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Abstract

Cells face a fundamental problem: signals from the extracellular environment must be detected
on the cellular surface and conveyed correctly to the interior for further processing. However,
due to inherent stochasticity in the molecular reactions, this signal arrives imperfectly. This
raises the question of how well a cell is able to track its changing environment and respond ap-
propriately. This situation can be captured in a mathematical model of two random variables
for the signal and internal output of signal transduction. Though several dependency or qual-
ity measures exist, it remains unclear how to best capture this ability mathematically. Mutual
information is a popular, but we find that it has a key shortcoming in that it is not equipped
to handle some interesting biological questions - for instance, the probability that the cell has
a wrong internal representation. We show for a simplified gene expression model that mutual
information and error probability do not always agree.
We will focus in particular on the two-component system signal transduction mechanism, us-
ing the linear noise approximation to investigate fluctuations in the output and calculating the
mutual information between signal concentration and output concentration. Recently, a similar
approach was used in the literature on a simplified model neglecting any protein complex for-
mation. Here, we consider a model including complex formation and find significantly di�erent
results for output variance and mutual information dependence on the mean signal level.
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Preface

From January to June 2014, I worked on this master’s thesis on information processing in two-
component signal transduction as the final stage of the master program in Mathematics at the
VU University in Amsterdam. The aims of such a thesis project are to investigate a mathematical
research problem culminating in the exploration of the boundaries of scientific knowledge, to
study relevant papers from the literature, to combine these, and ideally to make an original
contribution. This written work is the result of my attempt to achieve this.

During my studies, I focused on the interplay between mathematics and biology and cellular
biology and systems biology in particular. I was thus motivated to choose a thesis subject that
would originate from a relevant and interesting biological research question, but which was
deeply intertwined with mathematical questions and techniques needed to answer it. Following
Dr. Frank Bruggeman’s suggestion, I came upon the subject of information processing in two-
component signal transduction systems. This proved to be quite an intriguing subject centered
around the very practical biological question: to what extent is a cell able to track its chang-
ing environment in the presence of noise? Attempting to answer this question in light of two-
component signaling systems requires a broad range of mathematical techniques (from Fokker-
Planck equations and information theory to statistical concepts) and raises questions such as:
how do we model a two-component signal transduction system mathematically? Can we ana-
lytically calculate the “information” passed through a two-component system for a certain in-
formation measure? Which measure is best for the task at hand? etc. I hope to shed light on
some of these questions in the rest of this thesis.

First and foremost, thanks go out to my main supervisor Dr. Robert Planqué for his critical in-
sights during this project and all his help and guidance. Secondly, to Dr. Frank Bruggeman for
suggesting this topic and supplying us with the necessary background material, literature and
his own insights and guidance. Finally, I would like to thank the second reader Dr. Joost Hul-
shof. I hope this work will inspire some answers to the many questions still remaining in this
field and some fruitful future collaborations.



1 | Introduction

This chapter serves as an introduction to the rest of the text, culminating in the research questions
that will be considered in the next chapters. First, we must introduce the biological backdrop in
order to put the questions we will attempt to answer in context.

1.1 Scientific context
The central dogma in biology states that the genes on DNA are transcribed into mRNA, which
is subsequently converted on ribosomes into amino acid sequences that form proteins. Thus we
could say that the information flow is from DNA to proteins. But what about the other way
around: does information also flow from proteins to DNA? The answer is of course yes, and this
allows cells to adjust their gene expression levels based on internal and external conditions. This
is precisely how multicellular organisms develop di�erent types of cells that are specialized for
specific functions even though they all share the same DNA blueprint.
The cellular processes responsible for the control of gene expression are referred to as gene regu-
latory processes or networks. This control may happen in a variety of ways, but for our purposes
the most significant way is through transcription factors (TFs). Transcription factors are special
proteins that are able to modify the expression of one or several genes by binding to the pro-
motor site of a gene and allowing (or blocking) RNA polymerase to transcribe the DNA. The
e�ect of the binding of a transcription factor can increase the gene expression rate (activation)
or negatively influence the expression rate (repression). The latter may occur because the tran-
scription factor is blocking the RNA polymerase and other molecules needed for transcription
from binding and forming a complex.
Genetic regulatory networks allow cells to respond to varying internal and external conditions
by changing gene expression levels over time. Before genes can be regulated however, the envi-
ronmental signals must first be transduced to the intracellular environment. In this thesis, we
will concern ourselves with a signal transduction mechanism referred to as a two-component
system. We will consider the output of this system to be a transcription factor, which then goes
on to influence the expression level of genes as described above. Through a two-component
system, the concentration of a signal molecule in the extracellular fluid is correlated with the
concentration of its output molecule. In a way, this output molecule represents the cell’s internal
knowledge of the concentration of the signal, which can be used to respond to the environment.
Since molecular reactions and gene expression are noisy processes; the relationship between
the signal and the internal output of signal transduction will be imperfect. This means that the
cell constantly has an imperfect view of its environment. In this thesis we are interested in just
how imperfect this view is. Put di�erently, how much information does a cell have about its
environment and to what degree is it able to track changes in it? We will investigate the size

1
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of fluctuations in this process and consider how they depend on the parameters of the system.
More fundamentally we will ask: what do we mean by the term information in this context and
can we quantify this term in a meaningful way? We will focus on these questions first in general,
and later we will apply our realizations to a specific two-component signal transduction system.

Understanding these questions about the impact of stochastic fluctuations on the ability of cells
to respond to the environment correctly is of fundamental importance to biology, as these fluc-
tuations may propagate into the process of gene expression itself which plays a role in many
other biological subjects, including disease.

As this is a Master’s project in Mathematics many relevant mathematical details will be included.
Although not strictly necessary to understand the results they do deepen our understanding of
them.

1.2 Research questions
Summarizing, we will address the following research questions in this text:

• How can we quantify the knowledge or information a cell has about its environment?
More specifically, how can we use information theory for this purpose?

• What is a good measure for the quality of this signal transduction process?

• How does mutual information relate to the probability of the cell’s internal representation
being wrong?

• What is the linear noise approximation and can we analytically and numerically calculate
it for a specific two-component system?

• How does the system’s output variance change with model parameters? Particularly, how
does it change with the mean concentration of the extracellular signal?

• What consequences does this have for the mutual information between the input and out-
put of the signal transduction process?

• How do our results compare to the recent publication [Maity et al., 2014]?

Of these, the first, second and fourth research questions are mainly literature studies.
In trying to answer these questions, we came across a whole range of mathematical techniques
as well as a vast amount of literature. To make this thesis as self-contained as possible, the first
two chapters will mostly deal with background material that does not directly relate to two-
component systems. These will serve to introduce the modeling steps used later on. Specifically,
we start out by considering the question of how to quantify the term “information”. In doing
so, information theory and mutual information will be introduced since it is the historically
used and most popular definition of information. We will also consider possible alternatives. In
Chapter 3 we will then focus on stochastic modeling of chemical events in the cell as opposed to
deterministic modeling. Of particular importance for the following chapter is the linear noise
approximation. In Chapter 4 we will consider two-component systems and attempt to apply the
linear noise approximation to a specific model. We will in particular investigate the impact of
adjusting model parameters on the output variance and compare this with recent literature. In
Chapter 5 we explore decision making and gene expression based on the internal representation
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of an extracellular signal. Finally, we will conclude with a summary and pointers for future work.
Some details that would have steered the main text too far o� course have been collected in the
appendix.



2 | Information theory in biology

In this chapter we concern ourselves with the question of how can we model information trans-
mission in biological signal transduction networks? Specifically, we ask: how do cells encode
information about their environment? How can we model this, borrowing ideas from informa-
tion theory? What measure can we use to judge the quality of this communication process?
We will turn to mutual information, which has its roots in information theoretic entropy and
introduce all the necessary details as well as some recent developments.

2.1 Information and cellular signaling systems
One of the earliest papers in which information processing was considered in a biological context
seems to be [Attneave, 1954] in the context of perceptual systems. The following is proposed: “A
major function of the perceptual machinery is to strip away some of the redundancy of stimula-
tion, to describe or encode information in a form more economical than that in which it impinges
on the receptors”. Another key paper was [Linsker, 1988], in a similar context, where the fol-
lowing idea was put forth: “The organizing principle I propose is that the network connections
develop in such a way as to maximize the amount of information that is preserved when signals
are transformed at each processing stage of the network, subject to certain constraints”. Ever
since, the consideration of information as a useful concept in biology has grown. Particularly in
modeling of neurobiology it plays a large role [Rieke, 1999], but its applications are also growing
in cell biology and genetics [Walczak and Tka�ik, 2011].
Fundamentally, signal transduction in cells can be viewed as an information transmission prob-
lem, where chemical messengers relay information about the environment to the interior of a
cell. After this signal arrives, some decision may have to be made about how to respond to new
conditions. As pointed out in [Perkins and Swain, 2009], such cellular decision making must
be probabilistic due to the three levels at which it occurs, all of which are, or at least can be,
stochastic:

• Cells receive a noisy signal and must infer from that signal the state of the environment,
now and in the future and

• They must weigh the costs and benefits of possible responses, given the probable future.

• They must make these decisions in the presence of other decision-makers, other cells.

Cells thus face a fundamental problem: signals from the environment must be detected on the
surface of the cell and transduced to the internal decision-making parts. However, due to in-
herent stochasticity in the molecular reactions through which this occurs, this signal will arrive
imperfectly. This problem is compounded by the fact that they must make decisions based on

4
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(a)

(b)

Figure 2.1: (a) A communication channel. A stochastic input signal (S) is sent through the chan-
nel with added noise resulting in a stochastic output (R). (b) Stimulus overlap. For su�ciently
large noise, a cell cannot use its internal response to accurately discern which stimulus regime
(weak or strong) was encountered. Therefore, noise results in a loss of information about the
input. These figures are adapted from [Rhee et al., 2012].

this noisy knowledge. We can capture the essence of the signaling process in a so called commu-
nication channel, a simple visualization of which is displayed in Figure 2.1a. Such a communica-
tion channel can be modeled mathematically by two random variables that have some statistical
dependence. Through this dependence measuring the output or response (R) results in gaining
knowledge about the original signal (S). Noise hampers the quality of this communication and
one way in which this can be of particular importance to cells is in their ability to discern various
states of the enviroment that require di�erent responses; see Figure 2.1b.
How should we quantify the strength of dependence or association between two random vari-
ables? Specifically, we would like to do so without bias for relationships of a specific form and
say something about the quality of the signal transduction in the process. One way to think
about this is that we would like our dependence measure to give equal value to relationships
with an equal noise size. This notion, recently also referred to as “equitability” [Reshef et al.,
2013], [Kinney and Atwal, 2014], does not yet have a definitive mathematical formalization.
The most obvious measure of statistical dependence between a signal S and a response R is
the covariance Cov(S, R) = E

#
(S ≠ ¯S)(R ≠ ¯R)

$
, or the related Pearson correlation coe�cient

fl =

Cov(S;R)

std(S) std(R)

(A.1). Unfortunately, fl is not a useful measure of dependency in general. Firstly,
statistical correlation does not guarantee a causal relationship, and vice versa, if there is such a
relationship it does not guarantee existence of correlation. Secondly, it is best suited to continu-
ous, normally distributed data and perhaps most importantly, it only detects linear relationships
between random variables and will wrongly classify any non-linear relationship. A currently
much-used alternative is mutual information, a fundamental quantity in information theory,
which can detect non-linear relationships; see Figure 2.2.
As we expect the relationship between inputs and outputs in genetic regulatory networks to
be non-linear, this is an important characteristic for us. Also, assumption-free measures can be
applied in many more situations. Mutual information has its roots in information theory, which
we will introduce in the next section.
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Figure 2.2: Non-linear classification. All three images are scatterplots of two variables drawn
from three joint distributions. (Left) the variables are linearly related, and fl is almost at its
maximum 1. (Middle) The variables are dependent, butit is a non-linear dependecy. fl takes
the value 0, but mutual information gives a non-zero value showing its correct classification
behaviour for non-linear relationships. (Right) The variables are independent, and both linear
correlation and mutual information classify this as zero. Source: [Walczak and Tka�ik, 2011].

2.2 Introduction to information theory
Information theory is a branch of applied mathematics started by C.E. Shannon in 1948. Initially
developed for electrical engineers to design e�cient and reliable communication systems, it has
since spiralled out to become a field of research into the essence of the communication process
itself and has found application in other fields such as neurobiology and more recently in genetic
regulatory networks [Walczak and Tka�ik, 2011]. In the next sections we introduce the main
concepts of information theory and mutual information in particular.

2.2.1 Derivation of the Shannon entropy
The fundamental concept in information theory is that of entropy, which bears resemblance to,
but is not the same as, the statistical physics concept. Consider a discrete random variable X ,
of which each realization may be a signal, and whose value may be uniformly quantized into a
finite number of levels

X = {x
k

|k = 0, ±1, ±2, . . . , ±K}.

Of course, if we let the spacing ”x between the values go to zero and let K grow to infinity X
becomes a continuous random variable and the sums in the definitions below become integrals
(with some subtleties we will consider later). For the probability mass function of X , we use
the notation p

X

(x
k

) = P(X = x
k

). We distinguish this in notation from the probability density
function of a continuous random variable X : f

X

(x).
There are two ways to motivate the definition of the Shannon entropy: by assuming the char-
acteristics we want it to have and rigorously proving what form entropy thus has to take, or by
intuitive reasoning showcasing the usability of the entropy. We will discuss both.

Rigorous derivation

Three assumptions underlie the derivation of the Shannon entropy as derived in Shannon’s orig-
inal paper [Shannon, 1948].
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Theorem 2.2.1. Suppose we have a set of possible events whose probabilities of occurrence are
p

1

, . . ., p
N

and that this is all we know about which event will occur. We are looking for a measure
H for how uncertain we are of the outcome that satisfies the following 3 criteria:

1. [Continuity] H must be a continuous function of the probabilities of the outcome

2. [Monotonicity] When outcomes are equally likely, H should be a monotonically increasing
function of N , the number of outcomes.

3. [Additivity] Multi-part choices may be visualized as branching trees and H should be the
sum of the information gained at each branch point.

The only measure H that satisfies the assumptions mentioned above is the entropy of a random
variable X with a probability mass function p

X

(x) defined by

H(X) = ≠
ÿ

xk

p
X

(x
k

) log p
X

(x
k

). (2.1)

Or, when X is a continuous random variable with probability density function f
X

(x) and sup-
port S

h(X) = ≠
⁄

S

f
X

(x) log f
X

(x)dx. (2.2)

Proof. See Appendix 2 in [Shannon, 1948]. The proof is a little too long and non-insightful for
our purposes to be reproduced here.

Note that we distinguish in notation between the discrete and continuous cases. In the literature
the continuous case is often referred to as di�erential entropy and denoted with h instead of
H . Also, a little care has to be taken with summing over all x values in the definition since
some values may have a probability mass of zero. In such cases we invoke the calculus result
lim

xæ0

+ x ln x = 0, i.e. terms with zero probability do not influence the entropy.
For more than two variables the concept of entropy is straightforwardly extended; however, we
will not be needing these extensions so they are not included.

Intuitive derivation

The concept of entropy is intricately related to the notion of surprising outcomes of an experi-
ment. Suppose p

k

= 1, and therefore p
i

= 0 for i ”= k. In this case there is no surprise at the
outcome of an experiment and no information is gained since we know what the signal will be.
However, when p

k

is small, there is more uncertainty and more surprise when X takes the value
x

k

. Let us define the amount of surprise after observing X = x
k

by

S(x
k

) = log

3
1

p
k

4
= ≠ log p

k

.

Now note that the surprise is again a discrete random variable which has value S(x
k

) with prob-
ability p

k

. Therefore, the mean of this random variable is

E S(x
k

) =

ÿ

k

p
k

S(x
k

) (2.3)

= ≠
ÿ

k

p
k

log p
k

(2.4)

= H(X). (2.5)
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One can thus interpret entropy as the average amount of surprise per realization of X .

Theorem 2.2.2. The discrete version of the Shannon entropy satisfies the following three prop-
erties (a) Entropy is non-negative: H(X) Ø 0.
(b) Entropy is only zero when a single outcome has probability 1.
(c) H(X) can be converted from one base to another by multiplying by an appropriate factor:
H

b

(X) = log

b

(a)H
a

(X).

Proof. (a) Note that 0 Æ p
X

(x) Æ 1 so that ≠p
X

(x) log(p
X

(x)) Ø 0. Thus H(X) Ø 0.
(b) All zero probability terms add zero to the sum because of the p

X

(x) = 0 term. For the
remaining term the logarithm is zero.
(c) This is a trivial consequence of the logarithmic rule log

b

(p
X

(x)) = log

b

(a) log

a

(p
X

(x)).

The base of the logarithm chosen determines the units involved, two of which are used espe-
cially often and prove useful: logarithms to base 2 resulting in units called bits and the natural
logarithm resulting in so-called nats.
To see where the view of entropy in terms of an expectation comes in handy, consider the next
example which we will come to use later on.

