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Abstract

In this thesis we studymicrobial cross-feeding communities with nutrient-limited growth. Nutrient-
limited growth means that an essential nutrient for some microbe species is scarce in the environ-
ment, which affects the growth rate of the species. In particular, we study the systems in which
every species of microbes consumes an essential scarce nutrient that is produced by another species
in a microbial community of multiple species. The focus lies on systems that are such that microbe
concentrations can grow to infinity when time t approaches infinity and where the environment
does not change over time; it is different per microbial community whether the growth rates of the
species converge to the same rate or not.
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1
Introducࢢon

Amicroorganism, or microbe, is a microscopic organismwhich may exist in a single-celled form or
in a colony of cells.1 The culture2 of microorganisms is a method that has been used for millennia;
yeast and bacteria are for example used as mixed cultures for the preparation of cheese, beer or
bread. The technique has been known for so long and microbial forms of life are relatively simple,
but profound analysis on the growth of microbial communities is experienced to be complex. If
there is more known about the interaction between different species, one could obtain a better
understanding of biological processes found in a natural environment. This could also give the
(food) industry more insight for experiments with different cultures [1] [2].

The focus of this thesis is the growth dynamics of microbial communities when the growth of
the species is limited due to a shortage of one or more nutrients. JacquesMonod set a foundation for
the analysis on this subject, as he studied how growth rates are affected when there is a deficiency
of one nutrient [3]. He found (for particular microorganisms and nutrients) that the total increase in
concentration is proportional to the total intake of the limited concentration of the nutrient. Also, he
discovered how to express the growth rate in the exponential growth phase in terms of the limiting
nutrient. Even though these formulas come from empirical results, they are often accurate and thus
widely used.

Over the years, scientists studied this same problem in the case of growing microbes inside a
chemostat; based onMonod’s growth curves, this could also be theoretically analyzed. A chemostat
is a barrel to which a medium is continuously added, while liquid containing left-over nutrients,
metabolic end products and microorganisms are continuously removed at the same rate to keep the
volume constant [4]. In this continuous culture, the exponential growth of cells will be maintained
because there will be no depletion of the limiting nutrient since it is continuously added and other
conditions can be held in balance. This has the advantage that it can be both theoretically and
experimentally analyzed to check if indeed the same outcome is obtained. Moreover, since in this
case the volume is kept constant, the microbial concentrations in the chemostat are bounded (and
possibly converge to an equilibrium). However, this continuous inflow of an essential nutrient

1In this thesis, the words microbe, micro-organism or bacterium are used interchangeably.
2The term culture can be used for both the method as for the initial composition of species [1].
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actually controls the growth of the species, hence the method thus describes more of an industrial
way of modeling microbial communities [5] [6] [7].

In contrast to the continuous culture, the model that is studied in this thesis does not consider
any controlled inflow of an essential nutrient but the essential nutrients are only produced by the
microbes. The microbial cross-feeding process is initiated when fixed essential nutrient concentra-
tions are added and the concentration of the nutrients in the environment during the process only
relies on the consumption and production of the microbes, which is called a batch culture [4]. This
means that the growth rate of some species actually depends on the production of the essential nu-
trient by some other species and not on some additional inflow. Some research is done covering this
subject for the case that after some time the essential nutrients in the environment are completely
consumed, hence for which the microbial concentrations are bounded, such as the recent article by
Kong et al. [8].

In our case, we will consider the model in which the nutrient concentrations are not completely
consumed after some time, but stay present in the environment. This should be possible if every
essential nutrient is the product of at least one microbe species in the community. With the assump-
tions that the environment does not change over time in terms of pH-values, presence of inhibitory
nutrients or scarcity of another essential nutrient, this means that the microbe concentrations can
in theory grow infinitely large. Hence, the particular dynamics which are studied in this thesis are
purely theoretical but could give a good indication of how the long-term behaviour is for micro-
bial communities in large-scale environments. So unlike the aforementioned models in which the
analyzed microbe concentrations are bounded, we will discuss in this thesis a model in which the
microbe concentrations may grow to infinity when time approaches infinity. At the current time of
writing, this type of system has not yet been studied.

We want to know for which conditions the microbe concentrations can grow infinitely large
and we want to analyze the critical points at infinity: how can we obtain a model that shows what
happens in the long term? What can be said about the concentrations of the different species when
time t approaches infinity? The main question that ought to be proven to glue the pieces together
is: do the growth rates of the different species converge to some steady state value? A model and
an analysis are sought to represent and explain the dynamics of the community, which should also
be extendable to higher-dimension and a more complex cross-feeding system.

The following gives a short overview of what will be discussed in the chapters.

• Chapter 2. By using the results of Monod we can model a two-species system in terms of a
four-dimensional system of ordinary differential equations. The four-dimensional system can
subsequently be simplified to a two-dimensional system of differential equations with some con-
straints for the initial conditions.

• Chapter 3. Since the microbe concentrations can infinitely large the critical points lie on infinity,
so we want to compactify the space and observe the long-term dynamics. An intuitive choice for
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such compactification is to transform the space to a compact space in which the microbe con-
centrations x1, x2 are mapped to z = x1

x1+x2
, hence the fractional concentrations are considered.

Phase portraits are easily obtained to get a visualization of the dynamics and to show how pa-
rameters influence the phase portraits. However, the transformation appears to be less practical
for a mathematical analysis. The chapter is mainly based on numerical results and its purpose is
to see what can be expected in the mathematical analysis.

• Chapter 4. A different compactification is introduced, known as the Poincaré transformation. The
flow of the two-dimensional system on R2 will be projected onto the surface of the unit sphere.
With this projection, the critical points at infinity are mapped onto the equator of the sphere. The
dynamics on the sphere and the fixed points on the equator are mathematically analyzed. We will
conclude that the non-trivial equilibrium points on the equator are degenerate, which makes the
problem more complicated. By analyzing nullclines and other characteristic lines of the system,
we shall find that there is one stable equilibrium on the equator (on the first octant).

• Chapter 5. An extension of the model to a community of n species with a “cyclic” cross-feeding
topology is considered for which the Poincaré transformation is used again. We find that it is not
necessary to go into detail of the dynamics on the sphere around and still discover a lot about the
long-term behaviour by first considering only the nutrient dynamics to obtain a condition that
ensures unbounded growth for all species. In fact, it can be proved that the growth rate of every
species converges to the same value and their relative concentrations in this equilibrium can be
obtained.

• Chapter 6. Three alternative cross-feeding topologies of a three-species microbial community
is considered. The systems are obtained by considering different combinations of the consumed
and produced nutrient of a species. For two of the three systems, we are able to use the same
techniques as before to show the long-term behaviour. The third system is more complicated and
the techniques introduced are not sufficient to prove how the system behaves in the long term.
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2
Two-species cross-feeding system

This chapter is dedicated to introducing the two-species model with which will be worked, to give
an intuitive understanding of the parameters that are used. The results of Monod are presented to
show the relation between variables to obtain the main model of a two-species community.

2.1 Formulaࢢng the main model

Microbial growth is defined as the division of a micro-organism into two identical daughter cells.
A microbe first increases in biomass and duplicates its DNA, and will subsequently split into two
cells, both of which are genetically identical to the original cell. Mathematically speaking, if we
start with one cell and if the number of these doubling events is denoted by n, then the number of
cells after n doubling events is 2n. If a constant number of events per unit time is assumed, we
can write n = (doubling events/time)× time = r · t. It is convenient to rewrite this to the natural
exponent: 2n = 2rt = eln(2rt) = eln(2)rt = eµt, where µ can be defined as the growth rate. In
stead of the number of microbes of a species, we consider the concentration of the species which
describes a continuous process. For a given beginning concentration x0, the total concentration at
a time t can then be given by x(t) = x0e

µt. The rate of change of the microbe concentration over
time can then be expressed as dx(t)

dt
= dx0eµt

dt
= x0e

µtµ = x(t)µ.

FIGURE 2.1 A cell divides itself into two identical duplicates.

The growth rate µ does not have to be constant over time, as it is affected by different factors;
the concentration of a nutrient (required in order to grow) can be limited, the pH could change
to some value where the microbes cannot grow, an inhibitor in the medium could slow down the
growth, etc. Monod examined in his article The growth of bacterial cultures [3] how the growth
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evolves for different microbes in the presence of a limited concentration of an essential nutrient.
He discovered that the variable growth rate that depends on the the growth-limiting nutrient m,
denoted by Q(m), can be expressed as follows:

Q(m) = V
m

K + m
,

where V is the maximum growth rate, m is the concentration of the limiting nutrient and K is the
concentration of the nutrient at which the rate is half the maximum growth rate.

FIGURE 2.2 Monod found that the growth rate can be expressed in terms of the growth-limiting nutrient (l),
and that the total growth is proportional to the total intake of the limiting nutrient (r). Figures from the article
”The growth of bacterial cultures” of Monod [3].

There are a lot of different systems one can study, but to be able to understand and analyze more
complex systems, it is convenient to start with the most simple case; a cross-feeding community of
two species in which each microbe consumes an (non-excessive) essential nutrient which is pro-
duced by the other microbe. The concentrations of the growth-limiting nutrients in the environment
- hence the growth rates - thus depend on the production rates of these essential nutrients. The rates
of change of the limiting nutrients are then given by the rate of the total production minus the rate
of total consumption of the nutrients:



ẋ1 = Q1(m2)x1,

ẋ2 = Q2(m1)x2,

ṁ1 = p11x1 − c12x2,

ṁ2 = p22x2 − c21x1,

. (2.1)

Here the concentration of microbes of species 1 (resp. 2) is denoted as x1 (resp. x2), and the
concentration of the nutrient 1 (resp. 2) is denoted as m1 (resp. m2); the rate of producing nutrient
1 per unit concentration of species 1 is denoted by p11, and the rate of consuming nutrient 2 per
unit concentration of species 1 is denoted by c12. Figure 2.3 shows a schematic interpretation of
this system.
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FIGURE 2.3 The microbial species 1 excretes (produces) a substance which is the growth-limiting nutrient
for microbial species 2. Thus the increase in concentration (growth) of species 2 depends on the amount of
substance produced by species 1.

Monod also described that the total intake of a limiting nutrient ds is proportional to the total
change in growth dx, that is, dx = C · ds, C is defined as the yield of biomass on substrate
s. Hence the growth rate is proportional to the consumption rate: Q = dx

x dt
= C·ds

x dt
= C · c,

where c is the consumption rate. For convenience sake, I consider the inverse yield H := 1
C
, to

leave out unnecessary division signs. Similarly, there will be more excretion when there is a faster
growth rate, so that we should also consider that the production rate p is proportional to the growth
rate [5] [7] [8]. Hence G ·Q = p, where G can be viewed as the yield in terms of number of created
product per number of increased biomass. This means that we can substitute all the consumption
and production rates in (2.1) so that the fundamental model governing the dynamics is as follows:



ẋ1 = Q1(m2)x1,

ẋ2 = Q2(m1)x2,

ṁ1 = G11Q1(m2)x1 −H12Q2(m1)x2,

ṁ2 = G22Q2(m1)x2 −H21Q1(m2)x1,

where
Q1(m2) = V1

m2
K12+m2

,

Q2(m1) = V2
m1

K21+m1
.

(2.2)

Our main focus lies on analyzing the behaviour of the growth rates in system (2.2) when the
species have unbounded growth:

DEFINITION 2.1 A microbial species has unbounded growth if the microbe concentration grows to
infinity when t→∞.

It is not clear yet from the equations for which parameter values or initial conditions we actually
have unbounded growth. For the maximum growth rates V1 and V2 we would intuitively suspect
that the microbe species with the smallest maximum growth rate would be an important factor in
the system as this withholds the other from growing faster, since the production rate is growth rate
dependent. This is indeed what we will find in the next chapters.
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2.2 Simplificaࢢon to a two-dimensional system

The assumption that both consumption and production rates are proportional to the growth rates is
put to good use in this model. System (2.2) can be rewritten such that the following can be said:

THEOREM 2.2 Assume that the cross-feeding community of two species is modeled by the four-
dimensional system (2.2). This system can be written as a two-dimensional system governing the
growth dynamics for both species:

ẋ1 = V1
m2(x1, x2)

K12 + m2(x1, x2)
x1 := V1

G22x2 −H21x1 + C2

K12 + G22x2 −H21x1 + C2
x1,

ẋ2 = V2
m1(x1, x2)

K21 + m1(x1, x2)
x2 := V2

G11x1 −H12x2 + C1

K21 + G11x1 −H12x2 + C1
x2,

(2.3)

where Ci := −Giixi(0) + Hijxj(0) + mi(0) for i, j ∈ {1, 2} and i ̸= j in the equations can attain
any real value and can be seen as constraints of the initial conditions.

Proof: Consider the rate of change of the nutrients in the environment, one sees that they are ex-
plicitly given by the rates of change of the microbe concentrations. That is, we can rewrite the
system (2.2) to: 

ẋ1 = Q1(m2)x1,

ẋ2 = Q2(m1)x2,

ṁ1 = G11ẋ1 −H12ẋ2,

ṁ2 = G22ẋ2 −H21ẋ1.

(2.4)

If we integrate the derivatives of m1 and m2, the total concentrations of the nutrients can be explic-
itly given by the concentrations of the microbes (and initial conditions):

m1 = G11x1 −H12x2 + C1,

m2 = G22x2 −H21x1 + C2,
(2.5)

where C1 = −G11x1(0) + H12x2(0) + m1(0) and C2 = −G22x2(0) + H21x1(0) + m2(0) depend
on the initial microbe and nutrient concentrations. As m1 and m2 are now given in terms of x1 and
x2, substitute mi in the growth rates Qi so that the growth dynamics (2.2) can be expressed in just
x1 and x2.

Besides the advantage of this system just being defined in two variables, the downside is that the
growth rate function is now analytically more complicated and some characteristics of the dynamics
are less intuitive, but above all, the concentrations satisfy the conditions (2.5) at any time. This
means that for given C1 and C2, only those initial conditions that satisfy (2.5) can be considered;
to analyze trajectories with other initial conditions, the constants C1 and C2 should be adjusted
accordingly. Also, the microbe concentrations can grow to infinity in which case one can not speak
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of equilibrium points, but of critical points at infinity.
We want to know what the long-term behaviour of the growth rates is when the species show

unbounded growth. The following two chapters are dedicated to showing that the following con-
jecture holds.

CONJECTURE 2.3 Let the microbial system be given by (2.2). For positive initial conditions the
growth rates Q1 and Q2 converge to each other as t → ∞ when the species have unbounded
growth.

Chapter 3 helps to support this conjecture by visualizing the system using phase portraits, and
a mathematical proof is sought in Chapter 4. Not only do we want to prove this conjecture in a
2-dimensional system, the proof should also be extendable to a higher-dimensional system. These
analyses should also give insight into the conditions for the presence of unbounded growth.
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3
Fracࢢonal concentraࢢons

Since the microbe concentrations can grow to infinity, the critical points of the system lie at infinity.
To analyze what the long-term behaviour is like a compactification of the space is necessary; the
fractional (or relative) concentrations are considered. The main interest in this chapter is gaining
insight into whether these fractional concentrations converge at all, and if so, to which fractions and
for which conditions. From these observations a hypothesis about the behaviour of the microbial
community is made.

3.1 System of fracࢢonal concentraࢢons

Themicrobe concentration of one species relative to the total microbe concentration of both species,
hence the fractional concentration, is given by zi = xi∑

xj
for i = 1, 2. The transformation in this

chapter is based on this transformed variable, which results in the following:

THEOREM 3.1 The system of ODEs (2.3) can be transformed to a system defined on [0, 1]2 by the
transformation z = x1

x1+x2
and v = x1+x2

1+x1+x2
, yielding the following system:

ż = z(Q1 −Q2)(1− z),

v̇ = v(1− v)(Q1z + Q2(1− z)),
(3.1)

where Qi are the growth rates in terms of z and v.

Proof: One can obtain the differential equation for zi by substitution into the the short form of the
growth equations (2.3):

żi

∑
j

xj + zi

∑
j

ẋj =
˙(

zi

∑
j

xj

)
= ẋi = Qixi = Qizi

∑
j

xj,
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Rewrite this equation and substitute the derivatives ẋi for Qixi:

żi

∑
j

xj = Qizi

∑
j

xj − zi

∑
j

ẋj = Qizi

∑
j

xj − zi

∑
j

Qjxj = Qizi

∑
j

xj − zi

∑
j

Qjzj

∑
k

xk.

The summations
∑

xj can be cancelled out on both sides, as they are positive. Since z1 depends
on z2 by the relation z1 = 1 − z2, the dynamics of one fractional concentration also describes the
dynamics of the other. Set z := z1 and substitute z2 = 1 − z into the differential equation so that
the growth dynamics can be expressed in z:

ż = z(Q1 −Q2)(1− z)z.

This form seems nice, but the growth rates Q1 and Q2 still depend on the summation
∑

xj , as
explicitly shown for Q1:

Q1 = V1
G22(1− z)∑xj −H21z

∑
xj + C2

k12 + G22(1− z)∑xj −H21z
∑

xj + C2
,

with the sum
∑

xj possibly growing to infinity and whose behaviour is not yet described. Hence,
write s := ∑

xj , so that substitution of z = x1
s
into the growth equation (2.3) leads to the following:

ṡz = Q1sz − sż = Q1sz − s(Q1 −Q2)(1− z)z

= Q1sz − sQ1(1− z)z + sQ2(1− z)z = Q1sz2 + sQ2(1− z)z.

Thus the differential equation for s is defined as:

ṡ = s(Q1z + Q2(1− z)).

So we now have a system of differential equations in z and s describing the growth dynamics of
the original system. However, we have not yet dealt with the fact that this variable might grow to
infinity for t→∞; by using the transformation v := s

1+s
, the dynamics are mapped to a bounded

set. The differential equation for this transformed variable is given as follows:

v̇ = (1 + s)ṡ− ṡs

(1 + s)2 = ṡ

(1 + s)2 .

Since the inverse transformation is denoted by s = v
1−v

, one has 1 + s = 1 + v
1−v

= 1
1−v

. Hence v̇

can be expressed as follows:

v̇ = ṡ(1− v)2 = s(Q1z + Q2(1− z))(1− v)2 = v(1− v)(Q1z + Q2(1− z)).

