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Chapter 1
Introduction

This is a master course for mathematics students about mathematical methods to
gain insight in the mechanisms underlying biological phenomena.

The course consists of
• these lecture notes, which explain and illustrate the methods while refer-

ring to other sources for detailed accounts of the underlying mathematical
theory;

• assignments which provide training in modelling and in the use of the
methods.

Students work on assignments using both pen and paper and computer tools.
Grades are to a large extent based on the handed in written texts and on oral
presentations.

In the course, a lot of attention is paid to “translation”: how do we get from
biological information to a mathematical formulation of questions? And what do
the mathematical results tell us about biological phenomena?

In addition, the course aims to introduce general physical ideas about temporal
and spatial scales and how these can be used to great advantage when performing
a mathematical analysis.

Prerequisites: basic knowledge about linear algebra, analysis, ODEs. (The key
point, however, is the attitude: students should be willing to quickly fill in gaps in
background knowledge.)
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Chapter 2
Exploiting time scale differences: the quasi-
steady-state approximation (QSSA)

The aim of this chapter is to illustrate, by way of examples, how one can take
advantage of large differences in the rates of change of variables. The idea is simple:
we first consider the fast variables for fixed values of the slow variables. If, in this
setting, the fast variables go to a limit, a “steady” state, we next consider the
dynamics of the slow variables while putting the fast variables at their “steady”
state values. Note that the precise “steady” values of the fast variables depend
on the values at which the slow variables were fixed, and so will vary slowly if
we consider the dynamics of the slow variables. To reflect that phenomenon, we
say quasi-steady-state. The key point is that we decompose a system into two
lower-dimensional systems, which often substantially facilitates the analysis.

2.1 Michaelis-Menten enzyme kinetics
Enzymes are large protein molecules that catalyse reactions in the living cell.

The simplest situation is that they transform substrate into product (by way of a
conformational change) according to the reaction scheme

S + E
k+⇌
k−
C

k→ P + E. (2.1.1)

Note that we assume that the reaction C → P + E is irreversible. This makes
the algebra simpler, and isn’t too unrealistic for many reactions. The C stands for
“complex”, a molecule composed of two smaller ones. The meaning of the other
symbols is, hopefully, evident.

The Law of Mass Action asserts that the rate at which a reaction proceeds
is proportional to the product of the concentrations of the substances that are
involved in the reaction. The k’s are the constants of proportionality. If we denote
the concentrations by small characters, the reaction scheme directly translates into
the ODE system

ds

dt
=−k+se+ k−c, (2.1.2)

de

dt
=−k+se+ k−c +kc, (2.1.3)

dc

dt
= k+se− k−c −kc, (2.1.4)

dp

dt
= +kc. (2.1.5)
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8 Exploiting time scale differences

The atoms that constitute the enzyme also occur in C. The conservation of these
atoms is reflected in d

dt (e + c) = 0. So we can think of molecules that can jump
back and forth between two states, the “free” state E and the “bound” state C.
The rate (=probability per unit of time) at which a particle in the E state jumps
to the C state is k+s and the rate at which a particle in the C state jumps to the
E state is k− + k. If s would be constant, these rates would be constant too. For
the linear system

d

dt

(
e
c

)
=M

(
e
c

)
, (2.1.6)

with matrix
M =

(
−k+s k− + k
k+s −(k− + k)

)
(2.1.7)

we can interpret e and c in several ways:
• e is the probability that a particular particle is in state E and c is the

complementary probability that it is in state C. We then normalise e and
c such that e+ c = 1.

• e is the fraction of the particles that is in state E and c is the fraction of
particles that is in state C. Again, we require that e+ c = 1.

• e and c are, as in (2.1.2), concentrations. The sum e + c is constant in
time, with the precise value determined by the initial condition.

To go from the third to the second, just consider e
e+c and c

e+c . To go from the
first to the second, just recall the Law of Large Numbers from probability theory.
The point is that, by considering s as a given/prescribed quantity, we achieved
that the particles are independent of one another, which is reflected in the fact
that (2.1.6) is linear.