Example 2.2.1 (Entropy of a Gaussian distribution). Assume some random variable X has a
Gaussian distribution with density „(x) =

1Ô
2fi‡

2 exp

1
≠ (x≠µ)

2

2‡

2

2
. Then the entropy (using the

natural logarithm) is given by:

h(„(x)) = ≠E ln „(x) = ≠E
5
≠ (x ≠ µ)

2

2‡2

≠ 1

2

ln(2fi‡2

)

6

=

E(x ≠ µ)

2

2‡2

+

1

2

ln(2fi‡2

)

=

1

2

ln(e) +

1

2

ln(2fi‡2

)

=

1

2

ln(2fie‡2

) nats, (2.6)

where we used the definition of variance Var(X) = E(X ≠ µ)

2. There are some remarks to be
made here. First of all, this equation shows that the entropy is independent of the mean. This
makes sense, since entropy should measure uncertainty and the mean of the distribution simply
corresponds to an arbitrary choice of the origin of our coordinate system. Note that the entropy
does depend on the variance ‡2 which makes sense for the same reason. In fact, if we double
the standard deviation of X so that ‡ æ 2‡ then we see

h(Xú
) =

1

2

1

log

2

(e)

log

!
4(2fie‡2

)

"

=

1

2

1

log

2

(e)

!
2 log 2 + log(2fie‡2

)

"

=

1

log

2

(e)

+ h(X),

meaning the entropy rises by one bit divided by the scaling factor. We see that entropy di�er-
ences thus measure by which factor the variance has scaled.
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2.2.2 The relationship between di�erential and Shannon entropy
Passing from the Shannon to di�erential entropy is actually quite subtle. First, begin by con-
sidering X to take the values x

k

= k”x and let ”x æ 0. Also note that the continuous random
variable takes on a value in [x

k

, x
k

+”x] with probability f
X

(x
k

)”x. In the limit we can therefore
write the discrete entropy of the continuous version of X as

H(X) = ≠ lim

”xæ0

Œÿ

≠Œ
f

X

(x
k

)”x log(f
X

(x
k

)”x)

= ≠ lim

”xæ0

C Œÿ

≠Œ
f

X

(x
k

)”x log(f
X

(x
k

)) +

Œÿ

≠Œ
f

X

(x
k

)”x log(”x)

D

= ≠
⁄ Œ

≠Œ
f

X

(x) log f
X

(x)dx ≠ lim

”xæ0

log ”x

⁄ Œ

≠Œ
f

X

(x)dx

= h(X) ≠ lim

”xæ0

log ”x (2.7)

As lim

”xæ0

log ”x goes to infinity we see that a continuous random variable has infinite discrete
entropy. This means that di�erential entropy is not the limit of the discrete entropy for n æ Œ
but di�ers from it by an infinite o�set. The idea here is that this infinite term serves as a reference.
In practice, the (mutual) information through a stochastic system is a di�erence between two
entropy terms that now have a common reference and cancel out.
Di�erential entropy is in even more ways quite a troublesome concept since it di�ers from the
ordinary Shannon entropy in more aspects, as shown by the following example.

Example 2.2.2. Consider a random variable X with a uniform distribution on [a, b]

f
X

(x) =

;
1

b≠a

, x œ [a, b]

0, otherwise.

Then

h(X) = ≠
⁄

b

a

1

b ≠ a
log

3
1

b ≠ a

4
dx = log(b ≠ a).

This example shows that di�erential entropy can be negative for (b ≠ a) < 1 whereas discrete
entropy is non-negative (2.2.2). Secondly, it shows that for b ≠ a = 1 di�erential entropy is zero.

Theorem 2.2.3. Di�erential entropy satisfies the following properties:
(a) It is translation invariant: h(X ± c) = h(X)

(b) It is not invariant under scaling: h(aX) = h(X) + log(|a|).

Proof. (a) The definition of di�erential entropy does not involve the actual values of x. Only
the probabilities. (b) This is proved by changing variables to Y = aX . A probability density
function f

X

(x) integrates to one, so that f
Y

(y) =

1

|a| fX

(y/a). But then we have that

h(Y ) = ≠E [log f
Y

(y)]

= ≠E [log f
X

(y/a)] + log(|a|)
= h(X) + log(|a|).
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2.2.3 Joint and conditional entropy
The concepts in this section will be defined for the discrete version of entropy. For the continuous
case simply replace sums by integrals and probability mass functions by probability density
functions. The definition for the joint entropy of a pair of random variables is quite similar to
the one variable case (2.2.1). This makes sense when viewing the pair (X, Y ) as a single vector-
valued random variable.

Definition 2.2.1. The joint entropy of a pair of random variables (X, Y ) with joint probability
mass function p

X,Y

(x, y) is defined as

H(X, Y ) = ≠
ÿ

x,y

p
X,Y

(x, y) log p
X,Y

(x, y) = ≠E log p
X,Y

(x, y) (2.8)

Now having definitions for marginal and joint entropy, we can also consider conditional entropy.

Definition 2.2.2. The conditional entropy of the random variable X given Y is defined as

H(X|Y ) = ≠
ÿ

x,y

p
X,Y

(x, y) log p
X|Y (x|y) = ≠E log p

X|Y (x|y) (2.9)

Using the definitions above we are now ready to prove the following useful theorem, which is
sometimes referred to as the chain rule.

Theorem 2.2.4. The joint, conditional and marginal entropy of a pair of random variables (X, Y )

are related through

H(X, Y ) = H(X) + H(Y |X) (2.10)
= H(Y ) + H(X|Y ). (2.11)

Proof. We prove the first equality; the second follows through symmetry.

H(X, Y ) = ≠E log p
X,Y

(x, y)

= ≠E
#
log

!
p

Y |X(y|x)p
X

(x)

"$

= ≠E
#
log p

Y |X(y|x) + log p
X

(x)

$

= ≠E log p
Y |X(y|x) ≠ E log p

X

(x)

= H(X) + H(Y |X)

Figure 2.3 displays a nice graphical summary of the relationships between the various forms
of entropy derived in the preceding theorems. The graph might seem to suggest a similarity
between the entropy H and basic set theory. In fact, this similarity is not mere happenstance
(see [Yeung, 2010] Chapter 3 for details). Figure 2.3 also includes the mutual information I(X; Y )

which is the subject of the next section.
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Figure 2.3: An overview of the overlap between forms of entropy. The two circles represent
the marginal entropy of X and Y . Their union is H(X, Y ) and using theorem 2.2.4 we represent
the partial circles as H(Y |X) and H(X|Y ). The intersection is the mutual information I(X; Y )

Source: [Yeung, 2010].

2.3 Mutual information
Mutual information quantifies the concept of how much information one random variable (the
response Y ) contains about another random variable (the signal X). The mutual information for
random variables X and Y is defined as (also see Figure 2.3)

I(X; Y ) = H(X) ≠ H(X|Y ). (2.12)

Or, in the continuous case

I(X; Y ) = h(X) ≠ h(X|Y ).

Actually, from Figure 2.3 we can deduce several other equivalent definitions of I(X; Y ):

I(X; Y ) = H(X, Y ) ≠ H(X|Y ) ≠ H(Y |X)

= H(X) + H(Y ) ≠ H(X, Y ).

What does this definition (2.12) mean? Remember that H(X) measures our uncertainty about
the random variable X . Similarly, H(X|Y ) measures the remaining uncertainty when we know
the value of Y . Thus, I(X; Y ) is the reduction in uncertainty about X after observing the value of
Y . This interpretation makes it a suitable measure for the quality of signal transduction, since it
says how much the cell’s uncertainty about the environment is reduced by knowing an internal
concentration.
The reason for denoting the mutual information as I(X; Y ) and not as I(X|Y ) or I(Y |X) is that
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it is a symmetric quantity. To see this, consider the following:

I(X; Y ) = H(X) ≠ H(X|Y )

= ≠
ÿ

x

p
X

(x) log p
X

(x) +

ÿ

x,y

p
X,Y

(x, y) log p
X|Y (x|y)

= ≠
ÿ

x,y

p
X,Y

(x, y) log p
X

(x) +

ÿ

x,y

p
X,Y

(x, y) log p
X|Y (x|y)

=

ÿ

x,y

p
X,Y

(x, y) log

p
X|Y (x|y)

p
X

(x)

=

ÿ

x,y

p
X,Y

(x, y) log

p
X,Y

(x, y)

p
X

(x)p
Y

(y)

. (2.13)

Notice that the last equality shows that the mutual information is symmetric with respect to
Y and X . Observe that the symmetry of I(·) could have been deduced from Figure 2.3 too.
This symmetry property has the nice consequence that we have two di�erent but equivalent
definitions of mutual information

I(X; Y ) = H(X) ≠ H(X|Y ) = H(Y ) ≠ H(Y |X). (2.14)

This is very useful since it is often easier in biology to measure the response of the system to
a variety of simulated signal regimes rather than measuring the actual signal. Also note that
I(X; Y ) is completely determined by the joint distribution of the two random variables.
Previously we showed that H could be written in terms of the expectation operator; we can do
the same for the mutual information. Considering (2.13) we see that

I(X; Y ) = E log

p
X,Y

(x, y)

p
X

(x)p
Y

(y)

. (2.15)

What can we say about the range of values the mutual information can take? We saw in (2.2.2)
that H (as opposed to h) cannot be negative. In addition, note that in general H(X) Ø H(X|Y ),
so that I(X; Y ) Ø 0. This lower bound is attained when X and Y are statistically independent
as can be seen from (2.15). This might happen when, for instance, the noise is very large and
thus the input and output are statistically independent.
Considering the above, we also see that H(X|Y ) Ø 0 and thus we have that I(X; Y ) Æ H(X).
However, due to symmetry (2.14) we also have I(X; Y ) Æ H(Y ).
Summarizing,

0 Æ I(X; Y ) Æ min{H(X), H(Y )} (2.16)

The upper bound is attained in a noiseless channel such that H(X|Y ) = 0. This last result
is particularly revealing since (as pointed out in [Rhee et al., 2012]) consequently the range of
values that X and Y can take limit the communication capacity of the channel. If H(Y ) = 2 bits
then even though H(X) maybe as high as 10 bits, I(X; Y ) Æ 2 bits.

2.3.1 Kullback-Leibler divergence
There exists a generalization of mutual information called the relative entropy or Kullback-
Leibler (KL) divergence. KL divergence of a distribution g from a distribution f for a random
variable X , denoted D

KL

(f ||g), is a measure of the information lost when g is used to approxi-
mate f . Think of g as the distribution we fit to the model while f is the true distribution. Specif-
ically,
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Definition 2.3.1. In the discrete case D
KL

is defined by

D
KL

(f ||g) =

ÿ

xk

f(x
k

) ln

f(x
k

)

g(x
k

)

, (2.17)

and in the continuous case when f has support S

D
KL

(f ||g) =

⁄

S

f(x) ln

f(x)

g(x)

dx. (2.18)

This quantity is only defined if f and g are both normalized and g(x) = 0 implies f(x) = 0 for
all x. Again, as for entropy, the convention 0 ln 0 = 0 is adopted because lim

xæ0

+ x ln x = 0.
The KL divergence is non-negative, this is sometimes referred to as the Gibb’s inequality. An-
other fundamental result for KL divergence is that it is transformation invariant, as opposed to
the di�erential entropy 2.2.3. For brevity we exclude the proofs, but they are easily found in
online sources.
Note that mutual information (2.13) is a special case of KL divergence:

I(X; Y ) = D
KL

(p
X,Y

(x, y)||p
X

(x)p
Y

(y)) . (2.19)

Another way to write this relationship is

I(X; Y ) =

ÿ

x,y

p
X,Y

(x, y) ln

p
X,Y

(x, y)

p
X

(x)p
Y

(y)

=

ÿ

y

p
Y

(y)

ÿ

x

p
X|Y (x|y) ln

p
X|Y (x|y)

p
X

(x)

=

ÿ

y

p
Y

(y)D
KL

!
p

X|Y (x|y)||p
X

(x)

"

= E
Y

D
KL

!
p

X|Y (x|y)||p
X

(x)

"
. (2.20)

In other words, the mutual information I(X; Y ) is the expectation of the KL divergence of the
marginal distribution p

X

(x) of X from the conditional distribution p
X|Y (x|y) of X given Y .

This illustrates the property that the more di�erent the distributions p
X|Y (x|y) and p

X

(x) are,
the greater the increase in information.
Because of its non-negativity and invariance properties, KL divergence is seen as an improved
generalization of di�erential entropy. From these properties one can deduce once again that
mutual information is non-negative and transformation invariant.

2.3.2 The data processing inequality
So far we have seen that mutual information is a symmetric measure and that 0 Æ I(X; Y ) Æ
min{H(X), H(Y )}; let us now investigate other more subtle properties. Mutual information
satisfies another fundamental result in information theory: the data processing inequality, which
we will discuss next.

Definition 2.3.2. The random variables X , Y and Z form a Markov chain X æ Y æ Z if the
joint probability mass function can be written as

p
X,Y,Z

(x, y, z) = p
X

(x)p
Y |X(y|x)p

Z|Y (z|y). (2.21)
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Observe that this is a simple consequence of using the probabilistic chain rule P (

u
n

k=1

A
k

) =

r
n

k=1

P

A
A

k

-----
u

k≠1

j=1

A
j

B
and using the Markov property X ‹ Z|Y . In addition, note that if

X æ Y æ Z forms a Markov chain then Z æ Y æ X does too and we can write X ¡ Y ¡ Z.

Theorem 2.3.1 (Data processing inequality (DPI)). A dependence measure D[X; Y ] satisfies DPI
if and only if whenever the random variables X , Y and Z form a Markov chain X ¡ Y ¡ Z

D[X; Y ] Ø D[X; Z]. (2.22)

Mutual information satisfies the DPI.

Proof. To prove this we actually need the chain rule for mutual information which we will use
without proof [Cover and Thomas, 1991]

I(X
1

; X
2

; . . . ; X
N

; Y ) =

Nÿ

i=1

I(X
i

; Y |X
i≠1

, X
i≠2

, . . . , X
1

).

Using the chain rule and the symmetry of I(·) we can expand the mutual information between
X , Y and Z in 6 ways by reordering the elements. Take the following two expansions

I(X; Y ; Z) = I(X; Z) + I(X; Y |Z) Order: Z,Y,X
= I(X; Y ) + I(X; Z|Y ) Order: Y,Z,X. (2.23)

By assumption Z is independent of X given Y , so that I(X; Z|Y ) = 0. By virtue of the non-
negativity of mutual information we have I(X; Y |Z) Ø 0, so that I(X; Y ) ≠ I(X; Z) Ø 0. We
conclude

I(X; Y ) Ø I(X; Z)

This means that manipulation of Y , cannot ever increase the amount of information that Y con-
tains about X .

2.4 Optimizing mutual information
An especially nice property of mutual information is that it can be determined without a teacher
making it ideal for self-organizing systems like neurons and other cells. Following the lines
of reasoning used in neural network research [Haykin, 1994], we may want to set the mutual
information as the objective function to be optimized, the so-called infomax principle due to
Linsker [Linsker, 1988]. This information maximization is formalized in information theory by
the concept of channel capacity.

2.4.1 Channel capacity
Choosing a communication channel in e�ect means choosing a distribution p

Y |X(y|x). Since the
mutual information (2.13) is fully specified by p

X,Y

(x, y) = p
Y |X(y|x)p

X

(x), we are left with the
ability to vary our choice for p

X

(x) which is not a property of the channel but of the signal. The
channel capacity is defined as

C(X; Y ) = sup

pX (x)

I(X; Y ). (2.24)
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The channel capacity is thus the maximal mutual information under all possible signal distri-
butions p

X

(x). Biologically this quantity is relatively easy to ascertain. By supplying the system
with a range of stimuli and sampling the response for each stimulus, we easily find the distribu-
tion p

Y |X(y|x). The trick is in knowing which p
X

(x) are biologically realistic - this may or may
not be known. Through the channel capacity we can give an upper bound on the information
transfer through the channel.
The channel capacity actually has a very nice interpretation as the logarithm of the number of
distinguishable input states, see the argument in [Cover and Thomas, 1991] Section 7.4. This
means that using the formula

No. distinguishable states = 2

I(X;Y )

we can view mutual information in this sense too, a fact we will use later on since it allows us to
say something about the number of environmental regimes that can be distinguished through
signal transduction.
In general, determining the mutual information between an input X and output Y is a very
di�cult task. However, under special circumstances some progress can be made.

2.4.2 Mutual information in a Gaussian channel
In the special case of a so called Gaussian channel, a simple formula can be deduced for the mu-
tual information through the channel. We start by assuming that the input/output relationship
between X and Y is linear with additive Gaussian noise, meaning

Y = gX + Z,

where g is called the gain and Z is white noise (independent of X), i.e. has a Gaussian distribu-
tion with mean equal to zero and a variance ‡2

z

:

f
Z

(z) = f
Y |X(y|x) =

1
2fi‡2

z

exp

3
≠ z2

2‡2

z

4
(2.25)

=

1
2fi‡2

z

exp

3
≠ (y ≠ gx)

2

2‡2

z

4
. (2.26)

It is quite reasonable for many biological situations to assume that the noise is Gaussian. Gaus-
sian noise can arise from a fundamental physical reason or because it arises from the central limit
theorem when many independent sources of noise are involved. However, the main reason for
this assumption is of course its mathematical tractability.
If we now assume that the signal X also has a Gaussian distribution (with mean ÈxÍ) then Y too
must have a Gaussian distribution with mean ÈyÍ = gÈxÍ and variance ‡2

Y

= g2‡2

X

+ ‡2

z

. Under
this Gaussian channel assumption we have, starting from the continuous version of (2.13):

I(X; Y ) =

⁄
dx

⁄
dy f

X,Y

(x, y) log

2

f
X,Y

(x, y)

f
X

(x)f
Y

(y)

=

1

ln 2

⁄
dx

⁄
dyf

X,Y

(x, y) ln

f
Y |X(y|x)

f
Y

(y)

=

1

ln 2

E ln

f
Y |X(y|x)

f
Y

(y)

.
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Plugging in the distributions we find

I(X; Y ) =

1

ln 2

Èln

S

U

Ò
2fi‡2

y


2fi‡2

z

T

V ≠ z2

2‡2

z

+

(y ≠ ÈyÍ)2

2‡2

y

Í

=

1

ln 2

S

U
ln

Û
‡2

y

‡2

z

≠ Èz2Í
2‡2

z

+

È(y ≠ ÈyÍ)2Í
2‡2

y

T

V .