10



Ultimately, the growth rates Q1, Q2 are written in terms of z and v, as shown for Q1:

Q1(z, v) = V1
G22(1− z) v

1−v
−H21z

v
1−v

+ C2

k12 + G22(1− z) v
1−v
−H21z

v
1−v

+ C2
.

3.2 Phase plane analysis

From the two dimensional system of ODEs (3.1) a phase portrait can be obtained for chosen values
of the parameters, so that the dynamics can be studied, see Figure 3.1. It is important to have
these parameter values such that most of the characteristics of the behaviour are visualized, and
such that they are biologically relevant (excluding mathematically special cases). Changing these
parameters results in a different phase portrait and will be discussed in Section 3.3. We assume that
the maximum growth rates satisfy V1 > V2. Since we fix C1 and C2 any point in the (z, v)-plane
satisfies m1 = G11x1 −H12x2 + C1 and m2 = G22x2 −H21x1 + C2.

FIGURE 3.1 Example of a phase portrait on the (z, v)-plane, with maximum growth rates V1 = 10, V2 = 7
and the other parameters set to G11 = 5, G22 = 1, H12 = 3, H21 = 1, K12 = 1, K21 = 3, C1 = 2, C2 = 1.

In this plane, v = 1 corresponds to
∑

i xi → ∞ in the original system. We see that many
trajectories converge to a certain point on the boundary v = 1. However, trajectories also seem
to emerge from this same point towards the point z = 1 on the boundary v = 1. Moreover,
considering these trajectories that converge to (1, 1), this would mean that the growth rate of one
species is always bigger than the other so that eventually z = x1

x1+x2
→ 1. It is also unclear what

really happens around the lines where the flow changes directions.
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3.2.1 Biologically meaningful region

The reason of aforementioned odd behaviour is due to an additional restriction that should be
taken into account. The plane shows the dynamics of the trajectories that satisfy the conditions
m1 = G11x1 −H12x2 + C1 and m2 = G22x2 −H21x1 + C2, while not necessarily satisfying that
mi is positive. For a biologically meaningful trajectory, this should of course be the case.

THEOREM 3.2 For the system (3.1) the region in [0, 1]2 in which is satisfied that the nutrient con-
centrations are positive, is enclosed by the curves

v = C1

H12 − (G11 + H12)z + C1
, (3.2)

and
v = C2

(G22 + H21)z −G22 + C2
. (3.3)

Proof: The region of the pairs that satisfy the condition of positive nutrient concentrations, is de-
duced by the two expressions for the nutrient concentrations m1 and m2:

G11x1 −H12x2 + C1 > 0, G22x2 −H21x1 + C2 > 0.

It is possible to express the variable x2 in the variable x1 and the parameter Ci:

x2 <
G11x1 + C1

H12
, x2 >

H21x1 − C2

G22

Suppose that both Ci > 0. Let us consider the upper bound for x2, for which z satisfies:

z = x1

x1 + x2
>

x1

x1 + G11x1+C1
H12

= H12x1

(G11 + H12)x1 + C1
.

This inequality can be rewritten to an inequality of x1 in terms of z:

x1 <
C1z

H12 − (G11 + H12)z
.

Since v is increasing in x1+x2, one can obtain the inequality for v by using the fact that by definition
x1 + x2 = x1

z
:

v = x1 + x2

1 + x1 + x2
=

x1
z

1 + x1
z

<

C1
H12−(G11+H12)z

1 + C1
H12−(G11+H12)z

= C1

H12 − (G11 + H12)z + C1
. (3.4)

This expression gives us explicitly the lower bound for z for different values of v, as shown in the
left figure of Figure 3.2.

In the same way, the lower bound of x2 can be considered, from which the second bound of the

12



FIGURE 3.2 The marked region for which pairs (z, v) satisfy the restrictions.

region can be obtained:

v >
C2

(G22 + H21)z −G22 + C2
, (3.5)

which will be called the upper bound (as it bounds z from above).
One can show that this region is invariant by considering the original system (2.2), for which

we want to show that the concentrations cannot become negative when we start with non-negative
values.

THEOREM 3.3 The biologically meaningful region is an invariant region.

Proof: Consider system (2.2) and suppose that x1, x2, m1, m2 ≥ 0. As long as m1 ≥ 0 then
ẋ2 = Q2(m1)x2 ≥ 0, thus x2 is non-decreasing; analogously for m2 and x1. Suppose that m1 can
become negative. By continuity, it should first reach m1 = 0. However, m1 = 0 yields Q2 = 0
so that the derivative is ṁ1 = G11Q1x1, which can only be negative if m2 is already negative (or
x1 < 0 but also then m2 has to have been negative). Also for m2 the same arguments show that it
can only become negative if m1 is already negative. So positive concentrations of the nutrients and
microbes cannot become negative. Since the biologically meaningful region is the transformation
of the region where x1, x2, m1, m2 ≥ 0 in the original system, it proves the invariance.

3.2.2 Contour plot of nutrient concentraࢢon

From the plot of the restricted region, we see that the trajectories inside the region move towards a
point to which also the bound of the region converges. As this bound is in fact the line on which
m2 = 0, it seems that the trajectories converges to a point where at least one nutrient depletes (and
the growth rate converges to zero). This section will give insights into this oddity.

In the previous subsection, we studied the curves where the nutrient concentrations are equal to
zero. Instead of considering zero, any other fixed value b for the concentration could be considered,

13



so that the two conditions can be written for x2:

x2 = G11x1 + C1 − b1

H12
, x2 = H21x1 − C2 + b2

G22
.

The same rewriting to an expression of v in terms of z can be done (as in (3.2) and (3.3)), which
results in the the expression of the curve on which m2 = b2:

v = C2 − b2

(G22 + H21)z −G22 + C2 − b2
, (3.6)

and the expression for the curve on which m1 = b1, being given by:

v = C1 − b1

H12 − (G11 + H12)z + C1 − b1
. (3.7)

One can observe that for the curves defined by (3.6), v → 1 is satisfied if and only if z → G22
G22+H21

.
So this means that every curve on which m2 = b2 for any value b2 ∈ R intersect the point
(z, v) = ( G22

G22+H21
, 1). The same can be said about m1 = b1 for any b1 ∈ R which intersects

the other point in v = 1. The contour plots for the concentrations m1 and m2 expressed in z and v

are shown in Figure 3.3.

FIGURE 3.3 Contour plots for m1 (left) and m2 (right) for the same parameter settings the phase portraits,
showing the values of these variables in the domain.

The observation that all these curves come together at the same point explains why the nutrient
concentrations do not necessarily converge to zero even though the trajectories converge to the
point which the curve m2 = 0 intersects.

CLAIM 3.4 For i = 1, 2, at the intersection point of the curves on which mi = bi for bi ∈ R, the
value of mi is undefined.

These plots also explain the behaviour in the upper corners where the arrows change direc-
tion (outside the meaningful region); this change of direction happens exactly on the curve where
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m1 = −K21 and on the curve wherem2 = −K12, for which the denominator in the growth rates are
zero. Hence around each curve one of the growth rates changes from −∞ to∞. These curves ob-
viously lie outside the biologically meaningful region, since the at least one nutrient concentration
mi is negative.

3.3 Long-term behaviour for adjusted parameters

In what way do the parameters influence the dynamics of the system? The phase portrait changes
when a parameter is adjusted and these changes will be discussed in this subsection. The most
important part is to analyze the bounds of the invariant region, as the dynamics inside the region
do not seem to change much.
INFLUENCE OF C Recall that Ci is determined by initial conditions. However, since we fix Ci to
draw the phase portraits, these parameters actually give a condition that the initial values should
satisfy. The bounds of the biologically meaningful region are both the curve on which m1 = 0 and
the curve on which m2 = 0. By viewing the equations for the bounds (3.4) and (3.5), one can see
that a decrease in Ci gives the same result as an increase in bi. Considering the contour plots of mi

in Figure 3.3, one can then see that an increase in C1 makes the lower boundary of the invariant
region move to the left, whereas an increase of C2 makes the upper bound of the region move to
the right.

FIGURE 3.4 Several phase portraits for fixed value C2 and varying C1 (from positive to negative values).
From the definition of Ci one should note that it is indeed biologically meaningful that this value may be
negative. Note that the biologically meaningful region is the region in [0, 1]2 enclosed by the lower and
upper bound for z.

INFLUENCE OF THE YIELDS For v = 1, the lower bound lies on z = H12
G11+H12

, while the upper bound
lies on z = G22

G22+H21 . Hence the lower bound is to the left of the upper bound if and only if

H12

G11 + H12
≤ G22

G22 + H21
⇐⇒ H12(G22 + H21) ≤ G22(G11 + H12) ⇐⇒ H12H21 ≤ G22G11

⇐⇒ 1 ≤ G22G11

H12H21
.

When this ratio is smaller than 1 the upper bound lies to the right of the lower bound in v = 1 so
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trajectories in the biologically meaningful region do not reach v = 1, hence the microbe concen-
trations then do not grow to infinity, see Figure 3.5. This is an important ratio which makes the
difference whether the microbe concentrations can grow to infinity or not.

FIGURE 3.5 Decrease in the yields ratio also influences where v converges to, in these particular figures only
the yields H12 and G11 were adjusted; adjusting the other two yields shifts the other bound. The right figure
shows the case when the parameters are such that the microbe concentrations cannot grow infinitely large.

INFLUENCE OF THE MAXIMUM GROWTH RATEWe assumed in this section that V1 > V2. One might
deduce that if V1 < V2 the dynamics will change in such a way that all trajectories now converge
to the lower bound of the invariant region in v = 1 instead of to the upper bound in the case of
unbounded growth.
INFLUENCE OF K There are constants Kij in the growth rates, which depends on the species and
limiting nutrient used. This only changes the dynamics slightly, in particular when the nutrient
concentrations are small; the constantKij influences the slope of the growth rate in such a way that
for smaller Kij the maximum growth is reached for a lower concentration of the nutrient.
INFLUENCEOF TYPEOF GROWTHRATEOne can see that as long as the growth rate is a monotonically
increasing bounded function of the nutrient, it will result in the same dynamics as seen above. Just
like the the influence of Kij , only the short-term behaviour is different, but since the total nutrient
concentration always grows to infinity, one growth rate reaches its maximum which then limits the
other growth rate.

From the aforementioned observations, one knows how the stream plot changes when parame-
ters are adjusted. This kind of phase plane analysis shows heuristically the converging behaviour,
but a cohesive algebraic proof is missing, so the following shall not yet be stated as a theorem; it
will rather act as a guideline for the analysis done in the next chapter.

CLAIM 3.5 Let the growth dynamics be given by the transformed system (3.1) and suppose that
G11G22
H12H21

and V1 > V2. In the biologically meaningful region, every trajectory converges to the point
(z, v) = ( G22

G22+H21
, 1). Hence the proportion of the microbe concentrations will converge to

x1

x2
= z

1− z
=

G22
G22+H21

1− G22
G22+H21

= G22

G22 + H21 −G22
= G22

H21
.
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3.4 Discussion on the fracࢢonal transformaࢢon

Compactifying the system by considering fractional concentrations of the microbes is an intuitive
way of approaching the problem. The analysis performed was quite specific and rather computa-
tional. We could see exactly what the dynamics looked like and how the parameters influence the
behaviour. The important results came from the plots that showed the biologically meaningful re-
gion (where the nutrient concentrations are positive) where we noticed that G11G22

H12H21
is an important

ratio that determines whether the trajectories can converge to v = 1, hence for which the microbe
concentrations have unbounded growth. The contour plots of m1 and m2 showed the intersection
of the lines on which mi = bi for any bi ∈ R on v = 1, giving that the nutrient concentration is
not defined in this intersection. Since the equilibrium point in v = 1 to which the trajectories in
the biologically meaningful region converge coincides with (at least) one of these intersections, (at
least) one growth rate is not defined in the equilibrium point; hence it is not clear yet from these
plots what the long-term behaviour of the growth rates is in the case of unbounded growth.

Instead of observing what happens, we want to know why it happens; what are the important
factors of the system such that trajectories converge to a given point and which of the results will be
useful for the analysis of a higher-dimensional system? A different transformation to compactify
the system will be presented and a mathematical analysis will be performed in which the equilib-
rium points are attempted to be classified with linear stability analysis. Linear stability analysis
could have also been done for the preceding transformation but we only show it for the following
transformation since characteristics are more elegantly described and is therefore more appropriate
for the higher-dimensional case. We can eventually compare the two transformations and discuss
their similar characteristics.
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4
Projecࢢon onto the sphere

We will perform in this chapter a different compactification of the two-dimensional system that
was obtained in Chapter 2:

ẋ1 = V1
m2(x1, x2)

K12 + m2(x1, x2)
x1 := V1

G22x2 −H21x1 + C2

K12 + G22x2 −H21x1 + C2
x1,

ẋ2 = V2
m1(x1, x2)

K21 + m1(x1, x2)
x2 := V2

G11x1 −H12x2 + C1

K21 + G11x1 −H12x2 + C1
x2,

(4.1)

An alternative approach of studying the behaviour of trajectories at infinity is by using the Poincaré
sphere, introduced by Henri Poincaré in his articleMémoire sur les courbes définies par une équa-
tion différentielle [10]. A more readable version of this approach can be found in the book Differ-
ential Equations and Dynamical Systems [9]. There will be a projection from the center of the unit
sphere S2 = {(X, Y, Z) ∈ R : X2 + Y 2 + Z2 = 1} onto the (x1, x2)-plane, which lies tangent to
S2 at the north pole, as shown in Figure 4.1. The critical points at infinity are then mapped along
the equator of the sphere, on X2 + Y 2 = 1. The positive plane (x1 > 0, x2 > 0) is mapped to the
first octant; we will study the whole first octant instead of only the biologically meaningful region

FIGURE 4.1 Projection of the (x, y)-plane onto the surface of the unit sphere. Figure from the book Differ-
ential Equations and Dynamical Systems [9].
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on which we should be able to classify the equilibrium points by linear stability analysis. This then
also gives information about biologically meaningful orbits.

We already observed in the previous chapter that there are lines in the plane on either side of
which trajectories go in opposite directions. These are the lines where Qi → ∞ which are the
singularities in the system that happen because the denominator goes to zero. One can eliminate
the singularities from the system by multiplying both equations by the denominators of Qi so that,
setting

L[x1, x2] = (K21 + m1(x1, x2)(K12 + m2(x1, x2)),

the following system is obtained:
L[x1, x2]ẋ1 = p1(x1, x2)x1,

L[x1, x2]ẋ2 = p2(x1, x2)x2,
(4.2)

where p and q are quadratic polynomials in x1 and x2 given by

p1 = V1m2(x1, x2)(K21 + m1(x1, x2)),

p2 = V2m1(x1, x2)(K12 + m2(x1, x2)).

Normally, when there is a constant α in front of the time derivative, one can substitute it inside the
derivative by the time scale t = ατ . Then dz

dt
= dz

dτ
dτ
dt

= dz
dτ

1
α
. Similarly, a non-constant can be

taken into the time derivative, in such a way that L[x1, x2] dτ = dt. In the scaled time derivative,
the system is given by: x′

1 = p1(x1, x2)x1,

x′
2 = p2(x1, x2)x2.

(4.3)

The phase planes of (4.2) and (4.3) are actually the same, but orbits are traversed with different
speed and (possibly) directions. At the positions in the plane where pi is negative the derivative in
scaled time τ will be of opposite sign as the the derivative in the original time t; hence the orbit is
traversed in the opposite direction. The advantage of this is that the orbits do not change direction
around the lines of singularity as we saw in the previous chapter. Note that pi by definition can
only be negative outside the biologically meaningful region.

4.1 Poincaré transformaࢢon

In order to have the planar dynamics projected onto the Poincaré sphere, the system undergoes the
following transformation:

THEOREM 4.1 Let the system of ODEs be given by (4.3). By introducing the new variables X, Y, Z

as x1 = X
Z

, x2 = Y
Z

, X2 + Y 2 + Z2 = 1, the system can be projected onto the unit sphere with the
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dynamics given by: 
Ẋ = XP1 + X (−X2P1 − Y 2P2) ,

Ẏ = Y P2 + Y (−X2P1 − Y 2P2) ,

Ż = Z (−X2P1 − Y 2P2) .

(4.4)

where

P1 = V1
(
−H21X + G22Y + C2Z

)(
G11X −H12Y + (C1 + K21)Z

)
,

P2 = V2
(
−H21X + G22Y + (C2 + K12)Z

)(
G11X −H12Y + C1Z

)
.

Proof: We will show this by considering a modified Poincaré transformation:

x1 = X

Zα
, x2 = Y

Zβ
, Xa + Y b + Zc = 1,

where α, β, a, b, c will be defined later. In some cases, different values for these parameters may
give a projection fromwhichmore information about critical points can be obtained [11]. Substitute
these variables into the equations (4.3):

ZαX ′ − αZα−1Z ′X

Z2α
= x′

1 = x1p1(x, y) = X

Zα
p1(

X

Zα
,

Y

Zα
),

ZβY ′ − βZβ−1Z ′Y

Z2β
= Y

Zβ
p2(

X

Zβ
,

Y

Zβ
).

Since p1 and p2 are quadratic polynomials, in order to remove the singularities, multiply the first
equation by Z3α and the second by Z3β:

Z2αX ′ − αZ2α−1Z ′X = XP1(X, Y, Zα),

Z2βY ′ − βZ2β−1Z ′Y = Y P2(X, Y, Zβ),

where P1 and P2 are deduced from the multiplication of p and q with Z2α and Z2β respectively:

Z2αp1(
X

Zα
,

Y

Zα
) = Z2αV1(−H21

X

Zα
+ G22

Y

Zα
+ C2)(G11

X

Zα
−H12

Y

Zα
+ (C1 + K21))

= V1(−H21X + G22Y + C2Z
α)(G11X −H12Y + (C1 + K21)Zα)

=: P1(X, Y, Zα),

and same for P2. Choose α and β such that the exponents are the same, i.e., choose α = β (solving
for Z ′ will then be easier):

Z2αX ′ − αZ2α−1Z ′X = XP1(X, Y, Zα), (4.5)

Z2αY ′ − αZ2α−1Z ′Y = Y P2(X, Y, Zα). (4.6)
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The third condition is imposed to close the system, for which the derivative is given by:

aXa−1X ′ + bY b−1Y ′ + cZc−1Z ′ = 0. (4.7)

To solve the equations (4.5)-(4.7) for Z ′, multiply the first by−aXa−1, the second by−bY b−1 and
the third by Z2α, so that after cancellation of terms the sum of these becomes:

(αaXa + αbY b + cZc)Z2α−1Z ′ = αaZ2α−1Z ′Xa + αbZ2α−1Z ′Y b + cZc−1+2αZ ′

= −aXaP1 − bY bP2.

