
139 caxis([0 -min(H_in(:))])
140 colorbar
141

142 end
143

144 end

Simple_Example_System.m

1 function [dx]=Simple_Example_System(t,x,alpha_s)
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...



76 Appendix A. MATLAB codes

4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
5 S1_c S2_c k_s ro_s sigma_s Enz_con
6

7 alpha_1 = alpha_s(1);
8 alpha_2 = alpha_s(2);
9 alpha_r = alpha_s(3);

10

11 S1 = S1_c;
12 S2 = S2_c;
13

14 f1 = kcat*((S1-k1_f*x(1))/(1+S1+x(1)));
15 f2 = kcat*((S2-k2_f*x(2))/(1+S2+x(2)));
16

17 g1 = k1_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
18 g2 = k2_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
19 gr = kr_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
20

21 V1 = x(3)*f1;
22 V2 = x(4)*f2;
23

24 W1 = x(5)*alpha_1*g1;
25 W2 = x(5)*alpha_2*g2;
26 Wr = x(5)*alpha_r*gr;
27

28 MU = ro_1*(P11*V1+P12*V2)+ ...
29 ro_2*(P21*V1+P22*V2) + ...
30 (sigma_1-(ro_1*M11+ro_2*M21))*W1 + ...
31 (sigma_2-(ro_1*M12+ro_2*M22))*W2 + ...
32 (sigma_r-(ro_1*M1r+ro_2*M2r))*Wr;
33

34 dx1 = V1 - M11*W1 - M12*W2 - M1r*Wr - MU*x(1);
35 dx2 = V2 - M21*W1 - M22*W2 - M2r*Wr - MU*x(2);
36 de1 = W1 - MU*x(3);
37 de2 = W2 - MU*x(4);
38 dr = Wr - MU*x(5);
39

40 %[ro_s sigma_s] * x;
41

42 dx=[dx1;dx2;de1;de2;dr];

Run_System.m

1 function [q] = Run_System(alpha_s,xinit);
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
5 S1_c S2_c k_s ro_s sigma_s Enz_con
6

7 Substr_con = [1 1];
8

9 if nargin == 0
10 alpha1 = rand;
11 alpha2 = rand;
12 alpha3 = rand;
13

14 alpha_1 = alpha1/(alpha1+alpha2+alpha3);
15 alpha_2 = alpha2/(alpha1+alpha2+alpha3);
16 alpha_r = alpha3/(alpha1+alpha2+alpha3);
17

18 alpha_s = [alpha_1,alpha_2,alpha_r];
19

20 xinit = [0.1;0.1;0.1;0.1;0.1]; % Initial condition
21

22 else
23 alpha_1 = alpha_s(1);
24 alpha_2 = alpha_s(2);
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25 alpha_r = alpha_s(3);
26 end
27

28 S1 = Substr_con(1);
29 S2 = Substr_con(2);
30

31 t=[0 2000]; % Time window
32

33 % somma = [ro_s sigma_s] * xinit;
34 % xinit = xinit/somma;
35 %x = xinit; % Initial condition
36 [t,y]=ode45(@(t,x) Simple_Example_System...
37 (t,x,alpha_s),t,xinit); % Integrate in time
38

39 s = size(y);
40 q = y(s(1),:);
41 x = q; % steady state found
42

43 subplot(3,2,1);
44

45 plot(t,y(:,1))
46 title('evolution of metabolite x1');
47 xlabel('Time t');
48 ylabel('x1 concentration');
49 legend('x1')
50

51 hold on
52

53 subplot(3,2,2);
54

55 plot(t,y(:,2))
56 title('evolution of metabolite x2');
57 xlabel('Time t');
58 ylabel('x2 concentration');
59 legend('x2')
60

61 hold on
62

63 subplot(3,2,3);
64

65 plot(t,y(:,3))
66 title('evolution of enzyme e1');
67 xlabel('Time t');
68 ylabel('e1 concentration');
69 legend('e1')
70

71 hold on
72

73 subplot(3,2,4);
74

75 plot(t,y(:,4))
76 title('evolution of enzyme e2');
77 xlabel('Time t');
78 ylabel('e2 concentration');
79 legend('e2')
80

81 hold on
82

83 subplot(3,2,5);
84

85 plot(t,y(:,5))
86 title('evolution of the ribosome r');
87 xlabel('Time t');
88 ylabel('ribosome concentration');
89 legend('r')
90

91 hold on
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Simple_Example_System_morac.m

1 function [dx]=Simple_Example_System_morac(t,x)
2

3 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
4 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
5 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T...
6 sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c ro_s sigma_s Enz_con
7

8 Substr_con = [1 1];
9

10 %load the optima, found with the continuation
11

12 load('optima.mat');
13 optima = zopts;
14

15 %S1 = S1_c;
16 %S1 = 1;
17 %S1 = 2;
18 S1 = 0.5;
19 S2 = S2_c;
20

21 f1 = kcat*((S1-k1_f*x(1))/(1+S1+x(1)));
22 f2 = kcat*((S2-k2_f*x(2))/(1+S2+x(2)));
23

24 g1 = k1_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
25 g2 = k2_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
26 gr = kr_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
27

28 V1 = x(3)*f1;
29 V2 = x(4)*f2;
30

31 sensor=1;
32 betas = find_optimal_beta(x,sensor,optima);
33 beta_1 = betas(1);
34 beta_2 = betas(2);
35 beta_r = betas(3);
36

37 W1 = x(5)*beta_1;
38 W2 = x(5)*beta_2;
39 Wr = x(5)*beta_r;
40

41 MU = ro_1*(P11*V1+P12*V2)+ ...
42 ro_2*(P21*V1+P22*V2) + ...
43 (sigma_1-(ro_1*M11+ro_2*M21))*W1 + ...
44 (sigma_2-(ro_1*M12+ro_2*M22))*W2 + ...
45 (sigma_r-(ro_1*M1r+ro_2*M2r))*Wr;
46

47

48 dx1 = V1 - M11*W1 - M12*W2 - M1r*Wr - MU*x(1);
49 dx2 = V2 - M21*W1 - M22*W2 - M2r*Wr - MU*x(2);
50 de1 = W1 - MU*x(3);
51 de2 = W2 - MU*x(4);
52 dr = Wr - MU*x(5);
53 dMu = 100*(MU-x(6));
54

55 [t [ro_s sigma_s] * x(1:5)];
56

57 dx=[dx1;dx2;de1;de2;dr;dMu];
58

59 %%%%%%%%%%
60 %%%%%%%%%
61

62 function beta = find_optimal_beta(x,sensor,optima);
63

64 xs = x(sensor);
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65 xopt = optima(sensor,:);
66 betas = optima(3:5,:);
67 for i=1:3
68 betas(i,:);
69 beta(i) = interp1(xopt,betas(i,:),xs);
70 end
71 if xs < min(xopt(sensor,:))
72 beta = betas(:,1); % just one extreme choice of betas
73 elseif xs > max(xopt(sensor,:))
74 beta = betas(:,end); % the other extreme choice of betas
75 end
76 beta = beta(:);

Run_System_morac.m

1 function [q,t,y] = Run_System_morac(xinit);
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
5 S1_c S2_c k_s ro_s sigma_s Enz_con
6

7 Substr_con = [1 1];
8

9 S1 = Substr_con(1);
10 S2 = Substr_con(2);
11

12 %t=[0 2000];% Time window
13 %t=[2000 4000];
14 t=[4000 6000];
15

16 somma = dot([ro_s sigma_s],xinit);
17 xinit = xinit/somma;
18 ini = [xinit 1]; % Initial condition
19 [t,y]=ode45(@(t,x) Simple_Example_System_morac(t,x),t,ini); % Integrate in time
20

21 s = size(y);
22 q = y(s(1),:);
23 x = q; % steady state found
24

25 subplot(3,2,1);
26

27 plot(t,y(:,1))
28 title('evolution of metabolite x1');
29 xlabel('Time t');
30 ylabel('x1 concentration');
31 legend('x1')
32

33 hold on
34

35 subplot(3,2,2);
36

37 plot(t,y(:,2))
38 title('evolution of metabolite x2');
39 xlabel('Time t');
40 ylabel('x2 concentration');
41 legend('x2')
42

43 hold on
44

45 subplot(3,2,3);
46

47 plot(t,y(:,3))
48 title('evolution of enzyme e1');
49 xlabel('Time t');
50 ylabel('e1 concentration');
51 legend('e1')
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52

53 hold on
54

55 subplot(3,2,4);
56

57 plot(t,y(:,4))
58 title('evolution of enzyme e2');
59 xlabel('Time t');
60 ylabel('e2 concentration');
61 legend('e2')
62

63 hold on
64

65 subplot(3,2,5);
66

67 plot(t,y(:,5))
68 title('evolution of the ribosome r');
69 xlabel('Time t');
70 ylabel('ribosome concentration');
71 legend('r')
72

73 hold on

run_set.m

1 function [x1,x2,mu] = run_set(N);
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
5 S1_c S2_c k_s ro_s sigma_s Enz_con
6

7 alpha1 = linspace(0,1,N);
8 alpha2 = linspace(0,1,N);
9

10 IC = [0.3;0.3;0.3;0.3;0.3;0.3];
11 som = [ro_s sigma_s] * IC(1:5);
12 IC = IC/som;
13 [ro_s sigma_s] * IC(1:5);
14

15 options = odeset('AbsTol',1e-8,'RelTol',1e-8);
16

17 x1 = zeros(N);
18 x2 = zeros(N);
19 mu = zeros(N);
20

21 for i=1:N
22 i
23 for j =1:N
24 j
25 al1 = alpha1(i);
26 al2 = alpha2(j);
27 alr = 1-al1 - al2;
28 if alr > 0
29 rhs = @(t,y) Simple_Example_System_dummy(t,y,[al1 al2 alr]);
30 [t,y] = ode45(rhs,[0,1000],IC,options);
31

32 x1(i,j) = y(end,1);
33 x2(i,j) = y(end,2);
34

35 e1(i,j) = y(end,3);
36 e2(i,j) = y(end,4);
37 r(i,j) = y(end,5);
38 mu(i,j) = y(end,6);
39

40 end
41 end
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42 end
43

44 v = find(x1==0);
45 x1(v) = nan;
46 x2(v) = nan;
47 mu(v) = nan;
48

49 figure
50 surf(x1,x2,mu);
51 title('Plot of the H Function Obtained by Running the System');
52 xlabel('alpha1');
53 ylabel('alpha2');
54 view(0,90);

ContG_S1.m

1 function [r] = contG_S1(x);
2 %right-hand side for the continuation
3

4 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
5 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r...
6 S1_c S2_c k_s ro_s sigma_s Enz_con
7

8 %S2 = 1;
9 S_2 = 1;

10

11 x_1 = x(1);
12 x_2 = x(2);
13 B1 = x(3);
14 B2 = x(4);
15 MU = x(5);
16 S_1 = x(6);
17

18 syms x1 x2 S1 S2 mu beta_1 beta_2
19

20 f1 = @(x1,S1) kcat*((S1-k1_f*x1)/(1+S1+x1));
21 f2 = @(x2,S2) kcat*((S2-k2_f*x2)/(1+S2+x2));
22

23 g1 = @(x1,x2) k1_g*x1*x2/(1+x1+x2+x1*x2);
24 g2 = @(x1,x2) k2_g*x1*x2/(1+x1+x2+x1*x2);
25 gr = @(x1,x2) kr_g*x1*x2/(1+x1+x2+x1*x2);
26

27 F1 = @(beta_1,beta_2,mu) x1*( (a1*f1(x1,S1)/mu + sigma_1-b1)*beta_1 +...
28 (a2*f2(x2,S2)/mu + sigma_2-b2)*beta_2 + (sigma_r-br)*mu ) -...
29 (P11*f1(x1,S1)/mu - M11)*beta_1 - (P12*f2(x2,S2)/mu - M12)*beta_2 + M1r*mu;
30 F2 = @(beta_1,beta_2,mu) x2*( (a1*f1(x1,S1)/mu + sigma_1-b1)*beta_1 +...
31 (a2*f2(x2,S2)/mu + sigma_2-b2)*beta_2 + (sigma_r-br)*mu ) -...
32 (P21*f1(x1,S1)/mu - M21)*beta_1 - (P22*f2(x2,S2)/mu - M22)*beta_2 + M2r*mu;
33

34 Fr = @(beta_1,beta_2,mu) beta_1/g1(x1,x2) + beta_2/g2(x1,x2) + mu/gr(x1,x2) - 1;
35

36 dF1dx1 = diff(F1,x1);
37 dF1dx2 = diff(F1,x2);
38 dF1dbeta_1 = diff(F1,beta_1);
39 dF1dbeta_2 = diff(F1,beta_2);
40

41 dF2dx1 = diff(F2,x1);
42 dF2dx2 = diff(F2,x2);
43 dF2dbeta_1 = diff(F2,beta_1);
44 dF2dbeta_2 = diff(F2,beta_2);
45

46 dFrdx1 = diff(Fr,x1);
47 dFrdx2 = diff(Fr,x2);
48 dFrdbeta_1 = diff(Fr,beta_1);
49 dFrdbeta_2 = diff(Fr,beta_2);
50
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51 dF1dx1 = matlabFunction(dF1dx1); %@(S1,S2,beta_1,beta_2,mu,x1,x2)
52 dF1dx2 = matlabFunction(dF1dx2); %@(S2,beta_2,mu,x1,x2)
53 dF1dbeta_1 = matlabFunction(dF1dbeta_1); %@(S1,mu,x1)
54 dF1dbeta_2 = matlabFunction(dF1dbeta_2); %@(S2,mu,x1,x2)
55

56 dF2dx1 = matlabFunction(dF2dx1); %@(S1,beta_1,mu,x1,x2)
57 dF2dx2 = matlabFunction(dF2dx2); %@(S1,S2,beta_1,beta_2,mu,x1,x2)
58 dF2dbeta_1 = matlabFunction(dF2dbeta_1); %@(S1,mu,x1,x2)
59 dF2dbeta_2 = matlabFunction(dF2dbeta_2); %@(S2,mu,x2)
60

61 dFrdx1 = matlabFunction(dFrdx1); %@(beta_1,beta_2,mu,x1,x2)
62 dFrdx2 = matlabFunction(dFrdx2); %@(beta_1,beta_2,mu,x1,x2)
63 dFrdbeta_1 = matlabFunction(dFrdbeta_1); %@(x1,x2)
64 dFrdbeta_2 = matlabFunction(dFrdbeta_2); %@(x1,x2)
65

66 A1 = zeros(3);
67 A2 = zeros(3);
68

69 A1(1,1) = dF1dx1(S_1,S_2,B1,B2,MU,x_1,x_2);
70 A1(1,2) = dF1dbeta_1(S_1,MU,x_1);
71 A1(1,3) = dF1dbeta_2(S_2,MU,x_1,x_2);
72

