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Introduction

The subject of this thesis is investigating populations with individuals who are infected with
HIV. We can distinguish different kinds of groups, like men and women, young and old,
heterosexual, homosexual and bisexual or other subdivisions. We have studied several articles
on modeling HIV in a population to get an impression of the research that has already been
done in this field. We noticed that in these articles populations consisting of heterosexuals,
heterosexuals with homosexuals, or homosexuals with bisexuals were considered, but not
populations consisting of heterosexuals, bisexuals and homosexuals. Therefore, we like to
investigate the influence of the sexual intercourse between these groups on the transmission
of HIV.
We divide a population in the groups of the susceptible and infected heterosexuals (S1, I1),
bisexuals (S2, I2) and homosexuals (S3, I3). We would like to know what the differences are
between models in which the group of bisexuals is ignored and models where it is included,
and whether it is really necessary to consider this group separately.
The dynamics of these models are best studied in terms of their equilibria and their stability.
The most important question in much of epidemiology is whether a disease will spread if it
is introduced in a virgin population. Mathematically, this corresponds to finding the Disease
Free Equilibrium (DFE). This is the steady state in which the disease has gone extinct.
We have three chapters in this report. Chapter 1 consists of four sections. We explain what
HIV and AIDS are in the first section. In the second section we will give the Kermack and
McKendrick model, or the SIR model, on which our models will be based. We extend this
model with a birth and a death rate in the third section. In the last section we summarize
some articles in which the authors investigated the influence of HIV on the population
size. This thesis discusses the effect of the disease on a population’s size, so we will review
literature dealing with this aspect.
In the second chapter we adapt the SIR models of chapter one. We develop a model for the
heterosexuals and the homosexuals in the first section and in the second section we add the
bisexuals. In the third section we introduce behavioural difference for the bisexuals. The
differences and similarities of these models are studied in the fourth section.
The third chapter contains three sections. In the first section we assume that there exists
a vaccine for the disease and in the second section we assume that there is a cure. We
investigate under which circumstances it is better to look for a vaccine or for a cure by
comparing their equilibria.
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Chapter 1

Preliminaries

This chapter consists of four sections. The first section is a general introduction to HIV and
AIDS. In the second section we will introduce the Kermack and McKendrick model [7, 10, 21].
This is the most basic model which describes how an infection affects a population’s size. In
the third section we will try to make this model more realistic by adding a birth and a death
rate. We will adapt these models in the chapters two and three. In the last section we will
give some examples of modeling the influence of HIV on population sizes. This is carried out
by summarizing previous articles in which the focus laid on different aspects, like medicine
and sexual activity.

1.1 What are HIV and AIDS?

In the early eighties of the last decade some men in San Francisco (and simultaneously in
New York) were diagnosed with the rare diseases Candidiasis (a type of fungal infection)
and Kaposi’s sarcoma (a kind of tumor). The individuals who got these diseases were young
homosexual men. In 1984 the Frenchman dr. Luc Montagnier and his team discovered that
a virus was the underlying cause of these diseases, which they named the Human Immunod-
eficiency Virus (HIV).
HIV is the virus that causes Acquired Immunodeficiency Syndrome (AIDS). The virus at-
taches itself to the CD4+ T-lymphocytes, or T-cells, which are a part of the human immune
system. Normally, these lymphocytes recognize infected cells and kill them. The HI-virus
attaches itself to the T-lymphocytes and automatically reproduces through these new cells,
because the T-cells do not recognize the HI-virus. As a result the number of CD4+ T-
lymphocytes, which are able to recognize infected cells, declines and this decrease causes
permanent damage to the immune system. Eventually this number is so small, that the im-
mune system loses its ability to fight infections. When someone reaches this stadium, this
person is said to have AIDS. The time between getting infected with HIV and contracting
AIDS is, in general, five years but it can vary.
One serious problem with HIV is that most of the time there are no symptoms. Someone
may experience the same symptoms as other viral infections like fever, headache or rash,
but for the majority of infected individuals, there may be no symptoms at all. A person
with AIDS can have a combination of symptoms, such as extreme weakness, a rapid weight
loss, frequent fevers that last for several weeks with no explanation, heavy sweating at night,
swollen lymph glands, minor infections that cause skin rashes and mouth, genital, and anal
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CHAPTER 1. PRELIMINARIES 4

sores, white spots in the mouth or throat, chronic diarrhea, a cough that will not disappear
and having trouble remembering things [14]. These symptoms do not have to occur, so the
virus can be transmitted because someone can be infected without knowing this. Transmis-
sion can happen through breast feeding, unprotected sexual intercourse (no condom), sharing
(not sterilized) needles, and blood transfusions. However, for simplicity, we will assume in
all models presented in this thesis, that the only way to transmit HIV from one person to
another is through sexual intercourse.
Since the discovery of the virus, many researchers have investigated HIV from different points
of view. For instance, they have tried to find a medicine against the disease. Nowadays, there
is still no cure for HIV, but there has been a breakthrough. It has been discovered that when
someone is infected with HIV, the virus uses the integrase enzym of someone to paste a copy
of its genetic information into the DNA of this person. The breakthrough is that scientists
say they have grown a crystal that enables them to see the structure of the integrase enzym1.
This helps them to find a cure for HIV, but it has not been found yet.
For now there is a combination of medicines, which can suppress the decline of the number of
CD4+ T cells. This combination is called (highly active) antiretroviral therapy ((HA)ART).
Unfortunately, these medicines have a lot of side effects and they do not work with every
patient. Moreover, they are expensive to produce. A cheaper remedy would be a vaccine,
but it is proving hard to find one. In 2009 Ferstandi Arnold et al. [11] published an article
in which it was explained which components a vaccine for AIDS needs. Also a vaccine has
already been tested in Thailand2 and in North America3. The vaccine tested in Thailand
seems to reduce the risk of becoming infected with HIV by 31%, but researchers think it will
still take many years before a vaccine might be available.
HIV was also investigated by developing models in which the viral dynamics of the disease
were studied. In these models, one can predict what the influence of the disease is within a
human body or what its effects are on a population. This thesis is about the latter, so we
will develop models in which the dynamics of the virus within a population is investigated.

1.2 The SIR model

One of the most basic models which describes how an infection affects a population’s size
is the SIR model. This model was developed by Kermack and McKendrick [7, 10, 21]. We
will use this model as a basis for our research, because it is the most common model used to
investigate the influence of a disease on the population size. Other mathematical models for
infectious diseases or variations of the SIR model can be found amongst others in the books
written by Anderson et al. [1], Dieckmann and Heesterbeek [8], Hethcote [12] and Murray
[21].
The SIR model consists of three groups of persons, namely S, I, and R. The group of
susceptible people is denoted with S, I is the group of infected individuals and R is the group
of people who got infected and have recovered from the infection or are dead. In this model
it is assumed that if someone is recovered, this person has become immune for this certain
infection. As a result, there is no transmission from R to S. The transmission model that
belongs to this model is given in Figure 1.1 and its differential equations are

1See amongst others www.reuters.com and www.observer.org
2See http://news.aol.com/health/
3See http://abcnews.go.com
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S I R!β !γ

Figure 1.1: The transmission model belonging to the equations of (1.1), where S stands for the
susceptibles, I for the infected and R for the individuals who are recovered from the infection or are
dead. Furthermore, β is the transmission rate from S to I and γ is the transmission and death rate
for I.

dS
dT = −βSI,
dI
dT = βSI − γI = I(βS − γ),
dR
dT = γI.

(1.1)

The constant β in the first equation stands for b/N , where b is the number of susceptibles
that each infected person transmits the pathogen to in a (small) time interval, and N is
the size of the population that is investigated. Thus β is the rate in which susceptibles get
infected. We often call βI the force of infection. In the equations the term T stands for
time. Furthermore, someone who is infected recovers or dies with a certain rate, say γ. Note
that the sum dS

dT + dI
dT + dR

dT is zero, so it is assumed that the population size is constant.
The equations are nondimensionalized by substituting s := S/N , i := I/N , r := R/N and
t := 1

γT . The model then becomes

ds
dt = −R0si,
di
dt = i(R0s − 1),
dr
dt = i,

(1.2)

where R0 := βN
γ . This term is known as the reproductive ratio and stands for the rate that an

infected person can transmit the disease to someone else first hand. It is the most important
parameter in all of mathematical epidemiology, because the stability of an equilibrium often
depends on whether or not R0 is greater than a constant, say c. Usually, if R0 is greater
than c, then the equilibrium is stable, it is unstable if R0 is smaller than c, and it is neutrally
stable if it is equal to c. Model (1.2) will be referred to with SIR.
The equilibria of this system are found by solving the differential equations of model SIR
at steady state. The term dr

dt can be ignored, because r has no influence on s, i and their
differential equations. The equations are equal to zero when (s, i) = (x, 0) for x ∈ [0, 1]. This
means that there is a family of Disease Free Equilibria (DFEs). The Jacobian matrix for
model SIR in (x, 0) for a certain x ∈ [0, 1] is

J =
( 0 −R0x

0 R0x − 1

)

.

An equilibrium is stable if and only if every real part of the eigenvalues of its Jacobian is less
than zero. Equilibrium (x, 0) for x ∈ [0, 1] has 0 and R0x−1 as eigenvalues, so if R0x−1 > 0,
then the equilibrium is unstable and if R0x − 1 ≤ 0, then it is neutrally stable. We perform
numerical simulations to show the differences between these two kinds of stability of the
steady states.
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Figure 1.2: In these graphs we have plotted the dimensionless vectors s against t of model SIR. The
parameters s and t were respectively defined as S

N , and 1
γ T , where N is the total population size, c is

the death rate of the infected, and T is the time unit in which we have measured the rates. Note that
if we would like to translate s back to S, we have to compute S = Ns due to the substitution. Our
initial vector is (s(0), i(0)) = (0.995, 0.005) and we varied the value of R0. In the left picture we have
R0 = 0.1, in the middle R0 = 1, and in the right graphs we have R0 = 5. The solid line represents
the dimensionless susceptibles (s) and the dashed line the dimensionless infected individuals (i). With
these constants it is clear that in the left and middle picture we have a nonzero equilibrium, and in
the right graph we have the zero steady state.

We assume that the population size N is constant, say N = 1000. Furthermore, we assume
that the group of susceptibles consists of 995 individuals and 5 people are already infected
with a certain disease, say the flu, so the initial values are (s(0), i(0)) = (0.995, 0.005). We
have plotted the graph with these initial values and with R0 = 0.1, R0 = 1, and R0 = 5
in the time interval [0, 100] in Figure 1.2. The value R0 = 5 means that the number of
susceptibles that each infected person transmit the flu to, is five times the rate in which
someone recovers from the flu or dies. This follows from β = b

N and R0 = βN
γ . In the case of

the flu, an infected individual can transmit the virus to every person within a certain radius,
while it takes about four to six weeks to recover from it. Furthermore, R0 also depends on
how densely populated the area is. We assume that R0 = 5 could be realistic.
We notice in Figure 1.2 that i is eventually zero, but this does not hold for s. This is because
if every infected person has recovered or died before every susceptible has been infected
with the virus, nobody can get infected anymore. As soon as we add a (small) group of
infected, while not everyone is immune for the virus, the population size converges to another
equilibrium, so every nonzero DFE is unstable.

1.3 The SIR model with a birth and death rate

Let us use the SIR model to investigate how the flu affects a population’s size. We assume
that each newborn is susceptible to the flu. The most basic SIR model has no term for the
birth and death rate of the susceptible population. We include these terms for the susceptible
population to get a somewhat more realistic model. The new transmission model is given in
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Figure 1.3: This is the transmission model belonging to the equations of (1.3), where S still stands
for the group of susceptibles, I for the infected and R is defined as the individuals who are immune to
the disease or are dead. Furthermore, β is the transmission rate from S to I, c is the death rate for
S, and γ is the transmission rate plus the death rate of I.

Figure 1.3, and our system of equations is

dS
dT = α(S + I) − βSI − cS,
dI
dT = βSI − γI,
dR
dT = γI + cS.

(1.3)

The constants α and c are respectively the birth and the death rate of the susceptible popula-
tion. We assume that migration can be neglected. Our model has two steady states, namely
(s, i) = (0, 0) (the DFE) and (s, i) = (γβ , γ(α−c)

β(γ−α)). The DFE is stable if and only if c > α. We
notice that, if c > α, the value of i in the other steady state is less than zero, so this other
equilibrium is disregarded when c exceeds α. This is logical, because if the death rate exceeds
the birth rate, the population will eventually become extinct.
With the same substitutions as before the nondimensional form of (1.3) is

ds
dt = a(s + i) − R0si − c1s,
di
dt = i(R0s − 1),
dr
dt = i + c1s.