To simplify the part inside the brackets by making use of the third constraint, we want to have that
αa = αb = c, which implies that a = b and c = αa and the equation writes to:

αZ2α−1Z ′ = −XaP1 − Y aP2.

Comparing this expression with the equations (4.5) and (4.6), we see that it can be readily substi-
tuted to obtain expression for X ′ and Y ′ and Z ′:

Z2αX ′ = XP1(X, Y, Zα) + X(−XaP1 − Y aP2),

Z2αY ′ = Y P2(X, Y, Zα) + Y (−XaP1 − Y aP2),

Z2α−1Z ′ = 1
α

(−XaP1 − Y aP2).

To have the same terms in front of the derivatives, multiply the third equation by Z, so that we can
scale the time variable with Z2α to obtain the desired equations in terms of α and a. It is clear that
the choice for a and α does not really matter, as they do not make the system much different. In
particular, there is no certain choice in these parameters so that there is no degeneracy of the fixed
points on Z = 0.1 So choose a = b = c = 2 and α = β = 1, which is the standard Poincaré
transformation.

REMARK I chose in the beginning α and β to be equal. This simplified the derivation of the expres-
sion for Z ′, but could possibly exclude a more suitable choice of these parameters. Without loss of
generality, suppose α < β, then the equations become:

Z2α+2βX ′ = −X(−cP1Z
c+2β + bP2Y

bZ2αα− bP1Y
bZ2ββ),

Z2α+2βY ′ = −Y (−cP2Z
c+2α + aP2X

aZ2αα− aP1Y
bZ2ββ),

Z2α+2βZ ′ = −Z(bP2Y
bZ2α + aP1X

aZ2β).

The degeneracy happens at Z = 0 in the points where P1 = P2 = 0. We want the smallest exponent
with respect to powers of Z in the three equations to be equal. However, the smallest term for Z ′

1More on the presence of non-hyperbolic equilibra in the next subsection.
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will be Z2α+1, whereas the smallest term for the other two equations is at most Z2α. Since these
terms do not coincide, it is not possible to choose α in such a way that the smallest exponent for Z

are equal for the equations. Hence, if we would divide out Z2a, there will always remain a term Z

in front of the expression for Z ′, whereas the other two expressions then have terms independent
of Z. One can see that both Z = 0 and P1 = P2 = 0 give that Z ′ = 0; this is what gives the
complication when considering linear stability analysis in Section 4.2. The non-trivial equilibrium
points happen to lie on the points where Z = 0 and P1 = P2 = 0; the derivative to any variable
(X, Y, Z) of the expression for Z ′ evaluated in these points will equal zero. See Theorem 4.4.

In this system, Z → 0 corresponds to x, y →∞ in the original system, which indeed occurs as
we are looking at the unbounded growth case. The equilibria for positive X, Y, Z can be obtained
by considering the different combinations of fixed points of the three variables; there are in the
positive octant X, Y, Z ≥ 0 three trivial equilibria:

(X = 0, Y = 1, Z = 0), (X = 1, Y = 0, Z = 0), (X = 0, Y = 0, Z = 1),

and several non-trivial equilibria given in terms of P1 and P2:

(X = 0, P2 = 0), (Y = 0, P1 = 0), (P1 = 0, P2 = 0).

The exact points of the equilibria implicitly defined by (P1 = 0, P2 = 0) will be derived in the next
section. First, some properties of these lines are shown in the following subsection.

4.1.1 The first octant and properࢢes on it

In this subsection, we will have a closer look at some of the properties of the functions P1 and P2 on
the first octant which are necessary for further analysis on stability of equilibrium points. From the
definition of P1 and P2 one can see that each function is a product of two functions. For simplicity,
define the following:

DEFINITION 4.2 Let the functionsM1 andM2 be defined as follows:

M1 = G11X −H12Y + C1Z, M2 = G22Y −H21X + C2Z.

The functions P1 and P2 can be written in terms ofM1 andM2:

P1 = V1M2(M1 + K21Z), P2 = V2(M2 + K12Z)M1.

From the definition ofM1 andM2 one can see that these functions are influenced by the yield
parameters and (especially) by the parametersC1 andC2. For example, the pointM2 = 0 on Y = 0
can be expressed as X

Z
= C2

H21
; if C2 > 0 this point lies on X > 0 (on the positive hemisphere),

but if C2 < 0 this point lies on X < 0 (on the positive hemisphere). One might observe from
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FIGURE 4.2 The red and blue lines are the zeroes for P1 and P2 respectively for C1, C2 > 0 and G11G22
H12H21

> 1.
Proposition 4.3 shows that in B both P1 > 0 and P2 > 0.

Figure 4.2 that in the latter case it is possible thatM2 = 0 andM1 = 0 intersect in the first octant,
hence a new equilibrium point arises (since in this intersection P1 = P2 = 0). Considering this,
we start with the assumption that C1, C2 > 0.

The intersections P1 = P2 = 0 on the equator can be explicitly given by:

A := {(X, Y, Z) ∈ S2 : Z = 0,
X

Y
= G22

H21
},

B := {(X, Y, Z) ∈ S2 : Z = 0,
X

Y
= H12

G11
}.

One can see that the lines P1 = 0 and P2 = 0 through A in fact only intersect in A (in the first
octant) since they are given byM2 = 0 andM2 = −K12Z, hence only equal in Z = 0 (since
K12 ̸= 0). The same is true for the zeroes of P1 and P2 through B.

Finally, we see that for the ratio G11G22
H12H21

> 1 point A is to the left of point B on the equator.
Hence for G11G22

H12H21
> 1 the only intersection of the lines P1 = 0 and P2 = 0 is on the equator (note

how there would be more intersections when A moves to the right of B), thus we also start with
assuming this condition.

Finally, denote B as the region that is enclosed byM1 = 0 andM2 = 0 as depicted in the
Figure 4.2.

PROPOSITION 4.3 P1 is positive in the region enclosed by its zeroes P1 = 0 and negative outside.
P2 is positive in the region enclosed by its zeroes P2 = 0 and negative outside. Hence in the interior
of the region B both P1 and P2 are positive.

Proof: On Z = 0,M1 > 0 ⇐⇒ G11X > H12Y andM2 > 0 ⇐⇒ G22Y > H21X . One
can see that these conditions are exactly the points A and B; between these points on the equator
both functionsM1 andM2 are positive. This implies that P1 and P2 are positive on the equator
between A and B. We can furthermore deduce that to the left of A we haveM1 > 0 andM2 < 0,
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whereas to the right of B we haveM1 < 0 andM2 > 0. Hence outside the interval between A

and B on the equator we have that both P1 < 0 and P2 < 0.
From the signs of the functions P1 and P2 on the equator we can derive the signs of P1 and P2

on the first octant enclosed by their respective zeroes P1 = 0 and P2 = 0.

REMARK (Assumpࢢons) In the following analysis we assume that both C1 > 0 and C2 > 0 and
that G11G22

H12H21
> 1. As before, we also assume that V1 > V2.

4.2 Projecࢢon onto tangent planes

The flow can again be projected onto planes tangent to S2 so that equilibria are more easily classi-
fied. If the surface is projected onto the plane X = 1, then in any neighbourhood of a critical point
on the equator the flow is topologically equivalent to the flow defined on the plane X = 1, except
on the points (0,±1, 0) [9]. In particular, all of the equilibrium points onX = 0 are projected to∞.
To be able to classify all equilibrium points on the sphere, we consider both projections ontoX = 1
and onto Y = 1. Points on the equator of the sphere will be denoted by the fraction X

Y
, which is

unique on the positive octant. In this way, one can immediately obtain the actual relative microbial
fraction when a trajectory on the sphere converges to a point, since X

Y
=

X
Z
Y
Z

= x1
x2
. Moreover, the

points on the equator are in general more easily expressed using fractions.

4.2.1 Projecࢢon onto X=1

The projection onto the plane X = 1 is done by setting X = 1 in the system of equations. This
also means that there is no change in the X direction, so that the system on this plane can be given

FIGURE 4.3 Projection of the dynamics on the surface of the sphere onto planes tangent to the sphere. The
flows on the tangent planes are topologically equivalent to the flows on the sphere. Figure from the book
Differential Equations and Dynamical Systems [9].
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in the variables y and z: ẏ = y(P2 − P1 − y2P2),

ż = z(−P1 − y2P2),
(4.8)

where now

P1 = V1(−H21 + G22y + C2z)(G11 −H12y + (C1 + K21)z),

P2 = V2(−H21 + G22y + (C2 + K12)z)(G11 −H12y + C1z).

Using the same letters P1 and P2 on this plane should not be confusing in the context of the lower-
case variables y and z. The equilibria in this system are denoted by:

(y = 0, z = 0), (y = 0, P1 = 0), (P1 = 0, P2 = 0).

The points A and B on the sphere (on the equator on which P1 = P2 = 0) are mapped to
(y, z) = (H21

G22
, 0) and (y, z) = (G11

H12
, 0) respectively.

4.2.1.1 Linear stability analysis gives no informaࢢon on the equator

In this subsection we want to classify the equilibrium points on the plane on which the flow is
projected with linear stability analysis. However, we will find that for the non-trivial equilibria
it is not possible to do so. To summarize the classifications a figure is made with the classified
equilibrium points in the next section. The Jacobian matrix is given by

J =

P2 − P1 − y2P2 + Y (P2y − P1y − y2P2y − 2yP2) y(P2z − P1z − y2P2z)

z(−P1y − y2P2y − 2yP2) −P1 − y2P2 + z(−P1z − y2P2z)

 .

Evaluating the Jacobian at the trivial equilibrium (y = 0, z = 0) gives:

J |(y=0,z=0) =

P2 − P1

∣∣∣
(y=0,z=0)

0

0 −P1

∣∣∣
(y=0,z=0)

 .

With the assumption of V1 > V2, one can easily obtain that in this equilibrium

P1

∣∣∣
(y=0,z=0)

= −V1H21G11 < −V2H21G11 = P2

∣∣∣
(y=0,z=0)

< 0,

so that P2 − P1

∣∣∣
(y=0,z=0)

> 0. So this equilibrium has two positive eigenvalues, hence it is an
unstable node.
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The Jacobian at (y = 0, P1 = 0) yields

J =

 P2

∣∣∣
(y=0,P1=0)

0

−zP1y

∣∣∣
(y=0,P1=0)

−zP1z

∣∣∣
(y=0,P1=0)

 .

In this equilibrium P2

∣∣∣
(y=0,P1=0)

= V2(G11 + H21C1
C2

)(−H21 + H21(C2+K21)
C2

) > 0, which can also
be obtained from the fact the this point lies in the region where P2 > 0. On the other hand
−zP1Z

∣∣∣
(y=0,P1=0)

= −zV1(C2G11 +H21(C1 +K21)), which is negative on the positive hemisphere
z > 0. So this equilibrium is a saddle point.

The non-trivial equilibria A and B are given by P1 = P2 = 0. Since there are two equilibria,
we start with equilibrium A. The Jacobian in this point is:

J =

H21(−G22G11+H21H12)(G2
22(V1−V2)+H2

21V2)
G3

22

H21(−G22G11+H21H12)(G3
22V1+(H2

21−G2
22)V2(C2+K12))

G3
22

0 0

 .

The zero row implies that there is a zero eigenvalue. The non-zero eigenvalue is given by
H21(−G22G11+H21H12)(G2

22(V1−V2)+a2V2)
G3

22
, which is negative since −G22G11 + H21H12 < 0; its eigen-

vector is (1, 0)⊤. Since this is a non-hyperbolic equilibrium in a non-linear system, one can not
state anything about the type of equilibrium.

In the equilibrium B, where the other pair of P1 = 0 and P2 = 0 intersect, the Jacobian is given
by:

J =

G11(G22G11−H21H12)(H2
12(V1−V2)+G2

11V2)
H3

12

−G11(G22G11+H21H12)((G2
11−H2

12)(C2+K12))V2−H3
12V1)

H3
12

0 0

 .

Again there is one zero eigenvalue; the other eigenvalue is positive, since G22G11 −H21H12 > 0,
again with eigenvector (1, 0)⊤. The following theorem shows why these zero rows in the Jacobain
are obtained for the points A and B.

THEOREM 4.4 The non-trivial equilibrium points A and B of system (4.4) on the equator of the
sphere are non-hyperbolic.

Proof: The flow on the sphere is topologically equivalent to the projected flow onto the tangent
plane X = 1, and is given by the equations of the form:

ẏ = yf(y, z),

ż = zg(y, z),
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where the Jacobian of this system is given by

J =

f + yfy yfz

zgy g + zgz

 .

The equilibrium points A and B in the projection lie on z = 0 where P1 = P2 = 0. However, on
P1 = P2 = 0 the function g(y, z) := −P1− y2P2 equals zero. Hence the Jacobian evaluated at the
point where z = 0 and P1 = P2 = 0 always has the second row as zero row, showing that these
equilibrium points on the projection are non-hyperbolic.

4.2.1.2 Nullcline through the non-hyperbolic equilibria

To still be able to deduce some general properties of the system, we can consider the nullclines
through the equilibrium points A and B. For z there is a trivial nullcline and a non-trivial nullcline
and for y there is one non-trivial nullcline going through the equilibria. This being said, firstly
it is not clear if each non-trivial nullcline in each equilibrium consists of just a single curve or
whether there are multiple nullclines in the plane that intersect the equilibrium point and secondly
it is difficult to obtain how these nullclines lie in the plane since they are implicitly given in terms
of P1 and P2.

To show that the non-trivial nullclines for y and z each consist of exactly one continuous curve,
we make use of the following theorem.

THEOREM 4.5 (Implicit Funcࢢon Theorem) Let f : Rn+m → Rm be a continuously differentiable
function, and let Rn+m have coordinates (x, y). Fix a point (a, b) = (a1, . . . , an, b1, . . . , bm) with
f(a, b) = 0. If the Jacobian matrix Jf,y(a, b) = [(∂fi/∂yj)(a, b)] is invertible, then there exists
an open set U ofRn containing a such that there exists a unique continuously differentiable function
g : U → Rm such that

g(a) = b and f(x, g(x)) = 0 for all x ∈ U.

Denote f : R2 → R where (y, z) 7→ −P1(y, z) − y2P2(y, z), which describes the non-trivial
nullcline for z when the function is set equal to zero. In this case, the desired Jacobian matrix is
1× 1 and given by

−P1z − y2P2z

∣∣∣
( H21

G22
,0)

= (H12H21 −G11G22)
H2

21C2V1 + G2
22(C2 + K12)V2

G3
22

,

which is non-zero as G11G22
H12H21

> 1 (hence invertible). The implicit function theorem tells us that in a
neighbourhood of the point y = H21

G22
, a unique continuously differentiable function exists on which

the function f is zero. That is, there is a unique line in the (y, z)-plane intersecting the equilibrium
(H21

G22
, 0) on which −P1 − y2P2 = 0 is satisfied.
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The same can be done for the function h : R2 → R : (y, z) 7→ P2(y, z)−P (y, z)− y2P2(y, z),
which describes the y nullcline when h is set equal to zero. In this case it is easier to obtain a
function from a neighbourhood of z = 0 to y. The derivative to y in the point (H21

G22
, 0) is given by:

P2y − P1y − 2yP2 − y2P2y

∣∣∣
( H21

G22
,0)

= (H12H21 −G11G22)
G2

22(V1 − V2) + H2
21V2

G2
22

,

which is also non-zero. So there is a neighbourhood around the point z = 0 such that there is a
continuously differentiable function on which f is zero, hence the nullcline through (H21

G22
, 0) is a

unique line.
The same can be done for the non-trivial nullclines through the equilibrium point B in which

also both the y and z nullclines are unique curves. We will now show where these nullclines lie in
the plane relative to each other and the corresponding dynamics on the nullclines. A sketch of the
following results are drawn in Figure 4.4.

• EQUATOR. On z = 0 there is ż = 0. Observe that z = 0 yields V2P1 = V1P2, so that
P1 > 0 ⇐⇒ P2 > 0 ⇐⇒ P1 > P2 since V1 > V2. In Proposition 4.3 we showed that in
betweenA andB we have thatP1 > 0. Since for y > 0we have ẏ < 0 ⇐⇒ P2−P1 < y2P2,
whose left-hand side is negative and right-handside is positive in between A and B by the
aforementioned arguments. This also agrees with the non-zero eigenvalues and eigenvectors
of the trivial equilibria we found.

• NON-TRIVIAL z NULLCLINE. The non-trivial nullcline of z goes through the points that satisfy
P1 = −y2P2, which can only occur if P1 and P2 have opposite signs. Consider the equilib-
rium A. From Figure 4.2 we know how the lines P1 = 0 and P2 = 0 lie with respect to each
other. By Proposition 4.3 P1 is positive only in the area enclosed by the red lines (P1 = 0)
and similarly, P2 is positive only in the area enclosed by the blue lines (P2 = 0). From this
observation, one can deduce the region where P1 < 0 and P2 > 0, in which the nullcline lies.
The same can be said about the nullcline throughB. On the nullclines we have ẏ = yP2. The
nullcline through A goes through the region where P2 > 0 hence on which ẏ > 0, whereas
the nullcline through B goes through the area where P2 < 0 hence on which ẏ < 0.

• NON-TRIVIAL y NULLCLINE. Since we locally know the position of the non-trivial nullcline
of z and its corresponding y direction, we can now easily obtain how the y nullclines lie
around the equilibrium points. Considering the direction on the non-trivial z nullcline and
on the equator, one can see that the direction should y direction must change somewhere in
the region. This direction changes on the nullcline where y = 0, from which roughly the
position in the plane can be drawn.
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A B

z

y

P1 = 0P2 = 0 P2 = 0

P1 = 0

FIGURE 4.4 A sketch of the dynamics of the projected flow on the tangent plane around the two non-trivial
equilibria on the equator. The orange lines indicate the nullclines of z and the green lines indicate the
nullclines of y. From this figure one obtains that A is a stable equilibrium and B is an unstable equilibrium.