73 A1(2,1) = dF2dx1(S_1,B1,MU,x_1,x_2);
74 A1(2,2) = dF2dbeta_1(S_1,MU,x_1,x_2);
75 A1(2,3) = dF2dbeta_2(S_2,MU,x_2);
76

77 A1(3,1) = dFrdx1(B1,B2,MU,x_1,x_2);
78 A1(3,2) = dFrdbeta_1(x_1,x_2);
79 A1(3,3) = dFrdbeta_2(x_1,x_2);
80

81 A2(1,1) = dF1dx2(S_2,B2,MU,x_1,x_2);
82 A2(1,2) = dF1dbeta_1(S_1,MU,x_1);
83 A2(1,3) = dF1dbeta_2(S_2,MU,x_1,x_2);
84

85 A2(2,1) = dF2dx2(S_1,S_2,B1,B2,MU,x_1,x_2);
86 A2(2,2) = dF2dbeta_1(S_1,MU,x_1,x_2);
87 A2(2,3) = dF2dbeta_2(S_2,MU,x_2);
88

89 A2(3,1) = dFrdx2(B1,B2,MU,x_1,x_2);
90 A2(3,2) = dFrdbeta_1(x_1,x_2);
91 A2(3,3) = dFrdbeta_2(x_1,x_2);
92

93 r1 = min(abs(eigs(A1)));
94 r2 = min(abs(eigs(A2)));
95

96 FF1 = @(x1,x2,beta_1,beta_2,mu,S1,S2) x1*( (a1*f1(x1,S1)/mu +...
97 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu + sigma_2-b2)*beta_2 +...
98 (sigma_r-br)*mu ) - (P11*f1(x1,S1)/mu - M11)*beta_1 -...
99 (P12*f2(x2,S2)/mu - M12)*beta_2 + M1r*mu;

100 FF2 = @(x1,x2,beta_1,beta_2,mu,S1,S2) x2*( (a1*f1(x1,S1)/mu +...
101 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu + sigma_2-b2)*beta_2 +...
102 (sigma_r-br)*mu ) - (P21*f1(x1,S1)/mu - M21)*beta_1 -...
103 (P22*f2(x2,S2)/mu - M22)*beta_2 + M2r*mu;
104

105 FFr = @(x1,x2,beta_1,beta_2,mu) beta_1/g1(x1,x2) +...
106 beta_2/g2(x1,x2) + mu/gr(x1,x2) - 1;
107

108 y1 = FF1(x_1,x_2,B1,B2,MU,S_1,S_2);
109

110 y2 = FF2(x_1,x_2,B1,B2,MU,S_1,S_2);
111

112 y3 = FFr(x_1,x_2,B1,B2,MU);
113

114 y4 = r1;
115 y5 = r2;
116

117 r = [y1;y2;y3;y4;y5];
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input_output.m

1 function zopts = input_output(z);
2

3 z = z(:);
4 fun = @contG_S1
5 fun(z)
6 Fun = @(t,y) fun(y)
7 dfun = @(z) numjac(Fun, 0, z, Fun(0,z), 1e-9)
8 dfun(z)
9 zopt1 = cont(fun, dfun, z, 20, 0.001, eps, 1, 1e-7) % one way

10 zopt2 = cont(fun, dfun, z, 20, -0.001, eps, 1, 1e-7) % the other way
11

12 y = [zopt1 zopt2]
13 [ys,v] = sort(y(1,:)) %sort the vector, we need the indices not ys
14 zopts = y(:,v);

ran.m

1 function [r]=ran(a);
2 %genrates random number between -a and a
3

4 r = -a + 2*a*rand;

cont.m

1 function curve=cont(f,df,x0,nsteps,step0,stepmin,stepmax,tol,silent)
2 %CONT finds the solution curve to a system of equations
3 %
4 % X=CONT(F,DF,X0,NSTEPS,STEP0,STEPMIN,STEPMAX,TOL,SILENT)
5 % X=CONT(F,DF,X0,NSTEPS,STEP0)
6 % computes the solution curve X
7 % for N-1 equations F=0 in N variables,
8 % starting from an initial solution X0,
9 % using pseudo-arclength continuation.

10 %
11 % Here X0 should be a column vector of length N and
12 % the function F should send a vector of length N
13 % to a column vector of length N-1,
14 % i.e. F : R^N -> R^(N-1).
15 % DF should be the (N-1) x N derivative matrix of F.
16 % All vectors are assumed to be column vectors.
17 %
18 % The output X is a matrix with per column a solution of F=0.
19 %
20 % F should be a function_handle. It can be either a handle to
21 % an anonymous or to a function file (but not an inline function).
22 % If DF=[] then the derivative will be computed numerically.
23 %
24 % In total a maximum of NSTEPS steps are taken,
25 % starting with stepsize STEP0 and terminating
26 % if the stepsize becomes smaller than STEPMIN.
27 % The maximum stepsize is STEPMAX.
28 % The initial guess X0 should be no further than STEPMAX from a real zero.
29 % The sign of STEP0 determines the direction of the first step
30 %
31 % Default values for STEPMIN and STEPMAX are 10^-8 and 1.
32 % Stepsize are measured in terms of L^2 norms, so for large problems
33 % the user may want to scale the max/min step size appropriately.
34 %
35 % TOL determines the tolerance in determining zeros (default 10^-14).
36 % By default a plot is produced of the first two
37 % components of the solution curve,
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38 % except if the dimension equals 3, when a curve in 3D is plotted.
39 %
40 % If SILENT=1 then no plot is produced and no warning messages are displayed.
41 %
42

43 % default values
44 if ~exist('stepmax') || isempty(stepmax)
45 stepmax=1;
46 end
47 if ~exist('stepmin') || isempty(stepmin)
48 stepmin=1e-8;
49 end
50 if ~exist('tol') || isempty(tol)
51 tol=1e-14;
52 end
53 if ~exist('silent')
54 silent=0;
55 end
56

57 if isempty(df)
58 % numerical derivative
59 df=@(x) numjac(@(t,y) f(y),0,x,f(x),eps);
60 end
61

62 % initialization
63 dim=length(x0);
64 y0=reshape(x0,dim,1);
65 curve=[];
66 niter=100;
67 step=sign(step0)*max(min(abs(step0),stepmax),stepmin);
68 k=0
69 %relative amount predictor is allowed to be off
70 correctiemax=1/10;
71

72 % compute first point
73 gr=df(y0);
74 nullgr=null(gr)';
75

76 [ynew,dummy,iters]=multinewton(@(x) [f(x);nullgr*(x-y0)],...
77 @(x) [df(x);nullgr],y0,tol,niter,1);
78

79 % check first point
80 if iters > niter || norm(ynew-y0)>stepmax
81 if silent~=1
82 fprintf(['could not find a zero near the given starting point.\n'])
83 end
84 return
85 end
86

87 % start loop
88 while k<=nsteps & abs(step)>=stepmin
89 %update
90 y=ynew;
91 k=k+1
92 curve=[curve,y];
93 gr=df(y);
94 nullgrold=nullgr;
95 nullgr=null(gr)';
96

97 % check that the gradient did not flip
98 if nullgrold*nullgr'<0
99 nullgr=-nullgr;

100 end
101 result=0;
102

103 % iterate until successful
104 while abs(step)>=stepmin & result~=1
105 % predictor
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106 z=y+step*nullgr';
107 % corrector
108 [ynew,dummy,iters]=multinewton(@(x) [f(x);nullgr*(x-z)],...
109 @(x) [df(x);nullgr],z,tol,niter,1);
110 % check newtonoutput is OK
111 if norm(z-ynew)<correctiemax*abs(step) & iters<niter
112 result=1;
113 % iteration succesfull: adapt stepsize
114 % increase stepsize if iters<5
115 % decrease stepsize if iters>5
116 step=sign(step)*max(stepmin,min(stepmax,abs(step)*2^((4-iters)/3)));
117 else
118 % corrector too large (or nonconvergence):
119 % decrease stepsize and try again
120 step=step*2^(-1/3);
121 end
122 end
123 end
124

125 % check untimely end
126 if k<nsteps & silent~=1
127 fprintf(['Continuation terminated after %i steps ', ...
128 'due to lack of convergence.\n'],k-1);
129 end
130

131 % plot
132 if silent~=1 & k>1
133 if dim==3
134 plot3(curve(1,:)',curve(2,:)',curve(3,:)','.-')
135 else
136 plot(curve(1,:)',curve(2,:)','.-')
137 end
138 end
139

140 return

multinewton.m

1 function [zero,res,niter]=multinewton(f,df,x0,tol,nmax,silent,varargin)
2 % MULTINEWTON Find function zeros using Newtons method in more dimensions.
3 %
4 % ZERO=MULTINEWTON(FUN,DFUN,X0,TOL,NMAX,SILENT)
5 % tries to find the zero ZERO of the continuous and
6 % differentiable function FUN nearest to X0 using Newtons method.
7 % FUN is a function from R^n to R^n (a vector valued function)
8 % Its derivative is DFUN, which a function from
9 % R^n to R^(n^2), i.e., a matrix valued function.

10 % Both accept a column vector input (and FUN also returns a column vector).
11 % FUN and DFUN can also be inline objects or anonymous functions.
12 %
13 % If the search fails an error message is displayed.
14 % If SILENT=1 then no error messages are displayed (SILENT=0 by default).
15 %
16 % The tolerance TOL and the maximum number NMAX of iterations
17 % have default values 1e-14 and 100.
18 % Convergence test is: norm(x(n)-x(n-1)) < TOL.
19 %
20 % [ZERO,RES,NITER]= MULTINEWTON(FUN,...)
21 % returns the value of the residual RES (as a vector)
22 % in ZERO and the number of itererations NITER.
23

24 % initialization
25 if ~exist('nmax')
26 nmax=100;
27 end
28 if ~exist('tol')
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29 tol=1e-14;
30 end
31 if ~exist('silent')
32 silent=0;
33 end
34

35 x = x0;
36 niter = 0;
37 diff = tol+1;
38 while norm(diff) >= tol & niter <= nmax
39 fx = feval(f,x,varargin{:});
40 dfx = feval(df,x,varargin{:});
41 niter = niter + 1;
42 diff = - dfx\fx;
43 x = x + diff;
44 end
45 if niter > nmax & silent==0
46 fprintf(['newton stopped without converging to the desired tolerance\n',...
47 'because the maximum number of iterations was reached\n']);
48 end
49 zero = x;
50 res = feval(f,x,varargin{:});
51

52 return

cal_fixed_alphas.m

1 function [x1,x2,mu,al1,al2,e1,e2,r] = cal_fixed_alphas(alpha1,alpha2);
2

3 global a1 a2 b1 b2 br M11 M12 M1r M21 M22 M2r P11 P12 P21 P22 ro_1 ro_2 ...
4 kcat k1_f k2_f k1_g k2_g kr_g sigma_1 sigma_2 sigma_r S1_c S2_c k_s ro_s sigma_s Enz_con
5

6 IC = [0.3;0.3;0.3;0.3;0.3;0.3];
7 som = [ro_s sigma_s] * IC(1:5);
8 IC = IC/som;
9 [ro_s sigma_s] * IC(1:5);

10

11 options = odeset('AbsTol',1e-9,'RelTol',1e-9);
12

13 alpha_r = 1 - alpha1 - alpha2;
14

15 if alpha_r < 0
16 x1=0;
17 x2=0;
18 mu=0;
19 e1=0;
20 e2=0;
21 r=0;
22 else
23 rhs = @(t,y) Simple_Example_System_dummy(t,y,[alpha1 alpha2 alpha_r]);
24 [~,y] = ode15s(rhs,[0,1000],IC,options);
25

26 x1 = y(end,1);
27 x2 = y(end,2);
28 e1 = y(end,3);
29 e2 = y(end,4);
30 r = y(end,5);
31 mu = -y(end,6);
32 end
33

34 al1 = alpha1;
35 al2 = alpha2;
36

37 end
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DummyFunction1.m

1 function out3 = DummyFunction1(alpha1,alpha2)
2 [~,~,out3,~,~,~,~,~] = cal_fixed_alphas(alpha1,alpha2);
3 end

run_script.m

1

2 global k1_g k2_g
3

4 DummyFunction2 = @(X) DummyFunction1(X(1),X(2));
5

6 options = optimset('Display','iter','PlotFcns',@optimplotfval,'TolFun',0.000001,'maxiter',200);
7

8 y = [0.3,0.3];
9

10 %[x,fval,exitflag_fmin,output] = fminsearch(DummyFunction2,y,options)
11

12 tic
13 N = 200;
14

15 sub1 = linspace(0.1,5,N);
16

17 zopts = zeros(11,N);
18

19 for i = 1:N
20

21 k1_f = sub1(i);
22

23 [x,fval,exitflag_fmin,output] = fminsearch(DummyFunction2,y,options)
24

25 [x1,x2,mu,al1,al2,e1,e2,r,] = cal_fixed_alphas(x(1),x(2))
26

27 zopts(1,i)= x1;
28 zopts(2,i)= x2;
29 zopts(3,i)= e1;
30 zopts(4,i)= e2;
31 zopts(5,i)= r;
32

33 zopts(6,i)= al1;
34 zopts(7,i)= al2;
35 zopts(8,i)= al1*k1_g*x1*x2/(1+x1+x2+x1*x2);
36 zopts(9,i)= al2*k2_g*x1*x2/(1+x1+x2+x1*x2);
37 zopts(10,i)= -mu;
38

39 zopts(11,i)= sub1(i);
40

41 end
42

43 time = toc

A.0.2 Enzymatic Toxin Transport Codes

Constants_set.m

1 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
2 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
3 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T...
4 sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c ro_s k_s sigma_s Enz_con
5

6 rndmz = 'N';
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7

8 e = 0.05;
9

10 Substr_con = [1 1];
11

12 Network = [1,0,0;
13 0,1,0;
14 0,1,-1];
15

16 Enz_con = [3,4,2,2;
17 2,4,3,2;
18 0,0,0,0];
19

20 if rndmz == 'Y'
21

22 %disp('Vector of randomization:')
23

24 rad = [ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ...
25 ran(e) , ran(e) , ran(e) , ran(e), ran(e) , ran(e) , ran(e) , ran(e)]; %15 values
26

27 %disp('Original constants:')
28

29 k_s = [0.25,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]; % 9 values
30

31 ro_s = [1,1,1];
32

33 sigma_s = 10*[1,1,1,1];
34

35 %disp('Perturbed values:')
36

37 k_s = [0.25,0.5+rad(1)/2,0.5+rad(2)/2,0.5+rad(3)/2,0.5+rad(4)/2,...
38 0.5+rad(5)/2,0.5+rad(6),0.5+rad(7),0.5+rad(8)];
39

40 ro_s = [1+rad(9),1+rad(10),1+rad(11)];
41

42 sigma_s = 10*[1+rad(12),1+rad(13),1+rad(14),1+rad(15)];
43

44 else
45 if rndmz == 'N'
46

47 %disp('Using fixed constants')
48

49 k_s = [0.2500 0.4881 0.5023 0.4863 0.4998...
50 0.4977 0.5234 0.5089 0.5090];
51