Since Z has mean zero and using the variance decomposition ‡2

z

= Èz2Í ≠ ÈzÍ2, we see that
Èz2Í = ‡2

z

so the second term simplifies to ≠ 1

2

. In the third term the numerator is per definition
the variance of Y so that it too simplifies to 1

2

. We conclude

I(Y ; X) =

1

ln 2

ln

Û
‡2

y

‡2

z

=

1

ln 2 log

2

(e)

1

2

log

2

‡2

y

‡2

z

=

1

2

log

2

3
1 +

g2‡2

X

‡2

z

4
. (2.27)

We can rewrite (2.27) in a particularly nice way by considering the system as adding noise to the
input directly:

Y = g(X + ÷),

where we could interpret ÷ as the “e�ective” noise Z/g. Rewriting (2.27) we find

I(Y ; X) =

1

2

log

3
1 +

‡2

X

‡2

÷

4

=

1

2

log (1 + SNR) , (2.28)

where ‡

2
X

‡

2
÷

is called the signal-to-noise ratio (SNR). Note that (2.28) captures the intuitive result
that more noise should mean less information, as in Figure 2.1. We could of course also have
directly written (2.27) in terms of the signal-to-noise ratio SNR =

‡

2
X

‡

2
z/g

2 .
In the appendix we derive another representation of the mutual information in terms of the
correlation coe�cient fl, I(Y ; X) = ≠ 1

2

log

!
1 ≠ fl2

"
; see the derivation of equation (A.3).

Derivation through entropy

An easier but less illuminating route to formula (2.28) exists by looking directly at the entropy
of a normal distribution which is given by 1

2

ln(2fie‡2

); see example 2.2.1. Starting with (2.14)
and realizing that X and ÷ are normally distributed, we see

I(X; Y ) = H(Y ) ≠ H(Y |X)

=

1

2

ln(2fie‡2

Y

) ≠ 1

2

ln(2fie‡2

÷

)

= ln

‡2

Y

‡2

÷

=

1

2

ln (1 + SNR)
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What have we learned? Maximization of information in a Gaussian channel can now be seen to
be equivalent to maximizing the signal-to-noise ratio, which implies that we must either maxi-
mize the variability in the input for fixed noise variance or minimize the variance of the noise.
In addition, maximization of information is also equivalent to maximizing the correlation coef-
ficient, i.e. fl æ ±1 see (A.1.1). Both of these results are intuitively satisfying.

2.4.3 Example: optimizing MI in Drosophilia development
Drosophila, a genus of flies commonly referred to as fruit flies, has been investigated in relation
to mutual information in its embryonic development [Tkacik et al., 2008]. Upon production of
a Drosophila egg, the mother stores Bicoid mRNA in the anterior portion of the egg which after
translation into protein di�uses to the posterior side. This results in a Bicoid gradient along the
anterior-posterior axis of the egg.
Bicoid functions as a morphogen, a signaling molecule that acts on cells and produces a response
dependent on the local morphogen concentration. In the early stages of development the egg is
filled with undi�erentiated cells. The bicoid gradient along the long axis of the egg results in
di�erential gene expression in a set of genes referred to as gap genes. This di�erential expression
results down the line in spatial positioning determining the kind of a cell the undi�erentiated
cells develop to be.
By experimentally measuring the concentration of Bicoid c and the expression levels of the gap
genes g simultaneously, one has the empirical joint probability distribution p(c, g). With this and
(2.13) one can calculate the mutual information between g and c. This turns out to be I(c; g) =

1.5 ± 0.1 bits. It was traditionally thought that the gap genes have a switch-like response to
bicoid. However, the 1.5 bits suggests more information than a 1 bit on-o� response. To put
this number into perspective, in [Walczak and Tka�ik, 2011] the maximal mutual information
(channel capacity) through this channel is considered. Numerically optimizing the Langrangian

L[p(c)] = I(c; g) ≠ ⁄

⁄
p(c)dc (2.29)

they find a maximum mutual information of 1.7 bits indicating that the experimentally measured
information transmission is remarkably high! They use this finding in their investigation of using
the maximization information as a possible design principle for genetic networks.

2.5 Recent developments concerning mutual informa-
tion
Mutual information is not a perfect dependence measure. In fact, there are three di�culties
stopping its full acceptance. The first is that it is rather di�cult to estimate mutual information
correctly from a small amount of data. This plays more of a role in data analysis than in what
we are considering. Second, unlike fl, mutual information does not come with an automatic
interpretation of its values. A value of fl = 0.5 says something about the spread of data points,
I(X; Y ) = 2.2 does not. Again, this is more of an issue for data analysis than for design principles
in cell biology.
A third issue seems to have been resolved recently. In [Reshef et al., 2013] it is proposed that
mutual information does not satisfy the concept of equitability and an alternative, equitable,
dependence measure related to mutual information was suggested, the maximal information
coe�cient (MIC). This equitability concept can intuitively be taken to mean that a dependence
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measure classifies relationships with equal noise levels, equally. More recently though, in [Kin-
ney and Atwal, 2014] it was shown that their definition of equitability was not correct mathe-
matically. An alternative formalization of the concept was introduced which mutual information
does happen to satisfy. We will now briefly review their results.

2.5.1 Self-equitability
Definition 2.5.1. A dependence measure D[X; Y ] is self-equitable if and only if it is symmetric
and satisfies

D[X; Y ] = D[f(X); Y ] (2.30)

whenever f is a deterministic function, X and Y are variables of any type, and X ¡ f(X) ¡ Y
forms a Markov chain.

This notion of self-equitability is more general (weaker) than the DPI. In the Appendix Theorem
3 Kinney and Atwal prove that DPI-satisfying measures are self-equitable.

Theorem 2.5.1. Every DPI-satisfying dependence measure D[X; Y ] is self-equitable.

Proof. If X ¡ f(X) ¡ Y is a Markov chain, so is f(X) ¡ X ¡ f(X) ¡ Y . Extracting
subchains, we see that for any DPI-satisfying measure D[X; Y ],

X ¡ f(X) ¡ Y ∆ D[X; Y ] Æ D[f(X); Y ]

f(X) ¡ X ¡ Y ∆ D[f(X); Y ] Æ D[X; Y ].

Therefore D[X; Y ] = D[f(X); Y ]. Since mutual information satisfies DPI, mutual information
is self-equitable.

Mutual information is not the only self-equitable information measure: in Theorem 4 Kinney
and Atwal go on to prove that all so-called F-information measures (which includes mutual
information) are self-equitable.

2.6 Overview
Now that we have seen the various properties of mutual information, a clear picture has emerged
that mutual information is all a mathematician could want to judge the quality of communication
processes. All of its properties: non-negativity, symmetry, self-equitability, relative simplicity,
scope (discrete and continuous), interpretation in terms of uncertainty reduction and the num-
ber of distinguishable signal states and its relationship to other concepts such as KL-divergence
set it apart from all other contenders. However, we must keep in mind that mutual information
was originally developed with engineering in mind and not biology. As such, there are vari-
ous questions mutual information is not equipped to answer that relate to the quality of signal
transduction and similar processes. We discuss some views on this in Chapter 5.
For any results that we did not include here, the reader is referred to [Cover and Thomas, 1991],
the standard in the field of information theory.



3 | Stochastic kinetics

This chapter serves as background material for the next chapter, where we consider the linear
noise approximation in relation to two-component systems. In this chapter we introduce the
necessary material on stochastic kinetics and the linear noise approximation in particular.

The deterministic description of kinetics makes use of mass action kinetics (introduced in the
next section) whereas the stochastic approach often makes use of the chemical master equation
which describes the evolution over time of the probability of having certain copy numbers of
chemical species in the system. Chemical reactions that involve only a relatively small number
of particles of a certain chemical species, as is often the case in signal transduction and gene
expression, may be sensitive to noise; by noise we mean inherent fluctuations in the processes
underlying the reactions, such as di�usion. When copy numbers are low, reactions occur so
infrequently that fluctuations arise spontaneously, and these can be quite substantial. If these
fluctuations are propagated through a signaling network, it may also lead to relatively high
fluctuations in the concentration of the output molecule such as a transcription factor.

3.1 Deterministic kinetics
Cellular events happen through collisions of molecules due to di�usion, which is a random
process. This random behaviour can behave quite like a deterministic process when the copy
numbers of the molecules involved are large. So, deterministic kinetics arises as a limit for copy
numbers of the stochastic kinetic description.

3.1.1 Mass action kinetics
The simplest chemical reactions have no reaction intermediates and are called elementary reac-
tions. As an example, consider a molecule A transforming into a product B in one step,

A æ B. (3.1)

Empirical studies have shown that the rates at which such reactions occur are roughly propor-
tional to the product of the concentrations of the reactants involved. Thus we could approximate
the example reaction’s rate by saying f = k · A. Here v is the reaction rate, k is the rate constant,
and A is the concentration of the reactant.
A note on notation: in many texts, the concentration of a metabolite, X , is denoted using square
brackets [X] to distinguish it from X itself. To avoid unnecessary complexity in later equations,
we will not make this distinction as it should be clear to the reader which is meant from the
context.

19
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Reaction (3.1) depicts that one molecule of A is transformed into one molecule of B; we say that
the stoichiometric coe�cient of A is ≠1 (1 molecule is lost), and for B it is +1 (one molecule is
created). The rate of change of A is the reaction rate f times the stoichiometry coe�cient, i.e.
˙A = ≠f = ≠kA.

More generally, for reactions with multiple reactants and products:

n
1

A
1

+ n
2

A
2

+ . . . æ m
1

B
1

+ m
2

B
2

. . .

the reaction rate can be approximated by

f = k
Ÿ

i

Ani
i

. (3.2)

This rate law is referred to as the law of mass-action or mass-action kinetics (MAK).

3.1.2 ODE system for reaction networks
In (3.2) there are several stoichiometric coe�cients. When considering a reaction network with
multiple of such reactions we summarize the coe�cients in a stoichiometry matrix N , where
the (i, j) entry is the stoichiometric coe�cient of reactant i in the reaction j. This matrix is of
size N ◊ R where N is the number of molecular species and R the number of reactions. In such
a system, each species can partake in multiple reactions so that if we use „ = („

1

, . . . , „
N

)

T to
denote the M ◊ 1 vector of macroscopic concentrations which are time-dependent, we have

ˆ„
i

(t)

ˆt
=

Rÿ

j=1

N
ij

f
j

(„).

Now letting the vector f(„) denote the vector-valued transition rate function of size R ◊ 1, the
evolution of the concentrations follows the ODE system

ˆ„

ˆt
= N f(„). (3.3)

The macroscopic description is inappropriate for many systems of interest, particularly when
the molecular copy numbers are low. In such cases we require a stochastic or mesoscopic de-
scription, which we will focus on in the next sections. Much more can be said on the subject
of deterministic molecular kinetics, but this is enough for the coming material in this thesis.
Heinrich’s text is a good introduction for further details [Heinrich and Schuster, 1996].

3.2 Stochastic kinetics: master equations
Master equations (or ME for short) are used to describe the stochastic evolution over time of a
system that can be in one of a countable number of states at any given time. The master equations
are then a set of di�erential equations of the probability that the system occupies each di�erent
state. In the next sections, we will provide a straightforward derivation of the forward master
equation for birth-death processes and its continuous state-space equivalent. For alternative
derivations, we refer to Chapters 2 and 3 of [Goel and Richter-Dyn, 1974] & [Van Kampen, 2007].
We will also discuss the steady state distribution for the simplest process.
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Figure 3.1: Simple birth-death process. A birth and death process jumps between neigboring
states with transition probabilities g

n

(jump to the right) and r
n

(jump to the left).

3.2.1 Master equations for birth-death processes
A simple birth-death process

Assume that the stochastic process under consideration can only be in discrete states {. . . , n ≠
1, n, n+1, . . .} and assume that in each time interval of length �t, the system moves from state n
to state n+1 with probability g

n

or moves to state n≠1 with probability r
n

; see Figure 3.1. These
parameters may be constants or functions of n. Thus the system stays in state n with probability
1 ≠ g

n

≠ r
n

. In addition, assume for now that the system can only move over to neighboring
states in this short interval. Then, writing p

n

(t) for the probability of being in state n at time t,
we have that

p
n

(t + �t) = g
n≠1

p
n≠1

(t)�t + (1 ≠ g
n

≠ r
n

)p
n

(t)�t + r
n+1

p
n+1

(t)�t. (3.4)

Taylor expanding the left-hand side up to O
!
(�t)2

"
, we find

ˆ

ˆt
p

n

(t)�t = p
n

(t + �t) ≠ p
n

(t) + O
!
(�t)2

"
,

so that up to second order

ˆ

ˆt
p

n

(t) = g
n≠1

p
n≠1

(t) ≠ (g
n

+ r
n

)p
n

(t) + r
n+1

p
n+1

(t). (3.5)

Equation (3.5) is the forward master equation. Note that it is an ordinary di�erential equation
in the time variable t, yet discrete in the state variable n.

General birth-death processes

In the birth and death process above, the system only jumps between neighboring states. How-
ever, there are systems that require jumps from any state to any other state. In such cases, the
two parameters g and r have to be replaced by a matrix W of transition probabilities. Here ele-
ment (i, j) would contain the transition probability for moving from state j to state i. Rewritten,
the master equation becomes

ˆ

ˆt
p

n

(t) =

ÿ

m

[W
mæn

p
n

Õ
(t) ≠ W

næm

p
n

(t)] . (3.6)

This model may sometimes be referred to as a gain-loss equation.
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Birth-death process with equal rates

On the other hand, we can also simplify (3.5) by setting g
n

= g and r
n

= rn for all n:
ˆ

ˆt
p

n

(t) = gp
n≠1

(t) ≠ (g + rn)p
n

(t) + r(n + 1)p
n+1

(t). (3.7)

Note the multiplication of r with n and n + 1, stemming from the fact that when there are n
molecules, they could all possibly be the next one to be degraded. We can simplify this further
by re-scaling time t = ·/r so that in the new time variable

ˆ

ˆ·
p

n

(·) =

ˆ

ˆt
p

n

(t)
dt

d·

=

g

r
p

n≠1

(·) ≠ g

r
p

n

(·) ≠ np
n

(·) + (n + 1)p
n+1

(·). (3.8)

Finally, introducing the scaled parameter ⁄ = g/r we get
ˆ

ˆ·
p

n

(·) = ⁄ (p
n≠1

(·) ≠ p
n

(·)) ≠ np
n

(·) + (n + 1)p
n+1

(·). (3.9)

3.2.2 Steady-state distribution for a simple birth-death process
In addition to the various forms of generality in which we can mould the master equation, it is
common in the literature to rewrite master equations (especially for more di�cult systems) in
terms of a step-operator S to keep formulas short and concise. The step-operator S satisfies the
following property for functions f with discrete arguments n:

Skf(n) = f(n + k). (3.10)

With this new operator, (3.5) can be rewritten as
ˆ

ˆt
p

n

(t) = (S ≠ 1)r
n

p
n

(t) + (S≠1 ≠ 1)g
n

p
n

(t). (3.11)

And similarly, rewriting (3.9):
ˆ

ˆ·
p

n

(·) = (S ≠ 1) (np
n

(·) ≠ ⁄p
n≠1

(·)) . (3.12)

Using this step-operator notation, we can easily find the steady-state distribution of the master
equation. Considering the equation above at steady-state, we see that the second term has to be
zero. At steady state we thus find a recursive relationship for p

n

p
n

=

⁄

n
p

n≠1

∆ p
n

=

⁄n

n!

p
0

.

To find p
0

we normalize the distribution:

1 = p
0

Œÿ

n=0

⁄n

n!

p
0

= e≠⁄. (3.13)

Therefore we have found that p
n

=

⁄

n

n!

e≠⁄, i.e. p
n

has a Poisson distribution at steady-state.
How are we to interpret this result? The Poisson distribution is a limiting form of the binomial
distribution for n æ Œ and keeping np constant, meaning that it resembles a large number of
Bernoulli trials, each with small probability of success for each trial. Also we know that the
mean and variance of the Poisson distribution are equal to its parameter ⁄ = g/r.
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3.2.3 The master equation for reaction networks
Above we introduced reaction networks for which we can write down the deterministic descrip-
tion (3.3) which can be solved by linearization around the stationary solution with standard
methods. Here we will consider the stochastic description of such a network which we will use
for the linear noise approximation.
Consider a system of volume (or size) � and N chemical species related through R elementary
reactions with transition rate f

j

(x). The concentrations of the species are summarized in the
vector x = (x

1

, . . . , x
N

)

T . We write X = �x for the vector of copy numbers. Associated with
the reaction network is the N ◊ R stoichiometry matrix N (similar to the macroscopic case we
saw before), with entries N

ij

signifying the change in copy number for species i through reaction
j.
In the limit of the system volume going to infinity at constant concentrations, the stochastic
fluctuations become insignificant to the copy numbers of the species, making x and the transition
rates f

j

(x, �) deterministic. Following [Elf and Ehrenberg, 2003] we introduce the notation

„ = lim

�æŒ
x (3.14)

for the macroscopic concentration „ and ¯„ for the steady-state concentration. For a reaction net-
work of the form we describe here, the master equation takes the complicated form [Van Kam-
pen, 2007]

dP (X, t)

dt
= �

Rÿ

j=1

A
NŸ

i=1

S≠N ij ≠ 1

B
f

j

(x)P (X, t). (3.15)

The sum on the right-hand side is over all reactions j. Each term in this sum consists of two
separate terms due to the

r
N

i=1

S≠N ij and the ≠1. Terms due to ≠1 give the probability of
moving away from the current state X due to reaction j. The terms with

r
N

i=1

S≠N ij give the
probability of moving to state X from a di�erent state through reaction j. This can be seen by
observing that the negative exponent removes from the target state precisely those molecules
that would be created/consumed through reaction j.