The matrix M has eigenvalue zero (as a direct consequence of the underlying
conservation law). The second eigenvalue is −k+s − k− − k (use that the sum of
the two eigenvalues equals the trace of M and that one eigenvalue is zero). Since
the second eigenvalue is negative, the solution of (2.1.7) converges for t→ ∞ to an
eigenvector of M corresponding to eigenvalue zero. One such eigenvector is(

e
c

)
=

(
k− + k
k+s

)
, (2.1.8)

and all others are a multiple of this one. We conclude that for a given constant
value of s, (

e(t)
c(t)

)
t→∞−→ etot

k+s+ k− + k

(
k− + k
k+s

)
, (2.1.9)

where etot := e(0) + c(0). The difference between the left and the right hand side
of (2.1.9) is bounded by a constant times

e−(k+s+k−+k)t.

For that reason we say that the time scale of convergence is
(k+s+ k− + k)−1. (2.1.10)

If we now substitute the right hand side of (2.1.9) for e and c in the equation for
ds
dt in (2.1.2), we obtain

ds

dt
= − k+ketot

k+s+ k− + k
s. (2.1.11)

So as a consistency requirement for this approach we have that the time scale(
k+ketot

k+s+ k− + k

)−1

(2.1.12)



2.1 Michaelis-Menten enzyme kinetics 9

of changes in s according to (2.1.11), should be much longer than the time scale
given by (2.1.10):

k+s+ k− + k � k+ketot
k+s+ k− + k

. (2.1.13)

In addition, we should provide (2.1.11) with an initial condition. We would like
simply to put s(0) equal to the true initial substrate concentration. Often an
experiment is started by adding enzyme to substrate, so with no complex present
at time zero. Then initially,

ds

dt
≈ −k+es,

and changes in s occur at the time scale

(k+etot)
−1. (2.1.14)

So if we require that
k+s(0) + k− + k � k+etot, (2.1.15)

then s hardly changes while e and c converge as described by (2.1.9). Next, note
that (2.1.15) guarantees that (2.1.13) holds and that, accordingly, it suffices to
require (2.1.15) or, equivalently,

k+etot
k+s(0) + k− + k

� 1. (2.1.16)

Hint: To verify that (2.1.15) implies (2.1.13), first note that

0 <
k

k+s+ k−k
< 1

since all terms are positive. So if we multiply the right hand side of (2.1.15) by
k/(k+s+ k− + k) the left hand side is still much bigger.
See (Schnell and Maini, 2000), and the references given there, for justification as
well as variants.

Exercise 2.1.1. The atoms that constitute the substrate also occur in C and in
P . Formulate a conservation law and check that it is incorporated in (2.1.2)–(2.1.5).

Exercise 2.1.1. Check that in the approximation that leads to (2.1.11) we
have

dp

dt
= −ds

dt
. (2.1.17)

So the velocity at which substrate is transformed into product is initially given by

V =
etotkk+s(0)

k+s(0) + k− + k
. (2.1.18)

Rewrite this such that 1
V is a linear function of 1

s(0) . Which reaction parameters
can be estimated by measuring V as a function of the tunable initial substrate
concentration?

This function V in (2.1.18) is the reason why one often uses
ds

dt
= − Vms

Km + s
(2.1.19)

to model the change in concentration of substrate in enzyme kinetics. Equa-
tion (2.1.19) is often called the Michaelis-Menten rate equation. Here, Vm = etotk,
and Km = (k− + k)/k+, the Michaelis constant.
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2.2 Scaling
Compared to the length of a human life, 100, 000 milliseconds isn’t very long,

but 100, 000 years is. Words like “small” or “large” are dangerous when we talk
about quantities that carry a physical dimension, since the actual numbers depend
on the choice of units. One way to justify a formal QSSA is to go through the
systematic procedure of scaling, i.e., of reformulating the equations in terms of
non-dimensional variables, and to identify a small parameter while doing so. We
now illustrate this procedure in the context of (a reduced version of) system (2.1.2)–
(2.1.5).