4.2.2 Projecࢢon onto Y=1

The important equilibria on the sphere where Y = 0 could not be classified when the projection
onto X = 1 was considered. Hence, if the flow on the surface is projected onto Y = 1, the system
is given by: ẋ = x(P1 − x2P1 − P2),

ż = z(−x2P1 − P2),

where inside P1 and P2 now Y is set to 1. The fixed points are given by

(x = 0, z = 0),

(x = 0, P2 = 0),

(P1 = 0, P2 = 0).

The only equilibria of interest are the first two, since the last has already been analyzed in the other
projection. The Jacobian is given by:

J =

P1 − P2 − x2P1 + x(P1x − P2x − x2P1x − 2xP1) x(P1z − P2z − x2P1z)

z(−2xP1 − x2P1x − P2x) −x2P1 − P2 + z(−x2P1z − P2z)

 .

Evaluated in the equilibrium point (x = 0, z = 0), the Jacobian is given by:

J =

P1 − P2

∣∣∣
(x=0,z=0)

0

0 −P2|(x=0,z=0)

 .

Also in this equilibrium P1|(x=0,z=0) < P2|(x=0,z=0) < 0, so that there is one negative eigenvalue
with eigenvector (1, 0)⊤ and one positive eigenvalue with eigenvector (0, 1)⊤.
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The Jacobian in the second equilibrium, (x = 0, P2 = 0) is given by

J =

 P1

∣∣∣
(x=0,P2=0)

0

−zP2x

∣∣∣
(x=0,P2=0)

−zP2z

∣∣∣
(x=0,P2=0)

 .

The point satisfying P2 = 0 in x = 0 is given by z = H12
C1

. In this point, P1

∣∣∣
(x=0,P2=0)

> 0, and
P2z = V2(G22G11 + H12(C2 + K12) > 0, so that there is one positive and one negative eigenvalue.

4.3 General dynamics on the sphere

As mentioned, the flow on the projection onto a tangent plane is topologically equivalent to the
flow on the sphere (except for the points being projected to infinity). So from the information
of the projections, the dynamics around the equilibrium points can be shown on the sphere itself
(see Figure 4.5). From the system of equations (4.4) it is easily observed that the first octant is an
invariant region. To show that all trajectories in the first octant converge to A, we will prove the
non-existence of periodic orbits. The easiest way to show it in this case is by an implication of
a theorem from index theory, as described by S. H. Strogatz [12]. Without going into detail, the
statement about periodic orbits is as follows:

PROPOSITION4.6 There is always at least one equilibrium point inside any closed orbit in the phase
plane.

The possibility of periodic orbits inside the region X, Y, Z > 0 is ruled out by this statement
since there are no equilibrium points inside this region. There are also no periodic orbits possible
around the equilibrium points on X = 0, Y = 0 or Z = 0 since these are nullclines that give

FIGURE 4.5 Schematic figure of the behaviour of the flow around the equilibrium points, obtained by clas-
sifiable equilibrium points and nullclines. All trajectories move towards A, hence being the only stable
equilibrium point.
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straight-line orbits. So the only attractor in the first octant is the stable equilibrium A, hence all
trajectories in X, Y, Z > 0 converge to this point. Convergence towards the equilibrium point A

on one hand implies that Ẋ → 0 and Ẏ → 0 so that in the limit t→∞ we have ˙(X
Y

)
= 0, but on

the other hand implies that X
Y
→ G22

H21
, so that for t→∞:

0←
˙(

X

Y

)
= ẊY −XẎ

Y 2 = X(P1 − P2)
Y

= G22

H21
(P1 − P2).

Thus for t → ∞ we have P1 − P2 → 0, which is equivalent to Q1 − Q2 → 0 (easy proof). This
analysis partly proves Conjecture 2.3, since we made the assumption that C1, C2 > 0.

THEOREM 4.7 Let the microbial system be given by (4.1), with the parameters such that V1 > V2

and G11G22
H12H21

> 1. For positive initial conditions that satisfy C1 > 0 and C2 > 0, the growth rates
Q1 and Q2 converge to each other as t→∞.

Moreover, since we know exactly where the point A lies on the equator, the following can be
stated about the value of growth rate in the limit and the convergence of the relative fraction of the
microbe concentrations.

COROLLARY 4.8 Let the microbial system of ODEs be given by (4.1) with V1 > V2 and G11G22
H12H21

> 1.
Then orbits with positive initial conditions that satisfy the conditions for C1 > 0 and C2 > 0,
the growth rates converge to V2 and the relative fraction x1

x2
converges to G22

H21
. Hence, the nutrient

concentration that grows to infinity is the one that is consumed by the species with the lowest growth
rate.

Proof: From Theorem 5.3, we obtain that m1 + m2 →∞ as t→∞. Recall that the growth rates
Q1 and Q2 are monotone increasing functions with upper bound V1 and V2 respectively. So when
m1 + m2 → ∞, Q1 − Q2 → 0 is satisfied if and only if m1 → ∞ and m2 → m∗

2 for a certain
constant m∗

2 for which Q1(m∗
2) = V2. In this case Q1 → V2 and Q2 → V2.

Since for t → ∞ every trajectory converges to A given by X
Y

= G22
H21

, the relative fraction of
the microbe concentrations converges to this ratio:

x1

x2
=

X
Z
Y
Z

= X

Y
→ G22

H21
.

This analysis is only for the parameters that satisfy the conditions C1, C2 > 0 and G11G22
H12H21

> 1.
However, since the analysis is quite laborious it is not practical to analyze the system for different
parameter settings. The length of this analysis is mostly due to the important equilibrium points
on the equator being non-hyperbolic. If these were in fact hyperbolic, we could much faster obtain
their stability for any parameter values. As mentioned, new equilibrium points might arise and
bifurcations may occur when we change parameter values, which will also not make the analysis
easier.
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We end this analysis by mentioning that Figure 4.5 shows the unanswered behaviour that was
observed in the phase portrait of Chapter 3, namely: the linesM2 = 0 andM1 = K21Z intersect
the equilibrium pointA. Hence onAwe have that bothM2 = 0 andM1 = 0 (since Z = 0), which
implies P1 = P2 = 0. At first sight, this would suggest that all the meaningful trajectories converge
to the point where eventually the growth rates are zero. However, the following proposition shows
that in the case that the microbe concentrations grow to infinity for t → ∞ the fraction X

Y
should

always go to this point if Q1 ̸→ V1.

PROPOSITION 4.9 Let Q1(m2) be the growth rate with m2 = G22x2 − H21x1 + C2 and suppose
that x1, x2 →∞ for t→∞. If Q1 ̸→ V1 then x1

x2
→ G22

H21
for t→∞.

Proof: Q1 ̸→ V1 is equivalent to m2 ̸→ ∞ (since Q1 is an increasing function in m2 with upper
bound V1). One can rewrite m2 = G22x2 −H21x1 + C2 to x1

x2
= G22

H21
+ C2−m2

H21x2
. Since x2 →∞ and

m2 <∞ for t→∞, one obtains that limt→∞
x1
x2

= G22
H21

.
This proves that in the case of unbounded growth, any growth rate Q1 smaller than V1 can only

be attained if themicrobial relative fraction converges towards this specific point for t→∞. Hence
the growth rate for Q1 is undefined for this point on the equator, as it could attain any value. This
is exactly what was also observed in the contour plots of the nutrient concentrations in Chapter 3.
So it is important to keep in mind that it is an asymptotic convergence towards this point and the
trajectories do no reach this point for finite time.

4.4 Discussion on the Poincaré approach

We transformed the system to a compact system using the Poincaré transformation. For parameter
values C1, C2 > 0 and G11G22

H12H21
> 1 linear stability analysis was performed and we obtained that the

important equilibrium points on the equator were non-hyperbolic. This is not specifically caused
by the Poincaré transformation, but rather by the nature of this system. L. Perko, in his book on
differential equations [9], shows that a much simpler system already gives these kind of improper
nodes at the equator, though definitely not all systems show this peculiarity after the transformation.
Moreover, the two non-trivial equilibria would also be found as non-hyperbolic when doing linear
stability analysis on the fractional system of Chapter 3 (which is not showcased). By showing how
certain nullclines lie on the sphere and what the direction of the trajectories are on these lines, one
could eventually observe where all trajectories converge to on the first octant of the sphere for
V1 > V2. This unique stable equilibrium was specifically given by the ratio X

Y
= G22

H21
. In this case,

the nutrient concentration m1 grows to infinity, whereas the nutrient concentration m2 converges
to some constant. Because the analysis was quite laborious we did not analyze the system for other
parameter values than the ones considered. However, the parameter values do have a big influence
on the dynamics as they alter the lines P1 = 0 and P2 = 0, for which bifurcations may occur and
new equilibrium points may arise.
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For positive values C1, C2 and G11G22
H12H21

> 1 one can show the phase portrait and some trajec-
tories on the sphere for certain parameter values, given in Figure 4.6. The image is obtained by
projecting the two-dimensional stream plot of X and Y (with Z in the equations substituted for√

1−X2 − Y 2) onto the sphere. This two-dimensional system is defined on the diskX2 +Y 2 ≤ 1
and trajectories with unbounded growth move towards the boundary of this disk, clearly show-
ing exactly the same behaviour. One might notice that the proof in the next chapter for n species
could also be done when the disk is considered, as the whole classification of equilibrium points is
omitted.

FIGURE 4.6 This figure is made by projecting the stream plot of the planar dynamics of (X, Y ) onto the
sphere; the reason for the low density of trajectories around Z = 0 is due to this projection and the built-in
restriction of number of trajectories inMathematica.

Even though the linear stability analysis for which the transformation to the sphere was intended
did not work out, this transformation has some advantages compared to the fractional approach.
The expressions for the lines on which P1 = 0 or P2 = 0 are more straight-forward, as they are
implicitly expressed by planes in R3 intersecting the sphere; in particular,M1 = 0 andM2 = 0
each gives the boundary of the biologically meaningful region and implies P2 = 0 and P1 = 0
respectively. In the fractional approach we already noticed that the lines enclosing the biologically
meaningful region were expressed as hyperbolic function in z, which is obviously less easy to work
with than planes, especially for higher dimensions. Also, the points on the equator expressed as
fractions X

Y
coincide exactly with the fractions of interest, namely x1

x2
, so results are more easily

interpreted on the sphere (compare to the point in Claim 3.5).
In the next chapter we will find where this ratio G11G22

H12H21
comes from and see that this condition

indeed plays an important role for the unbounded growth.
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5
General cyclic cross-feeding system

In the previous two chapters two different approaches were presented of transforming the un-
bounded system to a compactly defined system. We noticed in both Chapter 3 and Chapter 4
that some condition exists for the yield parameters given by G11G22

H12H21
that has an influence on the

long-term behaviour of the dynamics. In this chapter we will show how this condition can be de-
rived without observing it from figures. With this condition it is actually relatively easy to show
the long-term behaviour of a generalized system of n species. So we will show the derivation of
the condition G11G22

H12H21
> 1 for the two-species system for a better understanding of the proof of the

condition for a generalized model for n species. Subsequently, only for the generalized system the
long-term behaviour will be shown for which we obtain similar results as observed in the previous
chapters.

5.1 Influence of yield parameters on the nutrient dynamics

Consider again the main model we obtained before rewriting it to a two-dimensional system:



ẋ1 = Q1(m2)x1,

ẋ2 = Q2(m1)x2,

ṁ1 = G11Q1(m2)x1 −H12Q2(m1)x2,

ṁ2 = G22Q2(m1)x2 −H21Q1(m2)x1,

We should focus on the dynamics of the nutrient concentrations since depletion of the nutrients of
course implies that the microbes will eventually not be able to grow, whereas the microbes keep
growing if there is a positive nutrient concentration in the environment; so when do they deplete?
The following proposition sets a foundation for the understanding of these dynamics:

PROPOSITION 5.1 Suppose the system of ODEs is given by (2.2). Then m1 → 0 ⇐⇒ m2 → 0.

Proof: Suppose that m1 → 0. Then by definition also Q2(m1) → 0. One can rewrite ẋ2 = Q2x2

to ẋ2
x2

= Q2, where the left-hand side is in fact d
dt

ln x2. Since Q2 → 0, this derivative converges to
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zero, hence ln x2 converges to some constant which implies that x2 converges to a certain constant;
hence Q2x2 → 0. From this, we see that for t large enough m1 → 0 gives that the expression
for ṁ2 becomes ṁ2 = −H21Q1x1. Since x1 > 0 and non-decreasing, ṁ2 is negative as long as
m2 > 0 (since then Q1(m2) > 0); hence m2 decreases to zero.

This proposition turns out to be important to prove long-term behaviour of the nutrient dynam-
ics.

PROPOSITION 5.2 If the initial condition of one nutrient concentration is zero while the other is
non-zero, then the former nutrient concentration also becomes positive.

Proof: Supposem1 = 0 andm2 > 0. ThenQ1(m2) > 0, hence by proportionality of the production
rate to the growth rate, the nutrient will be produced so that m1 > 0.

REMARK (Posiࢢve iniࢢal concentraࢢons) One nutrient present in the environment is enough to start
the cross-feeding behaviour. However, as the non-zero concentration becomes positive instanta-
neously, it is convenient to consider that the initial conditions of the nutrients are positive.

The major influence on the dynamics of the nutrient concentrations is in fact the choice for the
yield parameters. A condition for the yield parameters ensures whether there will be depletion of
the nutrients or not.

THEOREM 5.3 Suppose there are two cross-feeding microbe species whose behaviour is defined by
(2.2), with positive initial conditions. Then the sum of nutrient concentrations grows to infinity for
t→∞, if the yield parameters satisfy the ratio:

R := G11G22

H12H21
> 1.

R < 1 implies that the nutrients will deplete (all concentrations converge to zero), and the special
case R = 1 implies that the nutrient concentrations do not converge to zero and are bounded from
above.

Proof: Consider the dynamics of the nutrients in (2.2) again:

ṁ1 = G11Q1x1 −H12Q2x2,

ṁ2 = G22Q2x2 −H21Q1x1.

Multiply the first equation by G22 and the second by H12, and add them up to obtain:

G22ṁ1 + H12ṁ2 = (G11G22 −H21H12)Q1x1. (5.1)

WriteR := G11G22
H21H12

. One can view the left-hand side to be the derivative of the whole (weighted)
sum: ˙(G22m1 + H12m2). On the right-hand side of (5.1), x1 > 0, Q1 ≥ 0 and Q1 ̸→ 0 as long as
m2 ̸→ 0.
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For R > 1, the derivative on the left-hand side is at least non-negative, hence the weighted
sum of the nutrient concentrations is at least non-decreasing. Moreover, by Proposition 5.1, it is
not possible that m2 → 0 individually, so that Q1 ̸→ 0. Hence the derivative of the weighted sum
does not converge to zero, implying that this weighted sum is always increasing and thus grows to
infinity over time; therefore, also the actual sum of nutrients grows to infinity, m1 + m2 →∞.

When R < 1, the weighted sum decreases and keeps decreasing until both nutrient concentra-
tions reach zero, implied by Proposition 5.1, in which case Q1 → 0.

The special case R = 1 implies that the right-hand side is always zero. Hence, m1 and m2

can vary, but only such that the weighted sum stays the same over time. Thus in that case the
concentrations are bounded, but again, none may individually converge to zero.

By Proposition 5.1 either both nutrients deplete or none does. So if R > 1 the sum of nu-
trient concentrations increases, hence both concentrations do not deplete so that the the microbe
concentrations keep increasing.

COROLLARY 5.4 For R ≥ 1, there is unbounded growth; for R < 1 the microbe concentrations are
bounded.

Proof: When the nutrient concentrations do not converge to zero (R ≥ 1) the growth rates will not
converge to zero, which implies that the microbe concentrations have unbounded growth.

When nutrient concentrations do converge to zero (R < 1) we can bound the microbe con-
centrations from above. One can substitute ẋ1 for Q1x1 in equation (5.1) and integrate to obtain
G22m1 +H12m2 = (G11G22−H21H12)x1 +C, where C is the integration constant. Since the left-
hand side can not be negative and the term (G11G22 −H21H12)x1 is negative and non-increasing,
we see that this term must be bounded from below (G11G22 − H21H12)x1 ≥ −C. Hence x1 is
bounded from above by −C

G11G22−H21H12
> 0. From this also the bound of x2 follows.

REMARK (Biological interpretaࢢon) How can the result of Theorem 5.3 be biologically interpreted?
Consider the ratio R in terms of production and consumption rates:

R = p11 · p22

c21 · c12

= prod. of nutrient 1 by unit concentr. microbe 1/ unit of time
cons. of nutrient 2 by unit concentr. microbe 1/ unit of time

× prod. of nutrient 2 by unit concentr. microbe 2/ unit of time
cons. of nutrient 1 by unit concentr. microbe 2/ unit of time

=
(
prod. of nutrient 1
cons. of nutrient 2

by unit concentr. microbe 1
)

×
(
prod. of nutrient 2
cons. of nutrient 1

by unit concentr. microbe 2
)

.

This gives essentially the efficiency rates per unit concentration of the microbes of turning the
consumed nutrient concentration into produced nutrient concentration. The production and con-
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sumption rates fluctuate, but since R is fixed, these ratios always multiply up to a certain constant.
In the case of R > 1 this means that even though one species can be inefficient, the other species
has such an efficiency ratio that the overall efficiency of the system is “positive”. In this case, the
total production is bigger than the total consumption by a unit concentration of species 1 and 2.

5.2 Generalized system

The results of unbounded growth implied by the yield ratio is really important: if we know that
the yield parameters satisfy the condition then unbounded growth is ensured, so that for every
microbial community with positive initial conditions the microbe concentrations grow to ∞ as
time t approaches∞. To obtain additional results of the long-term behaviour we will again need
to perform and analyze the Poincaré transformation. With this transformation certain important
functions are more easily defined compared to the fractional approach of Chapter 3.

First, the generalizations of the statements made at the beginning of this chapter are discussed
to show when unbounded growth is ensured. To prove the convergence of the growth rates, the
Poincaré transformationwill be done to be able to showwhat happens in the biologically meaningful
region on the n+1-dimensional sphere. In the case of unbounded growth trajectories on the sphere
move towards Z = 0, so the dynamics for trajectories on Z = 0 are studied which will give
essential information about the trajectories in the biologically meaningful region converging to
Z = 0. Figure 4.2 of the sphere with its characteristic lines can be kept in mind for the intuition
of the analysis; additionally, the equator of the four-dimensional sphere is visualized to get a better
idea of the dynamics on the equator in general.