52 ro_s = [0.9711 1.0404 1.0225];
53

54 sigma_s = [0.9992 1.0311 0.9748 1.0167];
55

56 else
57 if rndmz == 'S'
58

59 disp('Using original (symmetric) constants:')
60

61 k_s = [0.25,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5]; % 9 values
62

63 ro_s = [1,1,1];
64

65 sigma_s = 10*[1,1,1,1];
66 end
67 end
68 end
69

70 %%%%%%%%%%%%%%%%% CONSTANTS %%%%%%%%%%%%%%%%%
71

72 M11 = Enz_con(1,1);
73 M12 = Enz_con(1,2);
74 M13 = Enz_con(1,3);
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75 M1r = Enz_con(1,4);
76 M21 = Enz_con(2,1);
77 M22 = Enz_con(2,2);
78 M23 = Enz_con(2,3);
79 M2r = Enz_con(2,4);
80 M31 = Enz_con(3,1);
81 M32 = Enz_con(3,2);
82 M33 = Enz_con(3,3);
83 M3r = Enz_con(3,4);
84

85 P11 = Network(1,1);
86 P12 = Network(1,2);
87 P13 = Network(1,3);
88 P21 = Network(2,1);
89 P22 = Network(2,2);
90 P23 = Network(2,3);
91 P31 = Network(3,1);
92 P32 = Network(3,2);
93 P33 = Network(3,3);
94

95 kcat = k_s(1);
96 k1_f = k_s(2);
97 k2_f = k_s(3);
98 k3_fd= k_s(4);
99 k1_g = k_s(5);

100 k2_g = k_s(6);
101 k3_g = k_s(7);
102 kr_g = k_s(8);
103 k_T = k_s(9);
104

105 ro_1 = ro_s(1);
106 ro_2 = ro_s(2);
107 ro_3 = ro_s(3);
108

109 sigma_1 = sigma_s(1);
110 sigma_2 = sigma_s(2);
111 sigma_3 = sigma_s(3);
112 sigma_r = sigma_s(4);
113

114 S1_c = Substr_con(1);
115 S2_c = Substr_con(2);
116

117 a1 = ro_1*P11 + ro_2*P21 + ro_3*P31;
118 a2 = ro_1*P12 + ro_2*P22 + ro_3*P32;
119 a3 = ro_1*P13 + ro_2*P23 + ro_3*P33;
120

121 b1=ro_1*M11+ro_2*M21;
122 b2=ro_1*M12+ro_2*M22;
123 b3=ro_1*M13+ro_2*M23;
124 br=ro_1*M1r+ro_2*M2r;

optH.m

1 function [mu_opt,exitflag,b_s_opt,Aeq,exit]=optH(Substr_con,x1,x2,T,mu_tilde);
2

3 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
4 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
5 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T sigma_1 sigma_2 sigma_3 sigma_r
6

7 S1 = Substr_con(1);
8 S2 = Substr_con(2);
9

10 f1 = @(x1,S1,T) kcat*(1/(k_T+T))*((S1-k1_f*x1)/(1+S1+x1));
11 f2 = @(x2,S2,T) kcat*((S2-k2_f*x2*T)/(1+S2+x2+T+T*x2));
12 f3 = @(T) k3_fd*(T/(1+T));
13
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14 g1 = @(x1,x2) k1_g*x1*x2/(1+x1+x2+x1*x2);
15 g2 = @(x1,x2) k2_g*x1*x2/(1+x1+x2+x1*x2);
16 g3 = @(x1,x2) k3_g*x1*x2/(1+x1+x2+x1*x2);
17 gr = @(x1,x2) kr_g*x1*x2/(1+x1+x2+x1*x2);
18

19 %F1_mod = @(beta_1,beta_2,mu) x1*( (a1*f1(x1,S1)/mu_tilde +...
20 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu_tilde+sigma_2-b2)*beta_2 +...
21 (sigma_r-br)*mu ) - (P11*f1(x1,S1)/mu_tilde-M11)*beta_1 -...
22 (P12*f2(x2,S2)/mu_tilde-M12)*beta_2 + M1r*mu;
23 %F2_mod = @(beta_1,beta_2,mu) x2*( (a1*f1(x1,S1)/mu_tilde +...
24 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu_tilde+sigma_2-b2)*beta_2 +...
25 (sigma_r-br)*mu ) - (P21*f1(x1,S1)/mu_tilde-M21)*beta_1 -...
26 (P22*f2(x2,S2)/mu_tilde-M22)*beta_2 + M2r*mu;
27

28 %Fr = @(beta_1,beta_2,mu) beta_1/g1(x1,x2) + beta_2/g2(x1,x2) + mu/gr(x1,x2);
29

30 f = [0,0,0,-1];
31 B = -eye(4);
32 b = [0;0;0;0];
33 beq = [0;0;0;1];
34

35 Aeq = zeros(4);
36 %mu_tilde;
37

38 Aeq(1,1) = x1*(a1*f1(x1,S1,T)/mu_tilde + sigma_1-b1) - (P11*f1(x1,S1,T)/mu_tilde-M11);
39 Aeq(1,2) = x1*(a2*f2(x2,S2,T)/mu_tilde+sigma_2-b2) - (P12*f2(x2,S2,T)/mu_tilde-M12);
40 Aeq(1,3) = x1*(a3*f3(T)/mu_tilde+sigma_3-b3) - (P13*f3(T)/mu_tilde-M13);
41 Aeq(1,4) = x1*(sigma_r-br)+ M1r;
42

43 Aeq(2,1) = x2*(a1*f1(x1,S1,T)/mu_tilde + sigma_1-b1) - (P21*f1(x1,S1,T)/mu_tilde-M21);
44 Aeq(2,2) = x2*(a2*f2(x2,S2,T)/mu_tilde+sigma_2-b2) - (P22*f2(x2,S2,T)/mu_tilde-M22);
45 Aeq(2,3) = x2*(a3*f3(T)/mu_tilde+sigma_3-b3) - (P23*f3(T)/mu_tilde-M23);
46 Aeq(2,4) = x2*(sigma_r-br) + M2r;
47

48 Aeq(3,1) = T*(a1*f1(x1,S1,T)/mu_tilde + sigma_1-b1) - (P31*f1(x1,S1,T)/mu_tilde-M31);
49 Aeq(3,2) = T*(a2*f2(x2,S2,T)/mu_tilde+sigma_2-b2) - (P32*f2(x2,S2,T)/mu_tilde-M32);
50 Aeq(3,3) = T*(a3*f3(T)/mu_tilde+sigma_3-b3) - (P33*f3(T)/mu_tilde-M33);
51 Aeq(3,4) = T*(sigma_r-br) + M3r;
52

53 Aeq(4,1)=1/g1(x1,x2);
54 Aeq(4,2)=1/g2(x1,x2);
55 Aeq(4,3)=1/g3(x1,x2);
56 Aeq(4,4)=1/gr(x1,x2);
57

58 options = optimset('Display','none','maxiter',200);
59

60 LB = [];
61 UB = [];
62

63 [b_s_opt,fval,exitflag,output] = linprog(f,B,b,Aeq,beq,LB,UB,[],options);
64

65 if exitflag == 1 || exitflag == 0
66 mu_opt=b_s_opt(4);
67 exit = 1;
68 else
69 mu_opt=0;
70 b_s_opt = [0;0;0;0];
71 exit = 0;
72 end
73

74 [mu_opt mu_tilde];

fixed_pt.m

1 function [s]=fixed_pt(Substr_con,x1,x2,T);
2
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3 fixedpt = @(mu_tilde) optH(Substr_con,x1,x2,T,mu_tilde) - mu_tilde;
4 options = optimset('TolX',1e-7,'TolFun',1e-7,'maxiter',200);
5 s = -fzero(fixedpt,0.0000001,options);

Maximizer.m

1 function [B_S_OPT,X_OPT,exitflag_fmin,exitflag_optH] = ...
2 Maximizer(Substr_con,x1_range,x2_range,T_range,max_iter,precision,n)
3

4 n=5;
5

6 count = 0;
7

8 a_x1 = x1_range(1);
9 b_x1 = x1_range(2);

10 a_x2 = x2_range(1);
11 b_x2 = x2_range(2);
12 a_T = T_range(1);
13 b_T = T_range(2);
14

15 x1_s = linspace(a_x1,b_x1,n);
16 x2_s = linspace(a_x2,b_x2,n);
17 T_s = linspace(a_T,b_T,n);
18

19 H = zeros(n,n,n);
20

21 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2),X(3));
22

23 f = waitbar(0,'please wait..');
24

25 for i=1:n
26 for j=1:n
27 for k=1:n
28 x1 = x1_s(i);
29 x2 = x2_s(j);
30 T = T_s(k);
31 y = [x1,x2,T];
32 H(i,j,k) = opt_M(y);
33 count = count + 1;
34 f = waitbar(count/125,f);
35 end
36 end
37 end
38

39 close(f)
40

41 count = 0;
42

43 [M,I] = min(H(:));
44 [I_row, I_col, I_page] = ind2sub(size(H),I);
45

46 disp('Point found from the grid:')
47

48 y = [x1_s(I_row),x2_s(I_col),T_s(I_page)]
49

50 disp('Coordinates of the point:')
51

52 coor = [I_row, I_col, I_page]
53

54 disp('With minimum:')
55

56 optm = opt_M(y)
57

58 disp('And precision:')
59

60 pres = max([abs(a_x1-b_x1),abs(a_x2-b_x2),abs(a_T-b_T)])/4
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61

62 while pres > precision
63

64 if I_row == 1
65 a_x1 = x1_s(I_row);
66 b_x1 = x1_s(I_row+1);
67 else
68 if I_row == n
69 a_x1 = x1_s(I_row-1);
70 b_x1 = x1_s(I_row);
71 else
72 a_x1 = x1_s(I_row-1);
73 b_x1 = x1_s(I_row+1);
74 end
75 end
76

77

78 if I_col == 1
79 a_x2 = x2_s(I_col);
80 b_x2 = x2_s(I_col+1);
81 else
82 if I_col == n
83 a_x2 = x2_s(I_col-1);
84 b_x2 = x2_s(I_col);
85 else
86 a_x2 = x2_s(I_col-1);
87 b_x2 = x2_s(I_col+1);
88 end
89 end
90

91

92 if I_page == 1
93 a_T = T_s(I_page);
94 b_T = T_s(I_page+1);
95 else
96 if I_page == n
97 a_T = T_s(I_page-1);
98 b_T = T_s(I_page);
99 else

100 a_T = T_s(I_page-1);
101 b_T = T_s(I_page+1);
102 end
103 end
104

105 x1_s = linspace(a_x1,b_x1,n);
106 x2_s = linspace(a_x2,b_x2,n);
107 T_s = linspace(a_T,b_T,n);
108

109 H = zeros(n,n);
110

111 f = waitbar(0,'please wait..');
112

113 for i=1:n
114 for j=1:n
115 for k=1:n
116 x1 = x1_s(i);
117 x2 = x2_s(j);
118 T = T_s(k);
119 y = [x1,x2,T];
120 H(i,j,k) = opt_M(y);
121 count = count + 1;
122 f = waitbar(count/125,f);
123 end
124 end
125 end
126

127 close(f)
128
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129 [M,I] = min(H(:));
130 [I_row, I_col, I_page] = ind2sub(size(H),I);
131 count = 0;
132

133 disp('Point found from the grid')
134

135 y = [x1_s(I_row),x2_s(I_col),T_s(I_page)]
136

137 disp('With minimum:')
138

139 optm = opt_M(y)
140

141 disp('And precision:')
142

143 pres = max([abs(a_x1-b_x1),abs(a_x2-b_x2),abs(a_T-b_T)])/4
144

145 end
146

147 disp('fminsearch starts')
148

149 options = optimset('Display','iter','PlotFcns',...
150 @optimplotfval,'TolFun',0.001,'maxiter',max_iter);
151

152 [x,fval,exitflag_fmin,output] = fminsearch(opt_M,y,options)
153

154 [mu_opt,exitflag_optH,b_s_opt]=optH(Substr_con,x(1),x(2),x(3),-fval);
155

156 B_S_OPT = b_s_opt;
157 X_OPT = x;
158 MU_OPT = mu_opt;
159

160 end

SOL.m

1 function [x0,k_s,ro_s,sigma_s,z] = SOL(max_iter,precision,method,in_point)
2

3 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
4 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
5 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T...
6 sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c ro_s k_s sigma_s Enz_con
7

8 Substr_con = [1 1];
9

10 Constants_Set
11

12 %%%%%%%%%%%%%%%%%%%%%%%%%% STARTS OPTIMIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%
13

14 if nargin == 7
15

16 disp('fminsearch starts with user-given starting point:')
17

18 y = in_point
19

20 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2),X(3));
21

22 options = optimset('Display','iter','PlotFcns',...
23 @optimplotfval,'TolFun',0.001,'maxiter',max_iter);
24

25 [x,fval,exitflag_fmin,output] = fminsearch(opt_M,y,options)
26

27 [mu_opt,exitflag_optH,b_s_opt]=optH(Substr_con,x(1),x(2),x(3),-fval);
28

29 B_S_OPT = b_s_opt;
30 X_OPT = x;
31 MU_OPT = mu_opt;
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32

33 if MU_OPT == 0
34 disp('Optimization didnt succeed with given starting point')
35 else
36 disp('Optimization succeeded')
37 end
38

39 disp('Solution vector [x1 x2 T beta1 beta2 beta3 mu] :')
40

41 x0 = [X_OPT , B_S_OPT.']
42

43 disp('Zeros of balanced growth and optimality equations:')
44

45 contG(x0)
46

47 fun = @contG;
48

49 if method == 'fs'
50

51 disp('Point found by fsolve:')
52

53 z = fsolve(fun,x0)
54

55 disp('Image of the point found:')
56

57 contG(z)
58

59 else
60

61 disp('Point found by lsqnonlin:')
62

63 lb = zeros(size(x0)); %lower bound of zero
64 ub = Inf*ones(size(x0));
65 z = lsqnonlin(fun,x0,lb,ub)
66

67 end
68

69 else
70

71 disp('Please wait! searching for a maximum over the x_s with ranges...
72 for x1 and x2 and T, [0 , S1/k_1] , [0 , S2/k_2] and [0 , 5]:')
73

74 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
75 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
76 T_range = [0.0001,1.5]
77

78 t_start = tic;
79

80 [B_S_OPT,X_OPT,exitflag_fmin,exitflag_optH] =...
81 Maximizer(Substr_con,x1_range,x2_range,T_range,max_iter,precision)
82

83 if B_S_OPT(3) == 0
84 disp('Optimization didnt succeed with given starting point')
85 else
86 disp('optimization succeeded')
87 end
88