(1.4)

with a = α
γ , R0 = βN

γ , c1 = c
γ , and t = 1

γ s. We can distinguish two cases, namely a = c1 and
a $= c1. If a = c1, then the equilibrium is (s, i) = (x, 0), for any x ∈ [0, 1], and if a $= c1, then
our steady states are (s, i) = (0, 0) and (s, i) = ( 1

R0
, a−c1

R0(a−1)). It is unlikely for a and c1 to
be equal, because usually the birth and death rate of a population are almost the same, and
c1 $= c.
The chosen constants in our following illustration are not based on known data, but we only
use them as an example. We have chosen a = 0.2, R0 = 2, (s(0), i(0)) = (0.995, 0.005), and
c1 = 0.2 (the special case) or c1 = 0.5. The plots are given in Figure 1.4. We notice that we
have a nonzero DFE if a = c1, but we already mentioned that this equality is not likely to
occur.
The birth and death rate in model (1.4) are not convenient, because its only DFE is (s, i) =
(0, 0), except in the unlikely case that a = c1. Since we would like to investigate how a small
group of infected could affect a population with only susceptibles or when the disease has
disappeared before the population has gone extinct, we will further modify the SIR by taking
the birth rate to be constant instead of a constant times the population size. Model (1.4)
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Figure 1.4: These are graphs for model (1.4) were we have plotted s, the dimensionless vector for
the susceptible population, on the y-axis, and t, the vector for the time unit on the x-axis . We have
chosen the constants a = 0.2, (s(0), i(0)) = (0.995, 0.005), c1 = 0.2 (left), and c1 = 0.5 (right). The
solid line represents the susceptibles and the dotted line the infected individuals. We notice that with
our chosen constants (s, i) converges to approximately (0.22, 0) in the left graph, and in the right graph
the vector (s, i) converges to (0, 0).

then becomes
ds
dt = a − R0si − c1s,
di
dt = i(R0s − 1),
dr
dt = i.

(1.5)

We refer to this model with SIRbd, because this is a SIR model with a birth and a death
rate. The term a is redefined as a := α

Nγ . This model has (s, i) = ( a
c1

, 0) as nonzero DFE.

The eigenvalues of its Jacobian matrix −c1 and aR0−c1
c1

, so the DFE is stable if and only if

aR0 < c1 ⇔ R0 <
c1

a
. (1.6)

Hence, we find that the stability of the DFE of model SIRbd depends on the reproductive
ratio. In Chapter 2 we introduce variations of the SIR models.

1.4 Review literature dealing with the effect of HIV on a pop-
ulation’s size

In this section we will review some articles, to get a better impression of what already has
been done in epidemiological modeling on HIV in populations.

Approach with statistics

Much research centers on estimating the rate constants in differential equations (DE)
using elaborate statistics. The investigation is focussed on how these constants could be
approximated and how they could be affected by, for example, riskier behavior of infected
individuals. See also [2, 3, 4, 16, 22, 27, 28].
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dS dI1 dI2 dIr (d + l)A

!
cSΓ
N !k1I1 !k2I2 . . . ! !kr−1Ir−1

Figure 1.5: This is the transmission model belonging to the system of equations in model (1.7) used
by Lin et al. [18]. It consists of the susceptibles (S), the infected who already are said to have AIDS
(A) and the other infected (Ij). The transmission rates are cSΓ

N for transmissions from S to I1, kjIj

for j = 1, . . . , r − 1 for transmissions from Ij−1 to Ij , and krIr denotes the transmissions from Ij to
A. Furthermore, the constants d and d + l are the death rates, and the birth rate for S is a fraction
of the total population size (bN).

Approach with Graph Theory

Graph theory has also been used in the investigation of the effects of HIV on populations.
Kretzschmar et al. [15] and Morris and Kretzschmar [20] have used nodes and vertices to
describe the relationships between (two) human beings. The nodes portray the people who
are sexually active and the vertices the interactions between these individuals. This approach
lends itself particularly well to study situations where the individuals differ in the number of
sexual contacts.

Approach with (applied) Analysis

We develop systems in this thesis, which are based on the SIR model from Section 1.2.
Therefore, we review some articles in which the systems are also based on this model. We
will use the assumptions and the systems in these articles to develop our own models.

Gender: research based on homosexuals or heterosexuals

At first it was thought that only homosexuals could get infected with HIV, since most of the
individuals infected with HIV were found in the homosexual community. Therefore, a lot
more data has been collected on infected homosexuals, than on infected heterosexuals.
Lin et al. made a model for the groups of homosexuals [18]. A population was divided into
r + 2 groups, namely the susceptibles (S), the individuals who have AIDS (A) and r groups
of infected individuals ({Iq}r

q=1). The group of infected was divided in r subgroups, because
it was thought that the transmission rate would change the longer someone was infected.
The sum of all the subgroups of infected is denoted with I, so I =

∑r
q=1 Iq. The population

size was a variable N and an infected person could only reach the stage of having AIDS by
going through every stage of the infected. Their transmission model is given in Figure 1.5.
and the system of equations was

dI1
dt = cSΓ/N − (k1 + d)I1,
dIq

dt = kq−1Iq−1 − (kq + d)Iq, q = 2, 3, . . . , r,
dN
dt = (b − d)N − krIr,

(1.7)

where c is the average number of contacts of an individual per unit time, Γ denotes the force of
infection

∑r
q=1 βqIq where βq is the probability of transmitting the disease during one contact

by an infected from group Iq d is the death rate and b is the birth rate for the susceptibles. It
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is assumed that someone who has become sexually active is a susceptible and that someone
who has AIDS is too weak to be sexually active. Therefore, βq+1A is not included in Γ, and
A is not included in N . As a result S is defined as N −

∑r
q=1 Iq, so if all the Iq for q = 1, . . . , r

are known, S′ can be computed. The susceptibles (S) and the individuals who have AIDS
(A) are left out of the system, because both can be calculated from the infected (Iq). The
definition of A′ is krIr − (d + l)A. The parameter l is the disease related death rate for the
individuals who have AIDS.
For algebraic convenience Lin et. al. decided to set kq = k for all q. In this model the

reproductive ratio R0 was then defined as
∑r

q=1

(

k
b+k

)q−1 cβq

b+k . It was found that if R0 < 1,
then the DFE is the only equilibrium, and it is locally stable. If R0 > 1, then the DFE
is unstable and there exists a unique endemic equilibrium. Endemic equilibrium points are
steady state solutions where the disease persists in the population [25].
This one-sex model (for homosexuals) was extended to a two-sex model (for heterosexuals),
namely

dI1,m

dt = cmSmΓf/Nf − (k1 + d)I1,m,
dIq,m

dt = kq−1Iq−1,m − (kq + d)Iq,m, q = 2, 3, . . . , r,
dNm
dt = (b − d)Nm − krIq,m,

Sm = Nm −
∑r

q=1 Iq,m,
dI1,f

dt = cfSfΓm/Nm − (k1 + d)I1,f ,
dIq,f

dt = kq−1Iq−1,f − (kq + d)Iq,f , q = 2, 3, . . . , r,
dNf

dt = (b − d)Nf − krIq,f ,

Sf = Nf −
∑r

q=1 Iq,f .

(1.8)

The first four equations are for the male population and the last four equations are for the fe-
male population. When it was assumed that cmNm(t) = cfNf (t), it could be proven that (1.8)
is actually the same as (1.7). Therefore, under the assumption cmNm(t) = cfNf (t), there was
no need to make the distinction between a homosexual and a heterosexual, see also [6, 13, 26].

Medicines: ART, cure or vaccine

Another topic of research is how ART can suppress the spread of HIV, for instance see
Blower et al. [5] had a transmission model with one group of susceptibles (X) and four
groups of infected (Y U

R , Y T
R , Y T

S and Y U
S ). The group of infected was denoted by Y , the U

stands for people who do not use ART (Untreated), the T stands for someone who uses ART
(Treated), the R stands for a drug-resistant strain of the virus and S means that the person
is infected with a drug-sensitive strain. See Figure 1.6 for the transmission model 4. The
system of equations was

dX
dt = π − X[c(

βU
S Y U

S +βT
S Y T

S +pU
S β

U
S Y U

R +pT
Sβ

T
S Y T

R +βU
RY U

R +βT
RY T

R
N ) + µ],

dY U
S

dt = Xc
[βU

S Y U
S +βT

S Y T
S +pU

S β
U
S Y U

R +pT
Sβ

T
S Y T

R
N

]

+ Y U
R q + Y T

S gS − Y U
S (σS + vU

S + µ),
dY T

S
dt = Y U

S σS − Y T
S (gS + r + vT

S + µ),
dY U

R
dt = Xc

(βU
RY U

R +βT
RY T

R
N

)

− Y T
R gR − Y U

R (q + eσR + vU
R + µ),

dY T
R

dt = Y U
R eσR + Y T

S r − Y T
R (gR + vT

R + µ).

(1.9)

4This transmission model can also be found in [10].
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Figure 1.6: This transmission model belongs to the equations in model (1.9) from Blower et al. [5]
and it consists of five groups, namely the susceptibles (X) and four groups of infected (Y U

R , Y T
R , Y T

S

and Y U
S ). The superscripts U stands for untreated and T stands for treated. The subscripts R (drug-

resistant) and S (drug-sensitive) are for the type of strain the individual is infected with. The terms µ,
vU

R , vT
R,vU

S and vT
S are the death rates, π is the birth rate, cλR and cλS are the forces of infection, gR

and gS are the rates at which the infected give up using ART, eσR and σS are the effective treatment
rates and 1/q is the average time for an untreated drug-resistant infection to revert to a drug-sensitive
infection.
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Figure 1.7: This is the transmission model of the equations in (1.10) from Lopez [19]. It consists
of the susceptible and infected juveniles (J1 and J2) and the susceptible and infected adults (A1 and
A2). The terms η1 and η2 are the rate at which the juveniles become adults, G(A1, A2) and ξβ2A2 are
the birth rates, α and µ the natural death rates for respectively the adults and the juveniles, γ is the
extra death rate for the infected, mN is the death rate due to overpopulation and vA1A2

A
is the force

of infection.

The focus of this article was on how ART could affect the risk behavior and how the rate of
emergence of resistance would change. This was done with uncertainty analysis, were each
uncertain parameter was assigned to a probability density function. This reflected either the
uncertainty in the value of the parameter, or the degree to which the parameter could vary if
it was being used as an experimental variable. In their analysis they used Latin Hypercube
Sampling, which is a type of Monte Carlo sampling, and model (1.9). The result found was
that the higher the usage of ART, the greater the number of prevented infections, and the
higher the usage of ART, the more the effect of increased risky behavior would be neutralized.
More recently, Lopez [19] investigated whether or not everyone who is infected with the virus
should be treated with medicines which will extend the life expectancy of the infected. The
population was divided into a group of juveniles (J) and a group of adults (A). Both of these
groups were split into a group of infected (J2, A2) and into a group of susceptibles (J1, A1).
It was assumed that juveniles are not sexually active yet and that infected adults can get
newborns who are susceptible or are infected. With these definitions the transmission model
of Figure 1.7 was developed. In this model the constants ηi, i = 1, 2, are the rates at which
juveniles become adults in the respective groups. Furthermore, the natural death rates for the
juveniles is µ, the natural death rate for the adults is α, and the death rate for the infected is
γ. There is an extra constant mN for the death rate due to overpopulation. The total birth
rate of the juveniles depends on the rate at which the susceptible and the infected adults
reproduce, β1A1 + β2A2. It is assumed that the newborns of the susceptible adults are also
susceptible and that (1 − ξ)β2A2 are the susceptible newborns of the infected adults. This
gives G(A1, A2) = β1A1 +(1− ξ)β2A2 as birth rate for the susceptible juveniles and ξβ2A2 as
birth rate for the infected juveniles. Furthermore, it was assumed that the juveniles do not
have sexual interaction, so there is no transmission from J1 to J2 and the transmission from
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Figure 1.8: This is the model for the equations of (1.11), used by Elbasha and Gumel [9]. We have the
groups of the unvaccinated (X) and vaccinated susceptibles (V ), the unvaccinated (Y ) and vaccinated
(W ) infected and the individuals who have AIDS. The birth rates are (1− p)Λ and pΛ, µ is the death
rate for each group, with α as an extra constant for the death rate of the individuals who have AIDS,
λ is the force of infection, γ is the rate of waning immunity, σ is progression rate, 1 − q is the degree
protection, θ is the modification parameter and r is the rate for the risk behavior.