The general system that shows the same characteristics as the one previously studied, should
have a cyclic topology:

DEFINITION 5.5 A cross-feeding community of microbial species is said to have a cyclic topology if
every species produces its own unique nutrient and if every produced nutrient is the unique growth-
limiting nutrient for exactly one other species in the community.

One can schematically order the microbes of such a community so that a cycle can be formed
where every microbe consumes the nutrient produced by its neighbour. Consider the system of n

microbe species having a cyclic cross-feeding topology such that species 1 consumes the product
of species 2, which on its turn consumes the product of species 3, et cetera, so that the system can
be written as follows:ẋi = Qi(mι)xi,

ṁι = GιιQιxι −HιiQixi,
for all i = 1, . . . , n and ι := (i mod n) + 1 (5.2)

where Qi(mι) = Vi
mι

Kiι+mι
. We assume that none of the maximum growth rates Vi are equal.

REMARK The relation between i and ι as defined in (5.2) will be used throughout this section.
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Hence ι is always the +1 increment of i in a formula. To have a cycle, we want that species n

consumes the product of species 1; this particular transition makes the system more complicated
notation-wise, hence the ι.

FIGURE 5.1 Schematic figure for n species with a cyclic cross-feeding topology, visualizing system (5.2).

5.2.1 Behaviour of nutrients affects growth dynamics

The dynamics for the growth depend on dynamics of the nutrient concentrations. The following
proposition shows that there is either no depletion or total depletion of the nutrients.

PROPOSITION 5.6 Let the system be given by (5.2). The following equivalence holds for
i, j ∈ {1, . . . , n}: ∃i mi → 0 ⇐⇒ ∀j mj → 0.

Proof: Follow exactly the same proof of Theorem 5.1 and repeat it to show that starting from
mi → 0 for some i ∈ {1, . . . , n}, every consecutive mι should converge to zero as well.

As previously mentioned, it is convenient to only suppose positive initial conditions, since at
least one positive nutrient concentration ensures that all the other nutrient concentrations will be
positive, by the proportionality of the production rates to the growth rate, thus also to consumption
rate. We can now prove the following theorem, which gives a condition for the yield parameters to
satisfy so that the nutrients do not deplete.

THEOREM 5.7 Let the dynamics of a cyclic cross-feeding microbe community be defined by (5.2).
For positive initial concentrations, the sum of nutrient concentrations

∑
1≤i≤n mi grows to infinity

for t→∞ if the yield parameters satisfy the ratio:

R :=
∏

i Gii∏
i Hιi

> 1.

Proof: We consider only the derivatives of the nutrient concentrations in terms of the derivatives
of the microbe concentrations for simplicity (instead of Qixi):

ṁι = Gιιẋι −Hιiẋi, for all i ∈ {1, . . . , n}.

38



One can write them below each other in exactly the following order:

ṁ2 = G22ẋ2 −H21ẋ1,

ṁ3 = G33ẋ3 −H32ẋ2,

...

ṁn = Gnnẋn −Hn(n−1)ẋn−1,

ṁ1 = G11ẋ1 −H1nẋn.

To write the summation of these equations of ṁj only in terms of, say, ẋ1, we need to eliminate the
other ẋi,∀i ̸= 1 out of the summation. Notice how each term ẋi can be eliminated by the following
equation. Starting from the top, to eliminate ẋ2, one needs to multiply the first equation byH32 and
the second by G22:

H32ṁ2 = H32G22ẋ2 −H32H21ẋ1,

G22ṁ3 = G22G33ẋ3 −G22H32ẋ2.

This will also affect how all the following equations should be multiplied to eliminate the other
ẋi; notice that the elimination of ẋ3 with the third equation can only be done when this equation is
multiplied by G22G33 and the equation for ṁ3 is multiplied by H43:

H43G22ṁ3 = H43G22G33ẋ3 −H43G22H32ẋ2,

G22G33ṁ4 = G22G33G44ẋ4 −G22G33H43ẋ3.

This last multiplication clearly affects the first elimination, as the second equation now has an extra
term H43, so the first equation ṁ2 should also be multiplied by H43.

One can see that when the equations are written in this order, the multiplications of Gii affects
all the following eliminations, and the multiplications of Hιi affects all the previous eliminations.
Hence any ṁk should be multiplied with all Gii above it and all Hιi below it in the array. Summing
up all these multiplied equations then leads to:

n∑
k=1

k∏
i=2

Gii

n∏
i=k+1

Hιi ṁκ =

 n∏
i=1

Gii −
n∏

i=1
Hιi

 ẋ1. (5.3)

Recall that ι := (i mod n) + 1 and in the same way κ is defined as κ := (k mod n) + 1. Once
again we see that the right-hand side is non-negative if and only if R :=

∏n

i=1 Gii∏n

i=1 Hji
≥ 1.

Write the sum of derivatives on the left-hand side in (5.3) as the derivative of the sum. Then
this derivative is negative if R < 1, zero if R = 1 and positive if R > 1, since ẋi is non-negative;
hence the sum does not converge to zero if R ≥ 1. Note that for R ≥ 1 it is the sum that does not
converge to zero, not the individual mi; nevertheless, from Proposition 5.6 none of the nutrients
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can individually converge to zero. Then in particularm1 ̸→ 0which means thatQ1 ̸→ 0, hence the
right-hand side of (5.3) does not converge to zero since ẋ1 = Q1x1 ̸→ 0. So for R > 1 derivative
of the weighted sum of nutrients is positive and does not converge to zero, thus the sum of the
nutrients grows to infinity for t→∞.

We omit the caseR = 1, as this is only a special case which biologically does not occur, but also
where some of the following results does not hold. For R < 1, similar to the proof of Corollary 5.4
one can prove that the concentrations are bounded by first showing the upper bound for x1 for all
time t, from which the upper bounds for all time t for the other microbe concentrations follow.

By Proposition 5.6 either all nutrients deplete or none does, so that for R > 1 none of the
nutrients deplete (as the sum increases).

COROLLARY 5.8 For R > 1 (and positive initial conditions), unbounded growth for all species is
ensured.

5.2.2 Poincaré transformaࢢon of the system

The transformation of a system of a higher dimensions to the Poincaré sphere is quite similar to
the original two-dimensional system transformation. First rewrite the system (5.2) by substituting
the nutrient concentrations mi by their expressions in the microbe concentrations xi and initial
conditionsCi. Multiply every equation of ẋi by every denominator of the growth rates to remove the
singularities of the growth rates from the system, and scale the time variable (see start of Chapter 4)
so that the system can be written as:{

x′
i = pi(x)xi, for all 1 ≤ i ≤ n, (5.4)

where pi is a polynomial of degree n defined as

pi(x) = Vi

n∏
k=1

(mκ(x) + 1{k ̸=i}Kkκ),

or, with the functions mκ(x) written out:

pi(x) = Vi

n∏
k=1

(Gκκxκ −Hκkxk + Cκ + 1{k ̸=i}Kkκ),

where again κ = (k mod n) + 1 and with 1k ̸=i being the indicator function that equals 0 if k = i

and 1 otherwise. An example of the function p1 for the three-dimensional case then yields:

p1(x) = V1

3∏
k=1

m2(x)(m3(x) + K23)(m1(x) + K31).

To transform the system to the (n + 1)-dimensional Poincaré sphere, introduce the variables as
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follows:
xi = Xi

Z
for 1 ≤ i ≤ n,

∑
1≤i≤n

X2
i + Z2 = 1.

Following the approach in Section 4.1, the system (5.4) can be rewritten in the new variables, which
gives after multiplication of Zn+1 (as pi are polynomials of degree n):

ZnX ′
i − Zn−1Z ′Xi = XiPi(X1, . . . , Xn, Z) for all 1 ≤ i ≤ n,∑n

i=1 XiX
′
i + ZZ ′ = 0,

with
Pi(X1, . . . , Xn, Z) = Vi

n∏
k=1

(GκκXκ −HκkXk + (Cκ + 1{k ̸=i}Kkκ)Z). (5.5)

Multiply equation i by−Xi for all i ∈ {1, . . . , n}, and the last equation by Zn, so that the summa-
tion over these expressions gives:

Zn−1Z ′ = −
∑

i

X2
i Pi(X1, . . . , Xn, Z).

Thus substituting this expression for Zn−1Z ′ in the other equations and scaling the time derivative
to remove the Zn term in front of the derivatives, gives:

Ẋi = XiPi + Xi(−
∑

i X2
i Pi) for all 1 ≤ i ≤ n,

Ż = −Z
∑

i X2
i Pi,

(5.6)

where the arguments for Pi are dropped for simplicity.

5.3 The biologically meaningful region

Since we are only considering the part on the surface of the sphere where the actual microbe con-
centrations are non-negative, we define the following for simplicity:

DEFINITION 5.9 The part on the surface of the sphere for which Xi ≥ 0 ∀i ∈ {1, . . . , n} and Z ≥ 0
is denoted as the positive octant. The part on this positive octant on Z = 0 will be denoted as the
positive equator.

In the previous section a simplification was done by writing the nutrient concentrations in terms
of themicrobe concentrations and some constantCi. In the general case, the values forCi can be any
value from R. Now, our main interest are the points on the sphere that give non-negative nutrient
concentrations; the biologically meaningful region. The following functions are introduced, as they
give more information regarding this region.
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DEFINITION 5.10 Let the functionsMi be defined as follows:

Mι = GιιXι −HιiXi + CιZ 1 ≤ i ≤ n and ι = (i mod n) + 1.

The functions Pi can be written in terms ofMi:

Pi = Vi

n∏
k=1

(Mκ + 1{k ̸=i}KkκZ) 1 ≤ i ≤ n and κ = (k mod n) + 1.

CompareMi with the expression for the nutrient concentration mi to see their similarity that
is emphasized by the following proposition (trivial proof).

PROPOSITION 5.11 For i ∈ {1, . . . , n} and Z > 0 is satisfied:Mi ≥ 0 ⇐⇒ mi ≥ 0.

DEFINITION 5.12 (Biologicallymeaningful region) The biologically meaningful region on the sphere,
denoted by B, can be defined as the region on the sphere for Xi ≥ 0 ∀i ∈ {1, . . . , n} and Z ≥ 0,
whereMi ≥ 0 for all i ∈ {1, . . . , n}. That is,

B :=
{
(X1, . . . , Xn, Z) ∈ Sn :Mi ≥ 0 ∀i ∈ {1, . . . , n}

}
(5.7)

The Poincaré transformation projects Rn onto the sphere Sn defined in Rn+1 and the region B
is just a part of this sphere. However, for example, we want to speak about the points on the sphere
that encloses this region B. The topological notion of boundary of the region B on the sphere with
respect to Rn+1 would be given by the set itself (5.7). Hence, topologically speaking, the boundary
will be with respect to the sphere itself (with the subspace topology of Rn+1), so that the notion of
the boundary of B now has the intended meaning. Similarly, the interior of the region B should be
taken with respect to the sphere.

Also, the region on the positive octant on Z = 0 in whichMi ≥ 0 ∀i ∈ {1, . . . , n} shall be
considered; note that the equator is now actually an n-dimensional sphere. In particular, the set
that is enclosing this region is analyzed. It seems again intuitive to call this set the boundary of
this region, but again topologically speaking the notion of this boundary of this set should be taken
with respect to the equator, which is the n-dimensional sphere Sn−1 given by

∑
i≤1≤n X2

i = 1. In
the same way the interior of E is taken with respect to the equator.

From the context there should be no ambiguity about the definition of the boundary, interior
and closure of a given set, hence with respect to which set will generally be omitted.

DEFINITION 5.13 Let ∂B denote the boundary (w.r.t. the sphere) of the region B. Also, let E define
the set on the positive equator in whichMi ≥ 0 for all i ∈ {1, . . . , n} and subsequently, let ∂E ⊂ E
denote its boundary (w.r.t. the equator).

From the definition ofMi one can see thatMi = 0 is a hyperplane through the origin. The
biologically meaningful region on the sphere is then actually the region enclosed by hyperplanes
Mi = 0 for all 1 ≤ i ≤ n (or, the intersection of the regionsMi ≥ 0 for all 1 ≤ i ≤ n) intersected
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by the sphere. It is quite hard to think of a sphere in n + 1 dimensions being intersected by a
hyperplanes. However, to what extent do we really need to know how these hyperplanes intersect
the sphere? We can state the following theorems about the properties of the biologically meaningful
region.

PROPOSITION 5.14 For R > 1, E exists and is contained inside the interior of the positive equator.
Moreover, the interior of E is non-empty.

Proof: E is defined as the set on the sphere on Z = 0 whereMi ≥ 0 ∀i. This can be expressed in
terms of Xi (by writing out the definition ofMi):

Gιι

Hιi

Xι ≥ Xi for all 1 ≤ i ≤ n.

Considering this conditions for each i, the following should be satisfied:

G22

H21
· · · Gnn

Hn(n−1)

G11

H1n

X1 ≥
G22

H21
· · · Gnn

Hn(n−1)
Xn ≥ . . . ≥ G22

H21

G33

H32
X3 ≥

G22

H21
X2 ≥ X1, (5.8)

which is satisfied since R = ∏
i

Gιι

Hιi
> 1.

One sees from the inequality that some point with Xi = 0 or Xi = 1 for some 1 ≤ i ≤ n

cannot lie in E , as it would then violate the inequality (also, Xi = 0 or Xi = 1 for all 1 ≤ i ≤ n is
not possible by the spherical property).

Since E is strictly contained inside the positive equator, on the boundary ∂E holdsMi = 0 for
some i ∈ {1, . . . , n}. Hence, write the inequality (5.8) with strictly greater signs, which is defined
for a set that is contained inside the interior of E (we will see later that this set should exactly be

FIGURE 5.2 For a 4-dimensional sphereX2
1 +X2

3 +X2
3 +Z2 = 1 the part whereZ = 0, defined as the equator,

is a 3-dimensional sphere given by X2
1 + X2

3 + X2
3 = 1. Hence this figure shows in fact the positive equator

(X1, X2, X3 > 0) of the 4-dimensional sphere. The region E is enclosed by the lines on whichMi = 0
for i ∈ {1, 2, 3}. Moreover, since the region lies in the interior of the positive octant (X1, X2, X3 > 0), the
boundary of the region in this type of system is exactly given by these lines.
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the interior). This strict inequality is still satisfied since R > 1.
We can now deduce that the biologically meaningful region indeed exists on the sphere for

meaningful parameters (i.e., yield parameters are positive and Ci is finite).

THEOREM 5.15 For R > 1 the biological meaningful region B is non-empty and its subset on
Z > 0 is non-empty.

Proof: On Z = 0 the biologically meaningful region B coincides with E , thus is not empty by the
previous result. When the coordinates are not restricted to the sphereMi = 0 are hyperplanes
through the origin. Since their intersection with the sphere encloses a non-empty region on Z = 0
in whichMi > 0 for all 1 ≤ i ≤ n, one can induce that because of their relatively simple structure
this enclosed region is not only restricted to Z = 0, but also for Z > 0. That is, since the yield
parameters are non-zero and Ci is finite, there is no such planeMi = 0 that coincides exactly with
the plane Z = 0 for which the region could indeed be only restricted to Z = 0.

5.3.1 Properࢢes of the funcࢢons in the biologically meaningful region

From the relation of the functionsMi with respect to the function Pi and the growth rate Qi some
properties can be deduced for different parts of the biologically meaningful region. These results
will be important for the following analysis, since the functions Pi tell much about the dynamics
and steady states of the system. Pay attention to if they are stated for Z ̸= 0 or for Z = 0.

PROPOSITION 5.16 In the interior of E we haveMi > 0 all 1 ≤ i ≤ n. On the boundary ∂E we
haveMi = 0 for some 1 ≤ i ≤ n.

Proof: For every i ∈ {1, . . . , n} the hyperplaneMi = 0 divides the space Rn+1 into two subsets;
Mi > 0 andMi < 0. Hence in the interior of the region on the equator for whichMi ≥ 0 ∀i, it is
not possible that there is an i ∈ {1, . . . n} such thatMi = 0. Since this set lies strictly contained
inside the positive equator, on the boundary we haveMi = 0 for some 1 ≤ i ≤ n.

About the interior of the biologically meaningful region B we can state the same using the same
proof.

PROPOSITION 5.17 In the interior of B we haveMi > 0 all 1 ≤ i ≤ n.

Since Pi is defined in terms ofMj , we can deduce from Proposition 5.17 the following.

COROLLARY 5.18 In the interior of B we have Pi > 0 for all 1 ≤ i ≤ n.

Statements about behaviour on E will be done using the following properties.

PROPOSITION 5.19 On Z = 0, the polynomials Pi are equal up to multiplication by the maximum
growth rates:

Pi = Vi

Vk

Pk for all i, k ∈ {1, . . . , n}.
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This implies that in Z = 0 the zeroes of these polynomials coincide:

Pi = 0 ⇐⇒ Pk = 0 for all i, k ∈ {1, . . . , n},

and that Pi = Pk holds if and only if they equal zero (or if all Vi are equal, which is not biologically
relevant).

Proof: From Definition 5.10 one can see that the functions Pi on Z = 0 are defined by:

Pi = Vi

n∏
k=1
Mκ 1 ≤ i ≤ n and κ = (k mod n) + 1.

So the functions Pi only differ from each other by the term Vi. The statements follow from this
observation.

We can now prove that the biologically meaningful region is an invariant region.

THEOREM 5.20 The biologically meaningful region is an invariant region.

Proof: Consider system (5.2) and suppose that xi ≥ 0 and mi ≥ 0 for 1 ≤ i ≤ n and
∑

i xi <∞.
As long as mι ≥ 0 then ẋi = Qi(mι)xi ≥ 0, thus xi is non-decreasing.

If mι for some ι ∈ {1, . . . , n} should become negative, by continuity it should go through
mι = 0. However, on mι = 0 we have Qi(mι) = 0, hence the expression becomes ṁι = GιιQιxι

which can only be negative if the argument of Qι is already negative (or has been negative so that
xι < 0). So a nutrient concentration can only become negative if an other nutrient concentration is
already negative. Since this holds for any nutrient, non-negative concentrations (of both microbes
and nutrients) cannot become negative.