89 disp('Minutes it took to find a solution:')
90

91 time = round(toc(t_start)/60,3)
92

93 disp('Solution vector [x1 x2 T beta1 beta2 beta3 mu] :')
94

95 x0 = [X_OPT , B_S_OPT.']
96

97 disp('Zeros of steady state and optimality equations:')
98

99 contG(x0)
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100

101

102 fun = @contG;
103

104 if method == 'fs'
105

106 disp('Point found by fsolve:')
107

108 z = fsolve(fun,x0)
109

110 disp('Image of the point found:')
111

112 contG(z)
113

114 else
115

116 disp('Point found by lsqnonlin:')
117

118 lb = zeros(size(x0)); %lower bound of zero
119 ub = Inf*ones(size(x0));
120 z = lsqnonlin(fun,x0,lb,ub)
121

122 end
123

124 end
125

126 end

contG.m

1 function [z] = contG(x);
2 %used to get a point which is on the curve to start the continuation
3

4 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
5 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
6 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c
7

8

9 S_1 = S1_c;
10 S_2 = S2_c;
11

12 x_1 = x(1);
13 x_2 = x(2);
14 T_in = x(3);
15 B1 = x(4);
16 B2 = x(5);
17 B3 = x(6);
18 MU = x(7);
19

20 syms x1 x2 T S1 S2 mu beta_1 beta_2 beta_3
21

22 f1 = @(x1,S1,T) kcat*(1/(k_T+T))*((S1-k1_f*x1)/(1+S1+x1));
23 %f1 = @(x1,S1,T) kcat*((S1-k1_f*x1)/(1+S1+x1));
24

25 f2 = @(x2,S2,T) kcat*((S2-k2_f*x2*T)/(1+S2+x2+T+T*x2));
26 f3 = @(T) k3_fd*(T/(1+T));
27

28 g1 = @(x1,x2) k1_g*x1*x2/(1+x1+x2+x1*x2);
29 g2 = @(x1,x2) k2_g*x1*x2/(1+x1+x2+x1*x2);
30 g3 = @(x1,x2) k3_g*x1*x2/(1+x1+x2+x1*x2);
31 gr = @(x1,x2) kr_g*x1*x2/(1+x1+x2+x1*x2);
32

33 F1 = @(beta_1,beta_2,beta_3,mu) x1*( (a1*f1(x1,S1,T)/mu + sigma_1-b1)*beta_1 +...
34 (a2*f2(x2,S2,T)/mu+sigma_2-b2)*beta_2 + (a3*f3(T)/mu+sigma_3-b3)*beta_3 +...
35 (sigma_r-br)*mu ) - (P11*f1(x1,S1,T)/mu-M11)*beta_1 -...
36 (P12*f2(x2,S2,T)/mu-M12)*beta_2 -...
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37 (P13*f3(T)/mu-M13)*beta_3 + M1r*mu;
38 F2 = @(beta_1,beta_2,beta_3,mu) x2*( (a1*f1(x1,S1,T)/mu + sigma_1-b1)*beta_1 +...
39 (a2*f2(x2,S2,T)/mu+sigma_2-b2)*beta_2 + (a3*f3(T)/mu+sigma_3-b3)*beta_3 +...
40 (sigma_r-br)*mu ) - (P21*f1(x1,S1,T)/mu-M21)*beta_1 -...
41 (P22*f2(x2,S2,T)/mu-M22)*beta_2 -...
42 (P23*f3(T)/mu-M23)*beta_3 + M2r*mu;
43 F3 = @(beta_1,beta_2,beta_3,mu) T*( (a1*f1(x1,S1,T)/mu + sigma_1-b1)*beta_1 +...
44 (a2*f2(x2,S2,T)/mu+sigma_2-b2)*beta_2 + (a3*f3(T)/mu+sigma_3-b3)*beta_3 +...
45 (sigma_r-br)*mu ) - (P31*f1(x1,S1,T)/mu-M31)*beta_1 -...
46 (P32*f2(x2,S2,T)/mu-M32)*beta_2 -...
47 (P33*f3(T)/mu-M33)*beta_3 + M3r*mu;
48

49 Fr = @(beta_1,beta_2,beta_3,mu) beta_1/g1(x1,x2) +...
50 beta_2/g2(x1,x2) + beta_3/g3(x1,x2) + mu/gr(x1,x2) - 1;
51

52 dF1dx1 = diff(F1,x1);
53 dF1dx2 = diff(F1,x2);
54 dF1dT = diff(F1,T);
55 dF1dbeta_1 = diff(F1,beta_1);
56 dF1dbeta_2 = diff(F1,beta_2);
57 dF1dbeta_3 = diff(F1,beta_3);
58

59 dF2dx1 = diff(F2,x1);
60 dF2dx2 = diff(F2,x2);
61 dF2dT = diff(F2,T);
62 dF2dbeta_1 = diff(F2,beta_1);
63 dF2dbeta_2 = diff(F2,beta_2);
64 dF2dbeta_3 = diff(F2,beta_3);
65

66 dF3dx1 = diff(F3,x1);
67 dF3dx2 = diff(F3,x2);
68 dF3dT = diff(F3,T);
69 dF3dbeta_1 = diff(F3,beta_1);
70 dF3dbeta_2 = diff(F3,beta_2);
71 dF3dbeta_3 = diff(F3,beta_3);
72

73 dFrdx1 = diff(Fr,x1);
74 dFrdx2 = diff(Fr,x2);
75 dFrdT = diff(Fr,T);
76 dFrdbeta_1 = diff(Fr,beta_1);
77 dFrdbeta_2 = diff(Fr,beta_2);
78 dFrdbeta_3 = diff(Fr,beta_3);
79

80 dF1dx1 = matlabFunction(dF1dx1); %@(S1,S2,T,beta_1,beta_2,beta_3,mu,x1,x2)
81 dF1dx2 = matlabFunction(dF1dx2); %@(S2,T,beta_2,mu,x1,x2)
82 dF1dT = matlabFunction(dF1dT); %@(S1,S2,T,beta_1,beta_2,beta_3,mu,x1,x2)
83 dF1dbeta_1 = matlabFunction(dF1dbeta_1); %@(S1,T,mu,x1)
84 dF1dbeta_2 = matlabFunction(dF1dbeta_2); %@(S2,T,mu,x1,x2)
85 dF1dbeta_3 = matlabFunction(dF1dbeta_3); %@(T,mu,x1)
86

87 dF2dx1 = matlabFunction(dF2dx1); %@(S1,T,beta_1,mu,x1,x2)
88 dF2dx2 = matlabFunction(dF2dx2); %@(S1,S2,T,beta_1,beta_2,beta_3,mu,x1,x2)
89 dF2dT = matlabFunction(dF2dT); %@(S1,S2,T,beta_1,beta_2,beta_3,mu,x1,x2)
90 dF2dbeta_1 = matlabFunction(dF2dbeta_1); %@(S1,T,mu,x1,x2)
91 dF2dbeta_2 = matlabFunction(dF2dbeta_2); %@(S2,T,mu,x2)
92 dF2dbeta_3 = matlabFunction(dF2dbeta_3); %@(T,mu,x2)
93

94 dF3dx1 = matlabFunction(dF3dx1); %@(S1,T,beta_1,mu,x1)
95 dF3dx2 = matlabFunction(dF3dx2); %@(S2,T,beta_2,mu,x2)
96 dF3dT = matlabFunction(dF3dT); %@(S1,S2,T,beta_1,beta_2,beta_3,mu,x1,x2)
97 dF3dbeta_1 = matlabFunction(dF3dbeta_1); %@(S1,T,mu,x1)
98 dF3dbeta_2 = matlabFunction(dF3dbeta_2); %@(S2,T,mu,x2)
99 dF3dbeta_3 = matlabFunction(dF3dbeta_3); %@(T,mu)

100

101 dFrdx1 = matlabFunction(dFrdx1); %@(beta_1,beta_2,beta_3,mu,x1,x2)
102 dFrdx2 = matlabFunction(dFrdx2); %@(beta_1,beta_2,beta_3,mu,x1,x2)
103 dFrdT = matlabFunction(dFrdT); %@() identically 0
104 dFrdbeta_1 = matlabFunction(dFrdbeta_1); %@(x1,x2)
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105 dFrdbeta_2 = matlabFunction(dFrdbeta_2); %@(x1,x2)
106 dFrdbeta_3 = matlabFunction(dFrdbeta_3); %@(x1,x2)
107

108 A1 = zeros(4);
109 A2 = zeros(4);
110 A3 = zeros(4);
111

112 A1(1,1) = dF1dx1(S_1,S_2,T_in,B1,B2,B3,MU,x_1,x_2);
113 A1(1,2) = dF1dbeta_1(S_1,T_in,MU,x_1);
114 A1(1,3) = dF1dbeta_2(S_2,T_in,MU,x_1,x_2);
115 A1(1,4) = dF1dbeta_3(T_in,MU,x_1);
116

117 A1(2,1) = dF2dx1(S_1,T_in,B1,MU,x_1,x_2);
118 A1(2,2) = dF2dbeta_1(S_1,T_in,MU,x_1,x_2);
119 A1(2,3) = dF2dbeta_2(S_2,T_in,MU,x_2);
120 A1(2,4) = dF2dbeta_3(T_in,MU,x_2);
121

122 A1(3,1) = dF3dx1(S_1,T_in,B1,MU,x_1);
123 A1(3,2) = dF3dbeta_1(S_1,T_in,MU,x_1);
124 A1(3,3) = dF3dbeta_2(S_2,T_in,MU,x_2);
125 A1(3,4) = dF3dbeta_3(T_in,MU);
126

127 A1(4,1) = dFrdx1(B1,B2,B3,MU,x_1,x_2);
128 A1(4,2) = dFrdbeta_1(x_1,x_2);
129 A1(4,3) = dFrdbeta_2(x_1,x_2);
130 A1(4,4) = dFrdbeta_3(x_1,x_2);
131

132 A2(1,1) = dF1dx2(S_2,T_in,B2,MU,x_1,x_2);
133 A2(1,2) = dF1dbeta_1(S_1,T_in,MU,x_1);
134 A2(1,3) = dF1dbeta_2(S_2,T_in,MU,x_1,x_2);
135 A2(1,4) = dF1dbeta_3(T_in,MU,x_1);
136

137 A2(2,1) = dF2dx2(S_1,S_2,T_in,B1,B2,B3,MU,x_1,x_2);
138 A2(2,2) = dF2dbeta_1(S_1,T_in,MU,x_1,x_2);
139 A2(2,3) = dF2dbeta_2(S_2,T_in,MU,x_2);
140 A2(2,4) = dF2dbeta_3(T_in,MU,x_2);
141

142 A2(3,1) = dF3dx2(S_2,T_in,B2,MU,x_2);
143 A2(3,2) = dF3dbeta_1(S_1,T_in,MU,x_1);
144 A2(3,3) = dF3dbeta_2(S_2,T_in,MU,x_2);
145 A2(3,4) = dF3dbeta_3(T_in,MU);
146

147 A2(4,1) = dFrdx2(B1,B2,B3,MU,x_1,x_2);
148 A2(4,2) = dFrdbeta_1(x_1,x_2);
149 A2(4,3) = dFrdbeta_2(x_1,x_2);
150 A2(4,4) = dFrdbeta_3(x_1,x_2);
151

152 A3(1,1) = dF1dT(S_1,S_2,T_in,B1,B2,B3,MU,x_1,x_2);
153 A3(1,2) = dF1dbeta_1(S_1,T_in,MU,x_1);
154 A3(1,3) = dF1dbeta_2(S_2,T_in,MU,x_1,x_2);
155 A3(1,4) = dF1dbeta_3(T_in,MU,x_1);
156

157 A3(2,1) = dF2dT(S_1,S_2,T_in,B1,B2,B3,MU,x_1,x_2);
158 A3(2,2) = dF2dbeta_1(S_1,T_in,MU,x_1,x_2);
159 A3(2,3) = dF2dbeta_2(S_2,T_in,MU,x_2);
160 A3(2,4) = dF2dbeta_3(T_in,MU,x_2);
161

162 A3(3,1) = dF3dT(S_1,S_2,T_in,B1,B2,B3,MU,x_1,x_2);
163 A3(3,2) = dF3dbeta_1(S_1,T_in,MU,x_1);
164 A3(3,3) = dF3dbeta_2(S_2,T_in,MU,x_2);
165 A3(3,4) = dF3dbeta_3(T_in,MU);
166

167 A3(4,1) = 0;
168 A3(4,2) = dFrdbeta_1(x_1,x_2);
169 A3(4,3) = dFrdbeta_2(x_1,x_2);
170 A3(4,4) = dFrdbeta_3(x_1,x_2);
171

172 r1 = min(abs(eigs(A1)));
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173 r2 = min(abs(eigs(A2)));
174 r3 = min(abs(eigs(A3)));
175

176 FF1 = @(x1,x2,T,beta_1,beta_2,beta_3,mu,S1,S2) x1*( (a1*f1(x1,S1,T)/mu +...
177 sigma_1-b1)*beta_1 +...
178 (a2*f2(x2,S2,T)/mu+sigma_2-b2)*beta_2 +...
179 (a3*f3(T)/mu+sigma_3-b3)*beta_3 + (sigma_r-br)*mu ) -...
180 (P11*f1(x1,S1,T)/mu-M11)*beta_1 - (P12*f2(x2,S2,T)/mu-M12)*beta_2 -...
181 (P13*f3(T)/mu-M13)*beta_3 + M1r*mu;
182 FF2 = @(x1,x2,T,beta_1,beta_2,beta_3,mu,S1,S2) x2*( (a1*f1(x1,S1,T)/mu +...
183 sigma_1-b1)*beta_1 +...
184 (a2*f2(x2,S2,T)/mu+sigma_2-b2)*beta_2 +...
185 (a3*f3(T)/mu+sigma_3-b3)*beta_3 + (sigma_r-br)*mu ) -...
186 (P21*f1(x1,S1,T)/mu-M21)*beta_1 - (P22*f2(x2,S2,T)/mu-M22)*beta_2 -...
187 (P23*f3(T)/mu-M23)*beta_3 + M2r*mu;
188 FF3 = @(x1,x2,T,beta_1,beta_2,beta_3,mu,S1,S2) T*( (a1*f1(x1,S1,T)/mu +...
189 sigma_1-b1)*beta_1 +...
190 (a2*f2(x2,S2,T)/mu+sigma_2-b2)*beta_2 +...
191 (a3*f3(T)/mu+sigma_3-b3)*beta_3 + (sigma_r-br)*mu ) -...
192 (P31*f1(x1,S1,T)/mu-M31)*beta_1 - (P32*f2(x2,S2,T)/mu-M32)*beta_2 -...
193 (P33*f3(T)/mu-M33)*beta_3 + M3r*mu;
194