3.2.4 On simulations
For more complex systems than the birth-death process we discussed above, a full solution of the
master equation is often not possible analytically. In some cases, progress can be made by deriv-
ing an approximate equation which is valid when protein numbers are large and or noise is small
and we will focus on such methods in the next section. Often though, numerical simulations are
performed to investigate system behavior. There are many user-friendly tools available to per-
form these stochastic simulations, notably: COPASI [Pahle et al., 2012] and StochPy [Maarleveld
et al., 2013]. These tools implement (variants of) the famous Gillespie algorithm [Gillespie, 1977]
for sampling trajectories from the master equation distribution. In this thesis we will not resort to
these software packages as we are interested not just in the numeric results but in understanding
and analytically calculating the linear noise approximation for a specific system. We therefore
perform all our calculations in Mathematica, which can facilitate such symbolic computation.

3.3 The Fokker-Planck equation
Historically, the Fokker-Planck equation was first used by Fokker and Planck separately to de-
scribe Brownian motion, which was later expanded on by Einstein. In one variable x the general
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Fokker-Planck equation is given by

ˆf(x, t)

ˆt
=

5
≠ ˆ

ˆx
v(x) +

1

2

ˆ2

ˆx2

D(x)

6
f(x, t) (3.16)

= ≠ˆJ(x, t)

ˆx
, (3.17)

where f(x, t) is the density function of the process under consideration that may evolve over
time, J(x, t) =

#
v(x) ≠ 1

2

ˆ

ˆx

D(x)

$
f(x, t) is the probability flux and v(x) and D(x) are referred

to as the drift and di�usion coe�cient, respectively. Mathematically, equation (3.17) is a linear
second-order partial di�erential equation of parabolic type. A parabolic PDE is a PDE of the
form

–u
xx

+ 2—u
xy

+ “u
yy

+ ”u
x

+ ‘u
y

+ ’ = 0

such that —2 ≠ –“ = 0, which is obviously true here since — and “ are zero. Remembering
the di�usion equation ˆu

ˆt

= d�u which we often come across in mathematical biology, the FP
equation is a di�usion equation with an extra first-order derivative.
Note that a Fokker-Planck equation is per definition linear in f(x, t). Consequently, when one
comes across the word “linear” in relation to Fokker-Planck equations, what is meant is that v(x)

is linear in x and D is constant.
In N variables x = (x

1

, . . . , x
N

)

T , the Fokker-Planck equation is given by

ˆf(x, t)

ˆt
=

S

U≠
Nÿ

i=1

ˆ

ˆx
i

v
i

(x) +

1

2

Nÿ

i,j=1

ˆ2

ˆx
i

ˆx
j

D
ij

(x)

T

V f(x, t). (3.18)

The collections of v
i

(x) and D
ij

(x) are now referred to as the drift vector and di�usion tensor
respectively. The special case of the linear multivariate Fokker-Planck equation is

ˆf(x, t)

ˆt
=

S

U≠
Nÿ

i,j=1

A

ij

ˆ

ˆx
i

x
j

+

1

2

Nÿ

i,j=1

B

ij

ˆ2

ˆx
i

ˆx
j

T

V f(x, t), (3.19)

where A and B are now constant matrices and additionally B has to be symmetric.
The Fokker-Planck equation comes up in relation to approximations of the master equation.

3.3.1 Fokker-Planck approximation of the master equation
Under the assumption that average copy numbers are large, n ∫ 1, n can be approximated as
a continuous variable. Consistent with our earlier notation we will now include n within the
parentheses p(n, t), r(n) and g(n) when treating n as a continuous variable as opposed to a sub-
script p

n

when treating n as discrete. For continuous n, we can approximate the master equation
with a Fokker-Planck equation. Consider (3.5) where we now transition to the continuous nota-
tion and Taylor expand the g(n ≠ 1)p(n ≠ 1) and r(n + 1)p(n + 1) terms as

g(n ≠ 1)p(n ≠ 1) = g(n)p(n) ≠ ˆ

ˆn
[g(n)p(n)] +

1

2

ˆ2

ˆn2

[g(n)p(n)]

r(n + 1)p(n + 1) = r(n)p(n) +

ˆ

ˆn
[r(n)p(n)] +

1

2

ˆ2

ˆn2

[r(n)p(n)].
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The parameters g and r appear within the derivatives since they could be functions of n. Sub-
stituting this in (3.5), the first terms cancel so that

ˆ

ˆt
p(n) =

ˆ

ˆn
[r(n)p(n)] ≠ ˆ

ˆn
[g(n)p(n)] +

1

2

5
ˆ2

ˆn2

[g(n)p(n)] +

ˆ2

ˆn2

[r(n)p(n)]

6

= ≠ ˆ

ˆn
[(g(n) ≠ r(n)) p(n)] +

1

2

ˆ2

ˆn2

[(r(n) + g(n)) p(n)] .

Defining v(n) © g(n) ≠ r(n) and D(n) © g(n) + r(n), we recover the Fokker-Planck equation

ˆ

ˆt
p(n) = ≠ ˆ

ˆn
[v(n)p(n)] +

1

2

ˆ2

ˆn2

[D(n)p(n)] , (3.20)

with coe�cients v(n) and D(n).

3.3.2 Kramers-Moyal expansion
A simple generalization of the Fokker-Planck equation is one that also contains higher deriva-
tives of x. This is termed the Kramers-Moyal expansion

ˆf(x, t)

ˆt
=

C Œÿ

n=1

3
≠ ˆ

ˆx

4
n

D(n)

(x)

D
f(x, t), (3.21)

where D(n) are the Kramers-Moyal coe�cients. Consider this expansion in relation to a stochas-
tic process in which the variable x can only take on discrete values x

n

= kn, where n = 1, . . . , N
and in which only transitions to nearest neighbors occur.
Using the expansion an interesting observation can be made when considering the master equa-
tion in (3.5). First, consider that in general

f(x ± k) = f(x) ± kf Õ
(x) ± 1

2

k2f ÕÕ
(x) + . . .

= exp(±kd/dx)f(x)

=

C Œÿ

n=0

(±kd/dx)

n

n!

D
f(x). (3.22)

Using this and switching the notation from n to x in the master equation, we see

ˆ

ˆt
p

x

(t) = g
x≠k

p
x≠k

(t) ≠ (g
x

+ r
x

)p
x

(t) + r
x+k

p
x+k

(t)

= [exp(≠kd/dx) ≠ 1] g
x

p
x

(t) + [exp(kd/dx) ≠ 1] r
x

p
x

(t).

As a side note, realize that in the master equation we take k = 1, but to go general we keep the
k notation. We can mold the equation above in the form of the Kramers-Moyal expansion

ˆ

ˆt
p

x

(t) =

Œÿ

n=1

(≠d/dx)

nD(n)

(x)p
x

(t), (3.23)

where
D(n)

=

kn

n!

[g
x

(t) + (≠1)

nr
x

(t)] . (3.24)

If the di�erence k between the discrete steps becomes smaller, the Kramers-Moyal coe�cients
D(n) also become smaller and we may approximate p

x

(t) by truncating the expansion at some
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finite value of n. For an actual system we cannot change k though because it is determined by
inherent physics as in the case of molecule numbers. What we might be able to do is increase
the size of the system. If we increase the size of the system by a factor K, i.e. n = 1, . . . , NK,
extensive quantities (quantities that are proportional to the size of the system) will also increase
by this factor, i.e., x = nk = Kxú. We get

ˆ

ˆt
p

x

ú
(t) =

Œÿ

n=1

(≠d/dxú
)

nD(n)

(xú
)p

x

ú
(t),

D(n)

=

(k/K)

n

n!

[g
x

ú
(t) + (≠1)

nr
x

ú
(t)]

Thus, by increasing the size of the system the Kramers-Moyal coe�cients also decrease more
rapidly in n. This is related to the 1/� expansion by van Kampen which we will discuss in the
next section.

3.3.3 Stationary solutions for the Fokker-Planck equation
In the case of a linear drift vector and a constant di�usion tensor, the (linear) FP equation can
be solved resulting in Gaussian distributions for both the stationary and in-stationary solutions.
This result also holds for time-dependent matrices. In the next chapter, when considering the
linear noise approximation, we will require the stationary solution to a linear Fokker-Planck
equation at steady state. In particular, we will also be interested in the stationary covariance
matrix. There are multiple ways to prove that the stationary solution of a Fokker-Planck equation
is a Gaussian distribution but all are quite involved. Below we provide two that also find the
stationary covariance matrix, one method uses a detailed balance approach [Gardiner, 1985], and
the other [Van Kampen, 2007] uses a Gaussian ansatz and then calculates the first two moments.

Method 1: Gaussian ansatz

We will consider a derivation where we use the ansatz that the solution is a Gaussian. Gaussian
distributions are fully determined by their first two moments so we calculate them first. For the
first moment (the expectation), multiply (3.19) with x

k

and integrate over x1:

⁄
ˆf(x, t)

ˆt
x

k

dx =

⁄ S

U≠
Nÿ

i,j=1

A

ij

ˆ

ˆx
i

x
j

+

1

2

Nÿ

i,j=1

B

ij

ˆ2

ˆx
i

ˆx
j

T

V f(x, t)x
k

dx,

ˆ

ˆt
Èx

k

Í = ≠
⁄

x
k

Nÿ

i,j=1

A

ij

ˆ

ˆx
i

(x
j

f(x, t))dx +

1

2

⁄
x

k

Nÿ

i,j=1

B

ij

ˆ2

ˆx
i

ˆx
j

f(x, t)dx,

=

ÿ

j

A

kj

Èx
j

Í. (3.25)

For the second moment, multiply (3.19) by x
k

x
l

and integrate over x:

ˆ

ˆt
Èx

k

x
l

Í =

⁄ S

U≠
Nÿ

i,j=1

A

ij

ˆ

ˆx
i

x
j

+

1

2

Nÿ

i,j=1

B

ij

ˆ2

ˆx
i

ˆx
j

T

V f(x, t)x
k

x
l

dx,

=

ÿ

i

A

ki

Èx
i

x
l

Í +

ÿ

j

A

lj

Èx
k

x
j

Í + B

kl

. (3.26)

1I still have to understand the details of this calculation
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In particular, we want the covariance matrix for the Gaussian solution which is related to the
second moment by �

kl

= Èx
k

x
l

Í ≠ Èx
k

ÍÈx
l

Í. Using the previous results, we see
ˆ

ˆt
�

kl

=

ˆ

ˆt
Èx

k

x
l

Í ≠ ˆ

ˆt
Èx

k

Í ˆ

ˆt
Èx

l

Í

ˆ

ˆt
�

kl

=

ÿ

i

A

ki

Èx
i

x
l

Í +

ÿ

j

A

lj

Èx
k

x
j

Í ≠
ÿ

j

A

kj

Èx
j

Í
ÿ

j

A

lj

Èx
j

Í + B

kl

(3.27)

Rewriting in matrix form we see that � satisfies a Lyapunov equation
ˆ

ˆ
t

� = A� + �A

T

+ B. (3.28)

We conclude that the solution to (3.19) is the following Gaussian:

f
X

(x, t) = (2fi)

r/2

(det �)

≠ 1
2

exp

5
≠1

2

(x ≠ ÈxÍ)�≠1

(x ≠ ÈxÍ)
6

(3.29)

By substituting this in the Fokker-Planck equation, one can check that this really is a solution.

Method 2: Detailed balance on Ornstein-Uhlenbeck processes

We now look at a derivation of the Lyapunov equation at steady state that uses a detailed balance
approach.
From (3.17) we see that the stationary solution to the Fokker-Planck equation requires the prob-
ability flux to vanish (equal zero). The concept of detailed balance is a generalization of this fact,
where at the stationary state each transition must be balanced by its reverse transition.
In general, detailed balance is concerned with a set of variables x

i

, that are transformed under
time reversal, to the reversed variables ‘

i

x
i

where ‘
i

= ±1. These ‘
i

take care of whether x
i

is
odd or even under this time reversal.
The mathematical condition for detailed balance can then be understood to be

p
S

(x, t + · ; x

Õ, t) = p
S

(‘x

Õ, t + · ; ‘x, t) (3.30)

where x and ‘ are the vectors of x
i

and ‘
i

respectively and p
S

is the stationary distribution of
the process under consideration.
For the Fokker-Planck equation, the conditions for detailed balance can be written as (see [Gar-
diner, 1985] for the rather lengthy and complicated details):

‘
i

‘
j

B
ij

(‘x) = B
ij

(x) (3.31)
1

2

[A
i

(x) + ‘
i

A
i

(‘x)] ≠ 1

2

ÿ

j

ˆ

ˆx
j

B
ij

(x) = ≠1

2

ÿ

j

B
ij

(x)

ˆ„(x)

ˆx
j

. (3.32)

For the linear Fokker-Planck equation we assume that A
i

(x) =

q
j

A
ij

x
j

, B
ij

(x) = B
ij

and
„(x) = ≠ ln p

s

(x) where p
s

(x) is the stationary distribution. The conditions then become

‘
i

‘
j

B
ij

= B
ij

(3.33)

and
ÿ

j
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ÿ
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ÿ
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ÿ
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ÿ
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=

ÿ

j
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ij

ˆ

ˆx
j

log p
s

(x). (3.34)
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Now notice that this second condition has a linear left-hand side so that the derivative of the
stationary distribution must be linear in x. This stationary distribution must therefore be Gaus-
sian and in fact a Gaussian with mean zero since there is no constant term on the left. Thus we
have that

p
s

(x) = (2fi)

≠N/2

(det �)

≠ 1
2

exp

3
≠1

2

x�

≠1

x

T

4
.

Plugging this into (3.19) we see

0 = ≠
ÿ

i

A
ii

≠ 1

2

ÿ

i,j

B
ij

�

≠1

ij

+

ÿ

k,j

Q

a
ÿ

i

�

≠1

ki

A
ij

+

1

2

ÿ

i,l

�

≠1

ki

B
il

�

≠1

lj

R

b x
k

x
j

Both the constant terms and the quadratic terms in x vanish under the following matrix condi-
tion

�

≠1

A + A

T

�

≠1

= ≠�

≠1

B�

≠1. (3.35)
Which can be rewritten as A� + �A

T

= ≠B which is the Lyapunov equation once again.

3.3.4 Lyapunov equations
Equation (3.28) is a continuous-time Lyapunov equation and a special case of the Sylvester equa-
tion, which is in turn a special case of the continuous time algebraic Riccati equation (CARE)
when B = 0:

(a) Lyapunov equation : AX + XA

T
+ Q = 0, (3.36)

(b) Sylvester equation : AX + XB + Q = 0, (3.37)
(c) Ricatti equation : A

T

X + XA ≠ XBR

≠1
B

T
X + Q = 0. (3.38)

The Bartels-Stewart algorithm [Bartels and Stewart, 1972] can be used to e�ciently solve Lya-
punov equations numerically. This is done by transforming A and B into Schur form (A =

QUQ

≠1) with the help of a QR decomposition. This results in a triangular system which can
be solved through back-substitution. In the next chapter we will perform analytical and numer-
ical calculations on Lyapunov equations in Mathematica, which has a dedicated function Lya-
punovSolve for this purpose. For matrices of the size we will consider straightforward use of
the Solve[. . .] function is approximately 4x slower for numeric matrices. It will turn out that
analytically, LyapunovSolve and Solve are not of much use unless a smart trick is used.
There are some useful remarks to be made about the structure of the Lyapunov equation. First
of all the left-hand side of AX + XA

T
= ≠Q is linear in X, which means that the entries of X,

when thought of as a vector, are linearly transformed to another vector. This in e�ect means that
we can rewrite this equation with X and Q as (column-wise) vectors. Following notation used
in [Horn, 1994] we associate with each mxn matrix A the column vector

vec A = (a
11

, . . . , a
m1

, a
12

, . . . , a
m2

, . . . , a
1n

, . . . , a
mn

)

T . (3.39)

Using this and the Kronecker-delta product, we rewrite the Lyapunov equation as

[(I ¢ A) + (A ¢ I)] vec X = vec Q. (3.40)

To see this, remember from linear algebra that if A is an mxn matrix and B is a pxq matrix, then
the Kronecker product (or direct product) A ¢ B is the mpxnq block matrix:

A ¢ B =

S

WU
a

11

B · · · a
1n

B

... . . . ...
a

m1

B · · · a
mn

B

T

XV . (3.41)
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This reduces the Lyapunov equation to a simple Ax = b situation and might help in quickly
solving it.
There are many more mathematically interesting properties of Lyapunov equations. However,
we will not be using these in this text. We refer to [Horn, 1994] for further details.