The only part of the biological meaningful region B that is not included in this proof is the
boundary on Z = 0 as this corresponds to∑i xi =∞. However, one can see that Ż = 0 on Z = 0
and thatMi = 0 for some i implies Pi = 0 ∀i, which gives Xi = 0 ∀1 ≤ i ≤ n. Hence trajectories
cannot move to negative Z nor to negative values ofMi for some i on Z = 0.

Finally, to stress the fact that one should be careful making statements for points on E (which
lies on Z = 0); compare the following two propositions. The proofs are left for the reader as the
statements easily follow from the definitionMi and the definition of Pi.

PROPOSITION 5.21 On Z ̸= 0 for every i ∈ {1, . . . , n} and corresponding ι satisfies: Mι = 0 is
equivalent to Qi = 0 (growth rate of species i) and implies Pi = 0.

PROPOSITION 5.22 On Z = 0,Mι = 0 implies Pi = 0, but not necessarily that Qi = 0 for any
i ∈ {1, . . . , n}.
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5.4 Convergence in the biologically meaningful region

The important regions are defined and we know several properties inside these regions, so now we
can look at the behaviour of trajectories inside these regions. For the yield ratio R > 1 as defined
in Theorem 5.7 we know that there is unbounded growth, in which case

∑
i xi →∞ as t→∞. A

simple but important deduction is the following:

PROPOSITION 5.23 Unbounded growth implies that the trajectories in the biologically meaningful
region on the Poincaré sphere converge towards Z = 0.

Proof: Unbounded growth means that
∑

i xi → ∞ as t → ∞ for positive initial concentrations.
This implies that on the Poincaré sphere we have 1

Z
≥ 1

Z

∑
i Xi = ∑

i
Xi

Z
= ∑

i xi → ∞, hence
Z → 0. So every trajectory in the interior of biologically meaningful region (where initial con-
centrations are positive) must converge to Z = 0 if there is unbounded growth implied by R > 1.

To know whether the trajectories converge to an equilibrium on Z = 0 we first show where the
equilibrium points lie in the biologically meaningful region on Z = 0, i.e., the equilibrium points
in E .

THEOREM 5.24 (Equilibrium points on the equator) For R > 1, the collection of equilibrium points
on E is exactly ∂E , which are the points for which holdsMi = 0 for any i ∈ {1, . . . , n}. This
collection does not lie anywhere on Xi = 0 or Xi = 1 for any i ∈ {1, . . . , n}.

Proof: Suppose R > 1, then by previous propositions, E exists, coincides with the subset of B
on Z = 0 and lies strictly inside the positive equator (Xi > 0 ∀i). Hence, on E the equilibrium
points are given by Pi = Pk for every i, k ∈ {1, . . . , n}, since Z = 0 already gives the steady state
Ż = 0. Proposition 5.19 states that on Z = 0 we have Pi = Pk if and only if they are zero and
in particular, this happens only ifMi = 0 for some i ∈ {1, . . . , n}, giving that the collection of
equilibrium points on E is exactly ∂E by Proposition 5.16. Since E is a closed set, its boundary ∂E
is also strictly contained inside the positive equator.

The statement about the boundary not lying onXi = 0 or Xi = 1 for any i ∈ {1, . . . , n}maybe
seems not essential but is quite important, since if some point of the boundary of the meaningful
region did lie on Xi = 0 or Xi = 1 for some i, then convergence towards the boundary would not
necessarily imply convergence to the same growth rates. For example; convergence to the point on
the equator for whichXi = 0 for all but one i ∈ {1, . . . , n}, would imply that there is one dominant
species that keeps on growing faster than all the others. We will encounter a similar kind of results
in the next chapter.
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5.4.1 Convergence towards equilibrium points on the equator

In this last subsection we can show the actual convergence. In the case of unbounded growth all
trajectories move towards E for t → ∞, since trajectories should converge towards Z = 0 and
stay inside the invariant region B. So they either could move towards the boundary ∂E , which is an
equilibrium, or move towards the interior of E . In this section we show how the dynamics roughly
are in the interior of E , hence we analyze the dynamics on the equator. This will show that on the
interior of E trajectories move towards the boundary, hence towards an equilibrium point (since the
boundary ∂E consists of equilibrium points). Then trajectories in the interior of the biologically
meaningful region converging towards E will eventually have similar dynamics as on the interior
of E . The following lemma tells that on the interior of E , there is at least one variable that is always
decreasing.

PROPOSITION 5.25 Let the Poincaré dynamics be given by (5.6) for R > 1. Let k = arg mini Vi.
On the interior of E Xk has no steady states and Ẋk < 0.

Proof: Consider the interior of E , on which Pi > 0 ∀i by Proposition 5.18. Since Xk = 0 is not
contained in E by Proposition 5.14 the only steady states of Xk in E are given by Pk = ∑

i X2
i Pi.

However, by Proposition 5.19 every Pi is proportional to Pk, hence one can write the following
inequality by using Vi > Vk for some i:

∑
i

X2
i Pi =

∑
i

X2
i

Vi

Vk

Pk >
∑

i

X2
i Pk = Pk.

So the condition Pk = ∑
i X2

i Pi for the steady state is never satisfied in the interior of E . Moreover,∑
i X2

i Pi > Pk implies Ẋk < 0, hence Xk decreases in the interior of E .

FIGURE 5.3 The dynamics on the (positive) equator of a 4-dimensional sphere can be visualized. In this
particular figure, the parameters were such that V3 was the smallest maximum growth rate, in which can be
seen that indeed Ẋ3 < 0 inside E . This figure is made by projecting the stream plot of the planar dynamics
of (X1, X2) onto the sphere.
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As we showed that on the interior of E the variable Xk decreases and the only steady states of
Xk are at the boundary, this implies that this variable will end up at the boundary of the (compact)
region on which in fact every variable is stationary. This lemma hence excludes the existence of
any sort of limit cycle on the equator. Figure 5.3 shows an example of dynamics on the equator of
a four-dimensional sphere. The hypothesis of the convergence of the growth rates to the same rate
can now be proved:

THEOREM 5.26 Let the system of equations on the Poincaré sphere be given by (5.6). Assume that
R > 1. Then every trajectory in the interior of B converges to a point where all growth rates are
equal.

Proof: In B, all trajectories move towards the equator Z = 0, in particular, to E . From Proposi-
tion 5.25, we can deduce that the trajectories tending towards the interior of the region, eventu-
ally also converge to the boundary. On the whole boundary ∂E Pi = 0 ∀i ∈ {1, . . . , n} (since
Mi = 0 for some i ∈ {1, . . . , n}), thus convergence of one variable towards the boundary im-
plies that the derivatives of all the variables converge to zero. So every trajectory (eventually)
converges towards the boundary, hence towards an equilibrium, with this equilibrium point given
by Xi = ai ∀i ∈ {1, . . . , n} for certain constants ai ∈ (0, 1). Note that 0 and 1 are not included, as
mentioned in Theorem 5.24. To see why this means that the growth rates should be equal now, we
write the convergence in terms of the microbial fractions:

xi

xι

=
Xi

Z
Xι

Z

= Xi

Xι

→ ai

aι

as t→∞,

for all i ∈ {1, . . . , n} and ι = (i mod n) + 1, with every fraction being a finite non-zero num-
ber. Because it is an equilibrium point the derivatives Ẋi → 0, from which can be deduced that
derivative of the microbial fraction ˙(xi

xι

)
= ˙(Xi

Xι

)
→ 0. Hence for t→∞ and every i ∈ {1, . . . , n}:

(Qi −Qι)
ai

aι

= (Qi −Qι)
xi

xι

= Qixixι − xiQιxι

x2
ι

= ẋixι − xiẋι

x2
ι

=
˙(

xi

xι

)
→ 0,

thus Qi −Qι → 0 for every i ∈ {1, . . . , n} and ι = (i mod n) + 1 as t→∞.
Finally, as we showed that the growth rate should converge to the same rate using the trans-

formed system, we can consider the original system again and make a final statement about the
value of the growth rates and the values of the relative fractions when t→∞.

THEOREM 5.27 Consider the system of differential equations (5.2) with yield parameters such that
R > 1. Denote k = arg min1≤i≤n Vi. Then the growth rates converge to the smallest maximum
growth rate Qi → Vk for all i ∈ {1, . . . , n} for t→∞.

Moreover, for all i ∈ {1, . . . , n} \ k and ι := (i mod n) + 1, the ratios of the microbe
concentrations converge as follows:

xi

xι

→ Gιι

Hιi

.
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Proof: First note that because R > 1, we know by Theorem 5.7 that the sum of nutrient concen-
trations

∑
1≤i≤n mi grows to infinity for t → ∞. Every Qi is a monotone increasing function

with respective upper bound Vi, with Vk of Qk(mκ) for κ := (k mod n) + 1 being the smallest
maximum growth rate.

Theorem 5.26 states that every biologically meaningful trajectory with positive initial concen-
trations on the sphere converges to an equilibrium point where all growth rates are equal; for all
1 ≤ i ≤ n we have Qi → Q∗ form some growth rate Q∗. Since

∑
mi → ∞, at least one mi

should grow to infinity. Suppose some nutrient concentration other than mκ grows to infinity, say
mι for some ι ̸= κ. Then the growth rate Qi(mι) → Vi > Vk ≥ Qκ, implying that Qi ̸→ Qk;
contradiction. So mκ is the only possible nutrient concentration that grows to infinity, in which
case Qk → Vk, hence Qi → Vk for all 1 ≤ i ≤ n.

For the second implication, suppose Qi → Vk for all 1 ≤ i ≤ n. Then mκ →∞ and mι → m∗
ι

for positive constants m∗
ι for all ι ̸= κ. Since we can write the nutrient concentration in terms of

the initial conditions and microbe concentrations, the following equations should be satisfied for
all 1 ≤ i ≤ n such that i ̸= k (hence ι ̸= κ):

m∗
ι = Gιιxι −Hιixi + Cι.

Write this in terms of the ratio of microbial concentrations:

xi

xι

= Gιι

Hιi

+ Cι −m∗
ι

Hιixι

t→∞−−−→ Gιι

Hιi

.

FIGURE 5.4 For the four-dimensional Poincaré system, the trajectories are shown for only X1, X2, X3. This
results in trajectories inside the unit ball converging towards the surface.

One can consider again a four-dimensional system (of which the equator was visualized in
Figure 5.2 and 5.3) and visualize the trajectories by only plotting X1, X2 and X3; this results in tra-
jectories in the interior of the three-dimensional ball, moving towards boundary (which corresponds
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to the equator of the four-dimensional sphere). One can see that trajectories indeed converge to a
unique equilibrium point where two functionsMi,Mj equal zero.

COROLLARY 5.28 For system (5.2) with R > 1, the nutrient concentration that is consumed by the
species with the smallest growth rate is the only one that grows to infinity when t→∞.

5.5 Discussion on the generalizaࢢon

We showed that there is a yield parameter condition that ensures unbounded growth for all species
in a microbial community with a cyclic cross-feeding topology. A simplification of the 2n-
dimensional to a n-dimensional system can be obtained by writing the nutrient concentrations in
terms of the microbe concentrations and certain constants Ci for all i ∈ {1, . . . , n}. For any fixed
value ofCi the values (x1, . . . , xn) give the values (m1, . . . , m2); the collection of points for which
is satisfied that these nutrient concentrations are positive, is called the biologically meaningful
region. The original idea of the Poincaré sphere was really to analyze the points on the equator
with linear stability analysis. However, we observed that the important functionsMi are elegantly
described in this transformation, so that we held on to this transformation.

After the transformation of the flows onto the Poincaré sphere, the trajectories inside the bi-
ologically meaningful region on the sphere move towards Z = 0 since unbounded growth of the
microbes xi →∞ corresponds toZ → 0 as t→∞. One could show that all trajectories eventually
end up in some equilibrium point(s) for strictly positive values X1, . . . , Xn, implying convergence
of the growth rates to the same rate. It could then be shown that there is a unique equilibrium point
to which all trajectories converge, as all other equilibrium points would give a contradiction to the
converging growth rates. Note that this proof does not depend on the parameter values other than
that they are biologically relevant and satisfy the condition for unbounded growth R > 1; whether
Ci is positive or negative does not change a thing in the proof.

Note that this is now only proved for systems with a cyclic cross-feeding topology. Neverthe-
less, this way of proving the long-term behaviour for systems with unbounded growth should also
be possible for alternative systems. In the next chapter, a different cross-feeding topology will be
considered to see which of the foregoing theorems do and which do not hold in those systems.
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6
Non-cyclic cross-feeding system

In this chapter we consider cross-feeding topologies different from the cyclic topology that was
discussed in the previous chapter. In a microbial community with three species one can think of
different possibilities of how the microbes interact with each other, as will be shown in this chapter.
It is interesting to analyze what the long-term behaviour for the growth rates are for two species that
grow on the production of a third species for different systems. In the context of the more popular
predator-preymodel coexistencemeans that neither the predator nor the preywould become extinct.
However, as this model does not consider death or dilution the definition of coexistence of two
species in this setting is as follows:

DEFINITION 6.1 Two species are said to coexist if the species grow on growth-limiting nutrient(s)
being produced by a third species with which they are both cross-feeding, such that there is un-
bounded growth and the concentrations stay in the same order of magnitude. Thus, two species
do not coexist if the species grow such that eventually one microbe concentration is negligible
compared to the other.

6.1 Characterisࢢcs for the alternaࢢve systems

From the general scheme of Figure 6.1 several cross-feeding communities can be created; different
combinations of the produced and consumed nutrients of the species give different systems with
varying analytic difficulties. The general equation of modeling the growth of the species is always

FIGURE 6.1 General schematic figure of the alternative systems discussed in this chapter. One can obtain
different systems by considering different combinations of nutrients produced by the species.
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the same, i.e., every species’ growth is modeled by:

ẋi = Qixi. (6.1)

The growth rates of the species, Qi, vary in the following system because not only it depends per
system which nutrient (concentration) their argument is, but also the explicit expressions for the
nutrient concentrations are different per system. This can cause completely different behaviour
than what we have seen in Chapter 5. Nevertheless, on can follow the exact same procedure as
in Section 5.2.2. That is, write the nutrient concentrations in terms of the microbe concentrations
and substitute these in the growth rates so that the remaining system is three equations of the form
of equation (6.1). Then, multiply every equation by all the denominators of the growth rates and
change the time scale in such way so that we can write for every equation:{

ẋi = pi(x1, x2, x3)xi for all 1 ≤ i ≤ 3,

where pi is a multiplication of the nominator of the growth rate Qi and the denominators of the
growth rates Qj for all j ̸= i. In the first two systems that follow pi are also polynomials of
degree 3 (degree 4 in the last system) which agrees exactly with system (5.4), so that the Poincaré
transformation is in its general form identical to (5.6):

Ẋi = XiPi + Xi(−
∑

i X2
i Pi) for all 1 ≤ i ≤ 3,

Ż = −Z
∑

i X2
i Pi,

(6.2)

with Pi cubic polynomials (in the last system in this chapter they are quartic). The exact terms
of Pi are slightly different and will be discussed for each system. Since the Poincaré sphere is
four-dimensional in this chapter it is convenient to denote the variables by X, Y, U , in stead of
X1, X2, X3.

Because of this similar form we are able to use many of the ideas of Chapter 5 even though the
exact terms of Pi andMj are different in the systems. Using the same notation as in the previous
chapter the following statements are satisfied for all of the alternative systems, but will not be
proved:

CLAIM 6.2 The following statements are true.

• The biologically meaningful region B is an invariant region (cf. Theorem 5.20).

• Unbounded growth means that trajectories in B converge to Z = 0 for t→∞ (cf. Proposi-
tion 5.23.

• On E we have that V2V3P1 = V1V3P2 = V1V2P3 (cf. Proposition 5.19);

• In the interior of E we have thatMj > 0 ∀j, hence Pi > 0 for all i ∈ {1, 2, 3} (cf. Proposi-
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tion 5.17 and Corollary 5.18);

• The equilibrium points on E lie on the boundary ∂E (cf. Theorem 5.24);

• In the case of unbounded growth, for t → ∞ we haveMj → 0 is equivalent to mj < ∞
(easy proof left for the reader);

In particular the last statement will be useful for proving the long-term behaviour of trajectories
in this chapter. The reason for not stating the set fromwhich j can be chosen, is because the number
of functions differs per system.

Again, only biologically meaningful parameter values are considered, hence special cases
where certain parameters are equal can be ignored. By the symmetry of the system we can as-
sume without loss of generality that V2 > V3. The magnitude of V1 will be an important factor and
each of the following cases should be considered:

1) V1 > V2 > V3;

2) V2 > V1 > V3;

3) V2 > V3 > V3.

Finally, since it is a four-dimensional system we can visualize the trajectories as we did in the
previous chapter: by only plotting X, Y, U , the trajectories can be shown inside the unit ball that
move towards the surface, which is in fact the equator of the four-dimensional sphere. However,
these are just for additional understanding purpose; the proofs are in an abstract setting and done
without observations of the sphere, so that the proving technique is not limited to only visualizable
systems (in the same sense as the previous chapter). It will only be proven whether the growth
rates converge and to which rates, the corollaries regarding the relative microbe fractions are left
out in this chapter. The same notation of the regions and notion of the boundary and interior of
these regions as in Chapter 5 are used.

6.2 Compeࢢࢢve cross-feeding topology

If species 2 and 3 consume the same nutrient essential limited nutrient, then they are competing for
the same nutrient and thus have the following cross-feeding topology.

THEOREM 6.3 We say that the microbial community has a competitive cross-feeding topology if
there are (at least) two species consuming the same essential nutrient.

An example of such a three-species system can be found in the article of Baltzis et al. [5],
although in the environment of a chemostat. Suppose that two species both consume the essential
nutrient produced by the third species and both produce the same essential nutrient consumed by
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the third species. The expressions for the derivatives of the two nutrient concentrations are then as
follows: ṁ1 = G11Q1(m2)x1 −H12Q2(m1)x2 −H13Q3(m1)x3,

ṁ2 = G22Q2(m1)x2 + G23Q3(m1)x3 −H21Q1(m2)x1.
(6.3)

For simplicity, species 2 and 3 are called the competing species, as they consume the product of
species 1. Since species 1 is connecting the other two species, we denote this species as the common
species.