195 FFr = @(x1,x2,beta_1,beta_2,beta_3,mu) beta_1/g1(x1,x2) +...
196 beta_2/g2(x1,x2) + beta_3/g3(x1,x2) + mu/gr(x1,x2) - 1;
197

198

199 y1 = FF1(x_1,x_2,T_in,B1,B2,B3,MU,S_1,S_2);
200

201 y2 = FF2(x_1,x_2,T_in,B1,B2,B3,MU,S_1,S_2);
202

203 y3 = FF3(x_1,x_2,T_in,B1,B2,B3,MU,S_1,S_2);
204

205 y4 = FFr(x_1,x_2,B1,B2,B3,MU);
206

207 y5 = r1;
208 y6 = r2;
209 y7 = r3;
210

211 z = [y1;y2;y3;y4;y5;y6;y7];

visualH.m

1 function [H,k_s,ro_s,sigma_s,x1_s,x2_s,T_s] =...
2 visualH(n,H_in,X1_RANGE,X2_RANGE,T_RANGE,visu)
3

4 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
5 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
6 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T...
7 sigma_1 sigma_2 sigma_3 sigma_r...
8 S1_c S2_c k_s ro_s sigma_s Enz_con
9

10 Substr_con = [1 1];
11

12 count = 0
13

14 if nargin == 1
15

16 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
17 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
18 T_range = [0.01,0.35]
19

20 a_x1 = x1_range(1);
21 b_x1 = x1_range(2);
22 a_x2 = x2_range(1);
23 b_x2 = x2_range(2);
24
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25 a_T = T_range(1);
26 b_T = T_range(2);
27

28 x1_s = linspace(a_x1,b_x1,n(1));
29 x2_s = linspace(a_x2,b_x2,n(2));
30 T_s = linspace(a_T,b_T,n(3));
31

32 H = zeros(n(1),n(2),n(3));
33

34 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2),X(3));
35

36 f = waitbar(0,'please wait..');
37

38 tot = n(1)*n(2)*n(3)
39

40 t_start = tic;
41

42 for i=1:n(1)
43 for j=1:n(2)
44 for k=1:n(3)
45 if ro_1*x1_s(i)+ro_2*x2_s(j)+ro_3*T_s(k) > 1
46 H(i,j,k)=0;
47 count=count+1
48 f = waitbar(count/tot,f);
49 else
50 H(i,j,k) = opt_M([x1_s(i),x2_s(j),T_s(k)]);
51 count = count + 1
52 f = waitbar(count/tot,f);
53 end
54 end
55 end
56 end
57

58 time = round(toc(t_start)/60,3)
59 close(f);
60

61 end
62

63 if nargin == 2
64

65 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
66 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
67 T_range = [0.01,0.35]
68

69 a_x1 = x1_range(1);
70 b_x1 = x1_range(2);
71 a_x2 = x2_range(1);
72 b_x2 = x2_range(2);
73

74 a_T = T_range(1);
75 b_T = T_range(2);
76

77 x1_s = linspace(a_x1,b_x1,n(1));
78 x2_s = linspace(a_x2,b_x2,n(2));
79 T_s = linspace(a_T,b_T,n(3));
80

81 figure
82

83 for i = 1:n(3)
84 subplot(floor(power(n(3),1/2)),floor(power(n(3),1/2)),i)
85

86 surf(x1_s,x2_s,-H_in(:,:,i))
87 height = [0,-min(H_in(:))];
88 axs = [x1_s(1) x1_s(end) x2_s(1) x2_s(end) height];
89 axis(axs);
90 az = 0;
91 el = 90;
92 view(az, el);
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93 caxis([0 -min(H_in(:))])
94 colorbar
95 xlabel('x1');
96 ylabel('x2');
97 title(['Plot of the H Function in the x1-x2-T Space, T = ' num2str(T_s(i))]);
98 end
99

100 end
101

102 if nargin == 5
103

104 x1_range = X1_RANGE;
105 x2_range = X2_RANGE;
106 T_range = T_RANGE;
107

108 a_x1 = x1_range(1);
109 b_x1 = x1_range(2);
110 a_x2 = x2_range(1);
111 b_x2 = x2_range(2);
112 a_T = T_range(1);
113 b_T = T_range(2);
114

115 x1_s = linspace(a_x1,b_x1,n(1));
116 x2_s = linspace(a_x2,b_x2,n(2));
117 T_s = linspace(a_T,b_T,n(3));
118

119 H = zeros(n(1),n(1),n(1));
120

121 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2),X(3));
122

123 f = waitbar(0,'please wait..');
124

125 tot = n(1)*n(2)*n(3)
126

127 t_start = tic;
128

129 for i=1:n(1)
130 for j=1:n(2)
131 for k=1:n(3)
132 H(i,j,k) = opt_M([x1_s(i),x2_s(j),T_s(k)]);
133 count = count + 1;
134 f = waitbar(count/tot,f);
135 end
136 end
137 end
138

139 time = round(toc(t_start)/60,3)
140 close(f);
141

142 end
143

144 if nargin == 6
145

146 x1_range = X1_RANGE;
147 x2_range = X2_RANGE;
148 T_range = T_RANGE;
149

150 a_x1 = x1_range(1);
151 b_x1 = x1_range(2);
152 a_x2 = x2_range(1);
153 b_x2 = x2_range(2);
154 a_T = T_range(1);
155 b_T = T_range(2);
156

157 x1_s = linspace(a_x1,b_x1,n(1));
158 x2_s = linspace(a_x2,b_x2,n(2));
159 T_s = linspace(a_T,b_T,n(3));
160
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161 figure
162 for i = 1:n(3)
163 subplot(floor(power(n(3),1/2))+1,floor(power(n(3),1/2))+1,i)
164 surf(x1_s,x2_s,-H_in(:,:,i))
165 height = [0,-min(H_in(:))];
166 axs = [x1_s(1) x1_s(end) x2_s(1) x2_s(end) height];
167 axis(axs);
168 az = 0;
169 el = 90;
170 view(az, el);
171 caxis([0 -min(H_in(:))])
172 colorbar
173 end
174 end
175

176 end

Toxin_System.m

1 function [dx]=Toxin_System(t,x,alpha_s)
2

3 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
4 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
5 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T...
6 sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c ro_s sigma_s Enz_con
7

8 Substr_con = [1 1];
9

10 alpha_1 = alpha_s(1);
11 alpha_2 = alpha_s(2);
12 alpha_3 = alpha_s(3);
13 alpha_r = alpha_s(4);
14

15 S1 = Substr_con(1);
16 S2 = Substr_con(2);
17

18 f1 = kcat*(1/(k_T+x(3)))*((S1-k1_f*x(1))/(1+S1+x(1)));
19 f2 = kcat*((S2-k2_f*x(2)*x(3))/(1+S2+x(2)+x(3)+x(3)*x(2)));
20 f3 = k3_fd*(x(3)/(1+x(3)));
21

22 g1 = k1_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
23 g2 = k2_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
24 g3 = k3_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
25 gr = kr_g*x(1)*x(2)/(1+x(1)+x(2)+x(1)*x(2));
26

27 V1 = x(4)*f1;
28 V2 = x(5)*f2;
29 V3 = x(6)*f3;
30

31 W1 = x(7)*alpha_1*g1;
32 W2 = x(7)*alpha_2*g2;
33 W3 = x(7)*alpha_3*g3;
34 Wr = x(7)*alpha_r*gr;
35

36 MU = ro_1*(P11*V1+P12*V2+P13*V3)+ro_2*(P21*V1+P22*V2+P23*V3)+...
37 ro_3*(P31*V1+P32*V2+P33*V3) + ...
38 (sigma_1-(ro_1*M11+ro_2*M21+ro_3*M31))*W1 +...
39 (sigma_2-(ro_1*M12+ro_2*M22+ro_3*M32))*W2 + ...
40 (sigma_3-(ro_1*M13+ro_2*M23+ro_3*M33))*W3 +...
41 (sigma_r-(ro_1*M1r+ro_2*M2r+ro_3*M3r))*Wr;
42

43

44 dx1 = V1 - M11*W1 - M12*W2 - M13*W3 - M1r*Wr - MU*x(1);
45 dx2 = V2 - M21*W1 - M22*W2 - M23*W3 - M2r*Wr - MU*x(2);
46 dT = V2 - V3 - MU*x(3);
47 de1 = W1 - MU*x(4);
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48 de2 = W2 - MU*x(5);
49 de3 = W3 - MU*x(6);
50 dr = Wr - MU*x(7);
51

52 [ro_s sigma_s] * x;
53

54 dx=[dx1;dx2;dT;de1;de2;de3;dr];

Run_System.m

1 function [q] = Run_System(alpha_s,xinit);
2

3 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
4 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
5 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T...
6 sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c ro_s sigma_s Enz_con
7

8 Substr_con = [1 1];
9

10 if nargin == 0
11 alpha1 = rand;
12 alpha2 = rand;
13 alpha3 = rand;
14 alpha4 = rand;
15

16 alpha_1 = alpha1/(alpha1+alpha2+alpha3+alpha4);
17 alpha_2 = alpha2/(alpha1+alpha2+alpha3+alpha4);
18 alpha_3 = alpha3/(alpha1+alpha2+alpha3+alpha4);
19 alpha_4 = alpha4/(alpha1+alpha2+alpha3+alpha4);
20

21 alpha_s = [alpha_1,alpha_2,alpha_3,alpha_4];
22

23 xinit = [0.1;0.1;0.1;0.1;0.1;0.1;0.1;0.1]; % Initial condition
24

25 else
26 alpha_1 = alpha_s(1);
27 alpha_2 = alpha_s(2);
28 alpha_3 = alpha_s(3);
29 alpha_4 = alpha_s(4);
30 end
31

32 S1 = Substr_con(1);
33 S2 = Substr_con(2);
34

35 t=[0 1200]; % Time window
36

37 % somma = [ro_s sigma_s] * xinit;
38 % xinit = xinit/somma;
39 x = xinit; % Initial condition
40 [t,y]=ode45(@(t,x) Toxin_System_Dummy(t,x,alpha_s),t,xinit); % Integrate in time
41

42 s = size(y);
43 q = y(s(1),:);
44 x = q; % steady state found
45

46 subplot(3,3,1);
47

48 plot(t,y(:,1))
49 %title('metabs evolution');
50 %xlabel('Time t');
51 %ylabel('metabolites');
52 legend('x1')
53

54 hold on
55

56 subplot(3,3,2);



Appendix A. MATLAB codes 103

57

58 plot(t,y(:,2))
59 %title('metabs evolution');
60 %xlabel('Time t');
61 %ylabel('metabolites');
62 legend('x2')
63

64 hold on
65

66 subplot(3,3,3);
67

68 plot(t,y(:,3))
69 %title('enzymes evolution');
70 %xlabel('Time t');
71 %ylabel('enzymes concentrations');
72 legend('T')
73

74 hold on
75

76 subplot(3,3,4);
77

78 plot(t,y(:,4))
79 %title('enzymes evolution');
80 %xlabel('Time t');
81 %ylabel('enzymes concentrations');
82 legend('e1')
83

84 hold on
85

86 subplot(3,3,5);
87

88 plot(t,y(:,5))
89 %title('enzymes evolution');
90 %xlabel('Time t');
91 %ylabel('enzymes concentrations');
92 legend('e2')
93

94 hold on
95

96 subplot(3,3,6);
97

98 plot(t,y(:,6))
99 %title('enzymes evolution');

100 %xlabel('Time t');
101 %ylabel('enzymes concentrations');
102 legend('e3')
103

104 hold on
105

106 subplot(3,3,7);
107

108 plot(t,y(:,7))
109 %title('enzymes evolution');
110 %xlabel('Time t');
111 %ylabel('enzymes concentrations');
112 legend('r')
113

114 hold on

cal_fixed_alphas.m

1

2 function [x1,x2,T,mu,al1,al2,al3,e1,e2,e3,r] = cal_fixed_alphas(alpha1,alpha2,alpha3);
3

4 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
5 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
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6 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_fd k1_g k2_g k3_g kr_g k_T...
7 sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c ro_s k_s sigma_s Enz_con
8

9 IC = [0.3;0.3;0.3;0.3;0.3;0.3;0.3;0.3];
10 som = [ro_s sigma_s] * IC(1:7);
11 IC = IC/som;
12 [ro_s sigma_s] * IC(1:7);
13

14 options = odeset('AbsTol',1e-9,'RelTol',1e-9);
15

16 alpha_r = 1 - alpha1 - alpha2 - alpha3;
17

18 if alpha_r < 0
19 x1=0;
20 x2=0;
21 T=0;
22 mu=0;
23 e1=0;
24 e2=0;
25 e3=0;
26 r=0;
27 else
28 rhs = @(t,y) Toxin_System_Dummy(t,y,[alpha1 alpha2 alpha3 alpha_r]);
29 [~,y] = ode15s(rhs,[0,1000],IC,options);
30

31 x1 = y(end,1);
32 x2 = y(end,2);
33 T = y(end,3);
34 e1 = y(end,4);
35 e2 = y(end,5);
36 e3 = y(end,6);
37 r = y(end,7);
38 mu = -y(end,8);
39 end
40

41 al1 = alpha1;
42 al2 = alpha2;
43 al3 = alpha3;
44

45 end

DummyFunction1.m

1

2 function out4 = DummyFunction1(alpha1,alpha2,alpha3)
3 [~,~,~,out4,~,~,~,~,~,~,~] = cal_fixed_alphas(alpha1,alpha2,alpha3);
4 end

run_script.m

1

2

3 global k1_g k2_g k3_g S1_c kcat S2_c ro_1
4

5 DummyFunction2 = @(X) DummyFunction1(X(1),X(2),X(3));
6

7 options = optimset('Display','iter','PlotFcns',@optimplotfval,'TolFun',0.00001,'maxiter',100);
8

9 y = [0.3,0.3,0.3];
10

11 %[x,fval,exitflag_fmin,output] = fminsearch(DummyFunction2,y,options)
12

13 N = 200;
14
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15 sub1 = linspace(0.1,2.5,N);
16

17 zopts = zeros(15,N);
18

19 tic
20

21 f = waitbar(0,'please wait..');
22

23

24 for i = 1:N
25

26 ro_1 = sub1(i);
27

28 f = waitbar(i/N,f);
29

30 [x,fval,exitflag_fmin,output] = fminsearch(DummyFunction2,y,options)
31

32 [x1,x2,T,mu,al1,al2,al3,e1,e2,e3,r] = cal_fixed_alphas(x(1),x(2),x(3))
33

34 zopts(1,i) = x1;
35 zopts(2,i) = x2;
36 zopts(3,i) = T;
37 zopts(4,i) = e1;
38 zopts(5,i) = e2;
39 zopts(6,i) = e3;
40 zopts(7,i) = r;
41

