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Abstract

Some cellular populations contain subpopulations which exhibit a phenotypic switch to
become dormant. These persister cells do not grow, but are able to survive outside stress to
reduce the risk of total populations extinction. However, the rate at which cells switch their
phenotype is random, and as such the number of persisters shows stochasticity. Because
of this, there is a nonzero probability that a population contains no persisters, thus being
at risk. In this paper we aim to study this risk. We first derive a master equation for the
persister cell model. Since fractions of persister cells are usually low (10−6 − 10−5), the
persister model is very similar to the exponential growth process, for which we derive an
exact probability distribution. Using this, we derive the probability generating function of
a simplified model for persisters, which we show to be accurate for low fractions. We then
fit distributions to data generated by the Gillespie algorithm to show the distribution of
persister cells. Lastly, we solve the master equation for the first and second moments to
derive expressions for the fraction of persister cells and the noise in the number of cells.
With this fraction we derive an exact probability distribution for a model in which the
fraction is constant.
Keywords: Persister cells, master equation, probability generating function, branching
process, Gillespie algorithm
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1. Introduction

1.1. Biological relevance

A challenge that emerged with advances in modern medicine is the phenomenon of bacterial
persistence. Bacterial persistence is caused by a cell changing its phenotype to go into a
’dormant’ state in which it does not grow, but shows multidrug tolerance [1][2]. It was first
discovered in 1944 by J. W. Bigger [3] as a cause of reduced success of penicillin therapy
for treating staphylococcal infections. However, due to low fractions (≈ 10−6 − 10−5)
of persister cells, isolating sufficient numbers for experimental research proved difficult.
This improved when Moyes [4] was able to isolate populations of mutants called Hip (high
induced persistence) which contained persister fractions as high as 10−2. Although since
then multiple mechanisms for this switch have been found [5][6][7][8], the exact workings
are still unclear [9][10][11]. Specifically, little is known about the mechanisms behind the
reverse switch from the dormant state to the growing state [12].

Closely related to persistence is antimicrobial resistance, which is associated with a
mutation that causes a cell and its offspring to be permanently resistant to drugs. However,
this resistance often comes at the cost of reduced fitness in the absence of these drugs.
This loss of fitness is much less prevalent in populations containing persister cells [13], as
persistence is caused by a phenotypic switch as opposed to mutation. Moreover, persistence
is a reversible process in which persister cells that reverse their phenotypic switch are
indistinguishable from other normal cells.

Within persister cells, we distinguish between type I and type II persisters [1][2]. Type I
persisters are triggered into the dormant state by external conditions such as antibiotics or
a lack of nutrients. When not exposed to stressful conditions, these cells resist persistence.
Type II persisters are continually produced without environmental triggers, and as such
these populations always contain a subpopulation of dormant cells. Because of inherent
stochastics, a population of type II persisters will always have a positive probability of
containing zero persister cells. As such, bacteria have to make a tradeoff between a lower
probability of zero persisters - which means a higher average number of persister cells -
and a higher growth rate in environments that lack stress. This causes their behaviour to
be similar to bet-hedging strategies [2], which we will not go in to detail in this paper but
can be found elsewhere [14][15].

As with most biological processes, growth rates and switching rates in persister cell
populations are not constants but rather random variables. For this thesis, we assume
all waiting times to be exponentially distributed random variables, leading to mass-action
kinetics associated with for instance chemical reactions. The reason for this assumption
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is that this is the only (continuous) distribution which has the ’memoryless’ property (see
Appendix). This means that the future is dependent only on the present, which makes
the process of cell growth a Markov process, with ordinary differential equations as its
’macroscopic’ desciption, and the chemical master equation as its mesoscopic desciption
[16][17]. Although this assumption might not seem biologically reasonable at first, for large
populations of cells the age distribution is uniform, making the time until the next event
an exponential random variable. Aside from this, markov processes are mathematically
much simpler to study than non-Markovian processes, and numerical solutions for Markov
processes are also much less computationally intensive than their counterpart. In the next
section we construct a mathematical model for the Markov process associated with persister
growth and phenotype switching.

1.2. Mathematical model and the master equation

Consider a population of growing cells of integer size g and persister cells of size p. Both
grow with rates µg and µp respectively. Although µp is often close to 0, for the sake of the
model it is left in. The rates at which cells switch between populations are v1 and v2, as
seen in Figure 1.1.

Figure 1.1.: A model for a population of growing and persister cells

Or in equations:

g
µg→ 2g, p

µp→ 2p, g
v1
�
v2

p. (1.1)

The probability of finding g growing and p persister cells at time t is denoted by Pg,p(t).
Assuming that all waiting times are exponentially distributed, the process is a Markov
process (see A.1). Thus we get a master equation for Pg,p:

d

dt
Pg,p = µg[(g − 1)Pg−1,p − gPg,p] + µp[(p− 1)Pg,p−1 − pPg,p]

+ v1[(g + 1)Pg+1,p−1 − gPg,p] + v2[(p+ 1)Pg−1,p+1 − pPg,p].
(1.2)

A derivation of this is given in A.2. Aside from the master equation, we also study the
probability generating function (pgf) of Pg,p which is defined as

F (s1, s2, t) =
∑

s1,s2∈Z≥0

sg1s
p
2Pg,p(t). (1.3)
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Note that the sum is over all nonnegative integers in both s1 and s2. This generating func-
tion will prove useful in mathematically analyzing systems like the persister cell process,
as will be seen in later sections. An extremely helpful property of the generating function
is that if the generating function is known, the full probability distribution is also known,
as Pg,p(t) = ∂g+pF

∂sg1∂s
p
2
(0, 0, t). Thus, finding the pgf is enough to solve the entire model!

1.3. Research goals

The main reason for the existence of persister cells is for populations to survive stress,
and as such a population containing zero persisters is at risk of being wiped out by stress
such as an antibiotic. Because of the inherent stochasticity, the probability of a population
containing zero persisters is always positive and thus the risk of extinction is always present.
From here on we will refer to

∑
g

Pg,0(t) as the population risk, as it is the total probability

of zero persisters at time t. There are two main questions that arise concerning the risk:
First, given initial conditions at t = 0, what is the risk at any t > 0? Second, given a
population of any size of which we do not know the history, what is the risk? The first
question corresponds to growing a culture in a laboratory, in which we know the exact
initial conditions. The second corresponds to populations that we encounter outside of the
lab, for example inside the human body, in which we do not know the history but only the
current population size. Both answers of course depend on the reaction parameters and
the fraction of persister cells. In case both these questions cannot be answered, a third
question arises: What parameters influence the risk and in what way? We will focus on
this question later, and try to answer the two main questions first.

These first two questions are of course not independent of each other. Given the risk
at a certain population size, we can find the risk at time t if we know the distribution of
total population size at this time. Unfortunately, finding exact probability distributions,
i.e. solving the master equation, is impossible for all but the simplest of models [23].
Because of this, we will have to find other ways of studying the persister cell model. A
comparable process is that of exponential growth. As persister cell fractions are often very
small, the dynamics of growing cells are closely related to those of exponential growth.
Thus, we would like to be able to find the exact probability distribution of exponential
growth, which is a negative binomial distribution as we derive in Section 2. Using this, we
can find an exact expression for the probability generating function of a simplified model
of persisters, which we do in Section 3.1. We show numerically that this simplified model
is an accurate approximation of the true persister model in Section 3.2.

Since we know the exact distribution of exponential growth, we expect the distribution of
the number of growing cells to be similar to that. In Section 5 we use the Gillespie algorithm
[18] to simulate the persister cell process. We then fit distributions to the obtained data
to show that the distribution of the number of growing cells is in fact similar to that of
exponential growth. We also show that the distribution of persister cells at time t fits a
negative binomial distribution, and we show the distribution of persister cells given a fixed
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total number of cells in Section 5.3. However, since we cannot find exact solutions to the
full probability distributions we have to study other properties of the model. Thus we now
have to find answers to our third question.

Two properties clearly related to the risk of extinction are the growth rate of the system
and the fraction of persister cells φ = p

g+p
, which is equivalent to the ratio γ = g

p
by the

relation φ = 1
1+γ

. Another property related to the risk is the noise η = V ar(p)
E[p]2

in the number
of persister cells. Noise is interesting as it is directly related to the risk, as higher noise
means higher risk. The fraction, growth rate and noise are all dependent on each other:
Naturally, lower persister fractions lead to higher growth rate but higher risk. The fraction
appears to converge towards a steady state as we show in Section 4.1. In Section 4.1.2 we
show the interesting result that the noise in the number of persister cells equals the noise
in the number of growing cells. The noise appears to become constant when the fraction
becomes constant, as we show in Section 4.1.3. However, the steady state value for the
noise depends not only on the reaction rates but very heavily on the initial conditions.
This is shown numerically in Section 4.2 and derived exactly for exponential growth in
Section 2. Using the derived expression for the fraction, we derive an exact probability
distribution for a process in which the fraction is constant in Section 4.3.

An overview of all results is given in the table below.
Result Section
Noise in exponential growth depends on initial conditions 2.1
Exact probability distribution of exponential growth 2.2
Noise in exponential growth as derived from the master equation 2.3
Probability generating function for the simplified model 3
Risk for the simplified model 3.1.4
Fitting of distributions to numerically obtained data 5
Derivation of the steady-state fraction 4.1.1
Noise in persister cells equals noise in growing cells 4.1.3
Noise converges towards a steady-state 4.1.3
Visualisation of dependence of noise on initial conditions 4.2
Distribution in constant fraction 4
Risk in constant fraction 4.3
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2. Exponential growth

A simple process similar to persister cell populations is the process of exponential growth.
In fact, if we set v1 = v2 = 0 in (1.1) and assume p = 0 at time 0, we get the process of
only growing cells. Since the fraction of persister cells is usually very low (10−2 − 10−6),
the population of growing cells in the persister model behaves very similar to exponential
growth. Whereas for the persister process finding an exact solution is not always feasible,
for exponential growth we are able to find the exact probability distribution at any time t
given the initial conditions.

2.1. Noise in indefinitely growing systems

One interesting aspect of exponential growth is the dependence of the noise on the initial
conditions. In most biological systems, the system will converge towards a steady state
and the noise in that state depends only on the state itself, not on the initial conditions.
However, during exponential growth there is no steady state as the number of particles
continuous to grow indefinitely. This causes the noise to be heavily dependent on the
conditions at t = 0, as we will show now.

Theorem 2.1. In an exponential growth process with initial number of cells N0, the noise
at any time t is equal to

1

N0

ηnt .

where nt is an exponential growth process with 1 cell at time 0.

Proof. Suppose that we have an exponential growth process that starts with a single cell
at t = 0. Naturally, this process shows stochasticity as the rate of division is a random
variable. At some time t the number of cells nt has some distribution with expectation 〈nt〉
and some variance σ2

t . Values for 〈nt〉 and σ2
t are not strictly necessary for our purpose,

but we will derive them later for exponential growth.
Now consider a process Nt that starts with N0 cells. Since all cells grow independent of

each other, this process is equal to the sum of N0 processes that start with a single cell.
Since these N0 are independent and identically distributed, their expectation is

E[Nt] = E[

N0∑
i=1

nt] =

N0∑
i=1

E[nt] =

N0∑
i=1

〈nt〉 = N0〈nt〉.
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And the variance of the sum is the sum of the variances:

V ar(Nt) = V ar(

N0∑
i=1

nt) =

N0∑
i=1

V ar(nt) = N0σ
2
t .