3.4 The linear Noise approximation
Even though we might be able to write down the master equation it is not straightforward to
solve it, either analytically or numerically. Analytical results do exist for one-step master equa-
tions as we saw, as do numerical algorithms. However, for large systems even these simulations
become ever more costly and infeasible. Therefore methods have been developed for quick char-
acterizations of processes, most notably for our purposes the linear noise approximation (LNA),
also known as the fluctuation-dissipation theorem (FDT) or Van Kampen’s system size expan-
sion.
In essence, the linear noise approximation is a method for quickly estimating the (co)variances
of molecular species in the system without having to simulate trajectories. The advantage of the
LNA is that it is very applicable because it only uses information about the stoichiometry of the
system and the macroscopic reaction rates to solve a matrix equation. It is therefore less compu-
tationally demanding than simulating using the Gillespie algorithm. Original work on the LNA
was done by Van Kampen in [Van Kampen, 2007], and generalized in [Elf and Ehrenberg, 2003].

3.4.1 Derivation
This section follows the derivation in [Elf and Ehrenberg, 2003] which is a generalization, both
in dimensional terms and in scope, of the results in [Van Kampen, 2007]. We attempt to include
more mathematical detail than the derivation in [Elf and Ehrenberg, 2003].
The key idea is to expand the master equation in powers of a small parameter so as to have an
objective measure for the size of the terms that will appear, allowing us to drop negligible terms.
Looking at (3.15) we choose �, since it defines the volume of the system and therefore also sets
the scale for the stochastic fluctuations. We perform the expansion knowing that for large � the
fluctuations will be small, relatively, which is consistent with the convergence of the stochastic
and deterministic descriptions. Thus, since we wish to expand in a small parameter we will
expand in negative powers of �.
Step one in the derivation is a change of variables that is aptly chosen. The copy number vector
X is to be decomposed in a deterministic part �„ and a stochastic part depending on a stochastic
variable ›. The key assumption that defines the system size expansion, is that we assume that
the fluctuations scale with the square root of the system size/volume. To that end define the
new variable › = (›

1

, ›
2

, . . . , ›
n

) using the relations

X = �„ +

Ô
�› =∆ › =

X ≠ �„Ô
�

(3.42)

implying
x = „ + �

≠1/2› =∆ › = (x ≠ „)

Ô
�, (3.43)

where „ is as in (3.14). These new variables › are estimates for the fluctuations in X, around the
macroscopic concentrations in terms of the system size.
The second step in the derivation can be summarized as simply carrying through this change of
variables and expanding the step operator, rate equation vector and probability distribution in
powers of �.
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Just as we have the probability distribution P (X, t) for X we can now write �(›, t) for the prob-
ability distribution of › = (›

1

, . . . , ›
N

). These distributions are trivially related through

P (X, t) = P (�„ + �

1/2›, t) = �(›, t).

We now expand this distribution in terms of �. We assume a steady-state, so that d

dt

X = 0, i.e.
molecule numbers are constant and consequently d›i

dt

= ≠�

1/2

ˆ„i

ˆt

. Di�erentiating �(›, t) with
respect to time and using the chain-rule, we observe that

ˆP (X, t)

ˆt
=

ˆ�(›, t)

ˆt
=

ˆ�(›, t)

ˆt

dt

dt
+

Nÿ

i=1

ˆ�(›, t)

ˆ›
i

ˆ›
i

ˆt

=

ˆ�(›, t)

ˆt
≠ �

1/2

Nÿ

i=1

ˆ�(›, t)

ˆ›
i

ˆ„
i

ˆt
, (3.44)

where ˆ„i

ˆt

satisfies the macroscopic dynamics (3.3). This takes care of the left-hand side of (3.15).
Next, we Taylor expand the transition rate f

j

(x) around the macroscopic value f
j

(„) resulting
in

f
j

(x) = f
j

(X/�)

= f
j

(„ + �

≠1/2›)

= f
j

(„) + �

≠1/2

Nÿ

i=1

ˆf
j

(„)

ˆ„
i

›
i

+ O(�

≠1

). (3.45)

This last equality shows that f
j

(x) di�ers from f
j

(„) by a term of order �

≠1, which is of the order
of single molecules 2. We deduce that in the limit for large � there is no di�erence between the
stochastic and deterministic description because then f

j

(x) = f
j

(„).
The only term in the master equation left to estimate is the step-operator term

r
N

i=1

S≠N ij , this
is done via a di�erential operator. First, recall that Skf(X) = f(X + k) so that

Skf(X) = f(X + k)

= exp (kˆ/ˆX) f(X)

=

5
1 + k

ˆ

ˆX
+

ˆ2

ˆX2

+ . . .

6
f(X). (3.46)

We have changed variables to › so that also Skf(›) = f
1

(X+k)≠�„Ô
�

2
= f

!
› + k�

≠1/2

"
. Com-

bining the two results, we get

Sk

= 1 + k�

≠1/2

ˆ

ˆ›
+

1

2

�

≠1k2

ˆ2

ˆ›2

+ O
1

�

≠3/2

2
. (3.47)

Taken in conjunction with the product in which S appears, we have

NŸ

i=1

S≠N ij
= 1 ≠ �

≠1/2

Nÿ

i=1

N
ij

ˆ

ˆ›
i
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i

›
k

+

Nÿ
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1
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≠3/2

2

¥ 1 ≠ �

≠1/2
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i=1

N
ij

ˆ
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i

+

1

2

�

≠1

Nÿ

i,k=1

N
ij

N
kj

ˆ2

ˆ›
i

›
k

+ O
1

�

≠3/2

2
. (3.48)

2This is actually a rather subtle point.
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To see this we have to do some bookkeeping on the multiplied terms. Note that if we multiply
only the first term of each instance of S≠Nij as determined by (3.47) we get a zeroth order term,
precisely 1. The only way of getting a �

1/2 term is by multiplying one of the second terms with
only ones. There will be N such terms, so that we get ≠�

≠1/2

q
N

i

N
ij

ˆ

ˆ›i
. There are two ways

of getting a term of order �

≠1. Either all ones and two multiplications of the second term, or
all ones and one of the third term. The two multiplications of the second terms cannot be for
the same index in the sum. Note that the second way is the same as the first for i = k, if we
disregard the 1

2

. In the second line we therefore combine these into one term and sum over all i
and k. This is an approximation however, since we put the 1

2

in front of the entire summation.
Remembering the master-equation (3.15) and substituting the calculated expansions (3.44), (3.45)
and (3.48), we have

ˆ�(›, t)

ˆt
≠ �

1/2

Nÿ

i=1

ˆ�(›, t)

ˆ›
i

ˆ„
i
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Nÿ
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N
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ˆ›
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+ O
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◊
C
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(„) + �
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Nÿ
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ˆf
j

(„)

ˆ„
m

›
m

+ O(�

≠1

)

D
�(›, t). (3.49)

Observe that we have renamed some indices to avoid confusion.
We wanted an expansion in negative powers of � but on both sides terms of order �

1/2 remain:

≠ �

1
2

Nÿ

i=1

ˆ�(›, t)

ˆ›
i

ˆ„
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ˆt
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N
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. (3.50)

However, these terms are equal due to the macroscopic reaction ˆ„i

ˆt

=

q
R

j=1

N
ij

f
j

(„), which
we saw in equation (3.3).
Collecting only the lowest order terms of �

0 we will find a particularly nice mathematical form.
Identifying the right terms in (3.49) we see
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We can recover a linear Fokker-Planck equation with coe�cient matrices A and B by rewriting
the terms in front of the derivatives as

A

im

=

Rÿ

j=1

N
ij

ˆf
j

(„)

ˆ„
m

=

ˆ(N
i·f(„))

ˆ„
m

(3.51)

B

kl

=

Rÿ

j=1

f
j

(„)N
kj

N
lj

=

Ë
N diag(f(„))N T

È

kl

. (3.52)
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Finally, we have
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= ≠

Nÿ
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Nÿ
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. (3.53)

The stationary solution, ( ˆ�(›,t)

ˆt

= 0) of (3.53) is a multivariate Gaussian distribution with the
zero vector as mean (as we saw in an earlier section), i.e.

f(›) = (2fi)

≠N/2

(det �)

≠ 1
2

exp

3
≠1

2

›T

�›

4
. (3.54)

where the covariance matrix � satisfies the Lyapunov equation (3.28)

A� + �A

T

= ≠B, (3.55)

in which A and B are to be evaluated at the steady-state ¯„.

3.4.2 Discussion
The linear noise approximation thus states that, to lowest order, the stochastic fluctuations in a
system like (3.3) are approximately normally distributed around the macroscopic mean with a
certain covariance matrix �. This approximation is valid in the large � limit, taken at constant
concentrations. It follows that the linear noise approximation gives accurate results in the limit
of large copy numbers and becomes less reliable for networks containing many species with
low copy numbers of molecules. However, as noted before, gene regulation may involve small
molecule numbers. Therefore, it is questionable how reliable the approximation is for these
systems.
Recently, the Inverse Omega Square (IOS) method was implemented in a piece of open source
software called iNA (intrinsic Noise Analyzer) [Thomas et al., 2013]. This method returns the
variances and covariances of fluctuations about the means, calculated with the EMRE method,
to an order accuracy higher than possible with the LNA. Therefore iNA provides a way to in-
vestigate the validity of the LNA for any biochemical network under study.
The fact that we take into account only zeroth order terms in powers of � and not the higher
order terms in powers of �

≠ 1
2 and larger is why this approximation is frequently known as the

linear noise approximation.
When applying the linear noise approximation, the trick is to find the covariance matrix from
the A and B matrices which are easy to determine. As we noted in the previous chapter equa-
tion, (3.55) can be solved numerically and analytically and we will revisit both approaches when
applying the linear noise approximation to a two-component system later on.

To summarize, three steps are essential to implementing the linear noise approximation to find
the covariance matrix around a stationary steady state of a reaction network

1. Find the stoichiometry matrix N and the stable equilibrium for the system,

2. Calculate A and B at steady state,

3. Finally, solve the Lyapunov equation for �.
Steps 1 and 2 are usually quite easy. Even step 3 is easy, numerically, for relative large systems.
However, analytically step 3 is generally hard or impossible. Only in two or three dimensional
systems is it possible to make any reasonable analytic progress.
In the supplementary material of [Elf and Ehrenberg, 2003] some simple analytical examples are
shown. For other examples, see [Hayot and Jayaprakash, 2004].



4 | Information processing in two-
component systems

In this chapter we consider signal transduction through two-component systems in light of infor-
mation theory (Chapter 2) and the mathematical machinery, especially the linear noise approx-
imation, introduced in Chapter 3. First, we introduce the two-component signal transduction
system. Then we will investigate some steady state properties followed by an application of the
linear noise approximation. We conclude by comparing the results with recent literature [Maity
et al., 2014].

4.1 Biology of two-component systems

“Two-component systems serve as a basic stimulus-response coupling mech-
anism to allow organisms to sense and respond to changes in many di�erent
environmental conditions. [Stock et al., 2000]. ”Prokaryotes use two-component signal transduction systems almost exclusively to sense and ini-

tiate responses to environmental conditions. Two-component systems rely on just two proteins:
a sensor protein (S) and a response regulator protein (R), where the sensor is often membrane
embedded and the response regulator is free in the cytosol and acts as a transcription factor.
These systems are of importance in a large number of processes, such as chemotaxis and os-
moregulation.
In detail the process can be described as follows: Binding of a ligand (signal), L, to the sensor
S activates its autokinase activity. A kinase is a specific type of enzyme that can transfer phos-
phate groups from a molecule such as ATP, which gives up a phosphate group, to a substrate.
This process is referred to as phosphorylation. In autokinase activity the kinase is itself the sub-
strate. This process thus leads to a phosphorylated sensor (S

P

). The phospate group can then
be transferred to the response regulator R. This response regulator is often a transcription factor,
which becomes activated by the phosphorylation step. The phosphorylated response regulator,
R

P

, can then go on to regulate transcription. The two-step process just described is found in
almost all bacterial two-component systems. However, we will study a system with one more
crucial property. Specifically we will assume that the phosphorylated response regulator can
become dephosphorylated by the unphosphorylated sensor S. Thus the sensor S is a bifunc-
tional enzyme. We call two-component systems with this property bifunctional systems, and
monofunctional, when S does not have this property. In the latter case there is an independent

33
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Figure 4.1: Schematic of a two-component signal transduction system. (a) a monofunctional
TCS. (b) A bifunctional TCS. Ph stands for phosphatase. ±P stands for the addition or removal
of the phosphate group (the orange hexagon). The crucial di�erence is that in a monofunctional
TCS the sensor acts only as a source of the phosphate group, whereas, in a bifunctional TCS, it
acts both as a source and sink for the phosphate group. Source: [Maity et al., 2014].

phosphotase in the system. Figure 4.1 displays a schematic of the process just described and
indicates the di�erence between mono and bifunctional systems.
The only reaction types present in the general mechanism are protein complex formation (the
joining of SP and R), phosphorylation (S to SP), dephosphorylation (RP back to R) and phospho-
transfer (SP transferring a phosphate group to R to make RP). This is a surprisingly simplistic
mechanism for such a widely used signaling system and raises the question how it functions so
well. We will in particular be investigating how it functions in light of information transmission
capabilities. First we will consider how to mathematically model the system and look at some
intrinsic properties it displays.

4.2 Mathematical model of a two-component system
The schematic in Figure 4.1 can be modeled in various ways, depending on how much molecular
detail we take into account. In full biological detail the bifunctional system looks like Figure 4.2.
The system in Figure 4.2 has 13 reactions and 9 concentrations to keep track of and is thus not
quite accommodating for analytic analysis. We would like to simplify this system by model-
ing it with less reactions and variables, and therefore less molecular detail, yet still capture the
essentials so as to get useful results.
Note that all reactions contain an intermediate state in the full model by which we mean that
if molecule A reacts with B to form C we say A + B æ AB æ C. For example, we have the
sequence S æ SL, then SL + P æ SLP and finally SLP æ SP + L, whereas we could simplify
this part of the scheme by simply saying S æ SP with L influencing the rate constant, as done
in [Maity et al., 2014]. Also observe that all reactions in the complete model are reversible which
is another possible avenue for simplification.
Let us examine this in light of recent literature. In [Maity et al., 2014] a TCS is considered without
any complexes, but with full reversibility still in place. They consider only the molecular species:
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Figure 4.2: Reactions in a full TCS model. Here we depict a two-component system, now with
emphasis on the reactions involved. There are 13 reactions in total. L is the signal molecule, S
the sensor and R the response regulator. Source: F.J. Bruggeman.

R, R
P

, S and S
P

. A di�erent TCS model is considered in [Shinar et al., 2007] where in addition,
SL, R

P

S and S
P

R are considered. The latter is obviously more detailed than the former but still
analytically tractable, as they show. We will consider the same species, however with a slight
modification that results in a more structured stoichiometry matrix. More complex models have
also been studied recently, for instance in unpublished work by Bruggeman en Maarleveld.
We consider the two-component system displayed in 4.3a, containing a subset of the reactions
in 4.2:

S + L
k

+
1⌦

k

≠
1

SL + ATP k2æ S
P

+ L + ADP (4.1)

S
P

+ R
k

+
3⌦

k

≠
3

S
P

R
k

+
4⌦

k

≠
4

S + R
P

(4.2)

S + R
P

k

+
5⌦

k

≠
5

R
P

S
k6æ R + S + P

i

. (4.3)

Notice especially, that reaction 2 and reaction 6 are irreversible while the other reaction are re-
versible. We assume that the environmental signal L has a constant concentration, e�ectively
making it a model parameter. Consequently, the model has 7 reactants and 6 reactions. P
does not count as a variable in our system, we assume it to always be available or that its ef-
fect has been absorbed into a kinetic parameter. We impose mass-conservation of S and R:
S + SL + S

P

+ S
P

R + R
P

S = S
T

and R + R
P

+ R
P

S + S
P

R = R
T

. We can use these conserva-
tion relationships to exclude two species from our analysis which simplifies things somewhat.
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(a) (b)

Figure 4.3: (a) The two-component system we consider in this thesis. This is a a reduced version
of 4.2. Source: F.J. Bruggeman. (b) Robustness. The steady state concentration of R

P

as a
function of L as determined from numerical simulation. Two settings for R

T

were used, 25
(orange) and 50 (magenta), nicely showing the bound by R

T

as predicted by theory.

A particularly nice form of the stoichiometry matrix results from choosing to exclude S and R:

S =

Q

cccca

1 ≠1 0 0 0 0

0 1 ≠1 0 0 0

0 0 1 ≠1 0 0

0 0 0 1 ≠1 0

0 0 0 0 1 ≠1

R

ddddb
. (4.4)

This banded, or bidiagonal, structure will carry through into the coe�cient matrices of the
Fokker-Planck equation A and B allowing us to use some linear algebra tricks later on.
Using mass-action kinetics (section 3.1) we turn the reactions into a system of equations (note
that the derivatives are with respect to time but we have suppressed the time dependence in the
right-hand side for readability)
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ˆ
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· R
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· R
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· S ≠ k
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· R
P

S. (4.9)

Note that the only cross-product terms are R · S
P

and R
P

· S and that in fact, R
P

and S
P

do not
arise outside of these two products at all.
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4.3 Steady state analysis
A natural next step in analytically studying the two-component system is trying to find its an-
alytic steady state. Having this steady state is also necessary to analytically calculate the linear
noise approximation. It turns out that the system has two steady states one being a rather trivial
steady state which exists for all parameter settings and a second steady state which requires there
to be enough R to exist. First we consider a rather remarkable property that only bifunctional
two-component systems display.