A1 to A2 is given by vA1A2

A1+A2
=: vA1A2

A .
Then the system of equations belonging to the transmission model in Figure 1.7 is

dJ1

dt = β1A1 + (1 − ξ)β2A2 − η1J1 − µJ1 − mJ1N,
dA1

dt = η1J1 − vA1A2

A − αA1 − mA1N,
dJ2

dt = ξβ2A2 − η2J2 − µJ2 − γJ2 − mJ2N,
dA2

dt = η2J2 + vA1A2

A − αA2 − γA2 − mA2N.

(1.10)

If the parameters prove to remain constant over time, it was determined that the HI-virus
would die out naturally in the US. It was also discovered that if a cure would be found, the
number of infected people would increase. Therefore the question was posed whether it would
be wise to treat every infected person or not.
Another way to stop the spread of HIV is by introducing a vaccine. No vaccine has been
invented yet, but there are articles in which the writers investigated the influence of a vaccine
on the spread of HIV. For instance, Elbasha and Gumel [9] and Sharomi et al. [24] assumed
that there would be an imperfect vaccine and investigated what its potential impact would
be. These articles are a lot alike. The same questions are posed and their basic models are
almost equal. This is because some co-authors have worked on both articles. The model
consists of the unvaccinated susceptibles (X) and infected (Y ), the vaccinated susceptibles
(V ) and infected (W ), and the infected who have AIDS (A). The basic model of Elbasha and
Gumel is given in Figure 1.8. The system of equations belonging to the transmission model
is

dX
dt = (1 − p)Λ − µX − λX + γV,
dV
dt = pΛ − µV − qrλV − γV,
dY
dt = λX − (µ + σ)Y,
dW
dt = qrλV − (µ + θσ)W,

dA
dt = σY + θσW − (µ + α)A.

(1.11)

where λ = βY +sβW
N . The model of Sharomi et al. is the same except it did not have the

term r, which stands for the increase of risk behavior. Note that this term is not necessary,
because it only appears in combination with q. Therefore, it is sufficient to change the value
of q. This constant denotes the amount of risky behavior. The terms (1− p)Λ and pΛ are the
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Figure 1.9: This is the transmission model for the i-th group of model (1.12), used by Jacquez et
al. [13]. It consists of the susceptibles (Xi), the infected individuals (Yi) and the people who already
have AIDS. The parameter µ is the death rate for the susceptibles and infected, δ is the death rate for
the people with AIDS, Ui is the birth rate and k is the rate at which someone from group Yi,r goes to
group Yi,r−1.

birth rates for individuals who have become sexually active and are respectively vaccinated
(p) and unvaccinated (1 − p), µ is the death rate, λ is the force of the infection, γ is the
rate in which the vaccine becomes weaker (waning immunity) and β is the transmission
coefficient. The full explanation of the parameters can be found in [24].
Both articles were about so-called backward bifurcation in disease models, in which the
reproduction number R0 is the backward bifurcation parameter. Often it holds that an
equilibrium will be stable if R0 < 1 and unstable when R0 > 1. Backward bifurcation is
the phenomenon that if R0 < 1, a stable DFE co-exists with a stable endemic equilibrium
(bistability). It was found that if q = 0, there would be no bistability. This is the case when
the vaccine is perfect.

Sexual activity

The influence of the sexual activity on the spread of HIV has been investigated by, for
instance, Jacquez et al. [13]. They have investigated what the effect is of a group of people
with high sexual activity on a group which does not have much sexual intercourse. For
this investigation a model with three groups was constructed, namely the susceptibles (Xi),
the infected individuals (Yi) and the individuals who have AIDS (Zi). These groups were
subdivided into n groups, where the people in a subgroup share the same sexual activity.
The transmission model for the i-th group is given in Figure 1.9. Here U1 is the expected
number of new susceptibles, Yi,j, for j = 1, . . . ,m, is the number of individuals who are in
the j-stage of the infection and are part of the i-th group in sexual activity, k is the the
fractional rate from group Yi,r to Yi,r−1, µ is the competing mortality rate, which is the
fractional rate at which members transfer out of the groups for nondisease related reasons,
and δ is the mortality rate for group Zi. In the model it was assumed that these parameters
are constants. The model used was

dXi
dt = −ciXi

∑n
j=1

{

ρi,j
∑m

r=1

(

βi,j,r
Xj,r

Xj+Yj

)

}

− µXi + Ui,
dYi,1

dt = ciXi
∑n

j=1

{

ρi,j
∑m

r=1

(

βi,j,r
Xj,r

Xj+Yj

)

}

− (k + µ)Yi,1,
dYi,r

dt = kYi,r−1 − (k + µ)Yi,r, r = 2, 3, . . . ,m,
dZ
dt = kYi,m − δZi,

(1.12)

where t is the time unit, ci is the number of individuals one person has sexual contact with
in one time unit, βi,j,r is the fraction of contacts between a susceptible person in group i and
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someone from group Yj,r, that transmits the virus and ρi,j is the proportion of the contacts
between individuals of groups i and j. The sum

∑

j ρi,j must be equal to one and it is assumed
that ci(Xi + Yi)ρi,j = cj(Xj + Yj)ρj,i.
The first part of the equation for the rate of change of Xi is given by

−ciXi
∑n

j=1

{

ρi,j
∑m

r=1

(

βi,j,r
Xj,r

Xj+Yj

)

}

, because ciXi is the total number of contacts of Xi

per time unit, ρi,j denotes the fraction of these contacts that are with group j, Xj,r

Xj+Yj
is the

probability that the contact with group j is with a person in the r-th infectious subgroup, and
βi,j , is the fraction of those contacts that results in transmission. The second part −µXi is
the death rate and Ui is the birth rate. In an analogous way the terms of the other equations
can be explained.
With this model two values of µ (µ = 0 and µ > 0) were considered and three types of contact
rates (mixing). This means that the values of ρi,j were varied. The three types of mixing

were restricted mixing (ρi,i = 1), proportional mixing (ρi,j = cj
Xj+Yj

c ) and preferred mixing

(ρi,i = ρi + (1 − ρi)
ci(1−ρi)(Xi+Yi)

P

k ck(1−ρk)(Xk+Yk) and ρi,j = (1 − ρi)
cj(1−ρi)((Xj+Yj)

P

k ck(1−ρk)(Xk+Yk) if i $= j).

After the steady states of the model were determined, the values of the parameters were var-
ied. The focus was on the rate of the sexual activity and the transmission probability. The
conclusion was that the mixing of the high (sexual) activity groups did have much effect on
the spread of the virus in the groups of low activity. It was also found that the higher the
sexual activity, the more likely the system would reach its endemic equilibrium. This would
also happen if the transmission probability would increase. For further research more and
better data would be needed about for example sexual preference (bisexuality) and needle
sharing. It was assumed that with accurate data better education or medicine could be given
to the groups which would affect the spread of the virus negatively. Lin had used the same
model in [17] except the term µi was replaced by µiU .
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Chapter 2

Influence of bisexuals on population
dynamics with HIV

In the models of the articles in Chapter 1 we noticed that the heterosexuals and the homo-
sexuals were considered (not necessarily at the same time), but the group of bisexuals was
not or barely mentioned. It is unlikely that a heterosexual transmits HIV to a homosexual,
and vice versa, because we can assume that there is no sexual interaction between these two
groups. Therefore, we would like to investigate the influence of the group of bisexuals on the
heterosexuals and homosexuals in the spread of HIV. Can the total population be split into
heterosexuals and homosexuals and thus can the group of bisexuals be ignored?
To investigate this influence, we develop two extensions of the SIR model in Section 1.2, which
we will compare to each other. In our first extension we divide the groups of susceptibles and
infected into a group of heterosexuals and a group of homosexuals. In the second extension
we include the bisexual population. Like we already mentioned in our introduction, we will
assume that in all models in this thesis, the only way to transmit HIV from one person to
another is through sexual intercourse. A group of susceptibles will be referred to as Sj and
a group of infected individuals will be denoted by Ij. A person of S1 or I1 is heterosexual,
a person of S2 or I2 is bisexual and someone from S3 or I3 is homosexual. We assume that
someone can only leave the group of infected by dying or by getting too ill to have sexual
intercourse. In these cases they transmit to group R, the ”resistant” group. Unless specified
we assume in this chapter that there is no cure or vaccine for HIV.
Contrary to Lin et al. [18] and Lopez [19] we will not consider the female, juvenile or adult
population; we assume that the transmission of HIV does not depend on the sex or the age
of the persons. We also do not make any the distinction in the different kinds of mixing and
we do not have as many groups as Jacquez et al. [13].

2.1 Model with heterosexuals and homosexuals

In this section we have the groups S1, S3, I1 and I3. We mentioned that it is unlikely to
have sexual interaction between the heterosexuals and the homosexuals. We distinguish the
group of infected by the sexual preferences of the individuals, so it does not matter by whom
someone gets infected. A susceptible heterosexual who is infected by a homosexual is an
infected heterosexual, which means that this person has become a member of group I1.
We define bj,k/N as βj,k, where bj,k is the number of susceptibles of group Sj that each infected

17
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Figure 2.1: This is the transmission model belonging to the system of equations in (2.1). It consists of
the susceptible and infected heterosexuals (S1 and I1), and the susceptible and infected homosexuals
(S3 and I3). The term c is the rate at which infected people die or become sexually inactive. We
will refer to it as the death rate of the infected. The rate at which someone from Sj gets infected by
someone from Ij is denoted with βj,j for j = 1, 3.

person from Ik transmits the virus to in a certain time interval, and N is the population size.
Thus βj,k is the rate at which a susceptible from Sj gets infected by someone from Ik. In this
section we only have β1,1 and β3,3, because we assume that there is no interaction between the
heterosexuals and homosexuals. With this information the transmission model of Figure 2.1
is obtained. An arrow between two groups means that someone from one group can become
a member of the other group. All rates are nonnegative constants. With these assumptions,
the extension of model (1.1) is

dS1

dT = −β1,1S1I1,
dS3

dT = −β3,3S3I3,
dI1
dT = β1,1S1I1 − cI1,
dI3
dT = β3,3S3I3 − cI3,
dR
dt = c(I1 + I3).

(2.1)

In this chapter we can ignore the equation for dR
dt , because R has no influence on the other

classes and their differential equations. This follows from the assumption that there exists no
cure for HIV and AIDS. Note that we have assumed that all infected individuals are infectious
and that the latent period is of limited significance, and therefore neglected.
The term c is the rate at which an infected has become sexually inactive. We will refer to it
as the ”death rate”. The steady states of (2.1) are (S1, S3, I1, I3) = (x, y, 0, 0), with x, y ≥ 0
and its Jacobian matrix is

J(x,y,0,0) :=











0 0 −β1,1x 0

0 0 0 −β3,3y

0 0 β1,1x − 1 0

0 0 0 β3,3x − 1











.

It is clear that an equilibrium (x, y, 0, 0), x, y ≥ 0, is neutrally stable or unstable, because
J(x,y,0,0) always has two eigenvalues equal to zero. If we assume that every transmission rate



CHAPTER 2. INFLUENCE OF THE BISEXUALS 19

!α1

#γ
!β1,1 !c

!
α3

#γ
!β3,3 !c

S1

S3

I1

I3

Figure 2.2: This is the transmission model belonging to the equations in (2.2). It consists of the
susceptible and infected heterosexuals (S1 and I1) and the susceptible and infected homosexuals (S3

and I3). The birth rates are α1 for the heterosexuals and α3 for the homosexuals, the death rates are
γ for the susceptibles and c for the infected, and β1,1 and β3,3 are the transmission rates.

has the same value, then with the substitutions S := S1 + S3 and I := I1 + I3 model (2.1) is
equal to model (1.1).
We add a birth and a death rate to make this model somewhat more realistic. The rates
depend on the size of the population. Therefore, we choose these rates equal to a constant
times the size of the population. Our new transmission model can be found in Figure 2.2,
and the system of equations belonging to this model is

dS1

dT = α1(S1 + S3 + I1 + I3) − γS1 − β1,1S1I1,
dS3

dT = α3(S1 + S3 + I1 + I3) − γS3 − β3,3S3I3,
dI1
dT = β1,1S1I1 − cI1,
dI3
dT = β3,3S3I3 − cI3.

(2.2)

Note that this is twice the SIR model. The terms α1 and α3 are the birth rates for respectively
S1 and S3, and represent the new individuals who have become sexually active. We assume
that everyone who has become sexually active is susceptible for HIV. The term γ is the death
rate of the susceptibles and we assume that this rate is smaller than the rate at which the
infected die or have become sexually inactive. This is because someone who is infected with
HIV is more vulnerable to other diseases than someone who is not HIV-infected. This system
only has the zero vector as DFE. We would like to know what the influence of the infected
is on the population size of the susceptibles. It is not interesting to have the zero vector as
the only disease free steady state, because if a population has gone extinct, then no other
equilibrium can be obtained.
We try to find an extension with birth rates such that we do have a nonzero DFE. In mathe-
matical biology it is common to choose the birth rates as constants, while the death rates are
defined as the rate at which someone dies multiplied with the population size, see for instance
[7]. Therefore, we assume that the birth rates are constants and that the death rates are a
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constant times the population size. The system of equations then becomes

dS1

dT = α1 − β1,1S1I1 − γS1,
dS3

dT = α3 − β3,3S3I3 − γS3,
dI1
dT = β1,1S1I1 − cI1,
dI3
dT = β3,3S3I3 − cI3.