So that the noise is

η =
V ar(Nt)

E[Nt]2
=

N0σ
2
t

(N0〈nt〉)2
=

1

N0

σ2
t

(〈nt〉)2
=

1

N0

ηnt .

Since this is true for the exponential growth process, surely it must hold for the persister
model as well! In fact, a much more general result here is that for any system in which
cells grow independent of each other, the noise depends on the initial conditions. In the
next section we will show the exact distribution of exponential growth to further exemplify
this.

2.2. Probability distribution of exponential growth

Consider an exponential growth process that starts with a single cell n0 = 1 and has
growth rate µ, so that the time in which each cell divides is exponentially distributed with
parameter µ and mean 1

µ
. We are interested in finding P (nt = k) for all t > 0. An exact

solution to this was first found by the physicist W.H. Furry in 1937 [20] as a solution to
high-energy electrons that multiply when passing through a sheet of lead. Furry solved the
master equation related to this process by direct integration and induction. We derive the
master equation and show Furry’s method in the next section. Another solution was found
by D.G. Kendall in 1949 [22], who used the master equation to derive and solve a partial
differential equation for the generating function as we show in Section A.5. In this section
we show that it is possible to find a solution without the master equation. Note that there
are several parametrizations for the geometric and negative binomial distributions, which
is important to consider when using them. See also Section A.4

Theorem 2.2. Let Nt be an exponential growth process with initial value N0 and growth
rate µ. Then at time t, the number of cells is given by a negative binomial distribution
with parameters N0 and e−µt:

P (Nt = k) =

(
k − 1

N0 − 1

)
(e−µt)N0(1− e−µt)k−N(0).

To prove this theorem, we first need to find the distribution for an exponential growth
process that starts with a single cell. The exact source of this proof is unknown to us, but
can be found online [21].
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Lemma 2.3. Let nt be an exponential growth process with n0 = 1 and growth rate µ. Then
the distribution of the number of cells at any time t is given by a geometric distribution
with parameter e−µt:

P (nt = k) = (1− e−µt)ke−µt. (2.1)

Proof. Let Tk be the time at which the k’th cell is created, and set T1 = 0. We see
that P (nt ≥ k) = P (Tk ≤ t). Now we look at the same problem from a different angle:
if at time t we have k cells and we go backwards in time, what is the probability that
k − 1 of these cells where created in the interval (0, t]? It is fairly easy to see that this
probability equals P (Tk ≤ t). But this process is equivalent to a decay process that starts
with k − 1 cells at time 0, all of which decay with rate µ. Then P (Tk ≤ t) is equal to
the probability of the equivalent process being extinct at time t. Since for each single
cell the probability of surviving until time t is e−µt, the probability of having 0 cells at
time t equals (1 − e−µt)k−1, which is the maximum of k − 1 exponentially distributed
variables. Thus P (nt ≥ k) = (1 − e−µt)k−1, meaning P (nt ≤ k) = 1 − (1 − e−µt)k. It is
well known that this cumulative distribution function corresponds to a probability mass
function P (nt = k) = (1 − e−µt)ke−µt which is a geometric distribution with parameter
e−µt, corresponding to (2.1)

With this, we can prove Theorem 2.2:

Proof (of Theorem 2.2). If instead of starting with a single cell we start with N0 cells,
we can consider this as N0 independent geometrically distributed processes by the above
lemma. Let X1, X2, . . . , XN0 be i.i.d. geometrically distributed variables with parame-
ter q = e−µt. We claim that their sum SN0(t) has negative binomial distribution with
probability mass function

P (SN0 = k) =

(
k − 1

N0 − 1

)
q(t)N0(1− q(t))k−N(0).

For N0 = 1 this is trivial. By induction:

P (SN0+1 = k) =
k−1∑
n=N0

P (SN0 = n ∩XN0+1 = k − n) =
k−1∑
n=N0

P (SN0 = n)P (XN0+1 = k − n)

=
k−1∑
n=N0

(
n− 1

N0 − 1

)
qN0(1− q)n−N0(1− q)k−n−1q

= qN0+1(1− q)k−(N0+1)

k−1∑
n=N0

(
n− 1

N0 − 1

)
=

(
k − 1

N0

)
qN0+1(1− q)k−(N0+1).

(2.2)
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Note that for N0 +1 ≥ k this still holds, as the sum will be empty. The last equality might

not be trivial, so we show by induction on k that
k−1∑
n=N0

(
n−1
N0−1

)
=
(
k−1
N0

)
. For k = 1 it is

trivial. For k > 1:

k−1∑
n=N0

(
n− 1

N0 − 1

)
=

(
k − 2

N0 − 1

)
+

k−2∑
n=N0

(
n− 1

N0 − 1

)
=

(
k − 2

N0 − 1

)
+

(
k − 2

N0

)
=

(
k − 1

N0

)
.

Continuing the result from the previous section, the mean and variance of the negative
binomial (N0, q) distribution are N0

q
and N0(1−q)

q2
, thus the noise is η = (1−q)

N0
. For large t,

q → 0 so η → 1
N0

, again showing that the noise depends on the initial conditions.
In Section 3.1 we use the probability generating function of exponential growth, which

is

Fe(s, t) = E[sSN0
(t)] =

(e−µts)N0

(1− (1− e−µt)s)N0
. (2.3)

Naturally, this is also the product of N0 times the pgf of the geometric distribution with
parameter e−µt, as the pgf of a sum of independent variables is simply the product of the
individuals pgf’s.

2.3. The master equation of exponential growth

A third way of studying exponential growth is by the master equation. Although it may
seem redundant to do so as we already found the exact probability distribution, in more
complex systems the probability distribution is often unknown. The master equation is
always is always known, so the method of studying moments using the master equation as
we will show here is always viable.

For a system of only growing cells, we have the master equation:

dPn
dt

= µ(n− 1)Pn−1 − µnPn. (2.4)

By direct integration and induction this equation can be solved [20].

Alternative proof of lemma 2.3. Assuming P1(0) = 1 we have

dP1

dt
= −µP1.

which has solution P1(t) = e−µt. We claim that for n > 1 we have Pn = (1− e−µt)n−1e−µt.
For n = 1 we just showed that this holds. By induction:

dPn
dt

= µ(n− 1)Pn−1 − µnPn = µ(n− 1)(1− e−µt)n−2e−µt − µnPn.
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This is a linear ordinary differential equation, of which the solution can be found in any
introductory ODE or Calculus book. The solution is

Pn(t) = e−nµt
t∫

s=0

µ(n− 1)e−µs(1− e−µs)n−2enµsds

= e−nµt
t∫

s=0

µ(n− 1)e−(n−1)µs(1− e−µs)n−2ds

= e−nµt
t∫

s=0

µ(n− 1)(eµs − 1)n−2eµsds

= e−nµt|(eµs − 1)n−1|s=ts=0

= e−nµt(eµt − 1)n−1

= e−µt(1− e−µt)n−1,

which is the geometric distribution as we showed before.

Next to the result above, we can use the master equation (2.4) to find the time derivatives
of the first and second moments. With this we can show that the noise depends on the
initial conditions.

Alternative proof of Theorem 2.1.

d〈n〉
dt

=
∞∑
n=0

n
dPn
dt

=
∞∑
n=0

n(µ(n− 1)Pn−1 − µnPn)

= µ
∞∑
n=0

n(n− 1)Pn−1 − n2Pn = µ
∞∑
n=0

((n+ 1)n− n2)Pn

= µ
∞∑
n=0

nPn = µ〈n〉.

and

d〈n2〉
dt

=
∞∑
n=0

n2dPn
dt

=
∞∑
n=0

n2(µ(n− 1)Pn−1 − µnPn)

= µ

∞∑
n=0

n2(n− 1)Pn−1 − n3Pn = µ

∞∑
n=0

((n+ 1)2n− n3)Pn

= µ

∞∑
n=0

(2n2 + n)Pn = 2µ〈n2〉+ µ〈n〉.
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Since this system of moments is closed, we can write it in matrix form:

d

dt

(
〈n〉
〈n2〉

)
=

(
µ 0
µ 2µ

)(
〈n〉
〈n2〉

)
.

The solutions to this system are

(
〈n〉
〈n2〉

)
= c1v1e

λ1t + c2v2e
λ2t for λi and vi respectively the

eigenvalues and eigenvectors of the matrix, and ci constants to be determined by the initial
values. We assume that at t = 0 we have a known number of cells N0, thus 〈n0〉 = N0 and
〈n2

0〉 = N2
0 . The eigenvalues of the matrix are µ and 2µ with corresponding eigenvectors(

1
−1

)
and

(
0
1

)
. Thus we have at t = 0:

(
N0

N2
0

)
= c1

(
1
−1

)
+ c2

(
0
1

)
,

which has solution c1 = N0 and c2 = N2
0 +N0. So for all t(

〈n〉
〈n2〉

)
=

(
N0e

µt

(N2
0 +N0)e2µt −N0e

µt

)
.

In the limit t → ∞ the negative term vanishes as its exponent is lower. Thus for large t
the noise becomes

η =
〈n2〉 − 〈n〉2

〈n〉2
=

(N2
0 +N0)e2µt −N0e

µt −N2
0 e

2µt

N2
0 e

2µt
=
N0e

2µt −N0e
µt

N2
0 e

2µt
→ 1

N0

,

showing again that the noise is dependent on the initial conditions.

A comparison of the noise shows that it is the same as in the previous section:

1− q
N0

=
1− e−µt

N0

=
N0e

2µt −N0e
µt

N2
0 e

2µt
.

However, as said before, in more complex systems the exact probability distribution is
often unknown whereas the master equation is known. Thus the moment equation method
is always viable.
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3. Extinction risk in a simplified
model

In this section we derive an exact solution for the probability generating function of a
simplified model for persister cells. Although this model is simpler than the ’true’ model,
the difference between the models is extremely small. Because of this, the simplified model
will still result in an accurate caculation of the risk. The accuracy of the simplified model
depends on the fraction of persister cells. Since persister cell fractions are often very small,
we define the simplified model by a small adjustment to the true model: If a switch from
growing to persisting cells does not change the number of growing cells, i.e. a switch from
growing to persisting magically creates a persister cell and the reverse switch only kills a
persister without creating a growing cell, then we have a simpler model. The accuracy of
this model will be shown numerically in Section 3.2. In Section 3.1, we translate it to a
branching process to derive an exact solution for its generating function. The main result
of this section is the following theorem:

Theorem 3.1. Let P ∗g,p be the probability distribution of the simplified persister model.
The generating function of the process with initial conditions g = 1, p = 0 is

Fg(s1, s2, t) =
∑

g,p∈Z≥0×Z≥0

P ∗g,p(t)s
g
1s
p
2.

and satisfies

Fg(s1, s2, t) =
e
−µgt+ v1(s2−1)

v2
(1−e−v2t)

1
s1

+ µg
v2
e
v1(s2−1)

v2
1

(
−v1(s2−1)

v2
)
µg
v2

v1(s2−1)
v2

e−v2t∫
v1(s2−1)

v2

x
µg
v2
−1
e−xdx

. (3.1)

3.1. Exact solution of the generating function

3.1.1. Introduction to Branching processes

The best known branching process is the discrete Galton-Watson branching process [32].
This process counts the number of particles or nodes Zn at time n. Suppose we start at
time n = 0 with a single cell, Z0 = 1. At time n all Zn nodes die and each node produces

X offspring, where X is a random variable. Thus Zn+1 =
Zn∑
i=1

Xi with all Xi independent
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and identically distributed. As the next timestep depends only on the current number of
cells, the Galton-Watson process is a Markov jump process.