4.3.1 The Robustness property
Biological signaling systems can produce an output, such as in our case the concentration of a
phosphorylated response regulator. The output concentration (R

P

) as a function of the input
concentration (L) is called the system’s input-output relation. Because the system’s component
concentrations might vary over time and from cell to cell, one might expect that the input-output
relation will also change. It is therefore interesting to consider in what way the input-output
relationship is dependent on the concentrations of the system’s components.
In [Shinar et al., 2007] it is shown that the two-component system we are investigating actually
has the surprising property called robustness. With this we mean that the output of the system
is not dependent on any components of the system. In fact it turns out that at steady state R

P

is
only linearly dependent on the signal L. In this section we show this result for the two-component
system in Figure 4.3a following the derivation in [Shinar et al., 2007].
To start, consider Figure 4.3a and in particular note the way phosphate P goes in and out of the
system. The influx of phosphate is via reaction 2 and the outflux is through reaction 6 giving
rise to the mass balance

dp

dt
= k

2

SL ≠ k
6

R
P

S.

Now look at the mass balance for R
P

S

d

dt
R

P

S = v
5

≠ v
6

= k+

5

R
P

· S ≠ k≠
5

R
P

S ≠ k
6

R
P

S.

Thus at steady state

(k
6

+ k≠
5

)R
P

S = k+

5

R
P

· S (4.10)

R
P

S =

k+

5

k
6

+ k≠
5

R
P

· S. (4.11)

Substituting this steady state relationship for R
P

S into the mass balance for P at the steady state
and solving for R

P

, we see that

k
6

k+

5

k
6

+ k≠
5
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· S = k
2

SL

R
P

=

k
2

(k
6

+ k≠
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)

k
6

k+

5

SL
S

.

Now note that with the above result R
P

is still dependent on S and thus not entirely robust. If
we augment our argumentation above with the assumption that reaction 1 operates at thermo-
dynamic equilibrium, i.e. we substitute SL =

S·L
KL

with K
L

=

k

+
1

k

≠
1 +k2

, then the S in the final result
drops out and we have

R
P

=

k
2

(k
6

+ k≠
5

)

k
6

k+

5

L
K

L

Æ R
T

. (4.12)
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This shows that the steady state concentration of the output system, R
P

, is robust. In fact, it
only depends in a linear fashion on the concentration of L and seven kinetic parameters. Since
there is only a limited amount R

T

of R available the steady state value of R
P

will have to level
o� when it reaches R

T

. We numerically simulated the model and plotted the steady state of
R

P

as a function of L in Figure 4.3b. As expected, it shows the linear input-output relationship,
leveling of once R

P

reaches the saturating level R
T

.

4.3.2 Steady state and bifurcation behaviour
We now turn our attention to all steady-state concentrations in the system. The trivial steady
steady state is just the zero vector which is an obvious solution to our system of equations.
However, because we impose the constraints that there are positive amounts R

T

and S
T

, some
concentrations must also be non-zero. Looking at the equations (4.9) we see that the only cross-
product terms are R · S

P

and R
P

· S and that in fact, R
P

and S
P

do not arise on their own at all.
Thus we see that S and R can go to zero while their phosphorylated counterparts do not and
yet the system is still at steady state even if the complex concentrations are also zero. Using the
conservation relationship we see that we must have R

P

= R
T

and S
P

= S
T

.
The second steady state can be found by setting the left-hand side of (4.9) to zero, solving for all
variables sequentially and carrying through. This is a nice calculation to do by hand and one will
quickly find that the parameter combinations explode. The situation could perhaps be remedied
somewhat by introducing smart parameter combinations as in [Shinar et al., 2007] however even
they resort to expressing the steady state implicitly in terms of S and R. Remembering the
conservation relationship we can express the steady state implicitly in terms of the R and S
steady state values
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The second steady-state contains the remarkable result we already found in the previous section,
as of course it should. Note that aside from R

P

being robust at steady-state the fact that its
concentration at steady-state does not depend on anything but model parameters means that it
there has to be enough R

T

available for the system to even reach this state. Lastly, we remark
that for R

T

< Rú
P

the trivial fixed point is attracting and for R
T

> Rú
P

the non-trivial fixed point
is attracting while the trivial fixed point is repelling. Therefore, since the second steady state
does not exist for all parameter values we have discovered that as we increase the amount of R

T

the system undergoes a transcritical bifurcation at the steady state value of R
P

.
Scaling the equations will most likely reveal more interesting details about this system of equa-
tions. However, since the main goal in this text is application of the system size expansion it has
not been included here since, as shown below, the analytical treatment will not be very useful
anyway, most likely even with scaled equations.
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4.4 Model I: constant L concentration
We will now focus on applying the linear noise approximation to the system introduced above
with the concentration of L as a model parameter. Writing down the stoichiometry matrix S and
diag(f(Ï)) is straightforward and from them we trivially form B (see the section on LNA for the
formulas):

B =
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Note that at steady-state all v
i

are equal so that we can rewrite B as

B = v
1

Q
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2 ≠1 0 0 0
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For A we have to work a little. by plugging in the reaction rates with mass-action kinetics and
di�erentiating we have

A =
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Especially notice the tridiagonal form of A. Changing the model to include di�erent reactions or
complexes changes A and also complicates the structure of A. Therefore the model depicted in
Figure 4.9 achieves an optimal balance between the possibility for analytic insight and biological
reality.

4.4.1 Solving for the covariance matrix
The linear noise approximation now states that the covariance matrix satisfies A� + �A

T

=

≠�B. Numerically it is quite straightforward to solve this for �, but analytically it requires
significant computational resources. We performed the calculations described below in Mathe-
matica.

Numerically
Numerically performing the linear noise approximation on our two-component system is quite
simple. We simply set up the reactions using mass-action kinetics, define the moiety for R and S
and calculate the numerical steady-state, making sure that the parameters are such that we are in
the non-trivial steady-state (enough R

T

). We plug the steady-state and the parameters into the
A and B matrices (making them numeric) and solve the Lyapunov equation for �. Through a
less trivial addition we can repeat this for changing parameters sets and investigate how entries
in � change as a result; see the results in a later section.
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Analytically
In investigating � analytically we have tried multiple approaches outlined below. Our main goal
was to find the variance of R

P

at steady state analytically in terms of the model parameters.
The most obvious route to take is to simply set up the model and the linear noise approximation
in Mathematica and then use Solve[. . .] on the Lyapunov equation. This solution step however
takes at least 8+ hours to converge to an answer. We need more sophisticated techniques to speed
up calculation time.
A first line of investigation is to follow [Elf and Ehrenberg, 2003] and look at transformed vari-
ables (normal modes ” ˜X = Q

≠1”X where A = Q�Q

≠1) where the Lyapunov equation changes
and a nice expression can be found for � which utilizes the eigenvalues of A. For a system larger
than 3x3 this is problematic. From the fact that the diagonal entries are negative yet the columns
of A either sum up to zero (columns 2-4) or sum up to a negative number (columns 1 and 5) we
can deduce using the Gershgorin circle theorem (A.3.1) that A has non-positive eigenvalues.
Beyond this we were unable to to say anything about the eigenvalues of A since solving the
characteristic polynomial (which is of fifth degree) is not possible.
As a next approach, look at the structure of the Lyapunov equation and remember (3.40). In our
case the coe�cient matrix [(I ¢ A) + (A ¢ I)] is very sparse (coming from the sparseness of A

and the identity matrix). This matrix is too big to be displayed here (25x25) but it has a banded
tridiagonal structure. Running a solve routine such on this equation still takes several hours at
least.
We found one way to reduce computation time and to get more insight: by performing an LU
decomposition on the A matrix and then solve the Lyapunov equation for the covariance ma-
trix � in two steps. For reasons we do not fully understand this forces a dramatic decrease in
computation time.

LU decomposition of A

For tridiagonal matrices, like A, there exists a simple LU factorization algorithm related to Tay-
lor’s algorithm (see section A.4). Simply following this algorithm (which is doable by hand)
results in

L =
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The key step now is to rewrite the left-hand side of the Lyapunov equation as

A� + �A

T

= A� + (A�)

T since � is symmetric
= LY + (LY)

T call U� := Y.

= LY + Y

T

L

T . (4.18)

This allows us to solve for � in two steps. In the first step we solve LY + Y

T

L

T

= ≠B for Y. In
the second step we solve we solve U� = Y for �. These matrix equations are solved in a matter
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of seconds in Mathematica. However, the resulting covariance matrix is very complex and takes
almost 100 megabytes to save to disk in plain text. Of course we are mainly interested in the (4,4)
entry but even this entry is 2,5 Mb large. Note that up to this point we have not even plugged in
the analytic steady-state yet. This results in an even more gigantic result.
It is to be expected that there are many more hidden structures inside the Lyapunov equation
that we could take advantage of. However, it is also to be expected that this will not result in
more insight that we can get by numerical simulation. We conclude that our analytic results are
not very insightful or useful. One could say this was to be expected for a model of this level of
complexity but it provided an interesting learning experience nonetheless.

4.4.2 Parameter dependency of Var(Rp)
Even though analytic results prove di�cult to come by and non-insightful we can consider some
interesting questions by considering the analytic result numerically or through purely numerical
calculations. For instance, what is the lowest amplitude of stochastic fluctuations in the output
variable possible for given parameter ranges? Which reactions play major roles in controlling
these fluctuations and which reactions don’t? Motivated by these questions we now plot the
variance of R

P

as a function of the model parameters.
To investigate how the variance of R

p

depends on the various model parameters we can simply
set all parameters but the one under inspection to some numeric value in our analytic result
(or use a purely numeric approach) and plot the remaining function in terms of that parameter.
Note though that when that one parameter changes the steady-state values also change with it
which has to accounted for. The resulting dependence plots we found are displayed in Figure
4.4 for two parameter sets. The first set of parameters was chosen rather arbitrarily, the second
was inspired by kinetic parameter values reported in [Igoshin et al., 2008].
As can be seen from the Figure 4.4, the di�erence in results between the two parameter sets is
large. In general notice that for all reversible reactions the corresponding forward and backward
kinetic parameters influence the variance in opposing ways. Also, reaction 3 appears to have
little influence of note on the variance of R

P

. In addition k+

4

and S
T

also seem to have little e�ect.
Perhaps most intriguing is the fact that the variance increases linearly with L. As the steady state
level of R

P

also increases linearly with L due to the robustness property, this could be validation
for the seemingly general principle that fluctuations scale with mean protein levels [Bar-Even
et al., 2006].

4.5 Model II: including dynamics of L
The model we have considered so far has assumed a constant level of L. Next, we consider an
extension where we take into account dynamics of the L concentration. A simple way to make
L dynamic is to assume a constant synthesis rate C and a linear degradation with rate D:

˙L = C ≠ D · L. (4.19)

This equation models the arrival and departure of L molecules to and from the receptor pocket.
This model is crucially di�erent from the constant L model though because the steady state of L
is now coupled to the steady state of S. Consequently the steady state of R

P

will also depend on
S and through S on the rest of the concentrations. Therefore the robustness property has been
lost. However, as shows below, the linear input-output relationship is maintained. For the new
system we find the following steady-state which is structurally the same as before but now with
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Figure 4.4: Dependence of Var(Rp) on parameters. Plots of the variance of R
p

as analytically
deduced using the linear noise approximation as a function of all model parameters. We take the
analytical result for the Var(R

P

) entry of the covariance matrix, plug in the analytical steady state
and then plug in all but one parameter. We then plot the result in terms of the one remaining
parameter. We did this for two parameter sets so as to show the influence of changing them. In
blue: R

T

= 300, S
T

= 100, L = 8, k+

1

= 100, k≠
1

= 10, k
2

= 5, k+

3

= 1, k≠
3

= 10, k+

4

= 10, k≠
4

=

1, k+

5

= 5, k≠
5

= 1, k
6

= 5. In red: R
T

= 6, S
T

= 3, L = 1, k+

1

= 1, k≠
1

= 0.01, k
2

= 0.1, k+

3

=

1, k≠
3

= 0.5, k+

4

= 0.2, k≠
4

= 0.5, k+

5

= 0.5, k≠
5

= 0.5, k
6

= 0.2. This second set is an attempt at
biologically realistic parameter values as inspired from [Igoshin et al., 2008].
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an L steady state, again denoted implicitly in S and R,
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Adding dynamics of L has only small consequences for the matrices in the linear noise approx-
imation. The stoichiometry matrix S grows to be 6x7 but maintains the same structure. A and
B also maintain the same structure. For example A becomes
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Observe that A also maintains its tridiagonal structure. Our strategy for finding � analyti-
cally would thus remain the same. However, as it already produced huge results for the pre-
vious model one should not be hopeful of the outcome. In fact, it turns out that repetition of
the LU-decomposition argument on this model has a vastly longer calculation time, so that we
abandoned this approach and turned to numerical calculations instead.

Parameter dependence of Var(Rp)

In Figure 4.5 we plot the dependence of the variance of R
P

on model parameters for the model
including L dynamics. The chosen parameter values do not originate from any biologically
inspired reasoning. The problem with this dynamic L model is that we do not yet understand
what parameter sets bring the system to the non-trivial or the trivial steady state. This remains
an avenue for further research. As such, the currently chosen values are simply chosen such that
the non-trivial steady state is robust enough to allow the plots to be made.
Note that reaction 3 appears to have no influence of note on the variance of R

P

. Second, for all
reversible reactions the corresponding forward and backward kinetic parameters influence the
variance in opposing ways. These results agree with the constant L model.
Again, the point of such plots is to be able to investigate which reactions contribute significantly
or insignificantly to the variance in the output so that we can understand what drives and con-
trols this variance.
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Figure 4.5: Dependence of Var(Rp) on parameters. Plots of the variance of R
p

as numerically
deduced using the linear noise approximation as a function of all model parameters. In each
plot all variables except the one on the x-axis are kept constant. The fixed parameter values used
in this plot are: R

T

= 400, S
T

= 30, k+

1

= 1, k≠
1

= 1, k
2

= 10, k+

3

= 10, k≠
3

= 0.5, k+

4

= 100, k≠
4

=

0.5, k+

5

= 2, k≠
5

= 10, k
6

= 1, C = 30, D = 1
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4.6 Mutual information between L and Rp in a Gaus-
sian channel
From the linear noise approximation we deduce that R

P

has a distribution around the macro-
scopic steady state that is approximately Gaussian. The Lyapunov equation gives us the variance
of this distribution and the covariance between L and R

P

so we can now infer the mutual infor-
mation between L and R

P

. In the model including L dynamics the linear noise approximation
states that L also has a Gaussian distribution around the steady state. Therefore we have a Gaus-
sian channel for which equations (2.28), (A.3) hold.
It is problematic to actually use the MI(L; R

P

) =

1

2

log

2

(1 + SNR) result since it involves the
gain parameter g which is not obvious here. It is much easier to use MI(L; R

P

) = ≠ 1

2

log

2

(1 ≠
fl2

) result since the covariance matrix gives us what we need to calculate fl. Alternatively, we
simply use the definition of mutual information in terms of integrals to do the calculation, taking
what we need from the covariance matrix to estimate variances and plugging in the means that
we plotted in the input-output relationship plots. Both methods return the same results, as
they should. In the next section we show the actual results of this calculation along with the
dependence of the steady state R

P

level, the variance of R
P

and the coe�cient of variation on L
at steady state.

4.7 Comparison with recent literature
A recently published paper ( [Maity et al., 2014]) also investigated two-component signaling sys-
tems using analytic mathematical methods. Their model of the two-component system included
no complex formation however, and it is therefore less detailed than the model we considered
above. The assumption to neglect complex formation is a shaky one. It implicitly assumes that
the concentrations of these complexes are so low that they are negligible which is not usually the
case. Perhaps unsurprising, they made predictions about the mutual information and variance
of R

P

in terms of the steady state signal level that do not agree with our results.

4.7.1 Introduction to the Langevin noise approach
[Maity et al., 2014] use the Langevin noise approach instead of directly turning to Lyapunov

equation as we did. In the Langevin approach one adds a stochastic Langevin noise term to
each of the deterministic equations describing the system. This approach is mathematically
equivalent to using the Fokker-Planck equation [Gardiner, 1985] but the Langevin approach is
a little more concrete and therefore quite popular in the physical sciences. the This Langevin
noise term ›

i

(t) satisfies the following properties:

1. Its average vanishes: È›
i

(t)Í = 0.
This average is to interpreted as taken over an entire time series.

2. It has the following sharply peaked autocorrelation: È›
i

(t), ›
i

(t + ·)Í = c · ”(·).
Here ” is the Dirac delta function and c is a constant that has to be appropriately chosen
so that it correctly reproduces the mean squared fluctuations at steady state.

Actually, the Langevin and Fokker-Planck equation approaches are only equivalent in case of
the additional assumption that › has a Gaussian distribution with the above properties, again
see [Gardiner, 1985] for the details.
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Equations containing such Langevin terms are referred to as Langevin equations and are stochas-
tic di�erential equations. To illustrate, in the two-component system the Langevin equation for
L would be

dL

dt
= C ≠ D · L + ›

L

.