FIGURE 6.2 Cross-feeding scheme where two species consume and produce the same nutrient, corresponding
to the expressions (6.3).

6.2.1 Nutrient dynamics

The analysis for this system should again start with the behaviour of the nutrients. It is not difficult
to show that also here the nutrient concentrations either all converge to zero, or none does (just like
Proposition 5.6).

The ratio that the yield parameters should satisfy for unbounded growth (similar to Theorem 5.7)
is this time less straight-forward. Since there is only two equations for five independent variables,
the sum of the nutrients can at most be written in terms of two species concentrations. That is, one
can eventually write (for example in x1 and x2):

G23ṁ1 + H13ṁ2 = (G23G11 −H13H21)Q1(m2)x1 + (H13G22 −G23H12)Q2(m1)x2.

From this relation it is less obvious to conclude what the parameters should satisfy to obtain a
positive derivative on the left-hand side. One could set all the yield parameters such that on the
right-hand side both terms are positive, but this could be too strict. This needs further investigation,
which shall not be done in this thesis. However, for now suppose that

R := min{G23G11

H13H21
,
H13G22

G23H12
} > 1.

Then unbounded growth is ensured.
For the possibility of convergence of all growth rates to the same rate when there is unbounded

growth, one should consider how Q2 and Q3 are defined. Since these functions both depend on
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m1, they can only be equal if their graphs intersect (since V2 > V3). The following proposition is
easily obtained by setting equal Q2(m1) = Q3(m1) and solving for m1.

PROPOSITION 6.4 A positive intersection for Q2(m1) = Q3(m1) exists if the parameters satisfy the
following condition:

V2K31 − V3K21

V3 − V2
> 0.

This is in fact the positive value for m1 that gives Q2 = Q3. However, the growth rate Q1

can only converge to the other two growth rates if V1 is exactly the value of Q2 and Q3 at their
intersection. This is because for unbounded growth the sum of nutrients should go to infinity, but
m1 certainly cannot grow to infinity if Q2 = Q3 should be satisfied; hence m2 should grow to
infinity, thus Q1 → V1. However, having exactly V1 = Q2 = Q3 at the intersection is in the
biological sense not relevant. Therefore we may assume that the parameters are such that even if
they satisfy Proposition 6.4 then the intersection is not equal to V1, so the following claim is true:

CLAIM 6.5 For system (6.3) with unbounded growth, convergence of all growth rates to the same
non-zero rate is not possible.

6.2.2 Biologically meaningful region

As described in the introductory section, one can rewrite the system in the same way as done
in Chapter 5 to obtain the Poincare system (6.2). The differences between the system lie in the
functions Pi andMj , where in particular the latter has a major influence in the long-term behaviour
of the growth rates as we will see. The functions Pi are given as follows:

P1 = V1M2(M1 + K21Z)(M1 + K31Z),

P2 = V2M2(M2 + K12Z)(M1 + K31Z),

P3 = V3M1(M2 + K12Z)(M1 + K21Z).

One can see that indeed on Z = 0 these functions are again equal up to a multiplication of the max-
imum growth rate (cf. Proposition 5.19), which is the most important results for these functions.
The functionsM1 andM2 are explicitly given by:

M1 = G11X −H12Y −H13U + C1Z,

M2 = G22Y + G23U −H21X + C2Z.

The exact forms of these functions have a big influence on the long-term behaviour of the system
since these functions, from these functions the biologically meaningful region is defined and char-
acteristics of the functions Pi are derived. In particular, consider E : by definition ofM1 andM2
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this region is given by X, Y, U that satisfy both:

G11X −H12Y −H13U ≥ 0, G22Y + G23U −H21X ≥ 0. (6.4)

From this description of the region and using that on Z = 0 it is not possible that X = Y = U = 0,
one can obtain that on E we have that X > 0 (from the first inequality) and that Y > 0 or U > 0
(from the second inequality). Since E is now not contained in the interior of the positive equator,
the boundary ∂E does not consist solely of points whereMi = 0 is satisfied for some 1 ≤ i ≤ n.
Furthermore, from these two inequalities the following inequality can be derived:

G11X −H12Y

H13
≥ U ≥ H21X −G22Y

G23
,

hence, X and Y should be such that:

(G11G23 −H13H21)X + (H13G22 −H12G23)Y ≥ 0.

Since both terms with the yield parameters are positive by our assumption of R > 1 this condi-
tion is satisfied. From the results of the preceding two subsections, the previously stated list for
characteristics of the system (Claim 6.2 can be extended with the following statements.

CLAIM 6.6 The following statements are true.

• E exists and coincides with the subset of B on Z = 0.

• In the case of unbounded growth trajectories in the interior of the biologically meaningful
region converge towards E;

• On E we have that X > 0 and that Y > 0 or U > 0;

• Equilibrium points on E lie on the boundary ∂E , but not necessarily the whole boundary is
an equilibrium (compare to the previous chapter where the whole set ∂E is an equilibrium);

• Moreover, equilibrium points on ∂E can only be given by points whereMj = 0 for some j.

6.2.3 Convergence to the equator

For the three cases of the maximum growth rates the resulting behaviour on E is different. These
cases are discussed and the general behaviour in the biologically meaningful region will be derived.

Recall that E is the biologically meaningful regionB onZ = 0, hence the region towards which
the trajectories converge as t→∞ in the case of unbounded growth (Proposition 5.23). Dynamics
and equilibria on E give information about the actual long-term behaviour of the trajectories in the
interior of the biologically meaningful region. The statement for dynamics on E which can also
still be used for this system is Proposition 5.25: the variable corresponding to the growth rate with
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the smallest maximum growth rate always decreases on the interior of E and its steady states do not
lie in the interior. Since E is invariant and compact this variable decreases towards the boundary.
The three cases of V1 compared to V2 > V3 are now considered, which will eventually prove the
statement:

CLAIM 6.7 Coexistence is never possible in the microbial community defined by (6.3), as in the long
term one species will always have a lower growth rate than the other two species.

Trajectories converging towards E can either move directly towards the boundary or towards
the interior of E . Since in this system not the whole boundary ∂E is an equilibrium, dynamics on
the boundary should also be considered. It will be shown that trajectories end up in an equilibrium
point in any case. From this fact, it can be shown to what growth rates they should converge.

THEOREM 6.8 Suppose there is unbounded growth and V1 > V2 > V3. Then Q1, Q2 → V2 and
Q3 < V2 for t→∞.

Proof: Consider trajectories that move towards the boundary ∂E . Then they either converge to
equilibrium points given byMi = 0 for some i ∈ {1, 2}, or to the boundary where either U = 0 or
Y = 0 (X = 0 does not lie in E). However, in the case of U = 0, one can write by the properties
of Pi on Z = 0:

X2P1 + Y 2P2 = X2 V1

V2
P2 + Y 2P2 > (X2 + Y 2)P2 = P2.

Since all Pi are positive in E , the inequality gives that Ẏ is negative on U = 0 in E . As mentioned,
the point where both Y = U = 0 does not lie in E . Thus on U = 0 in E trajectories decrease in Y to
some steady state where Y > 0, which is whereM1 = 0 orM2 = 0, hence again an equilibrium
point. The same is true for the boundary on Y = 0 resulting in a convergence towards some U > 0.
Thus trajectories converging towards the boundary always end up in an equilibrium point where
M1 = 0 orM2 = 0.

Now consider trajectories moving towards the interior of E . Since V3 is the smallest on the
interior of E the variable U decrease towards the boundary ∂E (compare to Proposition 5.25),
which decreases either towards U = 0 (steady state for U ) or to some point U > 0 whereM1 = 0
orM2 = 0 (equilibrium). We already showed that on U = 0, Y decreases to some steady state on
Y > 0 whereM1 = 0 orM2 = 0. Hence trajectories converging towards the interior of E will
eventually adopt these dynamics and thus converge towards an equilibrium point.

The previous two paragraphs show that trajectories in E always end up in equilibrium points,
where they are at least of one of the following forms:

(X > 0, Y > 0, U > 0), (X > 0, Y = 0, U > 0), (X > 0, Y > 0, U = 0). (6.5)

We will show which of these types of equilibria are actually not possible by contradiction. The first
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type of equilibrium point is already not possible, as this would mean that all growth rates converge
to the the same non-zero growth rate, which was stated not to be possible by Claim (6.7).

On the other hand, suppose trajectories converge to an equilibrium point of the form Y = 0
and U > 0. This means that the growth rates Q1 and Q3 should converge to each other, while the
growth rate Q2 (corresponding to Y ) should be smaller than Q1 for t→∞. Since m1 + m2 →∞
and V1 > V3, this convergence only happens if m1 → ∞ and m2 → m∗

2 for some m∗
2 ∈ R such

that Q1, Q3 → V3 as t → ∞. But then also Q2(m1) → V2 > V3, which contradicts the fact that
Q2 < Q1.

Hence the only possible equilibria are of the form (X > 0, Y > 0, U = 0). So the trajectories
on E converge to an equilibrium point on E for some positive X and Y , giving that Q1 −Q2 → 0.
Then again by the fact that the sum of the nutrient blows up and V1 > V2, this can only occur if
m1 →∞ and m2 → m∗

2 so that Q1, Q2 → V2.

THEOREM 6.9 Suppose there is unbounded growth and V2 > V1 > V3. Then Q1, Q2 → V1 and
Q3 < V1 for t→∞.

Proof: Same proof as above, with the only difference that Q1 − Q2 → 0 can now only occur if
m1 → m∗

1 and m2 →∞ so that Q1, Q2 → V1.

FIGURE 6.3 The left figure shows the stream plot on the equator and some trajectories that come from inside
the ball, when V1 > V2 > V3; the right figure shows the case V2 > V3 > V1. The figures are made for
relatively small time t to improve the accuracy of the shown trajectories, at the expense of the long-term
behaviour, since it converges slowly towards the equilibrium point when it is nearMi = 0 for some i.

The third possibility of the order of the growth rates shows the least obvious result of the con-
vergence of the growth rates. First introduce the following lemma which can be easily obtained by
solving the equations Q2(m1) = V1 and Q3(m1) = V1 for m1, hence the proof is omitted.

LEMMA 6.10 The growth rate Q2 or Q3 which needs the smallest concentration m1 to equal V1,
that is, min{mQ2

1 , mQ3
1 } for mQ2

1 := Q−1
2 (V1) and mQ3

1 := Q−1
3 (V1), can be obtained from the

parameter values:

mQ2
1 < mQ3

1 ⇐⇒ K21

V2 − V1
<

K31

V3 − V1
,
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and similar for strictly greater signs.

FIGURE 6.4 Growth curves Q2 and Q3 both depend on m1 and V1 smallest maximum growth rate. If
min{mQ2

1 , mQ3
1 } = mQ2

1 , then Q3(mQ2
1 ) > Q2(mQ2

1 ) = V1.

THEOREM 6.11 Suppose there is unbounded growth and V2 > V3 > V1. The growth rate that cor-
responds to the minimum min{mQ2

1 , mQ3
1 } will in fact converge together with Q1 to V1 for t→∞,

while the other converges to some rate smaller than V1.

Proof: Since V1 is the smallest X decreases in E towards the boundary ∂E . In the previous subsec-
tion was mentioned that X = 0 is not contained in E , hence the variable X decreases towards the
point where X > 0 is such thatM1 = 0 orM2 = 0. Since either give that U̇ = 0 and Ẏ = 0, the
trajectories on Z = 0 should end up in an equilibrium point. Hence all trajectories in the interior
of biologically meaningful region, will eventually converge to some equilibrium point with again
one of the given forms as in (6.5).

It is not possible that the trajectories on Z > 0 converge to an equilibrium point where Y > 0
and U > 0; this would imply that all growth rates converge to the same rate, which was shown not
to be possible. Hence equilibrium points to which trajectories converge have either Y = 0 orU = 0
(see Claim 6.6). To know which of the two variables goes down to zero, we should consider their
corresponding growth rate curves. Suppose without loss of generality thatmin{mQ2

1 , mQ3
1 } = mQ3

1

(as in Figure 6.4). By contradiction, we will show that U ̸= 0.
Suppose the trajectories converge to an equilibrium where U = 0 and Y > 0. This means

that the corresponding growth rates of X and Y converge to each other and are bigger than the
corresponding growth rate of U ; Q1, Q2 → Q∗ > Q3. As we have that V1 is the smallest growth
rate and that the sum of nutrients m1 + m2 grows to infinity, this convergence can only happen if
m2 →∞ and m1 → mQ2

1 for t→∞. However, because of the assumption that mQ3
1 < mQ2

1 , then
Q3(mQ2

1 ) > Q2(mQ2
1 ) = V1, contradicting the fact that the growth rates Q1, Q2 converge to some
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rate which is bigger thanQ3. Hence the trajectories converge to the equilibrium point where U > 0
and Y = 0, in which case m2 →∞ and m1 → mQ3

1 so that Q1, Q3 → V1 and Q2(mQ3
1 ) < V1.

FIGURE 6.5 The two figures show what happens to the stream plot on the equator and thus the trajectories
converging toward E when the argument for Q2(m1) = V1 is smaller than the argument of Q3(m1) = V1,
opposed to the other way round (r).

REMARK (1) For all of the three cases of the maximum growth rates one can again obtain from the
definitions ofM1 orM2 where the relative fractions of the microbe concentrations converge to, as
one of both converges to zero for t→∞ and one variable (Y or U ) converges to zero. This gives
an expression for the two non-zero variables, so that for each case a unique point can be obtained
which is the unique equilibrium point to which all trajectories converge.

REMARK (2) As a final remark on the condition for unbounded growth, notice that for example in
the very last case shown in Figure 6.5(r) the lineM1 = 0 is to the right ofM2 = 0 as long as
G11G22
H12H21

> 1. This is indeed implied by the condition R > 1, but seems to be a sufficient condition
on its own for unbounded growth. However, this observation can only be done after knowing where
the trajectories converge to, as this condition is different for the other case shown in Figure 6.5(l).

6.3 Non-compeࢢࢢve cross-feeding

Suppose that the two competing species both consume a different essential nutrient produced
species 1, but both still produce the same essential nutrient consumed by species 1. In this case,
species 2 and 3 are in fact not competing since they are consuming different products of the common
species. 

ṁ1 = G11Q1(m2)x1 −H12Q2(m1)x2,

ṁ2 = G22Q2(m1)x2 + G23Q3(m3)x3 −H21Q1(m2)x1,

ṁ3 = G31Q1(m2)x1 −H33Q3(m3)x3.

(6.6)
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FIGURE 6.6 Cross-feeding scheme where two species produce the same nutrient, but consume different nu-
trients produced by the third species.

6.3.1 Nutrient dynamics

Once again, Proposition 5.6 stating that a nutrient depletes if and only if all nutrients deplete is
true. Hence, we should be able to find a threshold R for the parameters so that there is unbounded
growth. One can eliminate x2 and x3 from the equations (6.6) to obtain the relation:

G22H33ṁ1 + H12H33ṁ2 + H12G23ṁ3 = (G11G22H33 + G31G23H12 −H12H21H33)Q1x1.

Hence, for this system, there is unbounded growth if and only if

R := G11G22H33 + G31G23H12

H12H21H33
> 1.

In this system there are three nutrients for the three different growth rates and therefore it could
again be possible that all growth rates converge to the same rate (contrary to the previous system).

6.3.2 Biologically meaningful region

Again, if we follow the same procedure that is done in the introductory section of this chapter we
end up with the Poincaré transformed system (6.2), where Pi are cubic polynomials with a similar
form (that satisfy Proposition 5.19 again) and whereMi are defined as:

M1 = G11X −H12Y + C1Z,

M2 = G22Y + G23U −H21X + C2Z,

M3 = G31X −H33U + C3Z.

We saw in the previous system that we only need to consider these functions, as they define the
biologically meaningful region. Setting these functionsMi on Z = 0 greater or equal to zero one
can obtain the following inequality, which should be satisfied in the region E :

G22G11

H12
X + G23G31

H33
X > G22Y + G23U > H21X,
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which again writes to the condition R := G22G11H32+G23G31H12
H12H21H33

> 1. With the same observations as
for the preceding system we can state that the exact same statements as in Claim 6.6 are true.

6.3.3 Convergence to the equator

Since the proof for convergence towards an equilibrium point on the boundary ∂E is going to be
similar as the ones that were done for system (6.3) in the previous section, these are omitted in
this section. The main idea is again that trajectories move towards E in the case of unbounded
growth. All trajectories move towards an equilibrium (on the boundary ∂E), either directly or via
the dynamics on E . In any case, analogue to the result of the equilibrium points in the previous
system (6.5), so we state the following without proof:

CLAIM 6.12 Trajectories in B converge to some equilibrium point on ∂E . These equilibria are
points where X > 0 and where Y > 0 or U > 0.

In this case however, we will see that it is less obvious which of the type of equilibrium is
the only possible one to which trajectories converge; an additional condition for the yield ratio
influences the growth rate behaviour.

THEOREM 6.13 Suppose trajectories converge to some equilibrium on ∂E and suppose that
V1 > V2 > V3. If the yield parameters satisfy the condition

G11G22

H21H12
> 1,

then Q1, Q2 → V2 and Q3 → V3.
On the other hand, if the inequality has a strictly smaller sign, then Q1, Q2, Q3 → V3.

Proof: From the previous claim, the possible equilibrium points to which trajectories could con-
verge, are points of the following forms:

1) (X > 0, Y > 0, U > 0),

2) (X > 0, Y = 0, U > 0),

3) (X > 0, Y > 0, U = 0).

Equilibria of the first kind correspondwith convergence of all growth rates to the same rate, whereas
the other two correspond with convergence of two growth rates to a rate bigger than the third growth
rate. Wewill show for each type of equilibrium points if andwhen trajectories can converge to them.

1) (X > 0, Y > 0, U > 0).
Trajectories converging to this type of equilibrium, eventually show equal growth rates, and
since V1 > V2 > V3, this can only be satisfied if at least m1 < ∞ and m2 < ∞ (thus in
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which case m3 → ∞) for t → ∞. This is equivalent toM1 → 0 andM2 → 0 for t → ∞
(see Claim 6.2), and expressed as follows:

G11X −H12Y → 0, G22Y + G23U −H21X → 0.