There are many possible extensions to the Galton-Watson process. First of all, it is
possible for Zn to be vector-valued, which also causes X to be a multi-dimensional random
variable. This allows the branching process to model processes that contain multiple types
of cells. Another more significant change is the extension to continuous time branching
processes. A lot of processes do not have events at set intervals, but at random times.
In the case where these random times are exponential random variables, the branching
process is also a Markov process. We can apply results for continuous time branching
processes to the persister cell model, as that is also a Markov process. We will not go into
the details here but more theory can be found in works such as Kimmel and Axelrod [32]
and Harris [33].

3.1.2. Branching process of the persister model

We can translate the models of persister cells into a branching process. Naturally, we have
two types of particles: growing (g) type and persister (p) type. Since cells do not die in
our model, we do not have a death rate. However, we can consider a cell dividing to be
the event of a cell dying and producing 2 cells, and the event of a switch as the death
of one type and the birth of the other type. Because the growth and switching rates are
exponential, we can sum them to get the branching process parameters. Thus the lifespans
of cells are distributed exponentially with means λg = v1 + µg and λp = v2 + µp. For
the true model each type g particle produces 2 type g particles with probability 1 − α
and a type p particle with probability α at death, where α = v1

µg+v1
. Each type p particle

produces a type g particle at death (assuming µp = 0).
For the simplified model in which switching does not change the number of growing cells,

a type g particle produces 2 type g particles with probability 1 − α and one type g and
one type p particle with probability α. Also, a type p particle produces no offspring in this
model.

For each time t, the two processes corresponding to these models are random variables.
This means that they have a probability generating function (pgf), defined by

F (s1, s2, t) =
∞∑

g,p=0

P (g growing, p persisters|t)sg1s
p
2.

A solution for the pgf is a solution for the full probability distribution. We will find this
solution in next section.

3.1.3. Methods for solving the probability generating function

Let Fi(s1, s2, t), i ∈ {g, p} be the pgf for the branching process that starts with one type
i cell at t = 0. Let λi be the lifetime of particle i, and let fi(s1, s2) be the joint pgf of

17



the number of offspring generated by a type i particle. We have a system of ordinary
differential equations [32, eq. 4.9]

dF (s, t)

dt
= −λ · [F (s, t)− f(F (s, t))].

in which F , f , s and λ are all two-dimensional and · is the inner product between vectors.
The initial condition is F (s, 0) = s. In the true model, a growing cell generates two
growing cells with probability 1 − α and a single persister cell with probability α, thus
fg(s1, s2) = (1− α)s2

1 + αs2. Likewise, fp(s1, s2) = s1 as a persister cell always generates a
growing cell. Thus the system of differential equations is

dFg
dt

= −λgFg + λg((1− α)F 2
g + αFp)

dFp
dt

= −λpFp + λpFg

. (3.2)

Unfortunately, this system of differential equations is not easily solvable, and perhaps even
impossible to solve with known methods. For this exact reason we introduced the simplified
model. For the simplified model we have fg(s1, s2) = (1− α)s2

1 + αs1s2 and fp(s1, s2) = 1.
This results in the system of differential equations

dFg
dt

= −λgFg + λg((1− α)F 2
g + αFpFg)

dFp
dt

= −λpFp + λp

. (3.3)

Here we see why the simplified model is useful: The true model admits a system of differen-
tial equations in which both Fg and Fp depend on each other, while in the simplified model
Fp is completely independent of Fg! This allows us to first find a solution for Fp and sub-
stitute that in the equation for Fg. The resulting equation is a type of Bernoulli-equation,
which has been intensively studied and is solvable as we will show below.

3.1.4. Proof of Theorem 3.1

With the system of differential equations from the previous section, we can prove the
theorem given in the introduction. More specifically, we show that (3.1) is a solution to
(3.3).

Proof of Theorem 3.1. Since Fp is independent of Fg for the simplified model as seen in
(3.3), we can find a general solution. Note that Fp, Fp(t) and Fp(s, t) are all used to
indicate the same function. We have

dFp
dt

= −λpFp + λp,

which we rewrite to
dFp
Fp − 1

= −λpdt.
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Integrating both sides gives

ln(Fp(t)− 1)− ln(Fp(0)− 1) = −λpt.

As we start with a single particle, Fp(0, s2) = s2. Using this and taking the exponential
gives us

(Fp(t)− 1)(s2 − 1)−1 = e−λpt,

which yields the solution
Fp(t, s2) = e−λpt(s2 − 1) + 1. (3.4)

Plugging in (3.4) in (3.3) yields

dFg
dt

= Fg(−λg + λgα(e−λpt(s2 − 1) + 1)) + F 2
g λg(1− α).

Substituting w(t) = 1
Fg(t)

gives

ẇ = [λg − λgα(e−λpt(s2 − 1) + 1))]w − λg(1− α).

Which has solution (see Polyanin and Zaitsev [24])

w(t) = C1e
−K − e−K

∫
eKλg(1− α)dt.

Here K(t) = −
∫
λg − λgα(e−λpt

′
(s2 − 1) + 1)dt′. We solve this integral:

K(t) = −
∫
λg − λgα(e−λpt

′
(s2 − 1) + 1)dt′

= −λgt(1− α) +
λgα(s2 − 1)

λp
(1− e−λpt).

Now to find Fg we need to calculate∫
exp(eK(t))dt =

∫
exp(e

−λgt(1−α)+
λgα(s2−1)

λp
(1−e−λpt)

)dt

= e
λgα(s2−1)

λp

∫
e−λgt(1−α)e

−λgα(s2−1)

λp
e−λpt

dt.

Let a = −λg(1− α), b = −λgα(s2−1)

λp
and c = −λp so that we need to solve

∫
eat+be

ct
. First,

we substitute u = et to get∫
eat+be

ct

dt =

∫
1

u
ea ln(u)+bucdu =

∫
ua−1ebu

c

du.

Now we substitute v = b
a
c ua to get∫

ua−1ebu
c

du =
1

ab
a
c

∫
ev

c
a dv.

19



This is a standard integral, which is given by∫
ev

c
a dv =

a

c
Γ(
a

c
,−v

c
a ).

Here Γ is the incomplete gamma function defined by Γ(s, x) =
∞∫
x

ts−1e−tdt. Note that we

need to integrate from 0 to t. Since v = −bect we get

−bect∫
−b

ev
c
a dv =

a

c
(Γ(

a

c
,−bect)− Γ(

a

c
,−b)) =

a

c

−bect∫
−b

x
a
c
−1e−xdx.

Substituting everything back we get

w(t) = e−K(C1 − λg(1− α)

∫
eKdt)

=

C1 + λg(1− α)e
λgα(s2−1)

λp 1

λp(
−λgα(s2−1)

λp
)

λg(1−α)
λp

λgα(s2−1)

λp
e−λpt∫

λgα(s2−1)

λp

x
λg(1−α)

λp
−1
e−xdx

e
−λgt(1−α)+

λgα(s2−1)

λp
(1−e−λpt)

.

Since Fg(0) = s1 and thus w(0) = 1
s1

, we must have C1 = 1
s1

. Now substituting the original
reaction parameters back we get (3.1).

We should have Fg(t, 1, 1) = 1 regardless of t, as it is simply the sum of all probabilities.
However, if s2 = 1 it is unclear what exactly happens. However, if α = 0 in (3.1), this
should give the pgf of the geometric distribution (exponential growth), which is given by

Fe(s1) = s1e
−λgt

1−s1(1−e−λgt) . With regards to the second term in the denominator, setting α = 0

should make it behave similarly to setting s2 = 1, as they both set the same terms to
zero. Normally, calculating this limit would be hard but because we know what happens
if α = 0, we can find an expression for s2 = 1. So if s2 = 1 we have

Fg(t, s1, 1) =
s1e
−λgt

1− s1(1− e−λgt)
.

And setting s1 = 1 in this indeed results in Fg(t, 1, 1) = 1. By Theorem 3.1 we can find
the risk for this model:

Corollary 3.2. The probability of zero persisters cells is given by Fg(t, s1 = 1, s2 = 0).
This is

∞∑
g=0

Pg,0(t) = Fg(t, 1, 0) =
e
−µgt− v1v2 (1−e−v2t)

1 + µg
v2
e
v1
v2

1

(
v1
v2

)
µg
v2

v1
v2∫

v1
v2
e−v2t

x
µg
v2
−1
e−xdx

. (3.5)
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Figure 3.1.: Probability of zero persister cells for the simplified model, as calculated with
(3.5). In this figure µg = 2, µp = 0, v1 = 0.12 and v2 = 0.1.

A plot of this is shown in Figure 3.1 for parameter values µg = 2h−1, v1 = 0.12h−1,
v2 = 0.1h−1 and µp = 0h−1 as in [2]. However, we changed v1 by a factor 105 to be able to
numerically compare this to the true model in the next section.

Now that we know the risk from (3.5), we are interested in how the reaction parameters
influence the risk. Clearly, increasing µg reduces the risk. This should be trivial, as higher
growth rate causes more growing cells, which create more persister cells. Unfortunately,
cells cannot simply increase their growth rate. Thus, we would like to know how v1 and
v2 influence the risk, as cells can control these rates. To filter out the effect of the growth
rate, we rescale by it. This means that we take t∗ = µgt, v

∗
1 = v1

µg
and v∗2 = v2

µg
. If we then

leave out the ∗ for clarity, we get

P (zero persisters|t) =
e
−t− v1

v2
(1−e−v2t)

1 + 1
v2
e
v1
v2

1

(
v1
v2

)
1
v2

v1
v2∫

v1
v2
e−v2t

x
1
v2
−1
e−xdx

. (3.6)

From this is it still unclear how v1 and v2 affect the risk. For this reason we will plot the
risk for different values of these parameters, taking t fixed at 1 (so t∗ = 2). In Figure 3.2
we see that an increase or decrease in v1 corresponds to a decrease or increase in the risk
respectively. This is as expected, as higher v1 means that the probability of a persister
cell being created is higher. The rate v2 does not seem to influence the risk very much,
especially when either v1 or v2 is low. Both of these have an intuitive explanation: If v1

is low, almost no persister cells are created so there are simply no persister cells that can
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switch back, rendering the impact of v2 minimal. This is also seen by the fact that the
risk is almost 1 for low v1. In the case where v2 is low, i.e. lower than 10−1, switching
from persister to growing cells simply almost never occurs. This is because the number of
persister cells is already low, so having a low switching rate makes the reverse switch very
rare, and thus further decreasing v2 has little impact.