After writing the system in terms of these Langevin equations, [Maity et al., 2014] go on to lin-
earize the system and subsequently use Fourier transformations to obtain analytical expressions
for the variance of R

P

. The results they report can now be compared with our results.

4.7.2 Comparison of results
We imitated the 4 panel plot from their [Maity et al., 2014] for our model in Figure 4.6. We
reproduced their results in Figure 4.7.

Figure 4.6: Our results for the dynamic L model (a) Steady state R
p

level, (b) steady state vari-
ance ‡2

RP
, (c) steady state coe�cient of variation ‡

RP /ÈR
P

Í and (d) steady state mutual informa-
tion I(I, R

p

) as a function of mean extra-cellular signal level.

Consider Figures 4.7 and 4.6. In 4.7 restrict attention to the dashed lines which are for a bifunc-
tional two-component system. The solid line shows results for mono-functional systems The
upper left graph in both images shows the robustness property we discussed. More interest-
ing is the upper right graph where it is shown that their model predicts that ‡2

RP
is a concave

function of I that reaches a global maximum. This is in direct contrast to what we found in
Figure 4.6 where ‡2

RP
increases in a linear fashion with L. We are inclined to hold more belief

in the results of our model because it is a known rule that fluctuations scale with mean protein
level [Bar-Even et al., 2006]. It is also reminiscent of the property of Poisson distributions: the
mean is equal to the variance. Since this variance plays a role in the calculation of mutual in-
formation it is unsurprising that the two models also disagree on its dependence on L

SS

. We
predict an S-shaped curve for mutual information as a function of L at steady state. A puzzling
fact is that the value in bits of mutual information is very low throughout the entire rather large
range of L steady state values. It would be interesting to further investigate how much this can
be altered by adjusting the model parameters. However, this is di�cult as long as we do not
understand the bifurcation behavior of the system. In the bottom-left graph the coe�cient of
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Figure 4.7: Results from [Maity et al., 2014] (a) Steady state R
p

level, (b) steady state variance
‡2

RP
, (c) steady state squared coe�cient of variation ‡2

RP
/ÈR

P

Í and (d) steady state mutual infor-
mation I(I, R

p

) as a function of mean extra-cellular inducer level. In all panels, solid (with open
circles) and dashed (with open squares) lines are for monofunctional and bifunctional system,
respectively. The symbols are generated using stochastic simulation algorithm and the lines are
due to theoretical calculation.

variation (‡/µ) is plotted. This provides a nice estimate for the size of fluctuations compared to
the mean protein level.
It is likely that the di�erence in results stems from the fact that [Maity et al., 2014] exclude com-
plex formation. However, to be sure two steps remain to be taken. First, Gillespie simulations
should be run on the more detailed system considered here. If this returns similar results as in
Figure 4.6, then it is unlikely that calculation error is the source of the di�erent results. Second,
it should be investigated if the approach used in this text when applied to the system without
complex formation returns the same results as in [Maity et al., 2014] and Figure 4.7.



5 | Considerations about noise and
errors

In the previous chapter we discussed the correlation between a signal L and the output of a TCS
R

P

through the linear noise approximation. However, we must not lose sight of the fact that a
cell “makes decisions” based on the varying concentration of R

P

, think of gene expression. We
performed our calculations using mutual information, which gives a sense of the quality of the
signal transduction process and could be interpreted as the logarithm of the number of states
that can be distinguished in the signal. What it does not tell us is the likelihood of a single cell
having a correct internal concentration - by correct we mean according to the deterministic input-
output relationship. This is of particular biological importance though, since an experimental
biologist may want to predict how many of an ensemble of cells make correct decisions.

This chapter is a short exploratory chapter in contrast to the previous ones, concerned with ques-
tions that mutual information is not really equipped to answer but that are relevant to biology.
Specifically, we would like to answer the questions: based on the stochastic relationship between
L and R

p

, how often does a cell have the correct internal representation of the current level of L,
and importantly, what does right mean in this context? In other words, what can we say about
the probability that the cell infers the right concentration L based on R

P

(L)? Additionaly, we
would like to show that mutual information gives faulty answers to such questions. Put dif-
ferently, can we devise two sets of noise/input distributions such that the mutual information
in both channels is equal but the probability of faulty inference is not equal? If we can find
such a situation then it definitively shows that mutual information in a way obscures relevant
information for biologists and is not equipped to this task.

Since this is a somewhat di�erent way of approaching the subject than is usual in the literature
we must first establish a framework for thinking about these questions, starting out with as few
assumptions as possible and expanding the model step by step. We begin by simply assuming
that there is a deterministic communication channel between L and R

P

and the only thing we
take into account is that R

P

is linearly related to L: R
P

= gL (the robustness property). Under
this model, an input always leads to the same output and there is no possibility of error in
the internal representation. Errors can arise in two ways: through the addition of noise to the
communication channel or through variability in L itself.

48
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5.1 Deterministic inputs and noise
First we consider a model of deterministic inputs but with noise in the channel. This model is a
general form of the Gaussian channel we saw before:

R
P

= gL + ‘,

where L is deterministic and ‘ is a random variable with some pdf f
‘

(e). How do we define
errors in this model? R

P

has a distribution with mean gL + È‘Í and variance equal to that of ‘.
The best internal representation would be to have R

P

= gL. In the case of a continuous noise
variable ‘, the probability of measuring that specific value is zero, so we can only speak of ranges
of R

P

being correct or incorrect.
In terms of R

P

we can define an error by calculating the probability of being farther than ” of
the optimal value gL. This is doable by simply integrating the pdf of the noise

P(error) = 1 ≠
⁄

”

≠”

f
‘

(e)de.

Note that we could expand this concept by adding weight factors which scale with the distance
from the optimal value.

5.1.1 Two deterministic inputs and noise
Continuing, we consider two deterministic input levels L

1

and L
2

, both leading to two distinct
output distributions (when L

1

”= L
2

). Note that the only di�erence between these distributions
will be their mean. We can imagine these inputs to be successive in time or parallel experiments.
How do we define an error in this model? We could do the same as in the last model and for
each input separately integrate over the probability of measuring at least ” away from the optimal
values. But this would not be very interesting since it does not tell us how well the cell is able to
discriminate between the two inputs.
New in this model is the possibility for overlap between the two distributions. What does this
overlap signify? The overlapping probability mass gives the probability that the two di�erent
inputs lead to an output in the same range. If the overlapping probability mass is p then for
that fraction of measurements we will not be able to tell with certainty which input was given.
Therefore this area could be a good measure for the uncertainty a cell has about which input
was given. There need not be any overlap between two R

P

distributions. This situation can be
created by having a large gain g, by having a small noise variance, or by considering two input
values that are far apart. In this case there is no chance of making a wrong inference.
There are several di�culties in trying to calculate the overlap between two distributions in gen-
eral. However, under the current model the R

P

distributions will have the same distribution
with the same variance but with a di�erent mean, which makes things easier. The easiest dis-
tribution to find analytic results for is the Gaussian distribution. Again, it is a reasonable as-
sumption for noise to be Gaussian either for fundamental reasons or through application of the
central limit theorem.

5.1.2 Overlap between two Gaussian densities
Consider the two Gaussian distributions N(gL, ‡2

RP
) and N(g(L + ”L), ‡2

RP
), which we assume

to have the same variance. The di�erence in the mean level of R
P

between these distributions is
”R

P

= g”L. The intersection of these Gaussian distributions is at R
P

= gL +

g”L

2

the average of
the two means; see Figure 5.1a.
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Figure 5.1: (a) Overlap between Gaussian densities. Illustration of making a wrong inference
using Gaussian distributions for the concentration of R

P

. Blue is the distribution for low L and
red is the distribution for high L concentration. They gray area corresponds to a wrong inference
as explained in the main text. (b) Overlap as a function of ”L. Plot of equation (5.1) for g = 1

and ‡2

RP
= 1.

The overlap between these two distributions equals twice the probability that the distribution
centered at gL is larger than this intersection point. Or, in symbols

O(”L, g, ‡2

RP
) = 2

⁄ Œ

gL+

g”L
2

�(r)dr = 2

5
1 ≠ �

3
gL +

g”L

2

46
.

Here, we use �(r) to denote the pdf of the normal distribution with mean gL and variance
‡2

RP
, �(r) to denote its CDF and O(”R

P

, g, ‡2

RP
) to denote the overlapping probability mass for

a given mean distance ”R
P

, g and variance. We can rewrite this result in terms of the error
function (A.13). Since in general �(x) =

1

2

Ë
1 + erf

1
x≠µÔ

2‡

2

2È
we see that

O(”L, g, ‡2

RP
) = 2

S

U
1 ≠ 1

2

S

U
1 + erf

Q

agL +

g”L

2

≠ gL
Ò

2‡2

RP

R

b

T

V

T

V

= 1 ≠ erf

Q

a g”L/2Ò
2‡2

RP

R

b . (5.1)

This function is plotted in Figure 5.1b as a function of ”L. As is intuitively obvious, when ”L = 0

the overlap is equal to 1 and the larger the distance between the two means the smaller the
overlap becomes.

5.2 Stochastic input with noise
We will now consider stochastic input values so that R

P

= gL+‘ where both L and ‘ are random
variables with densities f

L

(x) and f
‘

(e). In the deterministic input case we could ask: given two
input values of L, what is the overlap between the two output distributions in R

P

? We can ask
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the same question here but we now also know something about how likely certain input values
are to occur since L has a probability distribution. Assuming L has a continuous distribution,
we cannot say anything about specific values. However, for the Gaussian distribution we can say
something about the di�erence ”L between two successive draws. We can calculate the overlap
between two output distributions based on how likely two successive uncorrelated draws from a
Gaussian distributions are to be ”L apart. This will result in an expected overlap in the output
distributions for two such uncorrelated draws.

5.2.1 Expected overlap between two Gaussian densities originating from a
Gaussian signal
If we assume L and ‘ to have Gaussian distributions, then R

P

also has a Gaussian distribution.
In (5.1) we saw that the overlap between two distributions of R

P

based on two input values
of L depends on the di�erence in L values, ”L, g, and the standard deviation of R

P

, ‡
RP . To

determine the average overlapping probability mass over all possible values of ”L, we first have to
determine the probability distribution for ”L and use these to weigh the overlap and integrate
over ”L. What is the probability distribution of ”L? Phrased di�erently, we want to know the
probability distribution for the di�erence of two Normal distributions. This has quite a simple
answer; when X and Y are two normally distributed random variables with (possibly) di�erent
means and variances, this distribution is the so-called Normal di�erence distribution 1:

f
X≠Y

(u) =

exp

#
≠(u ≠ µ

X

+ µ
Y

)

2/[2(‡2

X

+ ‡2

Y

)]

$


2fi(‡2

X

+ ‡2

Y

)

. (5.2)

Important to note is that this result only holds if X and Y are independent. In essence this is just
the well-known result that the sum (or di�erence) of two Gaussian distributions is a Gaussian
distribution with the sum (or di�erence) of the means as mean and a variance that is the sum
(in both cases) of the original variances.
In the case of ”L we draw two samples L

1

and L
2

from the same distribution, so that the above
result simplifies to

f
L1≠L2(”L) =

exp

Ë
≠ (”L)

2

4‡

2
L

È


4fi‡2

L

.

Observe that this is again a normal distribution with mean 0 and variance 2‡2

L

and this last
equation is a function of ”L.
We can now calculate the mean overlap over all values of ”L by integrating 2

ÈO(‡2

RP
, ‡2

L

, g)Í = 2

⁄ Œ

0

Q

a
1 ≠ erf

Q

a g”
L

/2Ò
2‡2

RP

R

b

R

b
exp

Ë
≠ ”L

2

4‡

2
L

È


4fi‡2

L

d”L

= 1 ≠ 2

fi
Arctan

Q

a g‡
LÒ

2‡2

RP

R

b (5.3)

= 1 ≠ 2

fi
Arctan

AÚ
SNR

2

B
. (5.4)

1The entry on Wolfram MathWorld has an error in this formula, although it is correct in their Mathematica notebook!
2This argument is originally by F.J. Bruggeman
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Figure 5.2: (a) The mean overlap probability. mean overlapping probability mass (5.4) as a func-
tion of the SNR. (b) The number of distinguishable states vs. the mean overlap probability.
In blue, (5.5) is plotted and in red 1/ÈO(‡2

RP
, ‡2

L

, g)Í is plotted.

The last equality follows from the definition of the signal-to-noise ratio SNR =

g

2
‡

2
L

‡

2
RP

. This is an
intriguing result! In Figure 5.2a we plot this mean overlapping probability mass as a function of
the SNR.
This graph agrees with our intuition. A SNR close to zero implies a relatively large amount of
noise, meaning wide distributions of R

P

which imply a large overlap. When the SNR is large,
meaning there is relatively little noise, the R

P

distributions are thin so there is little overlap.
We can go further than the result for the mean overlap distribution. Due to the simple expression
for the mutual information in a Gaussian channel (2.28), we can also relate the MI, and thus the
number of states of L that R

P

can distinguish, to the mean overlapping probability mass. For
mutual information measured in bits we have that

No. Distinguishable states = 2

I(R;S)

= 2

1
2 log2(1+SNR)

=

Ô
1 + SNR.

Rewriting (5.4) as SNR = 2 tan

2

!
1

2

fi(ÈO(‡2

RP
, ‡2

L

, g)Í ≠ 1)

"
and substituting the formula above,

we see

No. Distinguishable states =

Û

1 + 2 tan

2

3
1

2

fi(ÈO(‡2

RP
, ‡2

L

, g)Í ≠ 1)

4

=

Û

1 + 2 cot

2

3
fiÈO(‡2

RP
, ‡2

L

, g)Í
2

4
. (5.5)

In Figure 5.2b, equation (5.5) is plotted against ÈO(‡2

RP
, ‡2

L

, g)Í along with 1/ÈO(‡2

RP
, ‡2

L

, g)Í.
We see good agreement between the two graphs, indicating that 1/ÈO(‡2

RP
, ‡2

L

, g)Í gives a good
estimate of the number of distinguishable states. However, it also tells us something about the
probability of faulty inference which mutual information does not.
Several questions are still left unanswered here. First of all it is not entirely obvious why 1 di-
vided by the overlap probability should be a good estimate of the number of distinguishable
states. Second, it remains unclear why the graphs are not exactly the same. We seem to overes-
timate the number of states, i.e. the overlap is to small. This may have something to do with the
fact that we use two inputs instead of more. Both these questions require further research.
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5.3 Looking at errors in the L domain
A second way to look at errors is to consider what we can say about L given a measurement
of R

P

= y, i.e. what is the probability of inferring a certain range L is likely to be in based on
observing R

P

? We would like to say something about P(– Æ L Æ —|R
p

= y) and for this we
need the conditional density P

L

(x|R
P

= y), which we can get by dividing the joint probability
density by the marginal density of R

P

:

f
L

(x|R
P

= y) =

f
L,RP (x, y)

f
RP (y)

for all values of R
P

such that f
RP (y) > 0 and zero otherwise. Specifically, we can calculate the

desired probability using

P(– Æ L Æ —|R
p

= y) =

⁄
—

–

f
L

(x|R
P

= y)dx (5.6)

=

s
—

–

f
L,RP (x, y)dx

s Œ
≠Œ f

L,RP (x, y)dx
. (5.7)

The denominator in this equation is the total area under the joint probability density function at
R

P

= y. The numerator is the mass of that area where – Æ L Æ —.
By choosing the right – and —, this calculation will give us the probability of inferring (approx-
imately) the correct value of L given a measurement of intracellular R

P

.
The main mathematical di�culties in this approach are (1) analytically finding the joint pdf and
(2) analytically calculating this integral. Numerically however, given a standard noise distribu-
tion this calculation should be trivial.
A more fundamental problem with this approach is the choice of – and —. We would like these to
be estimates of the range the signal can take in a certain state of the environment. For instance, if
the environment can exist in a high and low sugar state and the low state means that the concen-
tration falls between 5 and 10 mmol/L, then we would like to calculate P(5 Æ L Æ 10|R

p

= y).
However, this requires knowledge of the extracellular concentration levels and it is di�cult to
imagine a cell actually implementing this calculation.

5.3.1 Mutual information and MMSE
Related to this inverse estimation problem introduced above, we found an interesting paper [Guo
et al., 2005] by scouring the engineering literature. [Guo et al., 2005] find that mutual information
and the MMSE (minimum mean squared error) in estimating the input given the output, satisfy
a simple relationship regardless of the input distribution as long as they are related through
additive Gaussian noise. This result holds in general as the next theorem shows, which we
reproduce from [Guo et al., 2005] without proof.

Theorem 5.3.1. Let › (the noise) be standard Gaussian, independent of X . For every input dis-
tribution P

X

(discrete or continuous) that satisfies EX2 < Œ,

d

d SNRI(X; Y ) =

1

2

MMSE(X|Y ). (5.8)

Proof. See II-C in [Guo et al., 2005].