(2.3)

Model (2.3) is made dimensionless by substituting sk := Sk
N , ik := Ik

N , for k = 1, 3, t := 1
cT ,

aj := αj

cN , for j = 1, 3, pj,j := βj,jN
c for j = 1, 3, and c1 := γ

c . Then we find

ds1

dt = a1 − p1,1s1i1 − c1s1,
ds3

dt = a3 − p3,3s3i3 − c1s3,
di1
dt = p1,1s1i1 − i1,
di3
dt = p3,3s3i3 − i3.

(2.4)

We will denote this model by HHbd, because it consists of the heterosexuals (H) and the
homosexuals (H) and we have included a birth (b) and death (d) rate. Our DFE is (s, i) =
(a1

c1
, a3

c1
, 0, 0). The Jacobian matrix in the DFE is

J =













−c1 0 −p1,1a1

c1
0

0 −c1 0 −p3,3a3

c1

0 0 p1,1a1

c1
− 1 0

0 0 0 p3,3a3

c1
− 1













,

and its eigenvalues are twice −c1,
a1p1,1−c1

c1
, and a3p3,3−c1

c1
. Without loss of generality we

assume that a3p3,3 < a1p1,1. We then have a stable DFE if and only if

a1p1,1 < c1.

This inequality is, in our original model (2.3), the same as

α1b1,1

cN
< γ. (2.5)

If we assume that the birth rate is approximately the same as the death rate, so α ≈ γN ,
and we also assume that the death rate of the infected is greater than the death rate of the
susceptibles, so γ < c, then α1 < α ≈ γN < cN . As a result, inequality (2.5) holds if and
only b1,1 < γ. This is realistic, because the number of people an infected individual transmits
HIV to is very small compared to the death rate of the infected. We conclude that we have
a stable and nonzero DFE.

2.2 Model with heterosexuals, homosexuals and bisexuals

In this section we will adapt model (2.3), because we also would like to consider the group of
bisexuals. We do not adapt the other models from Section 2.1, because we are still interested
in finding a model which has a nonzero DFE. In Section 2.2.1 we consider the homosexuals
and the bisexuals as one group, while in Section 2.2.2 we will separate these two groups.
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Figure 2.3: This is the transmission model belonging to the equations in (2.6). It consists of the
susceptible and infected heterosexuals (S1 and I1) and the susceptible and infected homosexuals and
bisexuals (S3 and I3). The birth rates are α1 for the heterosexuals and α3 for the homosexuals, the
death rates are γ for the susceptibles and c for the infected, and β1,1, β1,3 and β3,3 are the transmission
rates.

2.2.1 Model with a hidden group of bisexuals

We still have the same definitions as in Section 2.1. Now we consider S3 and I3 to consist of
both homosexuals and bisexuals. In this case it is possible to have interaction between the four
groups. So in a sense, the group of bisexuals is ”hidden” among the group of homosexuals.
For simplicity, we assume that the transmission rate constants are symmetric, so βj,k = βk,j

for j, k = 1, 3. With this information we obtain the transmission model of Figure 2.3. A line
between two groups means that there is interaction between these two groups, and an arrow
still means that someone from one group can become a member of the other group. To make
the figure more legible, β1,3 is not included in the transmission model.
The system of equations then becomes

dS1

dT = α1 − β1,1S1I1 − β1,3S1I3 − γS1,
dS3

dT = α3 − β3,3S3I3 − β1,3S3I1 − γS3,
dI1
dT = β1,1S1I1 + β1,3S1I3 − cI1,
dI3
dT = β3,3S3I3 + β1,3S3I1 − cI3.

(2.6)

This model is made dimensionless by substituting sk := Sk
N , ik := Ik

N , for k = 1, 3, t := 1
cT ,

aj := αj

cN , for j = 1, 3, pj,k :=
βj,kN

c for j, k = 1, 3, and c1 := γ
c . Then we find

ds1

dt = a1 − p1,1s1i1 − p1,3s1i3 − c1s1,
ds3

dt = a3 − p1,3s3i1 − p3,3s3i3 − c1s3,
di1
dt = p1,1s1i1 + p1,3s1i3 − i1,
di3
dt = p1,3s3i1 + p3,3s3i3 − i3.

(2.7)

We refer to this model with HHB,bd, because it consists of the hetero- and homosexuals with
a birth and a death rate, and the bisexuals are hidden in the group of homosexuals. This
system has (s1, s3, i1, i3) = (a1

c1
, a3

c1
, 0, 0) as DFE. Note that the zero vector is not a steady

state. The only differences in the equations of model HHB,bd and HHbd are the terms p1,3s1i3
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and p1,3s3i1, so apparently these terms have no effect on what the DFE of the model is. The
eigenvalues of the Jacobian matrix at the DFE are twice −c1 and

1
2 (a1p1,1 + a3p3,3) − c1 ± 1

2

√

a2
1p

2
1,1 − 2a1a3p1,1p3,3 + a2

3p
2
3,3 + 4a1a3p2

1,3

c1
,

so the DFE is stable if and only if

a1p1,1 + a3p3,3 +
√

(a1p1,1 − a3p3,3)2 + 4a1a3p2
1,3 < 2c1. (2.8)

We have a stable and nonzero DFE if c1 is greater than a combination of the scaled birth rates
multiplied with the scaled transmission rates. We can not really determine what the relation
between the magnitude of the constants in (2.8) is, but we notice that the left hand side only
consists of the terms ajpm,n for j,m, n = 1, 3. In Section 2.1 we rewrote inequality (2.5) and
we concluded that a1p1,1 is smaller than c1, under the assumption that the total birth rate is
almost equal to the death rate. Inequality (2.8) is not very different from inequality (2.5), so
the DFE of model HHB,bd is probably also stable.
We could not find out whether there are other equilibria, but by simplifying we can make
some progress. We assume that every transmission rate is the same for sexual interaction
between each group, say p := βN

c . With this assumption we find that there is only one other
steady state, namely

(s1, s3, i1, i3) =
( a1

p(a1 + a3)
,

a3

p(a1 + a3)
,
(a2

1 + a1a3)p − a1c1

p(a1 + a3)
,
(a2

3 + a1a3)p − a3c1

p(a1 + a3)

)

.

We can reduce HHB,bd to model SIRbd by substituting s := s1 + s3, i := i1 + i3, R0 := p,
and a := a1 + a3. It is clear that inequality (1.6) still holds, with R0 = p, so we have

0 ≤
p

c1
<

1

a
=: A1. (2.9)

With its original parameters this is equal to

0 ≤
bα

cN
< γ.

This is almost the same as inequality (2.5) in Section 2.1, except we now have bα instead
of b1,1α1. The rate α1 is smaller than α, because α is the total birth rate, while α1 is only
the birth rate of the susceptible population. We do not know what the difference between b
and b1,1 is, but since they both are probably very small, we assume that they have the same
value. In Section 2.1 we concluded that the DFE is probably stable, under the assumption
that α ≈ γN . If we again assume this, then the DFE of model HHB,bd is probably also
stable, because it is still likely that b < γ.
If the DFE is not stable, then (s, i) converges to the other equilibrium of model HHB,bd,
(

a1

p(a1+a3) ,
a3

p(a1+a3) ,
(a2

1
+a1a3)p−a1c1
p(a1+a3) ,

(a2
3
+a1a3)p−a3c1
p(a1+a3)

)

. In model SIRbd this is equilibrium

(s, i) = (1
p , ap−c1

p ). Note that this equilibrium is only positive if and only if ap > c1, which
holds if the DFE is unstable. The population size in the steady states is found by multiplying
(s, i) with N .
In short, we find that if each group has the same transmission rate and if this is less than
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the death rate of the susceptible population, then the infected population will go extinct.

Estimating the parameters of the model with known data

We assume that every transmission rate is the same, because we do not know how to
approximate them individually. We will explain how we estimate the rates of model SIRbd,
with R0 = p. We use the data of the Dutch population in 2007-2008 found at the site of
Statistics Netherlands or in Dutch Centraal Bureau voor de Statistiek (CBS)1. The constants
of the equations will be approximated by looking at how the individuals are distributed by
age. The sizes are given in the following table

population size (distinguished by age) 2007 2008
< 20 4.0 · 106 3.9 · 106

20 − 40 4.3 · 106 4.3 · 106

40 − 65 5.7 · 106 5.8 · 106

65 − 80 1.8 · 106 1.8 · 106

> 80 0.6 · 106 0.6 · 106

We assume that individuals who are older than 65, or younger than 16 are not sexually active.
Because no further distinction is made in the group of people younger than twenty years old,
the number of individuals between sixteen and twenty is estimated. Let us assume that the
individuals between zero and twenty years old are uniformly distributed over the years. This
assumption is based on the age-pyramid from the CBS. The ages are divided in ten groups,
namely 0-10, 10-20, . . . , 80-90 and 90-100.
Furthermore, according to the CBS in the next fifty years the number of individuals between
zero and twenty years old, will approximately remain the same. This means that we assume
that 1/5 · 3.9 · 106 = 0.8 · 106 is the number of individuals between 16 and 20 in 2007. In an
analoguous way 0.8 · 106 is estimated as the number of individuals between the 16 and 20 in
2008. Our population size, the size of individuals who are sexually active, was 1.1 · 107, so
N = 11000000. We still need to compute the birth and death rates. We define the birth rate
as the number of fifteen year-olds in 2007, which is 2.0 · 105, so α = 20000. This number is
obtained by looking at the age-pyramid of the CBS and the assumption that the individuals
between zero and twenty years old are uniformly distributed over the years. Since we assumed
that only individuals between 16 and 65 are sexually active, we also need to find the number
of deaths in this category. At the website of the CBS we also found an age-pyramid for the
deaths. We find that 24148 persons between the 16 and 65 died in 2007, and this amount was
24672 in 2008. We estimated that yearly 124000 persons turn 66, so the number of deaths
is approximately 145000. Data about HIV is found at the website of SOA AIDS2. We found
that at the end of 2007 about 14000 persons were infected with HIV and in 2008 this was
about 14500. Furthermore, it is estimated that in 2009 each week two people died because
of HIV/AIDS. This is about a hundred people per year. We assume that this is also an
approximation for 2008.
Together this gives us the constants γ = 0.013 ( ≈ 145000

11000000 ), c = 0.007 ( ≈ 100
14000 ), thus

c1 = γ
c = 1.86, and a = 0.3 ( ≈ α

Nc).
We have performed numerical simulations with the initial conditions (s(0), i(0)) = ( a

c1
− ε, ε),

1The name of the site is www.cbs.nl
2Their website is www.soaaids.nl
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Figure 2.4: We have plotted the vector s in the steady states of model SIRbd, with R0 = p, and
the birth and death rates are a = 0.3, c1 = 1.86. On the y-axis we have put s and on the x-axis we
have p. If the value of p varies, then the value of s in the equilibria also changes. We have chosen
(s(0), i(0)) = ( a

c1
− ε, ε), with ε = 10−3, as initial conditions. We notice that if p is between 0 and 6.1

we have our DFE and if p > 6.1, the size of s converges to the nontrivial steady state.

with ε = 10−3. The number of susceptible individuals in the DFE can be computed via the
value of s in the DFE. This was s = a

c1
, so S is equal to a

c1
· N . In Figure 2.4 we see that

this is indeed true for p < 6.1. Furthermore, the DFE is unstable if p becomes greater than
6.1. When p > 6.1, s converges to (1

p , ap−c1
p ). This is exactly the function of s in Figure 2.4 if

p ∈ (6.1, 10). Note that this nontrivial is positive, if c1 < ap, which is exactly when the DFE
becomes unstable.
The transmission rate is small compared with the birth and death rates. A value of p = 6.1 is
very unlikely, because it means that an infected will transmit the virus to 6.1 times the death
rate of the infected people each time this individual has sexual intercourse with a susceptible.
According to our model the Dutch population will become disease free, if the birth and death
rates remain constant over time. Then eventually no one will be infected with the HI-virus
anymore.