For v1 and v2 both around 0.1-1 however, we see that v2 does impact the risk significantly.
This is better shown in Figure 3.3. We see that if 1 ≥ v1 ≥ 0.1, then changing v2 between
1 and 0.1 can change the risk by almost 5%. Thus v2 does have a role in reducing or
increasing the risk. It should be noted that the ranges of v1 and v2 that impact the risk
depend on µg and t, which we took fixed here. However, for different values of µg and t
the plots will look the same, they will just be shifted.

Figure 3.2.: Risk for µg = 2 and t = 1 with different v1 and v2. Clearly, v2 has very little
influence on the risk whereas an increase in v1 reduces the risk.

3.2. Accuracy of the simplified model

Instead of trying to solve the master equation analytically, we can construct a system of
differential equations that represents the master equation. This would be a (double) infinite
system which is not solvable, so we set a maximum number of growing and persister cells
to make it finite. The finite system is linear, which makes it easy to integrate numerically.
However, the finite system only accurately represents the true model if the probability of
being in the state with the maximum number of cells is zero, on which we elaborate later
in this section.
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Figure 3.3.: Risk for µg = 2 and t = 1 with different v1 and v2. This is a zoomed in version
of Figure 3.2. This figure shows that for v1, v2 ≥ 0.1 the impact of v2 on the
risk is notable.

3.2.1. Mathematical basis for comparison the models

We limit the number of growing and persister cells to constants gmax and pmax respec-
tively. Then we define the vector

u =



u00

u01
...

u0pmax

u10
...

ugmax,pmax


.

such that ugp = P (g growing and p persister cells). The variable u Satisfies the differential
equation u̇ = Au, where A is a matrix defined by the master equation (1.2):

∂ug,p
∂t

= µg((g − 1)ug−1,p − gug,p) + µp((p− 1)ug,p−1 − pug,p)

+ v1((g + 1)ug+1,p−1 − gug,p) + v2((p+ 1)ug−1,p+1 − pug,p).

Since every value of ugp is only dependent on at most 4 other entries of u, the matrix A is
sparse. This makes solving the system of differential equations computationally feasible.
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Note that for this model we assume ugp = 0 if g > gmax or p > pmax, or if either g < 0 or
p < 0, which allows us to properly construct A. We also take all values of g and p modulo

gmax and pmax respectively, which ensures
gmax,pmax∑

i,j=0

uij = 1, as there is no flow out of the

system to states that we set to 0. For example, once we hit gmax growing cells this modulo
turns off the growth rate. This is merely for aesthetics though, as it does not influence
the system before the probability of having gmax growing or pmax persister cells is large.
However, if we would want to change the model to a physically accurate model of having
a limited number of cells (like in an enclosed volume), this change would be necessary,
thus for possible future purposes we included it. If, for example, we set gmax = 3 and
pmax = 1 the system is defined by the 8× 8 matrix (assuming µp = 0):

A =



0 0 0 0 0 0 0 0
0 −v2 v1 0 0 0 0 0
0 v2 −(µg + v1) 0 0 0 0 0
0 0 0 −(µg + v2) 2v1 0 0 0
0 0 µg v2 −(2µg + 2v1) 0 0 0
0 0 0 µg 0 −(2µg + v2) 3v1 0
0 0 0 0 2µg v2 −3v1 0
0 0 0 0 0 2µg 0 0


. (3.7)

Note that the leftmost and rightmost columns are empty, as it is impossible to leave the
state with 0 cells and the state with the maximum number of both persisters and growing
cells. Also note that the topmost row is empty, as it is impossible to go to the state with
zero cells from any other state, as we did not include cell death in our model. Lastly, the
sum in each column adds up to zero. This is because it is simply the negative rate of
leaving a certain state plus the positive rate of entering all other states from that state.

There is an interesting variation (or simplification) to the above model, as we already
showed in Section 3.1. In this variation, which we called the ’simplified’ model, the event
of a cell switching from the growing to persisting state or vice versa does not change the
number of growing cells. However, we would like to study whether it is justified. Thus, we
construct the same model as above but now A is defined by a different master equation:

∂ug,p
∂t

= µg((g − 1)ug−1,p − gug,p) + µp((p− 1)ug,p−1 − pug,p)

+ v1(gug,p−1 − gug,p) + v2((p+ 1)ug,p+1 − pug,p)
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For this model, the matrix from (3.7) changes to

A =



0 v2 v1 0 0 0 0 0
0 −v2 0 0 0 0 0 0
0 0 −(µg + v1) v2 2v1 0 0 0
0 0 0 −(µg + v2) 0 2v1 0 0
0 0 µg 0 −(2µg + 2v1) v2 3v1 0
0 0 0 µg 0 −(2µg + 2v1 + v2) 0 3v1

0 0 0 0 2µg 0 −3v1 v2

0 0 0 0 0 2µg 0 −(3v1 + v2)


.

The main visible difference between this and (3.7) is that it is not possible to both enter the
zero state and exit the maximum state. The second of these is of no impact, as the system
is not accurate when the probability of being in the maximum state differs significantly
from zero. The first however, could have some impact, as when the system enters the
zero state, it still cannot leave. However, entering the zero state in the simplified model is
equal to entering the state g = 0, p = 1 in the true model. This probability is extremely
small already, and the rate of leaving the state (0, 1) in the true model is v2. This rate is
relatively small as well, thus the state (0, 1) is almost equal to the state (0, 0).

3.2.2. Comparing the simplified and true models

Using the ODE approach shown above we aim to study the differences and similarities
between the simplified and true models. In the following figures we used the parameters
µg = 2 h−1, µp = 0 h−1, v1 = 0.12 h−1, v2 = 0.1 h−1, pmax = 40 cells and gmax = 400
cells as experimentally found by Kussel et al. [2]. However, we did change v1 by a factor
10−5 to increase the fraction of persister cells. For these values, we expect the resulting
fraction of persister cells to asymptotically converge to g

p
≈ 16.6, or p

g
≈ 0.06. This

might not be a realistic fraction, as in practice the number of persister cells is lower, but
increasing g

p
would mean we would have to increase gmax as well, thus greatly increasing

the computational intesivity of the model. This is unfortunately not feasible, hence the
relatively high expected fraction. However, for lower fractions the simplified model should
be a better approximation as the switching occurs less. For this reason, results in this
section are still relevant.

From Figure 3.4 we see that for t > 2 the probability of the state with gmax growing cells
is not small, so results are only accurate for t < 2 for both models. We are most interested
in the probability of having zero persisters. This probability is shown in Figure 3.5. The
difference between the models is extremely small, thus we are inclined to conclude that the
simplified model is equally suitable for our purpose as the true model. Comparing this to
Figure 3.1 they look very similar. Numerical verification shows that the difference between
both figures is of order 10−9, which could be attributed either to the slight probability of
being in the maximum state in the ODE model, or numerical inaccuracies.

However, there is a difference between the models. In Figure 3.6 we see that the expected
number of growing cells does differ significantly. This is as expected, as in the simplified
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model the growing cells are independent of the persister cells, so they will simply follow
an exponential growth process. The difference in the number of growing cells does change
the total number of persister cells and also the fraction of persister cells. This can clearly
be seen in figures 3.6 and 3.7.

Although there are differences between the simplified and true model, Figure 3.5 shows
that with regards to our research question we can consider the simplified model to be an
accurate representation. From this, we can conclude that (3.5) can be used to closely
approximate the risk in the persister cell model. We derived this equation only for the
process with initial condition g = 1, p = 0. For a process that starts with g > 1 growing
cells, the risk is found simply by taking the g’th power of the right hand side of 4(3.5).
Unfortunately, this method does not allow us to calculate the risk for populations with
initial conditions p > 0.

Figure 3.4.: Probabilities of the maximum number of growing cells. Clearly, before time
t < 2 we can assume both models to be accurate. Since the simplified model
grows faster, the probability increases faster as well.
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Figure 3.5.: Probability of zero persister cells for both models. The curves are almost equal,
showing that the models differ very little in this regard.

Figure 3.6.: Expected number of growing cells for both models. The simplified models is
known to follow an exponential growth curve, while the true model also grows
exponentially but with a slightly lower rate.
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Figure 3.7.: Expected fraction of persister cells for both models. For the simplified model
the fraction is slightly lower. This could be explained by the fact that the
expected number of growing cells is higher in that model. The expected value
towards which the fraction converges is approximately 0.06.
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4. Approximation of the risk in a
constant fraction model

In Section 2 we derived an exact distribution for the exponential growth process. In this
section we again focus on the complete model (1.1) and show that the expectation of the
fraction of persister cells converges to a steady state, independent of initial conditions.
We also show the exact value of this steady state fraction. Knowing this, we can treat the
persister process as an exponential growth process with reduced growth rate, by considering
only the total number of cells which does grow exponentially. Using the result from Section
5.3 that persister cells are distributed binomially given the total number of cells, we find
an exact solution for the model in which φ is constant. In Section 4.1 we show that the
noise and fraction converge, and derive the steady state fraction. In Section 4.2 we show
that the noise is greatly effected by the initial conditions. Lastly, in Section 4.3 we derive
an exact value for the risk in the constant fraction model. The main results of this chapter
can be summarized in the following three theorems:

Theorem 4.1. In the persister model (1.1) the expected fraction of persister cells φ = 〈 p
p+g
〉

converges in time to a steady state value

φ =
2v1

v1 + µg − µp + v2 +
√

(µg − v1 − µp + v2)2 + 4v1v2

. (4.1)

Theorem 4.2. The expected noise ηp in the number of persister cells converges in time to
a steady state. Also, the expected noise ηg in the number of growing cells converges to that
same value.

Theorem 4.3. If in the persister model we assume the expectation of the fraction φ to be
constant, then the distribution of the number of cells is

Pg,p(t) =

(
N − 1

N(0)− 1

)
qN(0)(1− q)N−N(0)

(
N

p

)
φp(1− φ)N−p. (4.2)

where N = g + p, q = e−λ1t, λ1 = 1
2
(µg − v1 − v2 + µp +

√
(µg − v1 − µp + v2)2 + 4v1v2)

and φ as in (4.1)

4.1. Moment master equations

Aside from trying to solve the whole model, it is possible to study the process of persister
cells by only using the moments of the probability distribution. As we did in Section 2, we
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can use (1.2) to find differential equations for the moments of Pg,p. Since for every order
this yields a closed system of differential equations, it is possible to rewrite it into matrix
form and solve the differential equations by calculating the eigenvalues of the matrix. We
are interested mostly in the first and second moments, as these are needed to calculate the
noise. In this section we also show that the fraction of persister cells will converge to a
steady state dependent only on the reaction rates, that the noise will become constant if
the fraction does and that the steady state noise in g and p is equal.

4.1.1. First moments

From (1.2) and 〈p〉 =
∑
g,p

gPg,p, we can find an equation for d
dt
〈p〉:

d

dt

∑
g,p

pPg,p =
∑
g,p

p
(
µg[(g − 1)Pg−1,p − gPg,p] + µp[(p− 1)Pg,p−1 − pPg,p]

+ v1[(g + 1)Pg+1,p−1 − gPg,p] + v2[(p+ 1)Pg−1,p+1 − pPg,p]
)

=
∑
g,p

µg[gpPg,p − gpPg,p] + µp[(p+ 1)pPg,p − p2Pg,p]

+ v1[(p+ 1)gPg,p − gpPg,p] + v2[(p− 1)pPg,p − p2Pg,p]

= (µp − v2)〈p〉+ v1〈g〉.