This result holds not only under arbitrary input signaling but also under the broadest setting of
Gaussian channels, including discrete-time and continuous-time channels, and both scalar and
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vector versions. First, note that both mutual information and the MMSE are increasing functions
of the SNR. Thus, this relationship states that the rate at which mutual information increases as
the SNR is increased is one-half of the MMSE value.
The error of an estimate, f(Y ), of X based on observing Y can be measured in mean-square
sense (well-known from statistics):

E
Ë
(X ≠ f(Y ))

2

È
. (5.9)

The minimum value of this estimator is referred to as the MMSE and is under weak regularity
assumptions given by the so-called conditional mean estimator ˆX = E [X|Y ] (See Lehmann and
Casella, Corollary 4.1.2). As we know for the Gaussian channel with Gaussian input f

X

(x), we
have that I(X; Y ) =

1

2

log(1 + SNR). Obviously d

d SNR I(X; Y ) =

1

2

1

1+SNR . The MMSE for this
case happens to be 1

1+SNR thus d

d SNR I(X; Y ) =

1

2

MMSE(X|Y ).
Note that this relationship is intuitively correct in the sense that for SNR æ Œ the left side
goes to zero in the standard Gaussian channel we have been considering, since d

d SNR
1

2

log(1 +

SNR) =

1

2

1

1+SNR . Therefore, the estimation error also goes down to zero. This makes sense
since maximizing SNR is equivalent to maximizing the mutual information which should reduce
uncertainty about the input per its definition in terms of a di�erence of entropy.
The result seems to suggest a relationship between mutual information and this reverse infer-
ence problem of estimating the input given the output. What remains unclear, is how we can
specifically use this to say something useful about the process of signal transduction. The fact
that relationships like these exist in the engineering literature yet have not appeared in the bio-
logical literature (as far as we can tell) suggests that there may be more potential gems hidden
in the engineering literature that remain to be discovered.

5.4 Mutual information and error probability in gene
expression
Here, we consider error probability in relation to a simplistic view of gene expression.

5.4.1 Switch-like gene expression in a Gaussian channel
Consider once again the Gaussian channel setting and a hugely simplified model of gene ex-
pression where a gene is expressed if a certain level of Y is exceeded Y > ȳ. Consider further, as
done before, that this Y variable is a cell’s internal representation of an extracellular signal X .
Ideally, given a level of X considered high, x̄, Y should be high as well, so exceeding ȳ. If this is
not the case, we qualify this as an error since the cell would respond as if the signal is high (low)
even though in reality the signal was low (high).
By keeping the signal-to-noise ratio constant the mutual information remains constant. But, as
shown below, changing the variances while keeping SNR constant or changing the mean of the
input distribution changes the probability of making an error under this model. This indicates
that under this highly simplified model of gene expression mutual information does not track
error probability. This is intuitively obvious, since, as noted before, mutual information ignores
the mean whereas for gene expression the mean copy number of a transcription factor clearly
matters!
Under the Gaussian channel assumption, the X and the noise both have Gaussian densities
and since they are independent we can calculate the joint distribution between X and Y using
f

X,Y

(x, y) = f
Y |X(y|x)f

X

(x). Under this simplified model, we simply need to calculate the
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Figure 5.3: (a) Joint distribution of two Gaussians. A 3D plot of the joint distribution of two
Gaussian random variables X and Y with µ

X

= 5, ‡ = 1, ‡
Y

= 2, g = 2. (b) The error
probability for changing values of µ

X

. In blue: ‡
N

= 3, g = 2, ‡
X

= 2 . In red: ‡
N

= 4.5, g = 2,
‡

X

= 3. In both cases SNR = 1.5.

amount of probability mass of this joint density function that falls in the wrong two quadrants
(high x and low y and vice versa). In Figure 5.3, we show the joint distribution of X and Y and
a plot of the changing error probability for varying mean levels of X and two di�erent settings
for the variances while keeping the signal-to-noise ratio constant.

TF level

Expression

(a) (b)

Figure 5.4: (a) Switch-like gene expression. At a certain transcription factor level gene expres-
sion switches on. This is equivalent to taking n æ Œ in the Hill activation function. (b) Smooth
gene expression for various values of n. The smaller n becomes the less steep the activation
function is.

We could expand this model to incorporate smooth gene expression of the form through some-
thing like a Hill activation function

Expression =

yn

Kn

+ yn

for some specific value of n which dictates the steepness of activation; see Figure 5.4. How-
ever, the argument stays the same and shows that mutual information simply is not equipped
to answer questions like this.



6 | Conclusion

In this thesis, we concerned ourselves with the topic of information processing in two-component
signal transduction systems. Here we briefly review the results we found and what avenues re-
main for future research.

6.1 Summary of results and future work
Results and future work have been divided into the separate research questions we looked at in
this text.

How can we quantify the knowledge or information a cell has about its environment? And:
What is a good measure of the quality of this signal transduction process? We considered this
in Chapter 2. We saw how we can model the process of signal transduction through a commu-
nication channel between two random variables that have some dependence on each other; see
Figure 2.1. The noise in such a channel reduces a cell’s ability to discern di�erent input levels.
Since we want to somehow quantify the quality of this signal transduction process, we turned
to mutual information. Mutual information says something about the reduction in uncertainty
(entropy) about the input given the output (and vice versa because of the symmetry property)
and is therefore a good measure of the quality of communication. In addition, we showed its
various nice mathematical properties including the recently published result of self-equitability.
Mutual information is justifiably used as a quality measure of communication channels and will
most likely be around for quite some time.

How does mutual information relate to the probability of the cell’s internal representation
being wrong? We considered this in Chapter 5. Closely related to the process of information
transmission and signal transduction is decision-making and gene expression since cells can-
not make appropriate decisions without exploiting information from external stimuli. A key
shortcoming of mutual information is that it does not explicitly tell us how likely it is that a cell
makes a right inference. We considered various ways of looking at this question by looking at
overlap distributions in signal system output (R

P

) and by thinking about the inverse estimation
procedure of saying something about the f

X|Y (x, y) distribution.
In the context of Gaussian overlap distributions we found a surprising result (5.4) that seems to
be a good estimate of the number of distinguishable states in the input 5.2b. The reasons for this
remain unclear and it remains an avenue for further research.
In the context of looking at the probability P(– Æ L Æ —|R

p

= y) we found a relation that
links mutual information to the minimal mean squared error (MMSE) in estimating the input
given the output [Guo et al., 2005]. We do not yet fully understand how to apply this to signal
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transduction, however the fact that this relationship was found in an engineering paper suggests
there may be more to discover that has not yet been applied to biology.
Lastly, we considered mutual information in relation to error probability in simplified gene ex-
pression. The point of this was mainly to show that there are interesting questions in signal
transduction and gene expression for which mutual information is not the right tool. We showed
this by assuming switch-like gene expression, but the argument can be extended to smooth ex-
pression functions. The probability mass falling in the wrong two quadrants can be changed
while keeping mutual information in a Gaussian channel; see Figure 5.3.

Can we analytically and numerically calculate linear noise approximation for a specific two-
component system? In Chapter 3 we considered stochastic kinetics. We introduced master equa-
tions and Fokker-Planck equations including their stationary solution. We then discussed the
proof and implementation of the system size expansion, as originally done by [Van Kampen,
2007] and [Elf and Ehrenberg, 2003].
In Chapter 4 we then considered a specific bifunctional two-component system of medium com-
plexity. We applied the linear noise approximation to two variants of this system: the constant
L model and the model including synthesis and degradation of L.
In [Maity et al., 2014], a TCS model is considered without taking into account any complexes.
We considered a model that takes into account more of the molecular detail, although not all;
see Figure 4.3a. We specifically choose the bifunctional version of the TCS because it has the
nice robustness property, 1 less reactant and beneficial results relating to the amount of MI it
can handle (see [Maity et al., 2014].
Numerically it is quite easy to perform the linear noise approximation on this system and find the
covariance matrix. Analytically we used an LU decompositon on A and solved in two steps. The
analytical result for the variance of R

P

we found was a massive symbolic result and thus for the
dynamic L model we abandoned the analytical approach and focused on numerical calculations.

How does the output variance change with model parameters? In Figure 4.4 we plotted the
dependecies of Var(R

P

) in terms of all model parameters for the constant L model. In Figure
4.5 we do the same for the model with L dynamics included. Interesting to note is that in the
dynamic L model the variance in R

P

rises approximately linearly with L at steady state 4.6. In
the constant L model this relationship is exactly linear. In both models it can also be seen that
parameters belonging to the same reaction increase and decrease the variance in opposing pairs.
In addition, reaction 3 seems to have no e�ect on the variance in both models.
For the dynamic L model there is an open question relating to the model’s bifurcation behaviour.
We do not yet understand how to guarantee that a certain parameter set leads to the non-trivial
steady state.

What consequences does this have for the mutual information between the input and output?
We can calculate the mutual information between L and R

P

for specific parameter sets if we
assume a Gaussian channel setting and using the I(X; Y ) = ≠ 1

2

log

2

!
1 ≠ fl2

"
result. For the

dynamic L model, we predict that mutual information as a function of L at steady state has an
S shaped form; see Figure 4.6. A good intuitive explanation for this is lacking as of yet.
For the constant L model we did not perform this calculation since we would have to assume a
variance for L which seems quite arbitrary. Since the other results seem to carry over quite well
between the two models, we would expect this to return similar results to Figure 4.6.

How do our results compare with the recent publication [Maity et al., 2014]? In [Maity et al.,
2014] a less detailed two-component system is considered that does not take into account com-
plex formation. They find that the variance in R

P

increases with L, reaches an optimum and
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goes back down. We do not find this for the system with constant L nor for the system with
dynamic L. To facilitate easy comparison, we reproduced the 4 panel plot from their paper in
Figure 4.6. We reproduced their results in Figure 4.7.
It is likely that the di�erence lies in the fact that [Maity et al., 2014] exclude complex formation.
However, two steps remain to be taken to be certain. First, Gillespie simulations should be run
on the more detailed system considered here. If this returns similar results as in 4.6 then it is
unlikely that calculation error is the source of the di�erent results. Second, it should be investi-
gated if the approach used in this text when applied to the system without complex formation
returns the same results as in [Maity et al., 2014].



A | Appendix

A.1 The correlation coe�cient
Pearson’s product moment correlation coe�cient measures the existence of a linear relationship
between two random variables. It takes on values in the range [≠1, 1] based on it being a negative
(downward slope) linear relation or a positive (upward slope) relation.
Definition A.1.1. If X and Y are random variables with variances ‡2

X

and ‡2

Y

and covariance
Cov(X, Y ) = ‡2

XY

, then the correlation coe�cient of X and Y is

fl =

‡2

XY

‡
X

‡
Y

. (A.1)

If fl = 0 we say that X and Y are uncorrelated.
Theorem A.1.1.

≠1 Æ fl Æ 1

Proof. Let Z =

Y

‡Y
≠ fl X

‡X
. Then

Var(Z) = Var

3
Y

‡
Y

4
+ Var

3
≠fl

X

‡
X

4
+ 2 Cov

3
Y

‡
Y

, ≠fl
X

‡
X

4

=

3
1

‡
Y

4
2

‡2

Y

+ fl2

3
1

‡
X

4
2

‡2

X

≠ 2fl
‡

XY

‡
X

‡
Y

= 1 + fl2 ≠ 2fl2

= 1 ≠ fl2 Ø 0.

The last inequality shows the desired result.

One can show that fl = ±1 if and only if Y = aX + b with probability 1 for a ”= 0 and any b; see
any probability textbook.

A.2 The signal-to-noise ratio vs. the correlation co-
e�cient
There exists an interesting relationship between the SNR and the correlation coe�cient (fl) that
will allow us to rewrite (2.28) in terms of fl. In this section we derive this relationship in two
ways.
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A.2.1 Geometric argument
We can rewrite the Gaussian channel assumption by assuming two separate gain parameters a
and b for the signal and the noise as:

Y = aX + b›.

Here we are assuming that X , Y and › have been normalized to have zero mean and unit variance
through their Z-scores. Now note that

‡2

R

= a2‡2

S

+ b2‡2

›

1 = a2

+ b2.

Denoting a2 by – we see that

SNR =

–‡2

S

(1 ≠ –)‡2

›

=

–

1 ≠ –
(A.2)

The correlation coe�cient can be defined as the cosine of the angle ◊ between the two vectors of
samples drawn from the two random variables

fl = cos(◊) =

x · y

||x||||y|| .

Since we assumed that the signal and the noise are independent, we can see them as orthogonal
basis vectors for the response. Thus we can write

tan(◊) =

b

a
=

Ô
1 ≠ –

–
.

Rewriting

tan(◊) =

sin(◊)

cos(◊)

=


1 ≠ cos

2

(◊)

cos(◊)

=


1 ≠ fl2

fl

we have that – = fl2. Thus we can now express the signal-to-noise ratio in terms of the correlation
coe�cient

SNR =

fl2

1 ≠ fl2

.

We can therefore also express the mutual information in terms of fl

I(X; Y ) =

1

2

log

2

3
1 +

fl2

1 ≠ fl2

4

= ≠1

2

log

2

!
1 ≠ fl2

"
(A.3)

A.2.2 Entropy argument
A second way to derive this relationship is by considering the joint entropy of X and Y when
both are Gaussian. In this case simply substituting the Gaussian distribution into the continuous
version of (2.8) reveals that

h(X; Y ) = 1 + log(2fi) +

1

2

log(| det �|) (A.4)
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where � is the covariance matrix

� =

5
‡2

X

fl‡
X

‡
Y

fl‡
X

‡
Y

‡2

Y

6
(A.5)

so that | det �| = ‡2

X

‡2

Y

(1 ≠ fl2

). Remembering (2.2.1) we see that
I(X; Y ) = h(X) + h(Y ) ≠ h(X; Y ) (A.6)

= ≠1

2

log

!
1 ≠ fl2

"
(A.7)

A.3 The Gershgorin circle theorem
First published in 1931 by the Russian mathematician Gershgorin, this theorem can be used to
bound eigenvalues of a square (complex) matrix .
Theorem A.3.1. Let A be a (complex) n x n matrix, with entries a

ij

. For i œ {1, . . . , n} let R
i

=q
j ”=i

|a
ij

| be the sum of the absolute values of the non-diagonal entries in row i. Let D(a
ii

, R
i

)

be the closed disc centered at a
ii

with radius R
i

. Such a disc is called a Gershgorin disc and
every eigenvalue lies in at least one such disc.
Proof. Let ⁄ be an eigenvalue of A and x its corresponding eigenvector. Choose i such that |x

i

| =

max

j

|x
j

|. Since x cannot be 0, |x
i

| > 0. Now Ax = ⁄x, or looking at the i-th component (⁄ ≠
a

ii

)x
i

=

q
j ”=i

a
ij

x
j

. Taking the norm on both sides gives |⁄ ≠ a
ii

| = |
q

j ”=i

aijxj

xi
| Æ

q
j ”=i

|a
ij

|.

Relevant for the discussion in the main text is the corollary that when applied to AT , this result
holds for the columns of A as well. This is easily seen because, as the identity matrix is symmetric
we have that

det(AT ≠ ⁄I) = det

!
(A ≠ ⁄I)

T

"
= det(A ≠ ⁄I)

since det A = det AT . Therefore A and AT have the same characteristic polynomial and the same
eigenvalues.

A.4 LU decomposition of a tridiagonal matrix
LU decomposition factors a matrix as the product of a lower triangular matrix L and an upper
triangular matrix U . For tridiagonal matrices, there exists an especially simple algorithm for
LU-decomposition. Consider the following notation for the entries in these three matrices

A =

Q

ccccca

b
1

c
1

0

a
2

b
2

c
2

. . . . . . . . .
a

n≠1

b
n≠1

c
n≠1

0 a
n

b
n

R

dddddb
(A.8)

LU =

Q

ccccca

1 0

l
2

1

. . . . . . . . .
l
n≠1

1

0 l
n

1

R

dddddb

Q

ccccca

u
1

c
1

0

u
2

c
2

. . . . . .
u

n≠1

c
n≠1

0 u
n

R

dddddb
. (A.9)
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By simply performing the matrix multiplication on the right-hand side and equating entry by
entry left and right we see that the following recursive relationships hold for l

k

and u
k

:

a
k

= l
k

u
k≠1

=∆ l
k

=

a
k

u
k≠1

, k œ {2, . . . , n} (A.10)

b
k

= l
k

c
k≠1

+ u
k

=∆ u
k

= b
k

≠ l
k

c
k≠1

, k œ {1, . . . , n}. (A.11)

Where we use the convention that l
1

= 0 and c
0

= 0.

A.5 The error function erf(x)
The (Gauss) error function comes up from time to time in statistics and probability and may be
interpreted as the probability of a random variable with a Gaussian distribution of mean 0 and
variance 1

2

falling in the range [≠x, x],

erf(x) =

2Ô
fi

⁄
x

0

e≠t

2
dt (A.12)

=

1Ô
fi

⁄
x

≠x

e≠t

2
dt. (A.13)
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Figure A.1: The error function. Plot of erf(x/
Ô

2) and erf((x ≠ 1)/
Ô

2).

To see the relationship between the CDF of a normal distribution and erf(x) consider the CDF
of a random variable X with a standard normal distribution

�

X

(x) =

1Ô
2fi

⁄
x

≠Œ
exp

3
≠ t2

2

4
dt

=

1Ô
2fi

⁄
0

≠Œ
exp

3
≠ t2

2

4
dt +

1Ô
2fi

⁄
x

0

exp

3
≠ t2

2

4
dt

=

1

2

+

1

2

erf

3
xÔ
2

4
.

For non-standard normal distributions, we have that � X≠µ
‡

(x) = �

X

(

x≠µ

‡

) and therefore

� X≠µ
‡

(x) =

1

2

+

1

2

erf(

x ≠ µÔ
2‡2

). (A.14)
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