2.2.2 Model with three separate groups

We now extend model HHbd of Section 2.1 with the group of bisexuals. The system of
equations is given below and its transmission model can be found in Figure 2.5.

dS1

dT = α1 − β1,1S1I1 − β1,2S1I2 − β1,3S1I3 − γS1,
dS2

dT = α2 − β2,2S2I2 − β1,2S2I1 − β2,3S2I3 − γS2,
dS3

dT = α3 − β3,3S3I3 − β2,3S3I2 − β1,3S3I1 − γS3,
dI1
dT = β1,1S1I1 + β1,2S1I2 + β1,3S1I3 − cI1,
dI2
dT = β2,2S2I2 + β1,2S2I1 + β2,3S2I3 − cI2,
dI3
dT = β3,3S3I3 + β2,3S3I2 + β1,3S3I1 − cI3.

(2.10)

If we assume that β1,2 = β1,3, and β2,2 = β2,3 = β3,3, then with the substitutions S3 := S2+S3,
I3 := I2 + I3, and α3 := α2 + α3 model (2.10) is equal to models HHB,bd, before it was
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Figure 2.5: This is the transmission model for model (2.10). There are six groups in this model,
namely the heterosexual (S1), homosexual (S3) and bisexual (S2) susceptibles, and the infected het-
erosexuals (I1), homosexuals (I3) and bisexuals (I2). The birth rates are α1 for S1, α2 for S2, and
α3 for S3. The death rates are γ for the susceptibles and c for infected individuals. The transmission
rates are β1,1, β2,2, and β3,3. The transmission rates β1,2 and β2,3 are not given to make the model
more legible, and we assume that β1,3 is zero.

nondimensionalised, and SIRbd. To avoid this equality, we still assume that there is no direct
interaction between heterosexuals and homosexuals. So we assume that the transmission of
HIV from the heterosexuals to the homosexuals goes through the bisexuals.
From now on we also assume that every transmission rate is the same, say β. Every interaction
between the heterosexuals and the homosexuals goes through the bisexual group. Again we
substitute sj := Sj

N , ij := Ij

N , aj := αj

cN , for j = 1, 2, 3, p := βN
c , and c1 := γ

c to make the
model dimensionless. Then (2.10) becomes

ds1

dt = a1 − ps1i1 − ps1i2 − c1s1,
ds2

dt = a2 − ps2i2 − ps2i1 − ps2i3 − c1s2,
ds3

dt = a3 − ps3i3 − ps3i2 − c1s3,
di1
dt = ps1i1 + ps1i2 − i1,
di2
dt = ps2i2 + ps2i1 + ps2i3 − i2,
di3
dt = ps3i3 + ps3i2 − i3.

(2.11)

We refer to model (2.11) with HBHbd, which stands for the heterosexual (H), bisexual (B),
and homosexual (H) population with a birth (b) and death (d) rate.

Mathematical analysis of our model

The DFE of model HHB,bd is (s1, s2, s3, i1, i2, i3) = (a1

c1
, a2

c1
, a3

c1
, 0, 0, 0). The Jacobian in

this point, say JDFE, has three eigenvalues equal to −c1. The other three eigenvalues
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might be determined, but that is not necessary. Rather than investigating the eigenvalues
themselves, we use a well-known criterion with which we can ensure that the DFE is stable,
the Routh-Hurwitz Conditions [21]. An elementary proof of this condition is among others
given by P.C. Parks [23].

Theorem 2.2.1 (Routh-Hurwitz Conditions) If A is a square matrix of n×n, I is the n×n
identity matrix, the λi’s for i = 1, . . . , n are its eigenvalues, and

det (λI − A) = |λI − A| = λn + a1λ
n−1 + . . . + an−1λ+ an = 0.

Then all eigenvalues of A have negative real parts if an is greater than zero and if
D1 > 0, D2 > 0, . . . ,Dn > 0, where Dk, k = 1, . . . , n is defined as

Dk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a3 a5 . . .
1 a2 a4 . . .
0 a1 a3 . . .
0 1 a2 . . .
...

...
. . .

0 0 . . . ak

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

!

It is not necessary to apply the Routh-Hurwitz Conditions on JDFE itself, because three
eigenvalues are already known. We define D := |JDFE −λI| as the characteristic polynomial.
D is divided by (λ + c1)3, because it is already known that −c1 is three times an eigenvalue
of JDFE.
Then the polynomial becomes D

(λ+c1)3 = P (λ) = λ3 + C1λ2 + C2λ+ C3 with

C1 = 3 − (a1+a2+a3)p
c1

;

C2 = 3 + a1a3p2

c2
1

− 2(a1+a2+a3)p
c1

;

C3 = 1 + a1a2a3p3

c3
1

+ a1a3p2

c2
1

− (a1+a2+a3)p
c1

.

(2.12)

According to Theorem 2.2.1 we find that the following conditions should hold in order to have
negative eigenvalues.

D1 := C1 > 0,
D2 := C1C2 − C3 > 0, and
D3 := C3D2 − a1 · 0 = C3D2 > 0.

(2.13)

It is sufficient to find when C3 > 0, because from D1 > 0, D2 > 0, and C3 > 0 it follows that
D3 > 0.
To make calculations easier, we assume that 5% of the people who have become sexually
active is homosexual and 1% is bisexual. Let us say that a = 0.3 (like in the application of
model HHB,bd) is the total ”birth” rate, so a1 = 0.28, a2 = 0.005 and a3 = 0.015. We define
A2 as the upper bound for x = p

c1
for when the DFE of model HBHbd is stable. Then we

find
0 ≤

p

c1
< 3.5 =: A2. (2.14)

The upper bound A1 in (2.9) was defined as 1
a , so A1 ≈ 3.3. The difference between these

upper bounds A1 and A2 with a1 = 0.28, a2 = 0.005, and a3 = 0.015, is A2 − A1 ≈ 0.2, so
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A2 is about 1.06 times A1. In Section 2.2.1 we concluded that, under certain conditions, it
is likely that the DFE of model HHB,bd is stable. The value of upper bound A2 in (2.14) is
greater than A1, so the DFE of model HBHbd is probably also stable, if a1 = 0.28, a2 = 0.005,
and a3 = 0.015.
We assume that the total (scaled) birth rate is always 0.3, so A1 is 3.3. For instance, let
us assume that about 70% of the population is heterosexual, 5% is bisexual, and 25% is
homosexual. This is an extreme example, because the percentage of homosexuals is probably
not really this large. In this particular case a1 = 0.21, a2 = 0.015, and a3 = 0.075, and we
then find that A2 is 4.4. This is about 1.3 times A1 in (2.9), so the DFE of model HBHbd is
probably also stable if a1 = 0.28, a2 = 0.005, and a3 = 0.015, and if the other rates do not
change. What does a factor 1.06 or 1.3 mean for p

c1
?

The term p was defined as βN
c , β was equal to b

N , and c was γ
c . Thus p

c1
is equal to b

γ , with b
the number of individuals that each infected person transmits the virus to, and γ the death
rate of the infected. We already mentioned that the value of b is (very) small compared with
the birth and death rates, so a factor 1.06 or 1.3 does not have much effect on the stability
of the DFE.
We use the same data as before for estimating the parameters of model HHB,bd. There are
no specific data about how many homosexuals are living in the Netherlands. In 2005 there
were 5.3 · 104 cases of registered partnership/weddings between homosexuals3. This is about
1% of the total population, but not every person who is homosexual is registered. We assume
that 5% of the population is homosexual, 1% is bisexual and 94% is heterosexual. This means
that we assume that the susceptible population consists of 10.34 million heterosexuals, 0.11
million bisexuals, and 0.55 million homosexuals, so divided by 11 gives s1 = 0.945, s2 = 0.005
and s3 = 0.05.
In 2008 1.7 · 103 individuals got infected with the HI-virus. This made the total number of
infected individuals 1.5 · 104. According to data from 20064, 59% of the new cases of HIV
infection were transmitted through sexual intercourse between homosexuals and bisexuals.
Furthermore, 33% of the new cases were through heterosexual intercourse. The rest of the
new cases did not know how they got the infection. Let us assume that 6% of the new cases
were transmitted by the bisexuals and 53% through homosexual intercourse.
We consider the 92% (33% + 6% + 53%) as the total amount of new cases. So we assume that
36% of the new cases were caused by heterosexual intercourse, 7% by bisexual intercourse and
57% by homosexual intercourse. With this assumption the number of infected heterosexuals is
4.7 · 103, the number of infected bisexuals is 0.9 · 102 and the number of infected homosexuals
is 8.5 · 103. These numbers are also divided by N . Then the initial vector for the Dutch
population in 2008 is (s1, s2, s3, i1, i2, i3) = (0.94, 0.01, 0.05, 4.3 · 10−4, 8.4 · 10−5, 7.8 · 10−4).
The death rates are the same as in the example for two groups in Section 2.1 and the birth
rates are as we have assumed before. So the constants for model HHB,bd are a1 = 0.28,
a2 = 0.005, a3 = 0.015, γ = 0.013, c = 0.007 and c1 = 1.86. The DFE is stable if and only if
(2.14) holds. This means that p should be less than 1, which is shown in Figure 2.6.

Other equilibria

In model HHB,bd we found that the sum of the susceptibles in the nontrivial steady state was
1
p . If p > 6.5, then s := s1 + s2 + s3 has a similar shape as 1

p , but it is not exactly the same.

3www.coc.nl
4Data was found at www.rivm.nl
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Figure 2.6: We have plotted the dimensionless vector for the susceptible population at the steady
state of model HHB,bd against the scaled transmission rate, with a1 = 0.28, a2 = 0.005, a3 = 0.015,
γ = 0.013, c = 0.007 and c1 = 1.86. The initial vector is (s1(0), s2(0), s3(0), i1(0), i2(0), i3(0)) =
(0.94, 0.01, 0.05, 4.3 · 10−4, 8.4 · 10−5, 7.8 · 10−4). If p > 6.5, then the DFE is unstable.

Therefore, we think that s := s1 + s2 + s3 is a function of the form m(a1,a2,a3,p,c1)
p , with m a

constant depending on a1, a2, a3, p, and c1, because the graph looks like Figure 2.4. We try
to compute the nontrivial equilibrium ourselves, because Maple was apparently not able to
do this. We assume that

s := s1 + s2 + s3 =
f(a1, a2, a3, p, c1)

g(a1, a2, a3, p, c1)p
,

and

i := i1 + i2 + i3 =
F (a1, a2, a3, p, c1)

G(a1, a2, a3, p, c1)p
,

with f, g, F,G nonzero continuous functions, because the shape of s in the nontrivial steady

state looks like 1
p times a constant. Then our sj’s are of the form kjf(a1,a2,a3,p,c1)

g(a1,a2,a3,p,c1)p
and our

ij ’s are of the form ljF (a1,a2,a3,p,c1)
G(a1,a2,a3,p,c1)p

, with kj , lj ∈ [0, 1], for j = 1, 2, 3, k1 + k2 + k3 = 1, and
l1 + l2 + l3 = 1. The constants kj and lj can still depend on a1, a2, a3, c1, and p. Eventually
we find that the equilibrium is of the form

( l1
p(l1 + l2)

,
l2
p

,
l3

p(l2 + l3)
,
a1p(l1 + l2) − c1l1

p(l1 + l2)
,
a2p − c1l2

p
,
a3p(l2 + l3) − c1l3

p(l2 + l3)

)

.

If we substitute these values in Maple, we find

l1 =
a1aap2

c1(c1 − a1p)
; l2 =

a2p

c1
and l3 =

a2a3p2

c1(c1 − a3p)
.

Strangely enough, these values give the DFE instead of the nontrivial equilibrium. So appar-
ently the sum of the susceptible population size in the nontrivial steady state is not of the
form 1

pm(a1, a2, a3, p, c1).
We were able to give a substitution for model HHB,bd such that it was reduced to model
SIRbd. We assumed that there is no interaction between the heterosexuals and homosexuals



CHAPTER 2. INFLUENCE OF THE BISEXUALS 29

such that it would not be possible to reduce our model to a less complicated model. If we
substitute s := s1 + s2 + s3, i := i1 + i2 + i3, and a := a1 + a2 + a3 in model HHB,bd, we find

ds
dt = a − p(si − s1i3 − s3i1) − c1s,
di
dt = p(si − s1i3 − s3i1) − i.

Note that the single group terms s1,, s3, i1, and i3 still feature in the equations. We are not
able to find a substitution such that we only have the s and i left, so we can not simplify
model HHB,bd.
As a result, the sum of the population in the nontrivial steady state is probably a term similar
to, but not equal to 1

p times a function m(a1, a2, a3, c1, p).