Hence, for t → ∞, the two convergences give that in the limit G22Y +G23U
H21

= H12
G11

Y ,
which is rewritten as G23U = (H12H21

G11
− G22)Y . Obviously, this can only be satisfied if

H12H21
G11

−G22 > 0, that is, G11G22
H12H21

< 1.

2) (X > 0, Y = 0, U > 0).
These equilibria correspond to Q1, Q3 → V3 and Q2 < V3, implied by the fact that in this
case again m1 <∞ and m2 <∞ for t→∞ (hence m3 →∞). Then for t→∞:

G11X −H12Y → 0, G22Y + G23U −H21X → 0.

However, since now Y → 0 in the limit, the first equation implies that also X → 0. That is
not possible as X > 0 in E . So these equilibria cannot be stable.

3) (X > 0, Y > 0, U = 0).
In the limit t → ∞, for the growth rate Q1 to be smaller or equal to V2 we should have
M2 = 0, hence

G22Y + G23U −H21X → 0.

Since the equilibrium lies in U = 0, in the limit G22Y = H21X . On the other hand, on E we
have thatM1 ≥ 0 which means that G11X ≥ H12Y . Combining the two inequalities one
obtains

G22

H21
Y = X ≥ H12

G11
Y.

One can see that the inequality is strict forM1 > 0, whereas it is an equality forM1 = 0.
Moreover, this inequality can only be satisfied if G11G22

H12H21
≥ 1. If we omit the special case

of equal to 1, hence G11G22
H12H21

> 1, thenM1 = 0 would violate the inequality, thusM1 ̸→ 0
for t → ∞. Moreover, in this case Q2 → V2 thus also Q1 → V2. Also, considering the
expression forM3 one can see that this cannot equal zero, as this would imply that X = 0.
Hence m3 →∞, thus Q3 → V3.

Figures 6.7 shows the stream plot on the equator and several trajectories for the two different
cases of the additional condition of the yield ratio. From the figures we see what happens for the two
cases of this additional condition. In the same way we can state this again for V2 > V1 > V3 with
the same condition and an identical proof, which is therefore omitted. We see that the condition for
the maximum growth rates that should actually be considered is whether min{ V1, V2, V3} = V1 or
not.
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FIGURE 6.7 For the system with V1 > V2 > V3, the left figure shows the stream plot on the equator and
several trajectories when G11G22

H12H21
< 1, in which case trajectories converge to the intersection ofM1 = 0 and

M2 = 0. The right figure show these when G11G22
H12H21

> 1, where trajectories converge to U = 0.

THEOREM 6.14 Suppose trajectories converge to some equilibrium on ∂E and suppose that
V2 > V1 > V3. If the yield parameters satisfy the condition

G11G22

H21H12
> 1,

then Q1, Q2 → V1 and Q3 → V3.
On the other hand, if the inequality has a strictly smaller sign, then Q1, Q2, Q3 → V3.

FIGURE 6.8 For the system with V2 > V1 > V3, the left figure shows the case when G11G22
H12H21

< 1, whereas the
right figure shows the case when G11G22

H12H21
> 1. Due to the computational inaccuracy only a small time span is

considered; as time t increases, the trajectories move further down to the intersection or U = 0 respectively.

THEOREM 6.15 Suppose trajectories converge to some equilibrium on ∂E and suppose that
V2 > V3 > V1. Then Q1, Q2, Q3 → V1.

Proof: Again, we will consider for the different candidate types of equilibria and prove that two
types cannot be stable in this case. Suppose trajectories converge to an equilibrium point of the
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type (X > 0, Y = 0, U > 0). This corresponds to Q1 − Q3 → 0, and Q2 smaller than these
two, which can only be satisfied if m1 < ∞ and m3 < ∞, hence m2 → ∞. This translates
to M1 → 0,M2 ̸→ 0,M3 → 0. However, the first convergence implies by definition that
G11X −H12Y → 0. Since Y = 0 in the equilibrium, also X should go to zero, which contradicts
that X > 0.

A similar contradiction arises when the equilibrium (X > 0, Y > 0, U = 0) is considered.
Hence the only type of equilibria which can be stable are of the form (X > 0, Y > 0, U > 0), in
which case all growth rates Q1, Q2, Q3 → V1, since m1 <∞, m3 <∞, hence m2 →∞.

FIGURE 6.9 In the system where V1 is the smallest growth rate all the trajectories converge to some equilib-
rium point where Q1 = Q2 = Q3 = V1.

REMARK The exact values to which the relative fractions converge (the unique equilibrium point)
can be obtained again by considering the solving the system of equations given byMi = 0, for all
theMi that converge to zero in each case.

6.4 Double-nutrient limited growth

When a microbial species consumes two scarce essential nutrients both concentration levels should
influence the growth rate. One would however still expect that the consumption rate and production
rate are proportional to the growth rate; the ratio betweenmuch an amount of substrate resulting into
an amount of increased size is still given by the yield coefficient. If the common species consumes
two different nutrients produced by the competing species we can model the nutrients as follows:


ṁ1 = G11Q1(m2, m3)x1 −H12Q2(m1)x2 −H13Q3(m1)x3,

ṁ2 = G22Q2(m1)x2 −H21Q1(m2, m3)x1,

ṁ3 = G33Q3(m1)x3 −H31Q1(m2, m3)x1,

(6.7)

Note that Q1 depends on two nutrients now. When there is a scarcity two essential nutrients for
growth, there can be argued how the growth rate Qi is defined. The original Monod growth rate
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FIGURE 6.10 Cross-feeding scheme where two species consume the same nutrient but produce different nu-
trients.

curve is defined for an environment where only one nutrient is of low concentration. Two possible
extensions of this curve for a multiple-substrate depending growth rate is presented in the article
of Bader [13]:

Qi(m) = Vi

M∏
j=1

mj

Kij + mj

, (6.8)

Qi(m) = Vi min
1≤j≤M

mj

Kij + mj

, (6.9)

in which the growth rate of a species is modeled for M possibly restricting nutrients. The inter-
active model (6.8) defines a growth function where all essential nutrient concentrations always
contribute to the growth, in contrast to the non-interactive model (6.9) where the essential nutrient
concentration that gives the lowest growth rate is the sole influence. The physiological state of an
organism depends upon the availability of all nutrients, so it is unlikely that the growth would be
independent of each other. When the degree of interaction between certain subsystems (influenc-
ing the growth) may be rather small, a non-interactive type of model may accurately describe the
growth rate of the organism. Otherwise, the interactive model should describe the growth rate in a
better way. Since this model is also computationally and theoretically more easily implemented, it
will define the multi-substrate growth rate in this chapter.

6.4.1 Nutrient dynamics are not trivial

Numerical simulations show that this system does not only depend on the yield parameters to show
unbounded growth, but it is also sensitive for different values of the maximum growth rate Vi,
parameters Kik and initial conditions. How does this system differ from the cyclic system and
which theorems do not apply? The very first proposition introduced, with its generalization given
by Proposition 5.6, is already not true for this system.

PROPOSITION 6.16 In system (6.7) we have for 1 ≤ i ≤ n: ∃i mi → 0 ⇐⇒ ∀i Qi → 0. However,
∃i mi → 0 does not necessarily imply that ∀i mi → 0.

Proof: Suppose that m1 → 0. Then by definition also Q2(m1) → 0 and Q3(m1) → 0. One
can rewrite ẋ2 = Q2x2 to ẋ2

x2
= Q2, where the left-hand side is in fact d

dt
ln x2. Since Q2 → 0,
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this derivative converges to zero, hence ln x2 converges to some constant which implies that x2

converges to a certain constant; hence Q2x2 → 0. Similarly, also Q3x3 → 0. So for t large enough
m1 → 0 implies that we can express ṁ2 = −H21Q1(m2, m3)x1 and ṁ3 = −H31Q1(m2, m3)x1.
So these nutrient concentrations keep decreasing untilm2 = 0 orm3 = 0 in which caseQ1 = 0; not
necessarily both have to be zero.A similar proof can be given if we suppose m2 → 0 or m3 → 0.

The fact that depletion of one nutrient does not imply depletion of every nutrient seems only
a small difference with respect to the preceding systems. However, it has big consequences for
other theorems that were stated for these systems. First of all, the ratio R > 1 now does not give a
sufficient condition about the blowup of the nutrient concentrations, but only a necessary:

THEOREM 6.17 Let the system of ODEs be given by (6.7). The sum of nutrients may diverge, if

R := G11G22G33

G33H12H21 + G22H13H31
> 1.

Proof: Consider again only the nutrient dynamics appropriately, so that the derivatives can be ex-
pressed in terms of the growth of one species:

G22G33ṁ1 + G33H12ṁ2 + G22H13ṁ3 = (G11G22G33−G33H21H21−G22H31H13)Q1x1. (6.10)

The right-hand side is positive if G11G22G33 − G33H12H21 − G22H31H13 > 0, that is, if
R := G11G22G33

G33H21H21+G22H13H31
> 1. However, the total sum being positive in this system does not

exclude that none of the nutrients converge to zero, as Proposition 6.16 is less strict. This could
mean that even though one nutrient would deplete the sum can still satisfy condition (6.10), as not
all nutrients then have to deplete. This implies that also in the case of R > 1 it is possible that
Q1 → 0, so that even in this case the sum of nutrients does not grow to infinity.

6.4.2 Possible growth rate convergence

The presence of unbounded growth seems to depend on more conditions than just the yield ratio
R. If there is unbounded growth it seems probable that the growth rates again do converge to each
other, considering the previous systems. But in this case the parameters should at least satisfy the
condition given in the following statement:

PROPOSITION 6.18 A necessary condition for the parameters that should be satisfied for the pos-
sibility to have convergence to the same non-zero growth rate, is the following:

0 <
V2K31 − V3K21

K31 −K21
≤ V1.

67



Proof: If all growth rates should converge to the same non-zero rate, then in particular also
Q2 − Q3 → 0; hence there should at least exist a positive intersection of Q2 and Q3 as they both
depend on m1 (see Figure 6.11). Set Q2(m1) = Q3(m1) and derive for the non-trivial intersection
m∗

1 = V2K31−V3K21
V3−V2

. Then Q2(m∗
1) = V2K31−V3K21

K31−K21
:= V ∗. This is the value for Q2 and Q3 at their

intersection. Since also Q1 should converge to the other two growth rates, this intersection must
lie below V1 and must obviously be positive.

FIGURE 6.11 Two figures of possible growth rate curves Q2 and Q3 for V2 > V3. For the possibility of all
growth rates converging to the same rate, the parameter values should be such that these curves intersect
(left).

Note that this is actually a similar statement as Proposition 6.4. However, the difference is now
that this intersection does not have to equal V1 if for the growth rates to converge to the same non-
zero rate; since Q1 now depends on two nutrient concentrations (instead of one), one may grow to
infinity while the other could attain any value, in particular the value such that Q1 is equal to the
value of Q2 and Q3 at their intersection. It is also not clear in that case which of the concentrations
should converge. Hence we are at a dead end now with the proving technique that we have been
using so far for the other systems. Additional information needs to be found to know for which
initial conditions or parameter conditions the microbes concentrations will grow infinitely large.
As I have not been able to find certain patterns, this thesis ends with this unsolved problem that is
interesting for further research on this topic.

Finding sufficient conditions (for parameters and initial values) for which the species have
unbounded growth in this system is beyond the scope of this thesis. If we know more about the
conditions for the presence of unbounded growth, then the same analysis could be done to gain
more insight about the long-term behaviour of the trajectories.
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7
Conclusion

Different models of a cross-feeding microbial community were studied. The fundamentals of these
models were introduced and derived in Chapter 2, whichweremainly based on the works ofMonod.
A two-species cross-feeding community was modeled by a four-dimensional system of differential
equations, which could be rewritten to a two-dimensional system of differential equations with a
constraint that the initial conditions satisfy a certain equation.

Chapter 3 gave insights into the behaviour of the system by transforming the system to a system
defined on [0, 1]2 and giving the phase portraits for different parameter values. This showed that
the fraction G11G22

H12H21
had an influence on the long-term behaviour and that one nutrient concentration

mi at the equilibrium points on v = 1 (the critical points at infinity in the original system) was in
fact undefined. This observation shows that these equilibrium points are not quite normal.

In the search of more information about the long-term behaviour the mathematical analysis in
Chapter 4 was done by compactifying the space using the Poincaré transformation. The initial
approach of classifying all equilibria on the first octant of the sphere with linear stability anal-
ysis showed difficulties since the non-trivial equilibrium points on the equator turned out to be
non-hyperbolic, which confirms the idea that these equilibrium points give some difficulty. By
observing the lines P1 = 0 and P2 = 0 and the nullclines around the non-hyperbolic equilibria, one
could eventually show to which equilibrium all trajectories in the first octant converge to. However,
this only proved the unbounded growth and convergence for certain parameter conditions since the
analysis was too laborious. We did see in both chapters that the yield ratio G11G22

H12H21
was important

for the long-term behaviour.
Amore general approach of analyzing the behaviour was done by first considering the condition

that actually ensures unbounded growth (for positive initial conditions). This condition is where
the proofs of Chapter 5 and Chapter 6 rely on. In the most cases, it was relatively easily obtained
that the sum of nutrient concentrations blows up as time t approaches infinity and none of the
nutrients deplete; then the microbe concentrations also grow to infinity. Subsequently, the Poincaré
transformation turned out to be useful to prove behaviour on infinity; the points at infinity are
mapped onto the equator of the sphere, on which steady states, equilibria and the behaviour of
trajectories can be considered. One could prove that on the equator, all trajectories at least converge
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to some equilibrium on the equator. Subsequently could be proved that for every system a unique
equilibrium exists to which all trajectories in the biologically meaningful region converge. The
latter was not explicitly done for the systems in Chapter 6 but is a corollary of the results which is
similar to the statement of Theorem 5.27. This way we could prove to which values the growth rates
converge and we could give the microbial concentrations relative to each other in the long-term.

For the last system in Chapter 6, it could not be proved whether there would be unbounded
growth for certain parameter conditions. This example gave the insight that the long-term be-
haviour of not every system of cross-feeding microbes can be deduced from the techniques pre-
sented, whence the last section follows.

7.1 Future work

The systems in which some species consumes two scarce essential nutrients could be interesting
for further research, such as the last system that was introduced. This system showed behaviour
that can not be explained by the techniques previously used; even when the parameter values are
such that the ratio R > 1, it can still occur that the growth rates converge to zero. I have not been
able to find any pattern in numerical simulations which might give a clue. However, it might be
possible that the long-term behaviour cannot be predicted at all.

One could also consider other underlying assumptions of the system. For example, Andrews
describes in his article [14] a growth rate curve where the nutrient limits the growth at low concen-
tration, but is inhibitory for a micro-organism when a high concentration is present in the environ-
ment. This could be interesting, since in our model (at least) one nutrient concentration increases
to infinity when time t approaches ∞; if this nutrient is indeed inhibitory for the corresponding
microbe species, it changes the long-term behaviour drastically.

Research also shows that bacterial competition is not restricted to a passive consumption pro-
cess; microorganisms have evolved strategies to acquire their resources. These strategies can make
a significant change to the competitive behaviour, which could result in outcomes that are different
than those which are predicted by resource availability alone. A well-known strategy is the produc-
tion of an inhibitory substrate for the competing species, but there are also more complex strategies
which require cooperation between species. In the article of Hibbing et al. [15] several strategies are
presented, albeit non-mathematically. One can imagine that incorporating active strategies could
be mathematically very challenging.
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Popular Summary

Microbial growth is defined as the division of a microbe into two identical daughter cells,
which means that their growth is exponential. If x0 denotes the initial concentration of a
species, then the total concentration at time t is given by x(t) = x0e

µt, where µ is defined as
the growth rate. Subsequently, the rate of change of the microbe concentration is defined as
dx(t)

dt
= dx0eµt

dt
= x0e

µtµ = x(t)µ. The growth rate does not have to be constant; in this thesis,
the concentration of an essential nutrient is scarce in the environment. If we denote this essential
nutrient by m, the nutrient-controlled growth rate is then some function denoted by Q(m). The
simplest example of the type of models we consider is shown in the following figure.

FIGURE P.1 The concentration of microbe species 1 is denoted by x1 and of species 2 by x2. The concen-
tration in the environment of the nutrient produced by species 1 (and consumed by species 2) is denoted by
m1. Similarly, m2 denotes the concentration produced by species 2.

This figure can be mathematically expressed in terms of a system of ordinary equations, where
the nutrient concentrations m1 and m2 in the environment fluctuate due to the production and con-
sumption of these nutrients by the microbes.



ẋ1 = Q1(m2)x1,

ẋ2 = Q2(m1)x2,

ṁ1 = G11Q1(m2)x1 −H12Q2(m1)x2,

ṁ2 = G22Q2(m1)x2 −H21Q1(m2)x1,

The equations for ṁ1 and ṁ2 arise from the proportionality of the growth rates with the production
and consumption rates, with their proportions given by the constants G11, G22 (w.r.t production)
and H12, H21 (w.r.t. consumption).
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The microbe concentrations increase as long as there is a positive concentration of the essential
nutrient in the environment; we consider this as the only factor in the environment that affects the
growth rate. This means that the other essential nutrients are always in excess, thus the microbe
concentrations could in fact grow infinitely large as time t approaches∞. This is called unbounded
growth and will be our focus in this thesis. Critical points of these systems lie at infinity, hence
we want to make the system compact in order to study these points. The Poincaré transforma-
tion projects the (x1, x2) onto the unit sphere in such a way that infinity is mapped to the equator
of the sphere. The non-negative values x1, x2 ≥ 0 are mapped to the first octant of the sphere
(X, Y, Z ≥ 0), hence only this part of the sphere has to be analyzed.

FIGURE P.2 Projection of the (x, y)-plane onto the surface of the unit sphere in the (X, Y, Z)-space.

We want to show what happens to the long-term behaviour of the trajectories on the sphere,
since convergence towards an equilibrium point on the equator might imply that the growth rates
converge to the same rate. We will not stick with a two-species systems, but also consider higher-
dimensional system in which a higher-dimensional sphere will be considered. For the two-species
system that was introduced, one can visualize in the case of unbounded growth some trajectories
converging towards an equilibrium point on the equator for certain parameter values.

FIGURE P.3 Trajectories on the surface of the sphere converge to an equilibrium point on the equator.
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