(4.3)

Note that this is because
∑
g,p

(g − 1)Pg−1,p =
∑
g,p

gPg,p, as the g = 0 term vanishes, which

also occurs if we interchange g and p. Because of symmetry,

d

dt
〈g〉 = (µg − v1)〈g〉+ v2〈p〉. (4.4)

As expected, this gives the closed two-state system

d〈g〉
dt

= (µg − v1)〈g〉+ v2〈p〉

d〈p〉
dt

= (µp − v2)〈p〉+ v1〈g〉
. (4.5)

Or, written in matrix form,

d

dt

(
〈g〉
〈p〉

)
=

(
µg − v1 v2

v1 µp − v2

)
︸ ︷︷ ︸

M1

(
〈g〉
〈p〉

)
. (4.6)

which also could have been derived simply from the reactions in Figure 1.1 as it is the system
of differential equations for a deterministic system obeying (1.1). With the solutions to
this system, we can derive the steady state fraction.
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Proof of Theorem 4.1. Solutions to (4.6) allow us to find an expression for φ. Using the
notation by Lu et al. [25], who also studied this system, the eigenvalues of M1 are shown

to be 1
2
(σ1 + σ2 ± ∆) with corresponding eigenvectors

(
σ1−σ2±∆

2v1

1

)
. Here σ1 = µg − v1,

σ2 = µp− v2 and ∆ =
√

(σ1 − σ2)2 + 4v1v2. For a system of differential equations u̇ = Mu

the solutions are
n∑
i=1

civie
λit with n the dimension of u, vi and λi the eigenvectors and

eigenvalues ofM and ci constants determined by the initial values. Note that by the Perron-
Frobenius Theorem [26] the largest eigenvalue of M1 has a strictly positive eigenvector.

Let λ1 be the largest eigenvalue of M1. Then given initial conditions g(0) and p(0) this
yields for our system (

〈g〉
〈p〉

)
=

(
c1
σ1−σ2+∆

2v1
eλ1t + c2

σ1−σ2−∆
2v1

eλ2t

c1e
λ1t + c2e

λ2t

)
, (4.7)

with c1 = p(0)σ2−σ1+∆
2∆

+ g(0)v1
∆

and c2 = p(0)σ1−σ2+∆
2∆

− g(0)v1
∆

. For large t, eλ1t � eλ2t.
As such, we see that

γ =
〈g〉
〈p〉
→ σ1 − σ2 + ∆

2v1

, or φ =
〈p〉

〈g〉+ 〈p〉
→ 2v1

2v1 + σ1 − σ2 + ∆
. (4.8)

Thus the ratio and fraction of persister cells depend only on the reaction rates. Substituting
back the original parameters yields (4.1). However, we used φ = 〈p〉

〈g〉+〈p〉 instead of φ =

〈 p
g+p
〉. We will show in Section 4.1.3 that these converge to the same value.

4.1.2. Second moments

For the time derivatives of the second moments, 〈g〉, 〈p〉 and 〈gp〉 we can use the same
method as for the first moments. This yields

d

dt
〈g2〉 = (µg + v1)〈g〉+ v2〈p〉+ 2(µg − v1)〈g2〉+ 2v2〈gp〉

d

dt
〈gp〉 = −v1〈g〉 − v2〈p〉+ v1〈g2〉+ (µg + µp − v1 − v2)〈gp〉+ v2〈p2〉

d

dt
〈p2〉 = (v1)〈g〉+ (µp + v2)〈p〉+ 2v1〈gp〉+ 2(µp − v2)〈p2〉.

(4.9)

This system is obviously not closed, but the adding the first moments once again makes it
a closed system. This allows us to rewrite it into matrix form:

d

dt


〈g〉
〈p〉
〈g2〉
〈gp〉
〈p2〉

 =


σ1 v2 0 0 0
v1 σ2 0 0 0

µg + v1 v2 2σ1 2v2 0
−v1 −v2 v1 σ1 + σ2 v2

v1 µp + v2 0 2v1 2σ2


︸ ︷︷ ︸

M


〈g〉
〈p〉
〈g2〉
〈gp〉
〈p2〉

 . (4.10)
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Since the eigenvalues of M are the eigenvalues of the upper left 2× 2 block (M1) and the
eigenvalues of the lower right 3 × 3 block, and because the eigenvectors corresponding to
the lower right block have zeros as first two entries, we can find study the second moments
only from

M2 =

2σ1 2v1 0
v1 σ1 + σ2 v2

0 2v1 2σ2

 .

The eigenvalues ofM2 are 2λ1, λ1+λ2 and 2λ2 with eigenvectors respectively

(σ1−σ2+∆
2v1

)2

σ1−σ2+∆
2v1

1

,

 −v2
v1

σ1−σ2
2v1

1

 and

(σ1−σ2−∆
2v1

)2

σ1−σ2−∆
2v1

1

. Thus the corresponding eigenvectors of M are these three

vectors with two zeros added as first two entries. We are not as much interested in the
remaining two eigenvectors of M , as these eigenvalues are lower so in the large time limit
they will vanish. Like in the previous section, the eigenvalue 2λ1 has a strictly positive
eigenvector by the Perron-Frobenius Theorem. Since the largest eigenvalue of M is 2λ1

and its corresponding eigenvector is


0
0

(σ1−σ2+∆
2v1

)2

σ1−σ2+∆
2v1

1

, for t→∞ we get

〈g2〉 =
σ1 − σ2 + ∆

2v1

〈gp〉 = (
σ1 − σ2 + ∆

2v1

)2〈p2〉. (4.11)

Unfortunately, it is not possible to simply find an expression like (4.7) for the second
moments from M2, as the second moments are dependent on the first moments through
the remaining two eigenvectors of M . These eigenvectors are extremely complicated and
thus it is not feasible to compute the second moments exactly. Although Lu et al. [25]
claim to have done so, their result seems incorrect as it contains a factor e3λ1t, which is
impossible as the largest eigenvector is 2λ1, and their lack of mathematical methods makes
error-checking impossible.

Note that the largest eigenvalue of M2 is twice that of M1. Because of this, in the

noise ηp = 〈p2〉−〈p〉2
〈p〉2 the exponents will cancel for large t, and as such we expect it become

constant. We show a proof of this in the next section. This result is very interesting, as it
means that the variance and the square of the mean grow at the same exponential rate! We
already saw that this holds for exponential growth in Section 2, and show a mathematical
proof of this in the next section.
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4.1.3. Time derivatives of noise and fraction

Alternative proof of 4.1. We showed before that the ratio 〈g〉〈p〉 converges to a steady state,

which means that the fraction φ = 〈p〉
〈g〉+〈p〉 does as well. Another way to find this result, is

by using master equation and the expectation of the fraction 〈φ〉 =
∑
p,g

p
p+g

Pp,g in a similar

way to (4.4):

d

dt
〈 p

g + p
〉 = (µp − µg)〈

pg

(p+ g)(p+ g + 1)
〉+ v1〈

g

g + p
〉 − v2〈

p

g + p
〉

≤ (µp − µg)〈
p

g + p
〉〈 g

g + p
〉+ v1〈

g

g + p
〉 − v2〈

p

g + p
〉

= (µp − µg)〈φ〉(1− 〈φ〉) + v1(1− 〈φ〉)− v2〈φ〉
= 〈φ〉2(µg − µp) + 〈φ〉(µp − µg − v1 − v2) + v2.

(4.12)

which gives the same value for φ as in (4.8) if we set this to zero, showing that 〈 p
g+p
〉 =

〈p〉
〈g〉+〈p〉 . Note that in the inequality we got ≤ by Jensen’s inequality, as φ(1−φ) is a concave

function. This steady state of the fraction is stable, as shown by Bruggeman [27].

Given that the fraction converges, we also show that the noise converges by using the
master equation. We also show that the noise in p and g is equal in this limit, as claimed
in Theorem 4.2.

Proof of Theorem 4.2. Since ηp = 〈p2〉−〈p〉2
〈p〉2 , by the quotient rule and the product rule we

get using (4.5) and (4.9)

d

dt
ηp =

〈p〉2 d〈p
2〉

dt
− 〈p2〉d〈p〉

2

dt

〈p〉2
=
〈p〉2 d〈p

2〉
dt
− 2〈p〉〈p2〉d〈p〉

dt

〈p〉2

=
µp〈p〉3 + v1〈p〉2〈g〉+ v2〈p〉3

〈p〉4
+

2v1(〈p〉2〈gp〉 − 〈p2〉〈p〉〈g〉)
〈p〉4

.

(4.13)

The first of these two terms clearly becomes zero for large t, as the numerator is order
〈p〉 smaller than the denominator, and 〈p〉 grows exponentially. The second term becomes
zero if and only if

〈p〉〈gp〉 − 〈p2〉〈g〉
〈p〉3

. (4.14)

goes to zero. If the fraction becomes constant, p ≈ αg for some α ∈ R, so that this term
becomes zero and the noise converges as well. In the that this indeed happens.

Another interesting observation is that for large t, 〈g2〉 = (σ1−σ2+∆
2v1

)2〈p2〉 as seen in

(4.11). We already saw that 〈g〉 = σ1−σ2+∆
2v1

〈p〉 in this limit, but this means that

ηg =
〈g2〉 − 〈g〉2

〈g〉2
=

(σ1−σ2+∆
2v1

)2〈p2〉 − (σ1−σ2+∆
2v1

)2〈p〉2

(σ1−σ2+∆
2v1

)2〈p〉2
=
〈p2〉 − 〈p〉2

〈p〉2
= ηp.

And thus the noise in g and p will be equal.
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As we showed before, the growing cells behave almost equal to exponential growth for
low fractions. This means that if at the initial time t = 0 there are N0 growing cells the
noise in the growing cells will be approximately 1

N0
, and as such the noise in the number

of persisters will equal that. However, if the initial number of persister cells is high and
the initial number of growing cells is low, this does not hold.

4.2. Dependence of noise on initial conditions

In Section 4.1 we found that the first and second moments of Pg,p form a closed system
of linear ordinary differential equations (4.10). Instead of solving this system analytically
as before, we can numerically solve it using Matlab, which allows us to better visualize
the results. Since we already showed that if g > 0 at t = 0 the number of persister cells
have little influence on the noise, we are mostly interested in the scenario where we start
with g = 0. Calculating the steady state noise with the same parameters as in Section 5.2
resulted in Figure 4.11. Clearly, if g > 0 the noise immediately drops to about 1

g
, which

is the noise in exponential growth. However, if g = 0 the noise is incredibly high for low
persister numbers. It seems as if increasing the number of persister cells also has the effect
of decreasing the steady state noise by a rate of 1

p
. This has a simple explanation: Given

only persister cells, the noise is largely dependent on the first switch time. This time is an
exponential distribution with mean 1

v2
for each cell, thus the first switch is an exponential

distribution with mean 1
pv2

. Thus increasing p decreases the first switch with rate 1
p
.

4.3. Exact model at constant persister fraction

If we assume the fraction of persister cells to be in steady state, i.e. either in the large time
limit or by setting the initial conditions to already be such that the fraction is in steady
state, we can compare the persister model to an exponential growth model. Note that the
fraction will never be truly constant, but the expectation of the fraction will be. Since we
know the expected value of φ from the previous section, we can now prove Theorem 4.3
using the results from Section 2.