2.3 Introducing behavioural difference for bisexuals

The main question in this thesis was whether or not the influence of the group of bisexuals
could be ignored. Therefore, we make a distinction between the transmission rates of the
heterosexuals, homosexuals and the bisexuals. We assume that the rate between a bisexual
and a heterosexual or homosexual is d times β. This d is a constant greater than zero. If it
is less than one, this means that the bisexuals have more often safe sex compared with the
other two groups. If d is greater than one, it means the opposite. The dimensionless system
of equations is

ds1

dt = a1 − ps1i1 − pds1i2 − c1s1,
ds2

dt = a2 − pds2i1 − pd2s2i2 − pds2i3 − c1s2,
ds3

dt = a3 − pds3i2 − ps3i3 − c1s3,
di1
dt = ps1i1 + pds1i2 − i1,
di2
dt = pds2i1 + pd2s2i2 + pds2i3 − i2,
di3
dt = pds3i2 + ps3i3 − i3.

(2.15)

Its transmission model is given in Figure 2.7. We will refer to model (2.15) with HBdHbd,
where the the capital letters still refer to the hetero-, bi, and homosexuals, the underscore
bd denotes the birth and death rate, and the underscore d refers to the extra term d for
the transmissions where a bisexual is involved. This model only has one steady state which
is (s1, s2, s3, i1, i2, i3) = (a1

c1
, a2

c1
, a3

c1
, 0, 0, 0). The Jacobian of this DFE has three times the

eigenvalue −c1. We will apply the Routh-Hurwitz Condition again to determine whether we
have a stable or unstable equilibrium. The constants of the characteristic polynomial after
dividing by (λ + c1)3 and substituting x := p

c1
are

C1 := 3 − (a1 + a2d2 + a3)x;
C2 := 3 + a1a3x2 − 2(a1 + a2d2 + a3)x;
C3 := 1 + a1a2a3d2x3 + a1a3x2 − (a1 + a2d2 + a3)x.

Again we find that the stability of the DFE depends on an inequality of the form p
c1

< A3,
with A3 ∈ R. We define A3 as the upper bound for p

c1
in model HBdHbd. If d = 1 or if

a2 = 0, then we have A3 = A2, which was the upper bound for p
c1

in model HHB,bd.
We vary the value of d, so we can compare A1, A2 and A3. For instance, in the case of the
Dutch population in 2008, we again have a1 = 0.28, a2 = 0.005 and a3 = 0.015. Then A3
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Figure 2.7: This is the transmission model of HBdHbd. In HBdHbd the parameters were already
nondimensionalised, so the names differ from the last transmission model in Figure 2.5. We have six
groups, namely the heterosexual (s1), bisexual (s2) and homosexual (s3) susceptibles, and the infected
heterosexuals (i1), bisexuals (i2) and homosexuals (i3). The scaled birth rates are a1, a2, and a3 for
respectively the heterosexuals, the bisexuals, and the homosexuals. The death rates are γ for the
susceptibles and c for infected individuals. After nondimensionalising we find c1 and 1. The scaled
transmission rates are p for the sexual interactions between individuals who are not bisexual, pd for
interactions in which one of the two is bisexual and pd2 for sexual intercourse between two bisexuals.
We still assume that there is no interaction between heterosexuals and homosexuals.
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Figure 2.8: These are the three graphs of the models HHbd (line of circles), HHB,bd(solid line),
and HBdHbd (dashed line), with the vector s on the y-axis and p on the x-axis. If s is multiplied
with N , then we find the values of the susceptible population at steady state. The constants were
a1 = 0.28, a2 = 0.005, a3 = 0.015, γ = 0.013, c = 0.007 and c1 = 1.86. The initial conditions were
(s1(0), s2(0), s3(0), i1(0), i2(0), i3(0)) = (0.94, 0.01, 0.05, 4.3 ·10−4, 8.4 ·10−5, 7.8 ·10−4). We have chosen
for d = 5 in model HBdHbd. For p between zero and a certain constant, each model has a stable DFE.
If p becomes greater than this constant, the DFE is unstable and the population sizes converge to
another equilibrium. In model (2.7), it converges to 1

p . In the other two models it looks like they also

converge to some constant times 1
p
, but we were not able to determine these constants.

is approximately 3.5 when d = 0.9 or 1.1, which is equal to A2, under the same conditions.
If d is about 2, then A1 = A3, and if d = 5, then A3 is about 2.5. In the latter case we
have A1 is approximately 1.3 times A3. Our another example of Section 2.2.2 was a1 = 0.21,
a2 = 0.015 and a3 = 0.075. In this case d = 2.4 gives A1 ≈ A3. We already mentioned in
Section 2.2.2 that a factor 1.06 or 1.3 does not have much effect on p

c1
, so we conclude that the

DFE of model HBdHbd is probably also stable. The p, s-graph of model HBdHbd looks like
the p, s-graphs of HHB,bd and HHB,bd, so we have plotted these graphs together in Figure
2.8.

2.4 Differences and similarities between the models

We compare models HHB,bd, HBHbd, and HBdHbd with each other. This is done by looking
at what the DFE is of each model and whether this DFE is stable or not.

The DFE

The SIR models in Sections 1.2 and 1.3 have the zero vector as DFE. To avoid this, we have
chosen the birth rates to be constant. We then found that each model has the scaled birth
rates divided by c1 as total ”population size” in the DFE. Since HHbd, HHB,bd, HBHbd,
and HBdHbd refer to dimensionless models, we do not find the population size in the DFE.
We can compute the actual population size of the susceptibles in the DFE by multiplying
by N , the total population size. Note that this value changes, because we have a birth and
death which are not equal.
Lin et al. [18] had found that, with some assumptions, the extension of their model (1.8)



CHAPTER 2. INFLUENCE OF THE BISEXUALS 32

would be the same as model (1.7). We also found that model HHB,bd is equal to model
SIRbd, if we assume that the transmission rates are the same for each group. For models
HBHbd and HHB,bd we were not able to find similar conditions such that it could be reduced
to a more simple system of equations.

Stability of the DFE

We found that the DFEs of the models HHbd, HHB,bd, HBHbd, and HBdHbd were of the
same form. By choosing the birth rates to be constant, we also found that the DFEs were
stable if and only if p

c1
< Aj , with Aj for j = 1, 2 or 3 a constant depending on the birth

rates. We saw that the difference A1 −A2 was 0.2 if we assumed that 94% of the population
is heterosexual, 1% is bisexual, and 5% is homosexual. This result was found under the
assumption that every transmission rate would be the same. We were not able to solve the
system of equations without this assumption. In model HBdHbd we have added the term d,
so we would be able to make a distinction between the transmission rates. If d is less than
one, this means that the bisexuals have more often safe sex compared with the other two
groups, while if d is greater than one, it means the opposite. If d = 1, then we have model
HHB,bd.
In the case of the Dutch population in 2008, we have chosen d = 5, and we have plotted
the p, s-graphs of the models HHB,bd, HBHbd, and HBdHbd together. These graphs are
given in Figure 2.8. We notice that the graphs have the same shape. At first the population
sizes converge to the DFE, but when p is larger than a certain constant, the sizes converge
to another equilibrium. With these constants, the DFE of model HBdHbd only becomes
unstable for a smaller value of p compared to the DFEs of the other two models. This is
due to the value of d. If d decreases, then the interval in which the DFE is stable becomes
larger. So the larger the value of d, the more likely the DFE of HBdHbd is unstable. This
only holds if the other constants remain the same.
The inequality p

c1
< Aj only hold if and only if the number of people someone transmits the

virus to is small. As a result there is a small probability that our DFE could be unstable
and hence we looked for other equilibria.
For model HHB,bd we were able to determine that m is the constant function equal to one,

and the only other equilibrium is
(

1
p , ap−c1

p

)

. The ratio s : i in this steady state is then

1 : ap − c1. The DFE is unstable if and only if p
c1

< A1 := 1
a , so the value of p should be

large compared to our birth and death rates. As a result, the number of infected could be
larger than the number of susceptibles in the nontrivial steady state.
For models HHB,bd and HBdHbd we were only able to prove that the shape of Figure (2.6)
is not of the form 1

p · m(a1, a2, a3, c1, p). This is because we have assumed that there is no
sexual interaction between the heterosexuals and the homosexuals. As a result, we do not
have the transmission rate β1,3 and we are not able to make substitutions such that HBHbd

becomes model HHB,bd.

Conclusion

Since the DFEs of the four models are of the same form, the sum of the susceptible population
in the DFE is always the same. As a result, there is no difference in the population size in
the DFEs of the models.
There were some differences between the values of the upper bounds Aj for j = 1, 2, 3. In



CHAPTER 2. INFLUENCE OF THE BISEXUALS 33

the case of the Dutch population in 2008, we found that the difference between A2 and A3

was (almost) zero, if d = 0.9 or d = 1.1. The values of A1 and A2 for models HHbd and
HHB,bd differed. This is due to the assumption that the heterosexuals and homosexuals have
no contact with each other. If we assume that 70% of the population is heterosexual, then
A2 was about 1.3 times A1. In reality, the percentage of homosexuals is smaller, so the value
of A2 is also probably smaller.
The differences between model HHbd and HBdHbd were greater, but in the case of the
Dutch population, with d = 5, A3 was only about 1.3 times A1. We do not know whether
bisexuals have safe sex more often, so we can not conclude whether we should choose d = 0.9
or d = 1.1 or even d = 5. We might as well choose d = 1. There is a difference between the
values of A1, A2 and A3, but with each model we concluded that the DFE of its particular
model is stable regardless of the value of Aj for j = 1, 2, 3. Therefore, we conclude that if the
transmission rates are the same, we can assume that the group of bisexuals does not have to
be separated from the group of homosexuals.
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Chapter 3

Extensions of our model with
medicine

In Chapter 2 we concluded that the group of bisexuals essentially could be ignored. We
drew this conclusion under the condition that the transmission rates between the bisexuals
and the heterosexuals, and between the bisexuals and the homosexuals are the same. As
a result we continue using model HHB,bd, which consists of the groups S1, I1, S3 and I3.
We redefine S3 as the susceptibles who are homosexual or bisexual, and I3 is the group of
homosexuals and bisexuals who are infected with the HI-virus. From now on we rename S3

and I3 as S2 and I2. The same assumptions as before still hold. In Chapter 1 we mentioned
that there has been a breakthrough in finding a cure and a vaccine against HIV. Therefore,
we investigate the influence of a vaccine or a cure on the spread of HIV and on the size of
the (susceptible) population size in the equilibria. So our question is: does a vaccine or a
cure have much effect on the spread of HIV?
In the first section we assume that there is a vaccine for HIV, in the second section it is
assumed that there is a cure for HIV/AIDS. In the last section we compare the results of
these models with each other.

3.1 Model with a vaccine

We assume that a vaccine for HIV is found and we assume that there is no cure in this model,
so the death rates are the same as in model HHB,bd. There is a possibility that a person is
not vaccinated. This is because someone can decide not to get the vaccine, someone can live
in a place where they do not have the vaccine, or for other reasons. It is not known whether
the vaccine works perfectly or not. However, if someone is vaccinated, but the vaccine does
not work, then we consider this person as someone who is not vaccinated. We have two
kinds of susceptibles, namely the susceptibles who were vaccinated and the susceptibles who
were unvaccinated. We assume that there are two transmission rates, one for the vaccinated
and one for the unvaccinated individuals. If these rates are the same, then we have model
HHB,bd. Normally the rate at which vaccinated people get infected and transmit the virus
to someone else is (much) smaller than the rate at which unvaccinated people do. Therefore,
we can assume that the transmission rate of the vaccinated is smaller than the transmission
rate of the unvaccinated. The death rates are still γ for the susceptible population and c for

35
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Figure 3.1: This transmission model belongs to model (3.1) before it was nondimensionalised. We
have the vaccinated (Sv,1, Sv,2) and unvaccinated (Sn,1, Sn,2) susceptibles, and the infected (I1, I2).
The birth rates are αv,1, αv,2 for the vaccinated and αn,1, αn,2 for the unvaccinated susceptibles. The
death rates are γ for the susceptibles and c for the infected. We have the transmission rates βv,1 and
βv,2 for the transmission between vaccinated susceptibles and infected people, and βn,1 and βn,2 for
the transmission between unvaccinated susceptibles and the infected.

the infected and we assume that the vaccine does not influence these rates. Furthermore, we
have two different birth rates, because everyone who has become sexually active can decide
whether to be vaccinated or not.
Our model consists of six groups and the dimensionless system of equations is

dsv,1

dt = av,1 − pv,1,1sv,1i1 − pv,1,2sv,1i2 − c1sv,1,
dsn,1

dt = an,1 − pn,1,1sn,1i1 − pn,1,2sn,1i2 − c1sn,1,
dsv,2

dt = av,2 − pv,1,2sv,2i1 − pv,2,2sv,2i2 − c1sv,2,
dsn,2

dt = an,2 − pn,1,2sn,2i1 − pn,2,2sn,2i2 − c1sn,2,
di1
dt = pv,1,1sv,1i1 + pv,1,2sv,1i2 + pn,1,1sn,1i1 + pn,1,2sn,1i2 − i1,
di2
dt = pv,1,2sv,2i1 + pv,2,2sv,2i2 + pn,1,2sn,2i1 + pn,2,2sn,2i2 − i2.