42 zopts(8,i) = al1;
43 zopts(9,i) = al2;
44 zopts(10,i) = al3;
45 zopts(11,i) = al1*k1_g*x1*x2/(1+x1+x2+x1*x2);
46 zopts(12,i) = al2*k2_g*x1*x2/(1+x1+x2+x1*x2);
47 zopts(13,i) = al3*k3_g*x1*x2/(1+x1+x2+x1*x2);
48 zopts(14,i) = -mu;
49

50 zopts(15,i) = sub1(i);
51

52 end
53

54 close(f);
55

56 toc

A.0.3 Toxin Presence Leads To Substrate Use Switch codes

optH.m

1 function [mu_opt,exitflag,b_s_opt,Aeq,exit]=optH(Substr_con,x1,x2,x3,mu_tilde,T);
2

3 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
4 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
5 kcat k1_f k2_f k3_f k1_g k2_g k3_g kr_g sigma_1 sigma_2 sigma_3 sigma_r
6

7 S1 = Substr_con(1);
8 S2 = Substr_con(2);
9 S3 = Substr_con(3);

10

11 f1 = @(x1,S1) 5 * kcat * (1/(1+ T)) * ((S1-k1_f*x1)/(1+S1+x1));
12 f2 = @(x2,S2) kcat * ((S2-k2_f*x2)/(1+S2+x2));
13 f3 = @(x3,S3) kcat * ((S3-k3_f*x3)/(1+S3+x3));
14

15

16 g1 = @(x1,x2,x3) k1_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
17 g2 = @(x1,x2,x3) k2_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
18 g3 = @(x1,x2,x3) k3_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
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19 gr = @(x1,x2,x3) kr_g*x1*x2/(1+x1+x2+x1*x2) + kr_g*x2*x3/(1+x2+x3+x2*x3);
20

21 %{
22 g1 = @(x1,x2,x3) k1_g*x1*x2/(1+x1+x2+x1*x2) + k1_g*x2*x3/(1+x2+x3+x2*x3);
23 g2 = @(x1,x2,x3) k2_g*x1*x2/(1+x1+x2+x1*x2) + k2_g*x2*x3/(1+x2+x3+x2*x3);
24 g3 = @(x1,x2,x3) k3_g*x1*x2/(1+x1+x2+x1*x2) + k3_g*x2*x3/(1+x2+x3+x2*x3);
25 gr = @(x1,x2,x3) kr_g*x1*x2/(1+x1+x2+x1*x2) + kr_g*x2*x3/(1+x2+x3+x2*x3);
26 %}
27 f = [0,0,0,-1];
28 B = -eye(4);
29 b = [0;0;0;0];
30 beq = [0;0;0;1];
31

32 Aeq = zeros(4);
33

34 Aeq(1,1) = x1*(a1*f1(x1,S1)/mu_tilde + sigma_1-b1) - (P11*f1(x1,S1)/mu_tilde-M11);
35 Aeq(1,2) = x1*(a2*f2(x2,S2)/mu_tilde + sigma_2-b2) - (P12*f2(x2,S2)/mu_tilde-M12);
36 Aeq(1,3) = x1*(a3*f3(x3,S3)/mu_tilde + sigma_3-b3) - (P13*f3(x3,S3)/mu_tilde-M13);
37 Aeq(1,4) = x1*(sigma_r-br)+ M1r;
38

39 Aeq(2,1) = x2*(a1*f1(x1,S1)/mu_tilde + sigma_1-b1) - (P21*f1(x1,S1)/mu_tilde-M21);
40 Aeq(2,2) = x2*(a2*f2(x2,S2)/mu_tilde + sigma_2-b2) - (P22*f2(x2,S2)/mu_tilde-M22);
41 Aeq(2,3) = x2*(a3*f3(x3,S3)/mu_tilde + sigma_3-b3) - (P23*f3(x3,S3)/mu_tilde-M23);
42 Aeq(2,4) = x2*(sigma_r-br) + M2r;
43

44 Aeq(3,1) = x3*(a1*f1(x1,S1)/mu_tilde + sigma_1-b1) - (P31*f1(x1,S1)/mu_tilde-M31);
45 Aeq(3,2) = x3*(a2*f2(x2,S2)/mu_tilde + sigma_2-b2) - (P32*f2(x2,S2)/mu_tilde-M32);
46 Aeq(3,3) = x3*(a3*f3(x3,S3)/mu_tilde + sigma_3-b3) - (P33*f2(x3,S3)/mu_tilde-M33);
47 Aeq(3,4) = x3*(sigma_r-br) + M3r;
48

49 Aeq(4,1)=1/g1(x1,x2,x3);
50 Aeq(4,2)=1/g2(x1,x2,x3);
51 Aeq(4,3)=1/g3(x1,x2,x3);
52 Aeq(4,4)=1/gr(x1,x2,x3);
53

54 options = optimset('Display','none','maxiter',100);
55

56 LB = [];
57 UB = [];
58

59 [b_s_opt,fval,exitflag,output] = linprog(f,B,b,Aeq,beq,LB,UB,[],options);
60

61 if exitflag == 1 || exitflag == 0
62 mu_opt=b_s_opt(4);
63 exit = 1;
64 else
65 mu_opt=0;
66 b_s_opt = [0;0;0;0];
67 exit = 0;
68 end
69

70 [mu_opt mu_tilde];

fixed_pt.m

1 function [s]=fixed_pt(Substr_con,x1,x2,x3,T);
2

3 fixedpt = @(mu_tilde) optH(Substr_con,x1,x2,x3,mu_tilde,T) - mu_tilde;
4 options = optimset('TolX',1e-7,'TolFun',1e-7,'maxiter',250);
5 s = -fzero(fixedpt,1e-9,options);

Maximizer.m

1 function [B_S_OPT,X_OPT,exitflag_fmin,exitflag_optH] =...
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2 Maximizer(Substr_con,x1_range,x2_range,x3_range,max_iter,precision,T)
3

4 n=5;
5

6 count = 0;
7

8 a_x1 = x1_range(1);
9 b_x1 = x1_range(2);

10 a_x2 = x2_range(1);
11 b_x2 = x2_range(2);
12 a_x3 = x3_range(1);
13 b_x3 = x3_range(2);
14

15 x1_s = linspace(a_x1,b_x1,n);
16 x2_s = linspace(a_x2,b_x2,n);
17 x3_s = linspace(a_x3,b_x3,n);
18

19 H = zeros(n,n,n);
20

21 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2),X(3),T);
22

23 f = waitbar(0,'please wait..');
24

25 for i=1:n
26 for j=1:n
27 for k=1:n
28 x1 = x1_s(i);
29 x2 = x2_s(j);
30 x3 = x3_s(k);
31 y = [x1,x2,x3];
32 H(i,j,k) = opt_M(y);
33 count = count + 1;
34 f = waitbar(count/125,f);
35 end
36 end
37 end
38

39 close(f)
40

41 count = 0;
42

43 [M,I] = min(H(:));
44 [I_row, I_col, I_page] = ind2sub(size(H),I);
45

46 disp('Point found from the grid:')
47

48 y = [x1_s(I_row),x2_s(I_col),x3_s(I_page)]
49

50 disp('Coordinates of the point:')
51

52 coor = [I_row, I_col, I_page]
53

54 disp('With minimum:')
55

56 optm = opt_M(y)
57

58 disp('And precision:')
59

60 pres = max([abs(a_x1-b_x1),abs(a_x2-b_x2),abs(a_x3-b_x3)])/4
61

62 while pres > precision
63

64 if I_row == 1
65 a_x1 = x1_s(I_row);
66 b_x1 = x1_s(I_row+1);
67 else
68 if I_row == n
69 a_x1 = x1_s(I_row-1);



108 Appendix A. MATLAB codes

70 b_x1 = x1_s(I_row);
71 else
72 a_x1 = x1_s(I_row-1);
73 b_x1 = x1_s(I_row+1);
74 end
75 end
76

77

78 if I_col == 1
79 a_x2 = x2_s(I_col);
80 b_x2 = x2_s(I_col+1);
81 else
82 if I_col == n
83 a_x2 = x2_s(I_col-1);
84 b_x2 = x2_s(I_col);
85 else
86 a_x2 = x2_s(I_col-1);
87 b_x2 = x2_s(I_col+1);
88 end
89 end
90

91

92 if I_page == 1
93 a_x3 = x3_s(I_page);
94 b_x3 = x3_s(I_page+1);
95 else
96 if I_page == n
97 a_x3 = x3_s(I_page-1);
98 b_x3 = x3_s(I_page);
99 else

100 a_x3 = x3_s(I_page-1);
101 b_x3 = x3_s(I_page+1);
102 end
103 end
104

105 x1_s = linspace(a_x1,b_x1,n);
106 x2_s = linspace(a_x2,b_x2,n);
107 x3_s = linspace(a_x3,b_x3,n);
108

109 H = zeros(n,n,n);
110

111 f = waitbar(0,'please wait..');
112

113 for i=1:n
114 for j=1:n
115 for k=1:n
116 x1 = x1_s(i);
117 x2 = x2_s(j);
118 x3 = x3_s(k);
119 y = [x1,x2,x3];
120 H(i,j,k) = opt_M(y);
121 count = count + 1;
122 f = waitbar(count/125,f);
123 end
124 end
125 end
126

127 close(f)
128

129 [M,I] = min(H(:));
130 [I_row, I_col, I_page] = ind2sub(size(H),I);
131 count = 0;
132

133 disp('Point found from the grid')
134

135 y = [x1_s(I_row),x2_s(I_col),x3_s(I_page)]
136

137 disp('With minimum:')
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138

139 optm = opt_M(y)
140

141 disp('And precision:')
142

143 pres = max([abs(a_x1-b_x1),abs(a_x2-b_x2),abs(a_x3-b_x3)])/4
144

145 end
146

147

148 disp('fminsearch starts')
149

150 options = optimset('Display','iter','PlotFcns',...
151 @optimplotfval,'TolFun',0.000001,'maxiter',max_iter);
152

153 [x,fval,exitflag_fmin,output] = fminsearch(opt_M,y,options)
154

155 [mu_opt,exitflag_optH,b_s_opt]=optH(Substr_con,x(1),x(2),x(3),-fval,T);
156

157 B_S_OPT = b_s_opt;
158 X_OPT = x;
159 MU_OPT = mu_opt;
160

161 end

SOL.m

1 function [x0,k_s,ro_s,sigma_s] =...
2 SOL(rndmz,e,T,Substr_con,max_iter,precision,method,in_point)
3

4 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
5 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
6 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_f k1_g k2_g k3_g kr_g...
7 sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c S3_c
8

9 %%%%%%%%%%%% PROBLEM DESCRIPTION %%%%%%%%%%%%%%%
10

11 disp('Problem description:')
12

13 Network = [1,0,0;
14 0,1,0;
15 0,0,1];
16

17 Enz_con = [3,2,4,1;
18 2,1,3,1;
19 4,3,1,2];
20

21 System = [1,0,0,1,1,1,1;
22 0,1,0,1,1,1,1;
23 0,0,1,1,1,1,1;
24 0,0,0,1,0,0,0;
25 0,0,0,0,1,0,0;
26 0,0,0,0,0,1,0;
27 0,0,0,0,0,0,1];
28

29 if rndmz == 'Y'
30

31 if nargin == 1
32 e=0.05;
33 end
34

35 disp('Vector of randomization:')
36

37 rad = [ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ...
38 ran(e) , ran(e) , ran(e) , ran(e), ran(e) , ran(e) , ran(e)] %14 values
39
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40 disp('Original constants:')
41

42 k_s = [0.25,0.5,0.5,0.5,0.5,0.5,0.5,0.5] % 8 values
43

44 ro_s = [1,1,1]
45

46 sigma_s = [1,1,1,1]
47

48 disp('Perturbed values:')
49

50 k_s = [0.25 , 0.5+rad(1)/2 , 0.5+rad(2)/2 , 0.5+rad(3)/2 ,...
51 0.5+rad(4)/2 , 0.5+rad(5)/2 , 0.5+rad(6)/2 , 0.5+rad(7)/2]
52

53 ro_s = [1+rad(8),1+rad(9),1+rad(10)]
54

55 sigma_s = [1+rad(11),1+rad(12),1+rad(13),1+rad(14)]
56

57 else
58

59 disp('Using fixed constants')
60

61 k_s = [0.2500 0.4981 0.5023 0.4963 0.4998 0.4977 0.5134 0.5089]
62 %[0.2500 0.4881 0.5023 0.4863 0.4998 0.4977 0.5234 0.5089]
63

64 ro_s = [1.0711 1.0404 1.0225] %[0.9711 1.0404 1.0225]
65

66 sigma_s = [1.0992 1.0311 1.0748 1.0167]
67

68 end
69

70 %%%%%%%%%%%%%% CONSTANTS %%%%%%%%%%%%%%
71

72 M11 = Enz_con(1,1);
73 M12 = Enz_con(1,2);
74 M13 = Enz_con(1,3);
75 M1r = Enz_con(1,4);
76 M21 = Enz_con(2,1);
77 M22 = Enz_con(2,2);
78 M23 = Enz_con(2,3);
79 M2r = Enz_con(2,4);
80 M31 = Enz_con(3,1);
81 M32 = Enz_con(3,2);
82 M33 = Enz_con(3,3);
83 M3r = Enz_con(3,4);
84

85 P11 = Network(1,1);
86 P12 = Network(1,2);
87 P13 = Network(1,3);
88 P21 = Network(2,1);
89 P22 = Network(2,2);
90 P23 = Network(2,3);
91 P31 = Network(3,1);
92 P32 = Network(3,2);
93 P33 = Network(3,3);
94

95 kcat = k_s(1);
96 k1_f = k_s(2);
97 k2_f = k_s(3);
98 k3_f= k_s(4);
99 k1_g = k_s(5);

100 k2_g = k_s(6);
101 k3_g = k_s(7);
102 kr_g = k_s(8);
103

104 ro_1 = ro_s(1);
105 ro_2 = ro_s(2);
106 ro_3 = ro_s(3);
107
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108 sigma_1 = sigma_s(1);
109 sigma_2 = sigma_s(2);
110 sigma_3 = sigma_s(3);
111 sigma_r = sigma_s(4);
112

113 S1_c = Substr_con(1);
114 S2_c = Substr_con(2);
115 S3_c = Substr_con(3);
116

117 a1 = ro_1*P11 + ro_2*P21 + ro_3*P31;
118 a2 = ro_1*P12 + ro_2*P22 + ro_3*P32;
119 a3 = ro_1*P13 + ro_2*P23 + ro_3*P33;
120

121 b1=ro_1*M11 + ro_2*M21 + ro_3*M31;
122 b2=ro_1*M12 + ro_2*M22 + ro_3*M32;
123 b3=ro_1*M13 + ro_2*M23 + ro_3*M33;
124 br=ro_1*M1r + ro_2*M2r + ro_3*M3r;
125

126 %%%%%%%%%%%%%%%%%%%%%%%%%% STARTS OPTIMIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%
127