Proof of Theorem 4.3. Suppose we have N = g+p cells and a steady state fraction φ = p
g+p

.

Then the growth rate µN of N will equal µg(1− φ) + µpφ. From (4.8) we know φ. We can

rewrite it to get φ = µg+v1+v2−µp−∆

2(µg−µp)
. This yields for the growth rate:

µN = µg + φ(µp − µg) = µg −
1

2
(µg + v1 + v2 − µp −∆)

=
1

2
(µg − v1 + µp − v2 + ∆) = λ1.

(4.15)

1Different parameters have different impact on the noise depending on the initial conditions. Most
notably, v2 has an enourmous impact on the noise, but only if the initial conditions contain no growing
cells, which should make sense intuitively.
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Figure 4.1.: Steady-state noise values for different initial conditions. Noise is about 1
g

for
initial condition g > 0. For g = 0 the noise increases massively, but seems to
decrease with rate 1

p
. In this figure µg = 2, µp = 0, v1 = 0.12 and v2 = 0.1.
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This is exactly as expected, as λ1 is the growth rate as calculated in Section 4.1.1! However,
λ1 was shown to be the growth rate for large t, whereas here we only assumed the fraction
to be in steady state, which could also be if we simply set the initial conditions to g = γp.
If we regard φ as a constant instead of a variable, this process is simply exponential growth
with expectation eλ1t. Thus the total amount of cells after time t follows a negative binomial
distribution with parameters N(0) and q = e−λ1t. We are now interested in the number of
persister cells given a certain number of total cells, as we know the probability distribution
for the number of total cells. In Section 5.3 we show numerically that the distribution of
persister cells given N total cells fits a binomial distribution with parameters (N, φ). Thus
the total probability distribution is given by

Pg,p(t) = P (N total cells|t)P (p persister cells|N total cells)

=

(
N − 1

N(0)− 1

)
qN(0)(1− q)N−N(0)

(
N

p

)
φp(1− φ)N−p.

(4.16)

Here N(0) is the initial number of cells and q = e−λ1t with λ1 as in (4.15). Note that the
probability of N total cells and p persister cells is of course equal to the probability of g
growing cells and p persister cells as N = p+ g.

Using Theorem 4.3 we can find the risk. Assuming N(0) = 1, setting p = 0 and summing
over all N yields the following:

Corollary 4.4. The risk of extinction in the constant fraction model is given by

P (0 persisters|t) =
∞∑
N=1

q(1− q)N−1(1− φ)N

= q(1− φ)
∞∑
N=0

[(1− q)(1− φ)]N

=
q(1− φ)

1− (1− q)(1− φ)

(4.17)

=
e−

1
2

(µg−v1−v2+µp+
√

(µg−v1−µp+v2)2+4v1v2)t(1− ( 2v1

µg+v1−µp+v2+
√

(µg−v1−µp+v2)2+4v1v2
))

1− (1− e− 1
2

(µg−v1−v2+µp+
√

(µg−v1−µp+v2)2+4v1v2)t)(1− ( 2v1

µg+v1−µp+v2+
√

(µg−v1−µp+v2)2+4v1v2
))
.

This curve is shown in Figure 4.2 for the same parameter values as in Section 3.1.
As in Section 3.1, we are interested in how the reaction rates affect the risk. We again set

µg = 2 and t = 1. Figure 4.3 shows the same results as before: v1 is the most impactful of
the switching rates with respect to the risk. Figure 4.4 shows that again, for 1 ≥ v1 ≥ 0.1
the impact of v2 is notable, but not as large as that of v1.
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Figure 4.2.: Probability of zero persisters for the model with φ constant, as shown in (4.17).
In this figure µg = 2, µp = 0, v1 = 0.12 and v2 = 0.1 so that φ ≈ 0.057.

Figure 4.3.: Risk for µg = 2 and t = 1 with different v1 and v2. Clearly, v2 has very little
influence on the risk whereas an increase in v1 reduces the risk.
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Figure 4.4.: Risk for µg = 2 and t = 1 with different v1 and v2. This is a zoomed in version
of Figure 3.2. This figure shows that for v1, v2 ≥ 0.1 the impact of v2 on the
risk is notable.
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5. Fitting distributions to data
generated with the Gillespie
Algorithm

Since we are unable to find an exact solution to the probability distribution of the persis-
ter model, we could try numerical methods to generate distributions. We can fit known
probabilitty distributions to these generated histograms to validate our models. An exact
method for numerically simulating the time evolution of a stochastic chemical process was
introduced by Daniel Gillespie [18][19]. This method uses Monte Carlo techniques to sim-
ulate the Markov Process that is described by the master equation. Originally called the
stochastic simulation algorithm (SSA), the Gillespie algorithm was designed for chemical
reactions between molecules, but it can also be applied to other processes such as the model
of persister cells, since the process is a Markov process. Extensions to non-Markovian
processes have also been made, but these processes generally require significantly more
computational power [30][31]. Using the Gillespie algorithm, we fit distributions of cell
numbers over time in Section 5.2 and we fit the distribution of persister cells given a fixed
total number of cells in Section 5.3.

5.1. Introduction to the Gillespie algorithm

A concise explanation of the framework of the Gillespie algorithm is given by Szallasi et al.
[29]: Consider a system of N chemical species Si, i = 1, . . . , N which interact in M different
reactions Rj, j = 1, . . . ,M . The number of particles of each species at time t is denoted
by Xi(t). We want to study the evolution of the state vector X(t) = (X1(t), . . . , XN(t))T

over time, given initial conditions X(0) = x0.
Each reaction Rj is characterized by two quantities. First, its state-change vector

νj = (ν1j, . . . , νNj), which is the change to X(t) when a reaction Rj occurs. Second,
its propensity function aj, which is defined such that, given X(t) = x, aj(x)dt is the prob-
ability that one Rj reaction occurs in the next infinitesimal time interval [t, t + dt]. As
aj is dependent on X(t), it can change with time. For an unimolecular reaction such as
Si → reaction products, the propensity function can be seen as the rate of flow from Si to
its products. Naturally, this is dependent on the number of Si particles, hence in this case
aj(x) = cjxi where cj is the reaction rate constant. For different reactions the propensity
function will be different, but for our application to the persister model we have no need
of those.
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With this framework, the Gillespie algorithm can be defined in 5 steps:

1. Define the initial time t0 and state x = x0.

2. Evaluate all aj(x) for this t and x.

3. Generate values for the next reaction j and the time τ until this reaction (Monte
Carlo step).

4. Replace x by x+ νj and t by t+ τ .

5. If t is lower than some preset value tstop, repeat from step 2. Otherwise, end the
simulation.

Gillespie suggested two different methods for the Monte Carlo step of the stochastic sim-
ulation algorithm: The ’first reaction method’ and the direct method. In short, given a
time t, population sizes xi and reaction rates aj, the direct method randomly generates
the time τ until the next event and the event j. The first reaction method generates the
tentative reaction time τj for each reaction, and then takes the minimum of all those τj and
the corresponding reaction j. Clearly, the direct method requires 2 random numbers at
each step, whereas the first reaction method requires M and thus is more computationally
intensive. Thus, for M > 2 the direct method is preferred.

Since the process is assumed to be a Markov process, all reactions are exponentially
distributed random variables with parameter aj for reaction Rj. Thus for the first reaction
method, we simply generate M samples from different exponential distributions and find
the minimum. For the direct method, we only need to generate two random numbers.
Because ∏

j

P (τj > t) =
∏
j

e−ajt = e
−t

∑
j
aj
.

The minimum of multiple exponential distributions is an exponential distribution with
parameter being the sum of all individual parameters. The time until the first event is

thus an exponential random variable with parameter
M∑
j=1

aj. The probability of this event

being reaction Rj is
aj
a

where a =
∑
j

aj. By generating a random uniform number c on

the interval [0, a] we find the randomly generated reaction Rj by finding the smallest j for

which
j∑

k=1

ak ≥ c. Thus by only taking two randomly generated numbers we find the time

τ until the first reaction and the type of reaction Rj. Because of the Markov property, we
can now repeat this step at time t+ τ .

5.2. Fitting distributions to cell data

We can now use the Gillespie algorithm to simulate the persister model defined by (1.1). Let
X(t) = (g(t), p(t))T and R is the set of 4 reactions given in (1.1). Then a1 = µgg(t), a2 =
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µpp(t), a3 = v1g(t) and a4 = v2p(t). We simulate many paths with the Gillespie algorithm
with the goal of fitting the negative binomial distribution to the data. In Section 2 we
have shown that exponential growth follows this distribution, and in Section 4.3 we show
that it can be used as an approximation for the persister cell model. We fit distributions
for different initial conditions for both the populations of growing and persister cells. The
reaction rates used are µg = 2, µp = 0, v1 = 0.012 and v2 = 0.1. These rates were taken
from Kussell et al. [2], with exception for v1 which is reduced by a factor 104 to increase
the fraction, as otherwise the simulations would be too computationally intensive. The
fraction with these parameters is φ = 0.0057 or γ = 174. For lower fractions, the model
should resemble exponential growth even more, so this increase in fraction is justified.
Unfortunately, results for fractions higher than this were inconclusive, as we were unable
to generate enough data to do a goodness-of-fit test. Thus for populations of Hip cells
where φ ≈ 0.01 these results do not hold.

There are two important things to note when interpreting the following figures: First,
all fitted distributions are showed with a continuous red line. This is purely for clarity,
as naturally the distributions used are discrete. Second, we fit distributions to the data
to show that the data could have come from these distributions. We use goodness-of-fit
χ2 tests to show that we do not reject the hypothesis that the data is generated by the
model. However, it is impossible to conclude that the data has been generated by the exact
proposed model. A p-value higher than the significance level (usually 0.05) thus allows us
only to conclude that the data could have been generated by the model.

If we take the initial conditions to be g = 1, p = 0, we expect a geometric distribution of
the number of cells with parameter e−λ1t = e−µg(1−φ)t as in section 4.3. We ran the Gillespie
algorithm until tstop = 3.5, so that the expected number of cells is e3.5µg(1−φ) = eλ1t. In
Figure 5.1 we see that the data (histogram) seems to fit the geometric distribution (red line).
A goodness-of-fit χ2 test yields a p-value of 0.2069, meaning the data fits the geometric
distribution. If we change the initial conditions to g = 20, p = 0, we expect to see a
sum of geometric distributions which is a negative binomial distribution. The expected
parameters are of course r = 20 and e−2λ1 , the number of geometric distributions and its
original parameter. The fit is shown in Figure 5.2. The p-value of this fit is 0.5479, thus
we conclude that the data fits the negative binomial distribution.

When setting the initial number of growing cells to zero, something interesting occurs. In
Figure 5.3 we see that the distribution of the growing cell again fits a geometric distribution!
The reason for this is that the persister cells do now grow themselves and v2 is small
compared to µg. Thus when the first persister cell switches to a growing cell, the process
starts to grow with initial condition g = 1. The second switch of a persister cell to a
growing cell usually occurs after the first cell has already grown to a larger population,
thus the second switch has almost no influence on the growth. The average time until the
first switch is e−20v2 . However, if we try to fit a geometric distribution with parameter
eλ1(t−e−20v2 ) we get a significantly low p-value. If we instead take as parameter the inverse
of the mean of the data, the p-value is 0.0868, which is a much better fit. Thus the data
fits a geometric distribution, but we do not know what the parameter is exactly.