(3.1)

In this system av,1, an,1, av,2, and an,2 are the scaled birth rates, pv,i,j and pn,i,j for i, j = 1, 2
are the scaled transmission rates for the interaction between people from Sn,i or Sv,i with
Ij, and c1 is still defined as γ

c . The difference between these two rates can be seen as a
measure of how good the vaccine is. This only holds if the vaccine does not change the
risk behavior of the susceptibles. If the transmission rates are zero, then we have a perfect
vaccine. Note that we do not have an extra term or factor for the waning immunity. This
waning immunity means that if someone is vaccinated, that over time this vaccine becomes
weaker. The transmission model is given in Figure 3.1. It is clear that the DFE of this model
is (sv,1, sn,1, sv,2,, sn,2, i1, i2) = (av,1

c1
, an,1

c1
, av,2

c1
, an,2

c1
, 0, 0). Its Jacobian has four times −c1 as

eigenvalue and the other two eigenvalues are of the form 1
c1

h ± √
q, with h and q functions

depending on the birth, death, and transmission rates. We do not give the formulas for these
functions, because they are (very) complicated.
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Figure 3.2: This transmission model belongs to model Vbd, before it was nondimensionalised. We
have the vaccinated (Sv) and unvaccinated (Sn) susceptibles, and the infected (I). The birth rates are
αv and αn for respectively the vaccinated and the unvaccinated susceptibles. The death rates are still
γ for the susceptibles and c for the infected. There are two kinds of transmission rates, namely βv for
the transmissions between vaccinated susceptibles and infected people, and βn for the transmissions
between unvaccinated susceptibles and the infected.

We assume that the transmission rates for sexual intercourse where vaccinated susceptibles are
involved are the same, and we assume that the transmission rates at which the unvaccinated
susceptibles get infected are also equal. So we assume that all the pv,j,k’s for j, k = 1, 2 have
the same value and that all the pn,j,k’s for j, k = 1, 2 are the same. Then model (3.1) is the
extension of model SIRbd, before it was nondimensionalised and with the substitutions Sv :=
Sv,1 + Sv,2, Sn := Sn,1 + Sn,2 and I := I1 + I2. The birth rate for the vaccinated individuals
is defined as αv := αv,1 + αv,2 and the birth rates for the unvaccinated is αn := αn,1 + αn,2.
We define βv as transmission rate for sexual interactions between individuals from group Sv

and Ik, and βn for interactions between members of Sn and Ik for k = 1, 2.
With the substitutions av := αv

cN , an := αn
cN , pv := βvN

c , pn := βnN
c , sv := Sv

cN , sn := Sn
cN ,

i := I
cN , where N is the total population size, and t := cT , where T is the time, we define the

dimensionless system of equations given in (3.2). The transmission model belonging to this
system is given in Figure 3.2.

dsv
dt = av − pvsvi − c1sv,
dsn
dt = an − pnsni − c1sn,

di
dt = pvsvi + pnsni − i.

(3.2)

We refer to this model with Vbd, where V stands for vaccine and bd still denotes the birth and
death rate. Note that if pv = pn = p for p ∈ R, this model is the same as model SIRbd with
the substitutions s := sv + sn and a = av + an. Then the DFE is (s, i) = ( a

c1
, 0) and this is

stable if and only if p
c1

< 1
a .

Since the vaccinated and the unvaccinated people together form the whole susceptible popu-
lation, we can define this population as s := sv +sn. Note that this is already a dimensionless
variable. The terms av and an together are the total (scaled) birth rate, which we define as
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a := av + an. As a result, we know there exist q, u ∈ [0, 1] such that sv = qs, sn = (1 − q)s,
av := ua, and an := (1 − u)a. Model Vbd then becomes

ds
dt = a − (pvq + pn(1 − q))si − c1s,
di
dt = (pvq + pn(1 − q))si − i.

(3.3)

This model only has two steady states, namely the DFE (s, i) = ( a
c1

, 0), and

(s, i) = ( 1
pvq+pn−pnq , apnq+c1−apvq−apn

pnq−pvq−pn
). The eigenvalues of the Jacobian matrix in the DFE

are −c1 and apnq+c1−apvq−apn

c1
, so the DFE is stable if and only if

a(1 − q)pn + aqpv < c1 ⇐⇒
pn − c1

a

pn − pv
< q. (3.4)

We assume that the vaccine will be given to as many people as possible. If from a certain
point in time every new sexually active person is vaccinated, then q = 1, an = 0, av = a, and
the DFE becomes (sv, sn, i) = ( a

c1
, 0, 0). By (3.4) we then find

pv <
c1

a
.

This looks like inequality (2.9) for model HHB,bd in Chapter 2. We concluded that the DFE
of HHB,bd is probably stable. We assume that the invention of a vaccine does not change the
birth or death rates drastically, so it is assumed that c1 stays the same and a = av +an is the
total (scaled) birth rate, which also has the same value as before. The vaccine should prevent
someone from contracting HIV, which means that pv should be (much) smaller than p. So if
everyone gets vaccinated, then it becomes more likely that the DFE of model Vbd is stable.
We look at the left inequality of (3.4). Under the condition that the vaccine does not change
the birth and death rates, c1

a stays the same. We assume that the virus is transmitted to the
unvaccinated persons at the same rate as if the vaccine does not exist at all, so we assume that
pn in model Vbd has the same value as p in model HHB,bd. Furthermore, we reasoned that pv

should be smaller than p, and thus with our assumption also smaller than pn. Together this
and (3.4) gives us

pvq + pn − qpn < p.

As a result, even if not everyone is vaccinated, we still conclude that with a vaccine the DFE
becomes more stable.
We use the same data of the Dutch population again for our numerical simulation. We are only
interested in the DFE, so we take as initial vector (sv(0), sn(0), i(0)) = (ma

c1
−ε, (1−m)a

c1
−ε, 2ε),

with a = 0.3, c1 = 1.86, and o = 0.1, 0.2, . . . , 0.9. The constant o indicates the percentage
of successfully vaccinated individuals. We have chosen pv = 10−3, γ = 0.013, and c = 0.007.
When 90% of the sexual active people is vaccinated, the DFE is unstable if pn is greater
than (approximately) 32. We have varied pn from zero to fifty in our plots in Figure 3.3,
because otherwise the graph would be unclear. Note that it is very unrealistic to have a
scaled transmission rate of 32, because it means that each infected person transmits the virus
to 32 times the death rate of the infected persons in one time unit.
We notice that the smaller the number of vaccinated people, the greater the bound of pn

for a stable DFE. In Figure 3.3 we also see that the sum of the susceptible population in
the nontrivial equilibrium becomes smaller if more people are vaccinated. When 90% of the
population is vaccinated, the size of the susceptible population in the nontrivial steady state
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Figure 3.3: We have plotted graphs of the model Vbd, which has the dimensionless vector s for the
susceptible population on the y-axis and the vector pn on the x-axis. The size of the susceptible
population at steady state is found by multiplying the vector s with N , and if pn is multiplied with

c
βN

, then we find the original transmission rate. We have chosen the values pv = 10−3, a = 0.3,
c1 = 1.86, γ = 0.013, c = 0.007, and pn = 0, . . . , 50, and we have varied the percentage of people
who are vaccinated. The lowest graph belongs to the case when 10% of the population is vaccinated.
When the percentage of vaccinated individuals grows, the size of the susceptible population in the
equilibria becomes greater. We have chosen as percentages 10%, 20%, . . ., 90%, so av = ma, with
o = 0.1, 0.2, . . . , 0.9, and an = a− av. The initial conditions were (s1(0), s2(0), s3(0), i1(0), i2(0), i3(0))
= (0.94, 0.01, 0.05, 4.3 · 10−4, 8.4 · 10−5, 7.8 · 10−4).

decreases slowly. If we compare Figure 3.3 to Figure 2.8, then we conclude that, with our
assumptions, it is indeed more likely to have a stable DFE if there is a vaccine and if the
sexual behavior does not change drastically. In our model a vaccine does not change the total
amount of susceptibles in the DFE; this is still a

c1
.

3.2 Model with a cure

In this section we assume that a cure for HIV/AIDS exists. Model HHB,bd is extended with
a group R, which is the group of infected who get the medicine against the virus. We assume
that individuals who have recovered will become susceptible again with a constant rate w,
because the virus changes so quickly. Until this happens, we assume they are immune to the
disease. The birth and the death rate for the susceptibles are the same for this system of
equations as in model HHB,bd, but the death rate for the infected changes. This is because
a cure should decrease the number of deaths due to the virus. We denote the death rate for
the infected with c′. The death rate for the individuals who have recovered from the virus is
γ, because these people are not infected. The system of equations belonging to this model is

dS1

dT = α1 + u1wR − β1,1S1I1 − β1,2S1I2 − γS1,
dS2

dT = α2 + u2wR − β2,2S2I2 − β1,2S2I1 − γS2,
dI1
dT = β1,1S1I1 + β1,2S1I2 − (c′ + δ)I1,
dI2
dT = β2,2S2I2 + β1,2S2I1 − (c′ + δ)I2,
dR
dT = δ(I1 + I2) − wR − γR.

(3.5)
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Figure 3.4: This is the transmission model of (3.5). It consists of the susceptible (S1, S2), the infected
(I1, I2) and the recovered (R) population. The birth rates are α1 and α2 for the susceptibles, the
death rates are γ for the susceptibles and the individuals who have recovered of HIV/AIDS, and c′ is
the death rate for the infected. The transmission rates are βj,k for j, k = 1, 2 and the term δ is the
rate at which someone recovers from HIV/AIDS. Someone who is recovered, can become susceptible
again at rate ukw, for k = 1, 2, with u1 + u2 = 1.

The transmission model is given in Figure 3.4. The extra term w is the rate at which an
individual who has recovered from HIV becomes susceptible again and δ is the rate at which
someone who uses the cure recovers from HIV. The constants u1 and u2 are the ratios of the
susceptible population that belongs to the group of heterosexuals, and to the group of homo-
and bisexuals. Obviously, u1 + u2 = 1.
Note that we do not consider the drug-resistancy and the drug-sensitivity in these models.
We neglect these factors because current research, which focusses on finding a cure for HIV,
seems to indicate that a possible cure would differ significantly from known drugs and cures
for other diseases. Therefore, at this point, it is not possible to incorporate the drug-resistancy
and the drug-sensitivity realistically into our model.
We substitute sj := Sj

N , i := Ij

N , a′j := αj

N(c′+δ) for j = 1, 2, p = βN
c′+δ , c′1 := γ

c′+δ , δc := δ
c′+δ ,

wc := w
c′+δ , and t := 1

c′+δT . Then model (3.5) becomes

ds1

dt = a′1 + u1wcr − p1,1s1i1 − p1,2s1i2 − c′1s1,
ds2

dt = a′2 + u2wcr − p1,2s2i1 − p2,2s2i2 − c′1s2,
di1
dt = p1,1s1i1 + p1,2s1i2 − i1,
di2
dt = p1,2s2i1 + p2,2s2i2 − i2,
dr
dt = δci − wcr.

(3.6)

The DFE of model (3.6) is (s1, s2, i1, i2, r) = (
a′

1

c′
1

,
a′

2

c′
1

, 0, 0, 0) and the eigenvalues of its Jacobian

are twice −c′1, −w, and

1

2c′1
(a′1p1,1 + a′2p2,2 − 2c′1) ±

√

a
′2
1 p2

1,1 + a
′2
2 p2

2,2 + 4a′1a
′

2p
2
1,2 − 2a′1a

′

2p1,1p2,2.
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Figure 3.5: This is the transmission model of Cbd before it was nondimensionalised. It consists of
the susceptible (S), the infected (I) and the recovered (R) population. The birth rate is α for the
susceptibles, the death rates are γ for the susceptibles and the individuals who have recovered of
HIV/AIDS, and c′ is the death rate for the infected. The transmission rate is β and the term δ is the
rate at which someone recovers from HIV/AIDS. Someone who has recovered, can become susceptible
again at rate w.

So the DFE is stable if and only if

1

2c′1
(a′1p1,1 + a′2p2,2) +

√

a
′2
1 p2

1,1 + a
′2
2 p2

2,2 + 4a′1a
′

2p
2
1,2 − 2a′1a

′

2p1,1p2,2 < 1. (3.7)

It is hard to draw conclusions from this inequality, because we do not know what the values
of the birth and transmission rates are. It consists of terms a′jpm,n for j,m, n = 1, 2, and in
Chapter 2 we concluded that the scaled birth rate multiplied with the transmission rate is
probably (very) small. Since the scaled birth rate differ, we can not draw this conclusion. We
make more progress by assuming that the transmission rates are the same.
With this assumption, we have an extension of model SIRbd. The dimensionless system is
given below.

ds
dt = a′ + wcr − psi − c′1s,
di
dt = psi − i,
dr
dt = δci − wcr.