128 n = 5;
129

130 if nargin == 7 %%%%%%%% SEARCH WITH STANDARD GRID %%%%%%%%%%%%%%%%%
131

132 disp('Please wait! searching for a maximum with a grid (125)...
133 over the x_s with ranges for x1 and x2 and T,...
134 [0 , S1/k_1] , [0 , S2/k_2] and [0 , S3/k_3]:')
135

136 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
137 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
138 x3_range = [0.01,min(S3_c/k_s(4),1/ro_s(3))]
139

140 t_start = tic;
141

142 [B_S_OPT,X_OPT,exitflag_fmin,exitflag_optH] =...
143 Maximizer(Substr_con,x1_range,x2_range,x3_range,max_iter,precision,T)
144

145 if B_S_OPT(3) == 0
146 disp('Optimization didnt succeed with given starting point')
147 else
148 disp('optimization succeeded')
149 end
150

151 disp('Minutes it took to find a solution:')
152

153 time = round(toc(t_start)/60,3)
154

155 disp('Solution vector [x1 x2 x3 beta1 beta2 beta3 mu] :')
156

157 x0 = [X_OPT , B_S_OPT.']
158

159

160 disp('Zeros of balanced growth and optimality equations:')
161

162 contG(x0)
163 %{
164 fun = @contG;
165

166 if method == 'fs'
167

168 disp('Point found by fsolve:')
169

170 z = fsolve(fun,x0)
171

172 disp('Image of the point found:')
173

174 contG(z)
175
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176 else
177

178 disp('Point found by lsqnonlin:')
179

180 lb = zeros(size(x0)); %lower bound of zero
181 ub = Inf*ones(size(x0));
182 z = lsqnonlin(fun,x0,lb,ub)
183

184 end
185 %}
186 end
187

188

189 if nargin == 8 %%%%%%%%%% SEARCH WITH GIVEN POINT %%%%%%%%%%%%
190

191 disp('fminsearch starts with user-given starting point:')
192

193 y = in_point
194

195 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2),X(3));
196

197 options = optimset('Display','iter','PlotFcns',...
198 @optimplotfval,'TolFun',0.001,'maxiter',max_iter);
199

200 [x,fval,exitflag_fmin,output] = fminsearch(opt_M,y,options)
201

202 [mu_opt,exitflag_optH,b_s_opt]=optH(Substr_con,x(1),x(2),x(3),-fval);
203

204 B_S_OPT = b_s_opt;
205 X_OPT = x;
206 MU_OPT = mu_opt;
207

208 if MU_OPT == 0
209 disp('Optimization didnt succeed with given starting point')
210 else
211 disp('Optimization succeeded')
212 end
213

214 disp('Solution vector [x1 x2 x3 beta1 beta2 beta3 mu] :')
215

216 x0 = [X_OPT , B_S_OPT.']
217 %{
218 disp('Zeros of steady state and optimality equations:')
219

220 contG(x0)
221

222 fun = @contG;
223

224 if method == 'fs'
225

226 disp('Point found by fsolve:')
227

228 z = fsolve(fun,x0)
229

230 disp('Image of the point found:')
231

232 contG(z)
233

234 else
235

236 disp('Point found by lsqnonlin:')
237

238 lb = zeros(size(x0)); %lower bound of zero
239 ub = Inf*ones(size(x0));
240 z = lsqnonlin(fun,x0,lb,ub)
241

242 end
243 %}
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244 end
245

246 end

contG.m

1 function [z] = contG(x);
2 %used to get a point which is on the curve to start the continuation
3

4 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
5 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
6 kcat k1_f k2_f k3_f k1_g k2_g k3_g kr_g...
7 sigma_1 sigma_2 sigma_3 sigma_r S1_c S2_c S3_c T
8

9 S_1 = S1_c;
10 S_2 = S2_c;
11 S_3 = S3_c;
12

13 x_1 = x(1);
14 x_2 = x(2);
15 x_3 = x(3);
16 B1 = x(4);
17 B2 = x(5);
18 B3 = x(6);
19 MU = x(7);
20

21 syms x1 x2 x3 S1 S2 S3 mu beta_1 beta_2 beta_3
22

23 f1 = @(x1,S1) 5 * kcat * (1/(1+ T)) * ((S1-k1_f*x1)/(1+S1+x1));
24 f2 = @(x2,S2) kcat * ((S2-k2_f*x2)/(1+S2+x2));
25 f3 = @(x3,S3) kcat * ((S3-k3_f*x3)/(1+S3+x3));
26

27 g1 = @(x1,x2,x3) k1_g*x1*x2/(1+x1+x2+x1*x2) + k1_g*x2*x3/(1+x2+x3+x2*x3);
28 g2 = @(x1,x2,x3) k2_g*x1*x2/(1+x1+x2+x1*x2) + k2_g*x2*x3/(1+x2+x3+x2*x3);
29 g3 = @(x1,x2,x3) k3_g*x1*x2/(1+x1+x2+x1*x2) + k3_g*x2*x3/(1+x2+x3+x2*x3);
30 gr = @(x1,x2,x3) kr_g*x1*x2/(1+x1+x2+x1*x2) + kr_g*x2*x3/(1+x2+x3+x2*x3);
31

32

33 %{
34 f1 = @(x1,S1) kcat * ((S1-k1_f*x1)/(1+S1+x1));
35 f2 = @(x2,S2) kcat * ((S2-k2_f*x2)/(1+S2+x2));
36 f3 = @(x3,S3) kcat * ((S3-k3_f*x3)/(1+S3+x3));
37

38 g1 = @(x1,x2,x3) k1_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
39 g2 = @(x1,x2,x3) k2_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
40 g3 = @(x1,x2,x3) k3_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
41 gr = @(x1,x2,x3) kr_g*x1*x2/(1+x1+x2+x1*x2) + kr_g*x2*x3/(1+x2+x3+x2*x3);
42 %}
43

44 F1 = @(beta_1,beta_2,beta_3,mu) x1*( (a1*f1(x1,S1)/mu + sigma_1-b1)*beta_1 +...
45 (a2*f2(x2,S2)/mu+sigma_2-b2)*beta_2 + (a3*f3(x3,S3)/mu+sigma_3-b3)*beta_3 +...
46 (sigma_r-br)*mu ) - (P11*f1(x1,S1)/mu-M11)*beta_1 - (P12*f2(x2,S2)/mu-M12)*beta_2 -...
47 (P13*f3(x3,S3)/mu-M13)*beta_3 + M1r*mu;
48 F2 = @(beta_1,beta_2,beta_3,mu) x2*( (a1*f1(x1,S1)/mu + sigma_1-b1)*beta_1 +...
49 (a2*f2(x2,S2)/mu+sigma_2-b2)*beta_2 + (a3*f3(x3,S3)/mu+sigma_3-b3)*beta_3 +...
50 (sigma_r-br)*mu ) - (P21*f1(x1,S1)/mu-M21)*beta_1 - (P22*f2(x2,S2)/mu-M22)*beta_2 -...
51 (P23*f3(x3,S3)/mu-M23)*beta_3 + M2r*mu;
52 F3 = @(beta_1,beta_2,beta_3,mu) x3*( (a1*f1(x1,S1)/mu + sigma_1-b1)*beta_1 +...
53 (a2*f2(x2,S2)/mu+sigma_2-b2)*beta_2 + (a3*f3(x3,S3)/mu+sigma_3-b3)*beta_3 +...
54 (sigma_r-br)*mu ) - (P31*f1(x1,S1)/mu-M31)*beta_1 - (P32*f2(x2,S2)/mu-M32)*beta_2 -...
55 (P33*f3(x3,S3)/mu-M33)*beta_3 + M3r*mu;
56

57 Fr = @(beta_1,beta_2,beta_3,mu) beta_1/g1(x1,x2,x3) +...
58 beta_2/g2(x1,x2,x3) + beta_3/g3(x1,x2,x3) + mu/gr(x1,x2,x3) - 1;
59

60 dF1dx1 = diff(F1,x1);
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61 dF1dx2 = diff(F1,x2);
62 dF1dx3 = diff(F1,x3);
63 dF1dbeta_1 = diff(F1,beta_1);
64 dF1dbeta_2 = diff(F1,beta_2);
65 dF1dbeta_3 = diff(F1,beta_3);
66

67 dF2dx1 = diff(F2,x1);
68 dF2dx2 = diff(F2,x2);
69 dF2dx3 = diff(F2,x3);
70 dF2dbeta_1 = diff(F2,beta_1);
71 dF2dbeta_2 = diff(F2,beta_2);
72 dF2dbeta_3 = diff(F2,beta_3);
73

74 dF3dx1 = diff(F3,x1);
75 dF3dx2 = diff(F3,x2);
76 dF3dx3 = diff(F3,x3);
77 dF3dbeta_1 = diff(F3,beta_1);
78 dF3dbeta_2 = diff(F3,beta_2);
79 dF3dbeta_3 = diff(F3,beta_3);
80

81 dFrdx1 = diff(Fr,x1);
82 dFrdx2 = diff(Fr,x2);
83 dFrdx3 = diff(Fr,x3);
84 dFrdbeta_1 = diff(Fr,beta_1);
85 dFrdbeta_2 = diff(Fr,beta_2);
86 dFrdbeta_3 = diff(Fr,beta_3);
87

88 dF1dx1 = matlabFunction(dF1dx1); %@(S1,S2,S3,beta_1,beta_2,beta_3,mu,x1,x2,x3)
89 dF1dx2 = matlabFunction(dF1dx2); %@(S2,beta_2,mu,x1,x2)
90 dF1dx3 = matlabFunction(dF1dx3); %@(S3,beta_3,mu,x1,x2)
91 dF1dbeta_1 = matlabFunction(dF1dbeta_1); %@(S1,mu,x1)
92 dF1dbeta_2 = matlabFunction(dF1dbeta_2); %@(S2,mu,x1,x2)
93 dF1dbeta_3 = matlabFunction(dF1dbeta_3); %@(S3,mu,x3)
94

95 dF2dx1 = matlabFunction(dF2dx1); %@(S1,beta_1,mu,x1,x2)
96 dF2dx2 = matlabFunction(dF2dx2); %@(S1,S2,S3,beta_1,beta_2,beta_3,mu,x1,x2,x3)
97 dF2dx3 = matlabFunction(dF2dx3); %@(S3,beta_3,mu,x2,x3)
98 dF2dbeta_1 = matlabFunction(dF2dbeta_1); %@(S1,mu,x1,x2)
99 dF2dbeta_2 = matlabFunction(dF2dbeta_2); %@(S2,mu,x2)

100 dF2dbeta_3 = matlabFunction(dF2dbeta_3); %@(S3,mu,x2,x3)
101

102 dF3dx1 = matlabFunction(dF3dx1); %@(S1,beta_1,mu,x1,x3)
103 dF3dx2 = matlabFunction(dF3dx2); %@(S2,beta_2,mu,x2,x3)
104 dF3dx3 = matlabFunction(dF3dx3); %@(S1,S2,S3,beta_1,beta_2,beta_3,mu,x1,x2,x3)
105 dF3dbeta_1 = matlabFunction(dF3dbeta_1); %@(S1,mu,x1,x3)
106 dF3dbeta_2 = matlabFunction(dF3dbeta_2); %@(S2,mu,x2,x3)
107 dF3dbeta_3 = matlabFunction(dF3dbeta_3); %@(S3,mu,x3)
108

109 dFrdx1 = matlabFunction(dFrdx1); %@(beta_1,beta_2,beta_3,mu,x1,x2,x3)
110 dFrdx2 = matlabFunction(dFrdx2); %@(beta_1,beta_2,beta_3,mu,x1,x2,x3)
111 dFrdx3 = matlabFunction(dFrdx3); %@(beta_1,beta_2,beta_3,mu,x1,x2,x3)
112 dFrdbeta_1 = matlabFunction(dFrdbeta_1); %@(x1,x2,x3)
113 dFrdbeta_2 = matlabFunction(dFrdbeta_2); %@(x1,x2,x3)
114 dFrdbeta_3 = matlabFunction(dFrdbeta_3); %@(x1,x2,x3)
115

116 A1 = zeros(4);
117 A2 = zeros(4);
118 A3 = zeros(4);
119

120 A1(1,1) = dF1dx1(S_1,S_2,S_3,B1,B2,B3,MU,x_1,x_2,x_3);
121 A1(1,2) = dF1dbeta_1(S_1,MU,x_1);
122 A1(1,3) = dF1dbeta_2(S_2,MU,x_1,x_2);
123 A1(1,4) = dF1dbeta_3(S_3,MU,x_1,x_3);
124

125 A1(2,1) = dF2dx1(S_1,B1,MU,x_1,x_2);
126 A1(2,2) = dF2dbeta_1(S_1,MU,x_1,x_2);
127 A1(2,3) = dF2dbeta_2(S_2,MU,x_2);
128 A1(2,4) = dF2dbeta_3(S_3,MU,x_2,x_3);
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129

130 A1(3,1) = dF3dx1(S_1,B1,MU,x_1,x_3);
131 A1(3,2) = dF3dbeta_1(S_1,MU,x_1,x_3);
132 A1(3,3) = dF3dbeta_2(S_2,MU,x_2,x_3);
133 A1(3,4) = dF3dbeta_3(S_3,MU,x_3);
134

135 A1(4,1) = dFrdx1(B1,B2,B3,MU,x_1,x_2,x_3);
136 A1(4,2) = dFrdbeta_1(x_1,x_2,x_3);
137 A1(4,3) = dFrdbeta_2(x_1,x_2,x_3);
138 A1(4,4) = dFrdbeta_3(x_1,x_2,x_3);
139

140 A2(1,1) = dF1dx2(S_2,B2,MU,x_1,x_2);
141 A2(1,2) = dF1dbeta_1(S_1,MU,x_1);
142 A2(1,3) = dF1dbeta_2(S_2,MU,x_1,x_2);
143 A2(1,4) = dF1dbeta_3(S_3,MU,x_1,x_3);
144

145 A2(2,1) = dF2dx2(S_1,S_2,S_3,B1,B2,B3,MU,x_1,x_2,x_3);
146 A2(2,2) = dF2dbeta_1(S_1,MU,x_1,x_2);
147 A2(2,3) = dF2dbeta_2(S_2,MU,x_2);
148 A2(2,4) = dF2dbeta_3(S_3,MU,x_2,x_3);
149

150 A2(3,1) = dF3dx2(S_2,B2,MU,x_2,x_3);
151 A2(3,2) = dF3dbeta_1(S_1,MU,x_1,x_3);
152 A2(3,3) = dF3dbeta_2(S_2,MU,x_2,x_3);
153 A2(3,4) = dF3dbeta_3(S_3,MU,x_3);
154

155 A2(4,1) = dFrdx2(B1,B2,B3,MU,x_1,x_2,x_3);
156 A2(4,2) = dFrdbeta_1(x_1,x_2,x_3);
157 A2(4,3) = dFrdbeta_2(x_1,x_2,x_3);
158 A2(4,4) = dFrdbeta_3(x_1,x_2,x_3);
159