However, we are of course interested in the behaviour of the parameter. We saw above
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Figure 5.1.: Distribution of growing cells given initial condition g = 1, p = 0 and ratio
γ = 174.0, fitted to a geometric distribution with parameter e−λ1t.

Figure 5.2.: Distribution of growing cells given initial condition g = 20, p = 0 and γ =
174.0, fitted to a negative binomial distribution with parameters 20 and e−λ1t.
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Figure 5.3.: Distribution of growing cells given initial condition g = 0, p = 20 and γ =
174.0. This looks a lot like the distribution of starting with a single growing
cell, although they differ significantly. Fitted is a geometric distribution with
mean determined empirically.

that simply treating the process as a lagged version of the process starting with a growing
cell gives a lower mean than it should. This can be explained by two reasons: First, the
first and second switch are not always far apart. If the second switch is close to the first,
the expected number becomes much higher. Second, the time until the first switch is not
always equal. Since the growth is exponential, outliers close to 0 have a massive influence,
as they can grow to values multiple times as large as the expectation. Outliers on the other
side do not cancel this out completely, as they still have positive expectation.

We also fitted distributions for persister cell numbers. As we expect the fraction to
become constant, we expect persister cells to also fit a negative binomial distribution. For
initial values g = 1, p = 0 and tstop = 3.5, we get Figure 5.4. We fit this to the geometric
distribution with parameter e−λ1t

γ
. The resulting p-value is 0.2497, thus the data fits this

geometric distribution. This also means that for initial conditions g > 1 the data should
fit a negative binomial distribution.
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Figure 5.4.: Distribution of persister cells given initial condition g = 1, p = 0 and γ = 174.0,
fitted to a geometric distribution with parameter(γ−1e−λ1t).
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Figure 5.5.: Distribution of persister cells given N = 2000 and γ = 174, meaning the
expected number of persisters is ≈ 11.5. The histogram is fitted to a
binomial(2000,φ) distribution.

5.3. Distribution of persister cells for a given total

population size

In Section 4.3 we showed that for a given constant fraction, the total number of cells follows
a negative binomial distribution. If we would also know the distribution of persister cells
given the total number of cells N and the fraction, we would be able to find an expression
for Pg,p = P (N total cells|t)P (p persister cells|N total cells). In this section we use a
variation of the Gillespie algorithm to find such a distribution.

Instead of stopping the Gillespie algorithm by limiting the time as in step 5 of 5.1, we
could run the algorithm but instead limit the total number of cells. We used the same
parameters as in Section 5.2. As the most simple model, we expect a binomial distribution
with parameters N and φ. Figure 5.5 shows that this is indeed a good fit, as the p-value is
0.2207. For low t the fraction usually is not yet in steady state, so we might expect to not fit
a binomial distribution yet. However, Figure 5.6 shows that a binomial distribution is still
a likely fit. Unfortunately, due to low computation power and extremely low probabilities
for p > 4 as seen in the figure, we were unable to properly perform a goodness-of-fit test
to this data.
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Figure 5.6.: Distribution of persister cells given N = 100 and γ = 174, meaning the ex-
pected number of persisters is ≈ 0.55. In red the binomial(100,φ) distribution
is shown.
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6. Results and Discussion

We aimed to study two questions related to the risk of extinction of a population: First,
given initial conditions at t = 0, what is the risk at any t > 0? Second, given a population
of certain size, what is the risk of this population? The answers to these questions depend
on the probability distribution defined of the growing and persister cells. This distribution
satiesfies the master equation (1.2). Although exact solutions to the master equation elude
us still, we were able to find two accurate solutions to the risk of a population. Still, there
is no simple answer to these questions, as we found that it depends on the initial conditions
and the reaction rates.

First, we were able to find the exact solution to the generating function of a simplified
model in 3.1. The exact expression for the risk in this model is given by (3.5). We showed
this simplification to be accurate for persister fractions up to about 0.06 in Section 3.2,
whereas usual fractions in cells are at most ≈ 0.01. For lower fractions, the approximation
becomes more accurate thus this simplification can certainly be useful for applications.

Second, if we assumed the fraction of persister cells to be constant, we were also able
to find an exact probability distribution for the model as shown in Section 4.3. This was
possible by treating the process as an exponential growth process, of which we derived the
exact probability distribution in Section 2. From this we derived another expression for
the risk in this model, using the distribution of persister cells given the number of total
cells, which we numerically showed to fit a binomial distribution in Section 5.3.

A comparison of the above two models is shown in Figure 6.1 and 6.2. One important
note is that in both these figures we start with a single cell at time 0. If the number of
cells at t = 0 would be n, the resulting graph would be the n’th power of these figures.
This is because we assumed cells to grow independent of each other, thus the probability
of zero persister cells in all processes is the product of having n times zero persister cells.

From Figure 6.1 we see that for high fractions, there are some differences. The main
difference is in the initial conditions: In the simplified model we assume g = 1, p = 0
at time zero, whereas in the constant fraction model we start with g = 1, p = 0 with
probability 1 − φ and g = 0, p = 1 otherwise. This corresponds to knowing that we start
with a single growing cell for the simplified model, and knowing we start with a single cell
of unknown phenotype in the constant fraction model. However, for lower fractions the
risk is almost equal in both models as we see in Figure 6.2. Thus for low fractions we
can use (4.17) to approximate the risk of extinction even if at t = 0 know that we have a
single growing cell! Compared to (3.5), this expression is much easier to work with and to
exactly calculate, as it does not involve the integral present in the latter.

We also showed how the reaction rates influence the risk using (3.5) and (4.17). Naturally,
both showed that an increase in µg decreases the risk, as a higher growth rate causes more
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Figure 6.1.: Model comparison for the risk as derived in (3.5) and (4.17) with µg = 2,
µp = 0, v1 = 0.12 and v2 = 0.1 so that γ ≈ 16.6.

growing cells to be created, which causes more cells to be in the persister state. However,
cells usually already try to maximize their growth rate, thus this is not nessecarily the
most interesting observation. More interesting is how the switching rates affect the risk,
as these rates are controlled by the cells. Both models also showed the same behaviour
with respect to the switching rates v1 and v2, as seen in Figures 3.2 and 4.3. We see
that v1 has the largest impact on the risk of the two, which is to be expected as v1 is
responsible for creating persister cells. Since the number of persister cells is usually low, v2

has little impact as the reverse switch rarely occurs. However, v2 is more important if we
were to consider populations that are exposed to stress, as it is responsible for restarting
population growth when all growing cells have died. Unfortunately, we did not study this,
but for further research in for example hedging strategies of persister cells, v2 certainly
plays an important role.

From the above, one might think that the best strategy for a cell is to simply maximize
v1. However, in the simplified model we assumed a switch from a growing cell to a persister
cell to not consume a growing cell. As such, increasing v1 would not be realistic. In the
constant fraction model, increasing v1 would increase φ and thus reduce the growth rate,
which is not desired. Of course, the best strategy for a population of cells depends on the
expected environment and the risk-growth rate tradeoff that they are willing to make.

Unfortunately, due to lacking computational power some results are not as elaborate as
we would like. Mainly, we would like for the true model from Section 3.2 to show larger
values of t. Also, in Section 5.2 we showed that the probability distributions of cell counts
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Figure 6.2.: Model comparison for the risk as derived in (3.5) and (4.17) with µg = 2,
µp = 0, v1 = 0.012 and v2 = 0.1 so that γ ≈ 174.

fit negative binomial distributions. However, we showed this for γ ≈ 174, as for lower
γ we were unable to generate enough data for a goodness-of-fit test to be accurate. For
normal cell populations, γ > 105 so this will not cause any problems. However, for high-
persistence cell populations γ ≈ 100 in some cases. Thus for these populations we cannot
yet fit their distributions. More research on this would increase our understanding of these
distributions.

A fundamental assumption of our model was that all reaction waiting times are expo-
nential random variables. However, in real-world applications these times are almost never
exponential. Using non-exponential waiting times would cause the process to not be a
Markov process, which is much harder to study mathematically. Kimmel and Axelrod
[32] show some results for non-Markovian branching processes, but these processes are not
nearly as well-studied as their Markovian counterparts. Simulating non-Markovian pro-
cesses is a feasible alternative to avoid complex or possible impossible mathematics, but
this is much more computationally intensive than simulating Markov processes. In the last
few years some work on creating algorithms for non-Markovian processes has been done
[30][31], which makes simulating non-Markovian processes feasible. However, no numerical
solutions to the non-Markovian persister process have been studied and analytical solutions
are also yet unexplored. We did construct a modified Gillespie algorithm to simulate the
persister cell model for non-Markovian processes, but due to lack of computational power
the results were inconclusive.

Some master equations are able to be solved exactly [28] by deriving a partial differential
equation from the master equation. For our model it is possible to derive such an equation
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as well, as we show in Section A.5. Unfortunately standard methods of solving this equation
proved ineffective.
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7. Popular summary

A well-known phenomenon in biology is bacterial resistance, in which bacteria adapt to
become resistant to stress by mutating their DNA. Less known is bacterial persistence,
in which cells exhibit a phenotypic switch to go into a dormant state, in which they
are tolerant to stress. The main differences are that the phenotypic switch is reversible,
and does not involve DNA mutations. Also, only a small subpopulation of bacteria is
usually in this persister state. Whereas resistance usually decreases fitness in non-stressful
environments, persisters have little effect on fitness. However, the rates at which cells switch
their phenotype are random variables, thus the number of persister cells in a population
varies heavily. Because of this, there is always a nonzero chance for a population to contain
no persisters, thus being at risk of extinction. We aim to study this risk and related factors
in this paper by constructing a mathematical model and studying the corresponding master
equation, which is an equation that is equivalent to the model.

Since the fraction of persister cells is usually very low (10−6 − 10−5), the model for per-
sister cells is very much like that of a simple exponential growth process. For exponential
growth, we derived an exact probability distribution. Using this, we constructed a sim-
plified model for persister cells, which we were able to exactly solve. We have shown this
simplified model to be accurate for low fractions of persister cells, thus having an accurate
expression for the risk. From this expression we see that the growth rate is the most in-
fluencial parameter with regards to the risk, greatly reducing the risk if the growth rate
is increased. However, cells usually already maximize their growth rate. Perhaps more
interesting is the influence of the switching rates on the risk. We see that the switching
rate from growing to persister cells has a major influence on the risk, whereas the reverse
switching rate has very little influence. However, this parameter is still very influencial as
it is responsible for the speed of population regrowth when all growing cells in a population
die due to stress.

As persister cell numbers are hard to find experimentally, we used numerical methods to
generate data on persister numbers. We used an algorithm called the Gillespie algorithm
to exactly simulate the master equation. With this simulation, we generated many paths
to accurately fit the probability distribution of the number of cells. Although this method
provides no proof of the exact distribution, it does show the shape of the distribution to
be close to what we expect on the basis of simple exponential growth.