(3.8)

The transmission model before it was nondimensionalised is given in Figure 3.5. We will
refer to this model with Cbd, because C denotes the cure and bd stands for the birth and
death rates. This model has two steady states, namely the DFE (s, i, r) = ( a′

c′
1

, 0, 0) and

(s, i, r) =
(

1
p ,

a′p−c′
1

p(1−δc)
,
δc(a′p−c′

1
)

p(1−δc)wc

)

. The eigenvalues of the Jacobian in the DFE are −c′1, −w,

and
a′p−c′

1

c1
, so the DFE is stable if and only if

p

c′1
<

1

a′
⇔ a′p < c′1. (3.9)

This looks like the same bound as in Chapter 2, but we have c′1 = γ
c′+δ instead of c1 = γ

c and
a′ = α

(c′+δ)N instead of a = α
cN . Let us assume that the invention of a cure only has effect on

the death rate of the infected (and of course on the rate at which infected recover). Then the
difference between the inequalities (2.9) and (3.9) only depends on c and c′. The inequalities
(2.9) and (3.9) are the same if and only if

c1 = c′1 ⇔ c = c′ + δ.
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The constant c was defined as the death rate of the infected without any medicine. If we
assume that a cure does not change anything about the behavior of the population and the
virus, then the rate at which someone gets infected stays the same. In our model with the
cure the rate at which someone leaves the group of infected is exactly c′+δ. The rate at which
someone recovers does not have to be same as the rate at which an infected dies. Therefore,
it is not necessary to have the equality c = c′ + δ. We can distinguish three cases, namely

1) c < c′ + δ ⇐⇒ c − c′ < δ (⇔ c1 > c′1),
2) c = c′ + δ ⇐⇒ c − c′ = δ (⇔ c1 = c′1), and
3) c > c′ + δ ⇐⇒ c − c′ > δ (⇔ c1 < c′1).

A cure should decrease the number of deaths due to the HI-virus per time unit. It is logical to
assume that c′ < c and δ > c′, because otherwise we do not have a good cure. Unfortunately,
the greater the value of δ, the more likely we have inequality c < c′ + δ. Thus the greater the
rate at which infected people recover, the more unstable our DFE becomes. Also the size of
a
c′
1

in the DFE would change. If the difference c − c′ is greater than the recovery rate, then

the size of a
c′
1

decreases compared with a
c1

, and vice versa.

Again we use the data of the Dutch population in 2007-2008. A cure has no effect on the
death rate of the susceptible population, so γ is still equal to 0.013. Although this also holds
for the birth rate, the scaled birth rate does change, because we divide by c′ + δ. Since we
do not know how much the death rate for the infected will decrease, and we do not have any
clue what the value of δ should be, we just assume that c′ is 0.005 and we choose δ = 0.1.
The value of s in the DFE is a′

c′
1

= a
c1

, because a′ and c′1 have the same denominator. As a

result, the value of s in the DFE does not change, if δ changes. Changing the value of w also
has no influence on the size of s in the DFE. We have plotted the p, s-graph in Figure 3.6.
If the DFE is unstable, then (s, i) converge to the other equilibrium, in which the value of
s is (again) 1

p . In the nontrivial steady state the value of the total size of the non-infected
(s+r) depends on the sizes of δ and w. With the same data as before we have plotted several
p, s + r-graphs in Figure 3.7. The values of s and r in the nontrivial state are respectively 1

p

and δc(ap−c1)
p(1−δc)wc

. We define the sum as

l(p) := s + r =
1

p
+

δc(ap − c′1)

p(1 − δc)wc
.

The derivative is greater than zero if and only if

wc <
δcc′1

1 − δc
. (3.10)

So if wc <
δcc′

1

1−δc
, then the size of the non-infected population in the nontrivial steady state

will be greater than the susceptible population in the DFE.

3.3 Differences and similarities between the models

We will compare the models SIRbd, Vbd, and Cbd with each other. This is done by comparing
the DFEs and whether they are stable or not.
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Figure 3.6: This is a graphs of model Cbd, with the dimensionless s for the susceptible population on
the y-axis and the scaled transmission rate p on the x-axis. The constants were γ = 0.013, c′ = 0.005,
and a = 0.3

c′+δ
, with δ = 0.1 and w = 0.05. We have a stable DFE when p is between zero and 0.005. We

do not vary the values of δ and w, because changing them has no effect on the size of the dimensionless
susceptible population in the steady states. We notice that the dimensionless size of the susceptible
population in the DFE becomes greater, but it is unstable with a much smaller value of p compared
to the models in Chapter 2 and in Section 3.1.
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Figure 3.7: These are graphs of model Cbd, with the dimensionless s+r for the non-infected population
on the y-axis and the scaled transmission rate p on the x-axis, and with a = 0.3/(c′ + δ), γ = 0.013,
and c′ = 0.008. We have varied the values of w. We have taken δ = 0.1 and w = 0.1, 0.2, . . . , 0.9.
Changing w has no affect on the size of the susceptible population in the steady states, but it does
have effect on the size of the the recovered individuals.
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The DFE

The population size of the susceptibles in the DFE of model SIRbd is a
c1

, with c1 = γ
c . In

model Vbd the total population size in the DFE is av
c1

+ an
c1

. We assumed that a vaccine would
not affect the birth and death rate of the population. Since av + an is the total (scaled) birth
rate, a in SIRbd is equal to av + an in Vbd.
We have explained that the size of the susceptible population in the DFE of model Cbd

is not the same if the cure only affects the death rate of the infected (and the recov-
ery rate). We found that the population size in the nontrivial steady state of model
Cbd depended on the equation wc < δcc1

1−δc
. If this inequality holds, then the dimensionless

non-infected population in the DFE will be smaller than its size in the nontrivial steady state.

Stability of the DFE

The stability of model SIRbd holds when p
c1

< 1
a and in Cbd this inequality was p

c′
1

< 1
a′ . The

bound for the stability of the DFE of model Vbd was pnan + pvav < c1.
If many people are vaccinated, then the DFE in model Vbd becomes more stable. If many
people in model Cbd recover from HIV, then the susceptible population in the DFE becomes
greater. So according to our models, if a vaccine does not affect the transmission, birth or
death rates, then a vaccine will make it (even) more likely that the DFE is stable.
If a cure does not affect the death rate of the infected, then the population size will increase.
This is very unlikely, so we looked at what would happen if the death rate of the infected
would change. We found that if the difference between the death rates of the infected before
and after a cure was found, was greater than the rate at which an infected recovers from
HIV, then the size of the population in the DFE would become greater. If this difference is
smaller, then the population size would decrease. Also the interval in which we would have
a stable DFE changes. In our example of the Dutch population, the interval in which the
DFE is stable becomes smaller, and vice versa.

Conclusion

How a vaccine or a cure affects the population size depends on several factors, like

• how many people will be vaccinated?

• how quickly does the virus change such that a recovered or vaccinated person will
become a susceptible again?

• does the sexual behavior of the individuals change?

In this chapter we assumed that the vaccine and the cure do not affect the birth and death
rates. Furthermore, we assumed that the sexual behavior of the population would not change.
Then we found that if a vaccine would be introduced, then the DFE of model Vbd would be the
same as the DFE of model HHB,bd. Since a vaccine should prevent someone from contracting
a disease, we concluded that the DFE of model Vbd is more stable than the DFE of model
HHB,bd.
A cure will make the death rate of the infected become smaller. If citizens of a population
do not change their sexual behavior and the birth and death rates of the susceptibles do not
change, then the stability of the DFE and the the size of the population in the steady states
change. This depends on whether the difference between the death rates before and after a
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cure was introduced is greater or smaller than the rate at which someone would recover from
HIV. If this difference is greater, than the size of the population in the DFE will become
greater and the interval in which this DFE is stable will become smaller. If the difference was
smaller, then it is the other way around.
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Summary and discussion

In Chapter 1 we explained what HIV/AIDS is and we introduced the most basic model used
in epidemiological modeling in populations. Furthermore, we gave a review of literature to
get an impression of the research that has been done in this area.
In Chapter 2 we investigated the influence of the bisexuals on the spread of HIV in a popula-
tion. The investigation was done by developing a model where we only have heterosexuals and
homosexuals. Then we extended this model with the group of bisexuals. Our assumptions
for these models were

1. The latent period of HIV is not considered in our models;

2. The virus is only transmitted via sexual intercourse;

3. Each person who has become sexually active is not infected with the virus;

4. The number of individuals who become sexually active is constant;

5. The death rate of the susceptible population and the death rate of the infected are a
constant times the size of respectively the susceptible or infected population;

6. In the model with the bisexuals we have assumed that the sexual interaction between
the homosexuals and heterosexuals is insignificant;

7. The transmission rate is the same for interaction between each considered group;

8. There is no vaccine or cure for the HI-virus.

In model HBdHbd we assumed that the transmission rate of the bisexuals is a constant times
the transmission rate of the heterosexuals and homosexuals.
With our models we investigated when the HI-virus would become extinct and what the size
of the population in that case would be. We also computed whether it is likely for the virus
to die out naturally. We found in each model that it is very likely that the virus will die out
naturally in the Dutch population. We concluded this because the transmission rate is much
smaller than the birth and death rates.
In models HHB,bd, HBHbd, and HBdHbd we found that the total population size would
eventually become the same constant and in each model it was very likely that nobody would
be HI-infected anymore. As a result, we concluded that it was not necessary to make the
distinction between a homosexual or bisexual.
In the last chapter we tried to simulate what the difference would be if a population would
have a vaccine or a cure for HIV. We started of with the assumptions of Chapter 2. We
then developed a model where we incorporated a vaccine for HIV and a model in which we
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assumed that found a cure. For simplicity, we assumed that we would only have one medicine
at a time, so if we have a vaccine, then we do not have a cure and vice versa. Furthermore,
a vaccine or a cure has no influence on the number of people who become sexually active
and on the death rate of the susceptible population. This means that we assumed that the
transmission rate, the birth rates, and the death rate of the susceptibles would not change.
We compared our findings with the results we obtained from model HHB,bd. With our
assumptions we found that with the existence of a vaccine, it is more likely that the infected
population become extinct. On the other hand, if we have a cure for HIV, then it is important
to know how good this cure actually is. We found that if the recovery rate is great, then it
becomes more likely that the DFE is unstable.
Our models can be interpreted in different ways. We had the groups heterosexual, bisexual,
and homosexual susceptibles or infected. For instance, the model with only the heterosexuals
and homosexuals could also be interpreted as a model which makes the distinction between
male and female or adolescents and adults. Note that if we make the distinction between
juvenile and adults, then it is also reasonable to drop the assumption that transmission
can only occur through sexual intercourse. It is also possible to use these models for other
diseases, which can be transmitted to other people, like the flu, the small pox, or other
sexually transmitted diseases.
We made a lot of assumptions during our investigation. The most important one was that
we assumed that the birth rate was a constant, while the death rates were a constant times
its population size. This is not realistic, because the birth rate of a population normally
(always) depends on it. However, mathematically this assumption had to be made in order
to have a nonzero steady state. This is necessary, because we would like to predict what the
influence of the virus is on a virgin population.
Let us have a look at the list of our assumptions. The latent period of HIV was neglected.
Someone might be infected for years, before finding it out. To improve our investigation we
could try to model this.
The second and the third assumption are related, because if the virus could only be
transmitted via sexual intercourse, than it is logical to assume that each person who has
become sexually active, is not infected yet. Of course, transmission also occurs through, for
instance, sharing needles or breast feeding. Therefore, we could drop these two assumptions.
As a result, it might be more useful to adapt our models, because the interpretation of our
models changes as soon as other possibilities of transmitting HIV are considered.
By definition it is reasonable to assume that the sexual interaction between hetero-, and
homosexuals can be ignored. People who are attracted to persons of their own sex, will
probably not have much sexual intercourse with persons from the other sex.
Furthermore, we assumed that the transmission rates for each group would be the same.
With this assumption we were able to determine what the ratio of the transmission, birth,
and death rates was at the disease free equilibrium. This assumption makes sense, because
the risk behavior of someone does not only depend on his or her sexual preference. We also
did not know how to approximate these rates.
The assumption about a cure or a vaccine is realistic, because they do not exist yet. However,
in the future there might be one. Therefore, it is not a waste of time to develop realistic
models in which a cure or a vaccine is considered.
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