160 A3(1,1) = dF1dx3(S_3,B3,MU,x_1,x_3);
161 A3(1,2) = dF1dbeta_1(S_1,MU,x_1);
162 A3(1,3) = dF1dbeta_2(S_2,MU,x_1,x_2);
163 A3(1,4) = dF1dbeta_3(S_3,MU,x_1,x_3);
164

165 A3(2,1) = dF2dx3(S_3,B3,MU,x_2,x_3);
166 A3(2,2) = dF2dbeta_1(S_1,MU,x_1,x_2);
167 A3(2,3) = dF2dbeta_2(S_2,MU,x_2);
168 A3(2,4) = dF2dbeta_3(S_3,MU,x_2,x_3);
169

170 A3(3,1) = dF3dx3(S_1,S_2,S_3,B1,B2,B3,MU,x_1,x_2,x_3);
171 A3(3,2) = dF3dbeta_1(S_1,MU,x_1,x_3);
172 A3(3,3) = dF3dbeta_2(S_2,MU,x_2,x_3);
173 A3(3,4) = dF3dbeta_3(S_3,MU,x_3);
174

175 A3(4,1) = dFrdx3(B1,B2,B3,MU,x_1,x_2,x_3);
176 A3(4,2) = dFrdbeta_1(x_1,x_2,x_3);
177 A3(4,3) = dFrdbeta_2(x_1,x_2,x_3);
178 A3(4,4) = dFrdbeta_3(x_1,x_2,x_3);
179

180 r1 = min(abs(eigs(A1)));
181 r2 = min(abs(eigs(A2)));
182 r3 = min(abs(eigs(A3)));
183

184 FF1 = @(x1,x2,x3,beta_1,beta_2,beta_3,mu,S1,S2,S3) x1*( (a1*f1(x1,S1)/mu +...
185 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu+sigma_2-b2)*beta_2 +...
186 (a3*f3(x3,S3)/mu+sigma_3-b3)*beta_3 + (sigma_r-br)*mu ) -...
187 (P11*f1(x1,S1)/mu-M11)*beta_1 - (P12*f2(x2,S2)/mu-M12)*beta_2 -...
188 (P13*f3(x3,S3)/mu-M13)*beta_3 + M1r*mu;
189 FF2 = @(x1,x2,x3,beta_1,beta_2,beta_3,mu,S1,S2,S3) x2*( (a1*f1(x1,S1)/mu +...
190 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu+sigma_2-b2)*beta_2 +...
191 (a3*f3(x3,S3)/mu+sigma_3-b3)*beta_3 + (sigma_r-br)*mu ) -...
192 (P21*f1(x1,S1)/mu-M21)*beta_1 - (P22*f2(x2,S2)/mu-M22)*beta_2 -...
193 (P23*f3(x3,S3)/mu-M23)*beta_3 + M2r*mu;
194 FF3 = @(x1,x2,x3,beta_1,beta_2,beta_3,mu,S1,S2,S3) x3*( (a1*f1(x1,S1)/mu +...
195 sigma_1-b1)*beta_1 + (a2*f2(x2,S2)/mu+sigma_2-b2)*beta_2 +...
196 (a3*f3(x3,S3)/mu+sigma_3-b3)*beta_3 + (sigma_r-br)*mu ) -...
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197 (P31*f1(x1,S1)/mu-M31)*beta_1 - (P32*f2(x2,S2)/mu-M32)*beta_2 -...
198 (P33*f3(x3,S3)/mu-M33)*beta_3 + M3r*mu;
199

200 FFr = @(x1,x2,x3,beta_1,beta_2,beta_3,mu) beta_1/g1(x1,x2,x3) +...
201 beta_2/g2(x1,x2,x3) + beta_3/g3(x1,x2,x3) + mu/gr(x1,x2,x3) - 1;
202

203

204 y1 = FF1(x_1,x_2,x_3,B1,B2,B3,MU,S_1,S_2,S_3);
205

206 y2 = FF2(x_1,x_2,x_3,B1,B2,B3,MU,S_1,S_2,S_3);
207

208 y3 = FF3(x_1,x_2,x_3,B1,B2,B3,MU,S_1,S_2,S_3);
209

210 y4 = FFr(x_1,x_2,x_3,B1,B2,B3,MU);
211

212 y5 = r1;
213 y6 = r2;
214 y7 = r3;
215

216 z = [y1;y2;y3;y4;y5;y6;y7];

visualH.m

1 function [H,k_s,ro_s,sigma_s,x1_s,x2_s,x3_s] =...
2 visualH(n,rndmz,e,Tex,H_in,X1_RANGE,X2_RANGE,X3_RANGE,visu)
3

4 if rndmz == 'Y'
5

6 disp('Vector of randomization:')
7

8 rad = [ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ran(e) , ...
9 ran(e) , ran(e) , ran(e) , ran(e), ran(e) , ran(e) , ran(e) , ran(e)] %15 values

10

11 disp('Original constants:')
12

13 k_s = [0.25,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] % 9 values
14

15 ro_s = [1,1,1]
16

17 sigma_s = [1,1,1,1]
18

19 disp('Perturbed values:')
20

21 k_s = [0.25,0.5+rad(1)/2,0.5+rad(2)/2,0.5+rad(3)/2,0.5+rad(4)/2,...
22 0.5+rad(5)/2,0.5+rad(6),0.5+rad(7),0.5+rad(8)]
23

24 ro_s = [1+rad(9),1+rad(10),1+rad(11)]
25

26 sigma_s = [1+rad(12),1+rad(13),1+rad(14),1+rad(15)]
27

28 else
29 if rndmz == 'N'
30

31 disp('Using fixed constants')
32

33 k_s = [0.2500 0.4881 0.5023 0.4863 0.4998...
34 0.4977 0.5234 0.5089 0.5090]
35

36 ro_s = [0.9711 1.0404 1.0225]
37

38 sigma_s = [0.9992 1.0311 0.9748 1.0167]
39

40 else
41 if rndmz == 'S'
42

43 disp('Using original (symmetric) constants:')
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44

45 k_s = [0.25,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] % 9 values
46

47 ro_s = [1,1,1]
48

49 sigma_s = [1,1,1,1]
50 end
51 end
52 end
53 S1_c = 1;
54 S2_c = 1;
55 S3_c = 1;
56 Substr_con = [1,1,1];
57 ro_1 = ro_s(1);
58 ro_2 = ro_s(2);
59 ro_3 = ro_s(3);
60

61 count = 0
62

63 if nargin == 4
64

65 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
66 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
67 x3_range = [0.01,min(S3_c/k_s(4),1/ro_s(3))]
68

69 a_x1 = x1_range(1);
70 b_x1 = x1_range(2);
71 a_x2 = x2_range(1);
72 b_x2 = x2_range(2);
73 a_x3 = x3_range(1);
74 b_x3 = x3_range(2);
75

76 x1_s = linspace(a_x1,b_x1,n(1));
77 x2_s = linspace(a_x2,b_x2,n(2));
78 x3_s = linspace(a_x3,b_x3,n(3));
79

80 H = zeros(n(1),n(2),n(3));
81

82 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2),X(3),Tex);
83

84 f = waitbar(0,'please wait..');
85

86 tot = n(1)*n(2)*n(3)
87

88 t_start = tic;
89

90 for i=1:n(1)
91 for j=1:n(2)
92 for k=1:n(3)
93 if ro_1*x1_s(i)+ro_2*x2_s(j)+ro_3*x3_s(k) > 1
94 H(i,j,k)=0;
95 count=count+1
96 f = waitbar(count/tot,f);
97 else
98 H(i,j,k) = opt_M([x1_s(i),x2_s(j),x3_s(k)]);
99 count = count + 1

100 f = waitbar(count/tot,f);
101 end
102 end
103 end
104 end
105

106 time = round(toc(t_start)/60,3)
107 close(f);
108

109 end
110

111 if nargin == 5
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112

113 x1_range = [0.01,min(S1_c/k_s(2),1/ro_s(1))]
114 x2_range = [0.01,min(S2_c/k_s(3),1/ro_s(2))]
115 x3_range = [0.01,min(S3_c/k_s(4),1/ro_s(3))]
116

117 a_x1 = x1_range(1);
118 b_x1 = x1_range(2);
119 a_x2 = x2_range(1);
120 b_x2 = x2_range(2);
121 a_x3 = x3_range(1);
122 b_x3 = x3_range(2);
123

124 x1_s = linspace(a_x1,b_x1,n(1));
125 x2_s = linspace(a_x2,b_x2,n(2));
126 x3_s = linspace(a_x3,b_x3,n(3));
127

128 figure
129 for i = 1:n(3)
130 subplot(floor(power(n(3),1/2)),floor(power(n(3),1/2)),i)
131 surf(x1_s,x2_s,-H_in(:,:,i))
132 height = [0,-min(H_in(:))];
133 axs = [x1_s(1) x1_s(end) x2_s(1) x2_s(end) height];
134 axis(axs);
135 az = 0;
136 el = 90;
137 view(az, el);
138 caxis([0 -min(H_in(:))])
139 colorbar
140 xlabel('x1');
141 ylabel('x2');
142 title(['Plot of the H Function in the x1-x2-x3 Space, x3 = ' num2str(x3_s(i))]);
143 end
144

145 end
146

147 if nargin == 8
148

149 x1_range = X1_RANGE
150 x2_range = X2_RANGE
151 x3_range = X3_RANGE
152

153 a_x1 = x1_range(1);
154 b_x1 = x1_range(2);
155 a_x2 = x2_range(1);
156 b_x2 = x2_range(2);
157 a_x3 = x3_range(1);
158 b_x3 = x3_range(2);
159

160 x1_s = linspace(a_x1,b_x1,n(1));
161 x2_s = linspace(a_x2,b_x2,n(2));
162 x3_s = linspace(a_x3,b_x3,n(3));
163

164 H = zeros(n,n,n);
165

166 opt_M = @(X) fixed_pt(Substr_con,X(1),X(2),X(3),Tex);
167

168 f = waitbar(0,'please wait..');
169

170 tot = n(1)*n(2)*n(3)
171

172 t_start = tic;
173

174 for i=1:n
175 for j=1:n
176 for k=1:n
177 %t_start2 = tic;
178 H(i,j,k) = opt_M([x1_s(i),x2_s(j),x3_s(k)]);
179 count = count + 1
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180 f = waitbar(count/tot,f);
181 %time_iteration = round(toc(t_start2)/60,3)
182 %time = round(toc(t_start)/60,3)
183 %time/count
184 end
185 end
186 end
187

188 time = round(toc(t_start)/60,3)
189 close(f);
190

191 end
192

193 if nargin == 8
194

195 figure
196 for i = 1:30
197 subplot(6,5,i)
198 surf(x1_s,x2_s,-H_in(:,:,i))
199 height = [0,0.082];
200 axs = [x1_s(1) x1_s(end) x2_s(1) x2_s(end) height];
201 axis(axs);
202 az = 0;
203 el = 90;
204 view(az, el);
205 caxis([0 0.082])
206 colorbar
207 end
208 end
209

210 end

cal_fixed_alphas.m

1 function [x1,x2,x3,mu,al1,al2,al3,e1,e2,e3,r] = cal_fixed_alphas(alpha1,alpha2,alpha3);
2

3 global a1 a2 a3 b1 b2 b3 br M11 M12 M13 M1r M21 M22 M23 M2r M31 M32 M33 M3r...
4 P11 P12 P13 P21 P22 P23 P31 P32 P33 ...
5 ro_1 ro_2 ro_3 kcat k1_f k2_f k3_f k1_g k2_g k3_g kr_g...
6 sigma_1 sigma_2 sigma_3 sigma_r k_s ro_s sigma_s Enz_con
7

8 IC = [0.3;0.3;0.3;0.3;0.3;0.3;0.3;0.3];
9 som = [ro_s sigma_s] * IC(1:7);

10 IC = IC/som;
11 [ro_s sigma_s] * IC(1:7);
12

13 options = odeset('AbsTol',1e-9,'RelTol',1e-9);
14

15 alpha_r = 1 - alpha1 - alpha2 - alpha3;
16

17 if alpha_r < 0
18 x1=0;
19 x2=0;
20 x3=0;
21 mu=0;
22 e1=0;
23 e2=0;
24 e3=0;
25 r=0;
26 else
27 rhs = @(t,y) Substrate_Switch_System_Dummy(t,y,[alpha1 alpha2 alpha3 alpha_r]);
28 [~,y] = ode15s(rhs,[0,1000],IC,options);
29

30 x1 = y(end,1);
31 x2 = y(end,2);
32 x3 = y(end,3);
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33 e1 = y(end,4);
34 e2 = y(end,5);
35 e3 = y(end,6);
36 r = y(end,7);
37 mu = -y(end,8);
38 end
39

40 al1 = alpha1;
41 al2 = alpha2;
42 al3 = alpha3;
43

44 end

DummyFunction1.m

1 function out4 = DummyFunction1(alpha1,alpha2,alpha3)
2 [~,~,~,out4,~,~,~,~,~,~,~] = cal_fixed_alphas(alpha1,alpha2,alpha3);
3 end

run_script.m

1

2 global k1_g k2_g k3_g S1_c S2_c S3_c T kcat
3

4 DummyFunction2 = @(X) DummyFunction1(X(1),X(2),X(3));
5

6 options = optimset('Display','iter','PlotFcns',@optimplotfval,'TolFun',0.00001,'maxiter',100);
7

8 y = [0.3,0.3,0.3];
9

10 %[x,fval,exitflag_fmin,output] = fminsearch(DummyFunction2,y,options)
11

12 N = 100;
13

14 sub1 = linspace(0.1,5,N);
15

16 zopts = zeros(15,N);
17

18 tic
19

20 f = waitbar(0,'please wait..');
21

22

23 for i = 1:N
24

25 kcat = sub1(i);
26

27 f = waitbar(i/N,f);
28

29 [x,fval,exitflag_fmin,output] = fminsearch(DummyFunction2,y,options)
30

31 [x1,x2,x3,mu,al1,al2,al3,e1,e2,e3,r] = cal_fixed_alphas(x(1),x(2),x(3))
32

33 zopts(1,i) = x1;
34 zopts(2,i) = x2;
35 zopts(3,i) = x3;
36 zopts(4,i) = e1;
37 zopts(5,i) = e2;
38 zopts(6,i) = e3;
39 zopts(7,i) = r;
40

41 zopts(8,i) = al1;
42 zopts(9,i) = al2;
43 zopts(10,i) = al3;
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44 zopts(11,i) = al1*k1_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
45 zopts(12,i) = al2*k2_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
46 zopts(13,i) = al3*k3_g*x1*x2*x3/(1+x1+x2+x3+x1*x2+x1*x3+x2*x3+x1*x2*x3);
47 zopts(14,i) = -mu;
48

49 zopts(15,i) = sub1(i);
50

51 end
52

53 close(f);
54

55 toc
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