Aside from the risk of the population, there are other factors that we are interested
in. Most importantly, the expected fraction of persister cells and the noise (normalized
variance) of the number of persisters. From the master equation, we could derive differential
equations for both the first and second moments of the probability distribution, thus we
were able to find the expectation and variance in the number of cells. From this we derived
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an exact expression for the fraction of persister cells, and showed that both the fraction
and the noise become constant in time. This is remarkable, as the number of cells keeps
growing indefinitely. We also showed that the steady state noise depends very heavily on
the initial conditions, and that the steady state fraction depends only on the reaction rates.
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A. Appendix

A.1. Markov property of models with exponential

waiting times

Suppose we have a process Y with (not necessarily finite nor countable) states y and let
P (yi, ti) be the probability of the process being in state yi at time ti. This process is a
Markov process if the equality

P (yn, tn|y1, t1; . . . ; yn−1, tn−1) = P (yn, tn|yn−1, tn−1). (A.1)

holds for all for any set t1 < t2 < . . . < tn. This means that the future of the process is
independent of all past states, thus only dependent on the currect state.

To be able to validate the master equation in the next section for our model, we have
to prove that it follows a Markov process. We show that any multitype process of which
the rates are distributed exponentially is a Markov Process. The state space of multitype
process with n types is Zn≥0. We will show that the transition probabilities satisfy (A.1).
We know that for the exponential distribution with parameter λ the probability of the
hitting time being larger than some t is

P (T > t) = e−λt.

The probability of multiple exponential distributions having hitting time larger than t is
given by the probability of all their individual hitting times being larger than t, thus the
product of the probabilities∏

i

Pi(Ti > t) =
∏
i

e−λit = e
−t

∑
i
λi
.

which is also an exponential distribution with parameter
∑
i

λi. We will show that this

means that the model satisfies (A.1). For an exponential distribution with parameter λ, it
holds for t > 0 by the definition of conditional probability

P (T > s+ t|T > s) =
P (T > t+ s)

P (T > s)
=
e−λ(t+s)

e−λs
= e−λt = P (T > t).

This means that the probability of an event occurring in the interval [0, t] is equal to the
probability of an event occuring in the interval [s, s+ t]. This implies that the future states
depend only on the currect state, thus (A.1) is satisfied.
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A.2. Derivation of the master equation

For a source and more elaboration on this section see Van Kampen(2007) [16].
Suppose a process P (yi, ti) satisfies (A.1). This allows us to compute probabilities of

events using only the initial probability at time t1 and transition probabilities:

P (y1, t1; y2, t2; y3, t3) = P (y1, t1)P (y2, t2|y1, t1)P (y3, t3|y2, t2). (A.2)

Integrating this with respect to y2 yields

P (y1, t1; y3, t3) = P (y1, t1)

∫
P (y2, t2|y1, t1)P (y3, t3|y2, t2)dy2. (A.3)

We then use P (y1, t1; y3, t3) = P (y1, t1)P (y3, t3|y1, t1) and divide by P (y1, t1)

P (y3, t3|y1, t1) =

∫
P (y2, t2|y1, t1)P (y3, t3|y2, t2)dy2. (A.4)

This is a well-known result, better known as the Chapman-Kolmogorov equation. If we
rewrite Tτ (y2|y1) = P (y2, t2|y1, t1), where τ = t1 − t2, equation A.4 becomes

Tτ+τ ′(y3|y1) =

∫
Tτ ′(y3|y2)Tτ (y2|y1)dy2, (A.5)

where τ ′ = t3 − t2.

Now let τ ′ be small. We look more closely at the probability Tτ ′(y3|y2). Let W (y3|y2)
be the transition probability per unit time from y2 to y3. Clearly, the total rate of leaving
state y3 is given by a0(y3) =

∫
W (y2|y3)dy2. Hence, the probability of staying in state y3 for

time τ ′ is 1−a0(y3)τ ′. Note that this assumes a maximum of one transition during time τ ′.
Furthermore, the probability of directly transitioning (without intermediate states) from
state y2 to y3 in time τ ′ is given by τ ′W (y3|y2). Again, this assumes τ ′ to be small enough
to allow only one transition. Lastly, the probability of moving from state y2 to a different
state twice is O(τ ′2). Thus, the total probability of transitioning from state y2 to state y3

in time τ ′ is given by

(1− a0(y3)τ ′δ(y3 − y2) + τ ′W (y3|y2) +O(τ ′2). (A.6)

Here δ denotes the δ-distribution. Since we assumed τ ′ to be small, we can disregard the
last term. If we insert this in the Chapman-Kolmogorov equation this becomes

Tτ+τ ′(y3|y1) =

∫
((1− a0(y3)τ ′)δ(y3 − y2) + τ ′W (y3|y2)Tτ (y2|y1)dy2

= (1− a0(y3)τ ′)Tτ (y3|y1) + τ ′
∫
W (y|y2)Tτ (y2|y1).
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Dividing by τ ′ and rewriting gives

Tτ+τ ′(y3|y1)− Tτ (y3|y1)

τ ′
= −a0(y3)Tτ (y3|y1) +

∫
W (y|y2)Tτ (y2|y1). (A.7)

Taking the limit τ ′ → 0 and writing out a0(y3) yields

dTτ (y3|y1)

dt
=

∫
W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)dy2. (A.8)

This is known as the master equation. By removing the conditioning on y1, it is more
commonly known in simpler form:

∂P (y, t)

∂t
=

∫
W (y|y′)P (y′, t)−W (y′|y)P (y, t)dy′. (A.9)

Or for discrete state spaces, which we will use later:

∂Pn(t)

∂t
=
∑
n

Wnn′Pn′(t)−Wn′nPn(t). (A.10)

Where Wnn′ is the rate of transition from state n′ to state p.

A.3. Non-Exponential waiting times generate

Non-Markovian processes

It is of importance to note that non-exponential waiting times would lead to a process that
is not Markovian. Because of this, studying such processes is much harder, as the master
equation does not hold. We will show that the only continuous probability distribution
that has this property is in fact the exponential distribution. If we assume a process to be
memoryless, i.e.

P (T > t+ s|T > t) = P (T > s),

and by using the definition of conditional probability we get

P (T > t+ s) = P (T > s)P (T > t).

This gives the equation
G(t+ s) = G(t)G(s).

The function G now satisfies

G(2) = G(1)2

G(3) = G(2)G(1) = G(1)3

...

G(n) = G(1)n.
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Also,

G(1) = G(
1

2
)2

G(
1

2
) = G(

1

4
)2

...

G(
1

2n
) = G(

1

2n+1
)2.

so that G( 1
2n

) = G(1)
1
n Then taking the binomial expansion p

q
=

∞∑
n=1

an2−n we get for

p
q
∈ (0, 1)

G(
p

q
) = G(

∞∑
n=1

an2−n) =
∞∏
n=1

G(an2−n) =
∞∏
n=1

G(1)an2−n = G(1)

∞∏
n=1

an2−n

= G(1)
p
q .

Here an ∈ {0, 1}. We will not prove that all rational numbers in (0, 1) have a unique
binomial expansion, as it is a well-known result.

This relation means that

G(x) = G(1)x = elog(G(1))x = e−λx.

for all x ∈ Q≥0. Since Q lies dense in R, the relations holds for all x ∈ R≥0. Since
λ = G(1) ≥ 0 as G is a probability, any memoryless distribution must be an exponential
distribution.

A.4. Probability distributions

A.4.1. Binomial distribution

The binomial distribution is a discrete probability distribution with parameters p ∈ [0, 1]
and n ∈ N. It has probability mass function

P (X = k) =

(
n

k

)
pk(1− p)n−k.

Its mean and variance are np and np(1− p).

A.4.2. Geometric distribution

The geometric distribution is a discrete probability distribution with parameter p ∈ [0, 1]
and probability mass function

P (X = k) = (1− p)k−1p.
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And generating function

F (z) =
pz

1− (1− p)z
.

Its mean and variance are 1
p

and 1−p
p2

respectively.

A.4.3. Negative binomial distribution

The negative binomial distribution is a sum of r independent geometric distributions with
parameter p ∈ [0, 1]. It has probability mass function

P (X = k) =

(
k − 1

r − 1

)
pr(1− p)k−r.

And generating function

F (z) = (
pz

1− (1− p)z
)r.

Its mean and variance are r
p

and r(1−p)
p2

respectively.

A.4.4. Exponential distribution

The exponential distribution is a continuous probability distribution with the special prop-
erty of memorylessness. It has parameter λ > 0 and probability density function

PX(x) = λe−λx.

Its mean and variance are 1
λ

and 1
λ2

respectively. It is a special case of the Gamma
distribution.

A.4.5. Gamma distribution

The Gamma distribution is a continuous probability distribution with shape and rate
parameters α > 0 and β > 0 and probability density function

PX(x) =
βα

Γ(α)
xα−1e−βx.

Its mean and variance are α
β

and α
β2 respectively. For α = 1 this is an exponential distri-

bution.

A.5. PDE methods for solving the master equation

As discussed in previous sections, the generating function (1.3) and the probability mass
function defined by the master equation (1.2) are equivalent. Hence, a solution to one
admits a solution to the other. By using the master equation, we can find a partial
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differential equation (pde) for the generating function. Although these pde’s are generally
not solvable, in some specific cases there are solutions [28].

Combining (1.2) and (1.3) yields

∂F

∂t
=
∑
g,p

sg1s
p
2

dPg,p(t)

dt

=
∑
g,p

sg1s
p
2{µg[(g − 1)Pg−1,p − gPg,p] + µp[(p− 1)Pg,p−1 − pPg,p]

+ v1[(g + 1)Pg+1,p−1 − gPg,p] + v2[(p+ 1)Pg−1,p+1 − pPg,p]}.

(A.11)

Since Pg,p = 0 for g < 0 or p < 0, for the µg term the following holds:

µg
∑
g,p

sg1s
p
2[(g − 1)Pg−1,p − gPg,p] = µg

∑
g,p

sp2s
g
1g(s1 − 1)Pg,p

= µgs1(s1 − 1)
∑
g,p

gsg−1
1 sp2Pg,p

= µgs1(s1 − 1)
∂F

∂s1

.

Similar equations can be done for the other three terms in (A.11). This together yields a
partial differential equation for the generating function:

∂F

∂t
= µgs1(s1 − 1)

∂F

∂g
+ µps2(s2 − 1)

∂F

∂s2

+ v1(s2 − s1)
∂F

∂s1

+ v2(s1 − s2)
∂F

∂s2

=
∂F

∂s1

[µgs1(s1 − 1) + v1(s2 − s1)] +
∂F

∂s2

[µps2(s2 − 1) + v2(s1 − s2)].

(A.12)

Unfortunately, despite the symmetry in this equation it is not solvable. We could numeri-
cally solve (A.12) using e.g. finite difference methods. However, we are interested not only
in the pgf but also in all of its derivatives. Since numerical methods become less accurate
for higher-order derivates, we refrain from trying to find solutions this way and instead
decided to focus on other approaches. However, if we study exponential growth, i.e. we
set v1 = v2 = µp = 0, we get

∂F

∂t
=
∂F

∂s1

µgs1(s1 − 1).

This equation was first solved by David Kendall in 1949 [22] and indeed has solution (2.3).
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