As noted above, changes in s at the start occur at the time scale given
by (2.1.14), and this motivates us to choose

t =
1

k+e0
t∗, (2.2.1)

where e0 is the initial condition for e. A natural scale for substrate is provided by
the initial concentration, so we choose

s(t) = s(0)s∗(t∗). (2.2.2)

As c(t) is bounded by etot, we choose

c(t) = etotc
∗(t∗), (2.2.3)

and as a consequence
e(t) = etot(1− c∗(t∗)). (2.2.4)

Now, noting that
d

dt
=
dt∗

dt

d

dt∗
= k+e0

d

dt∗
, (2.2.5)

we substitute all this into the first and the third equation of (2.1.2)–(2.1.5) and
subsequently divide both sides of both equations by k+s(0)etot. The result is

ds∗

dt∗
= −s∗ +

(
k−

k+s(0)
+ s∗

)
c∗, (2.2.6)

dc∗

dt∗
=
s(0)

etot

(
s∗ −

(
k− + k

k+s(0)
+ s∗

)
c∗
)
. (2.2.7)

We next rename the three compound parameters that figure in these equations:

ε =
etot
s(0)

, (2.2.8)

κ =
k− + k

k+s(0)
, (2.2.9)

λ =
k

k+s(0)
, (2.2.10)

drop the stars and multiply the second equation by ε. This leads us to
ds

dt
= −s+ (κ− λ+ s)c,

ε
dc

dt
= s− (κ+ s)c. (2.2.11)

Note that ε is the initial ratio of enzyme and substrate molecules. Often an
experiment consists of adding a little bit of enzyme to an excess of substrate,
leading to a small value of ε. If ε is small and c 6≈ s

κ+s , then necessarily dc
dt is

very large, so c changes rapidly, i.e., at the time scale ε. For fixed s, the equation
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c

s

c = s
κ+s

c = s
κ+s−λ

1

1
κ+1

Figure 2.1. Dynamics of (2.2.11). The solution shoots up from
the s-axis until it approaches c = 1/(κ+1), after which it is trapped
between the isoclines and converges towards the origin.

for c is linear and we see immediately that c converges to s
κ+s . If we substitute

c = s
κ+s in the equation for s we obtain

ds

dt
= − λs

κ+ s
, (2.2.12)

as the equation describing the changes in s at the O(1) time scale. As initial
condition we put s(0) = 1.

We can zoom in on the rapid change in c right at the start (when indeed
c 6= s

κ+s ), by introducing
t = εt∗. (2.2.13)

(The recycling of the ∗ should not confuse you! Note that t∗ should be large to
have a value of t that isn’t small.) From

ds

dt∗
= ε(−s+ (κ− λ+ s)c) ≈ 0,

we deduce that s(t∗) ≈ s(0) = 1. When we substitute this into
dc

dt∗
= s− (κ+ s)c,

we find
c(t∗) =

1

κ+ 1

(
1− e−(κ+1)t∗

)
t∗→∞−→ 1

κ+ 1
.

The sketchy phase plane portrait corresponding to (2.2.11) is depicted in Figure 2.1.
A systematic method to analyse systems containing a small parameter is the
method of matched asymptotic expansions (see, e.g., (Mishchenko and Rosov, 1980;
Grasman, 1987; Kevorkian and Cole, 1996; Verhulst, 2005)). The key idea is to
construct solutions in the form of a power series in ε, both for (2.2.11) and for the
system

ds

dt∗
= ε(−s+ (κ− λ+ s)c), (2.2.14)

dc

dt∗
= s− (κ+ s)c. (2.2.15)

(The first is called the outer solution, and the second the inner solution.) Unknown
integration constants are determined by matching these expansions, i.e., by relating
the limit t → 0 in the outer solution to the limit t∗ → ∞ in the inner solution. In
the present very simple case, this would amount to choosing s(0) = 1 as the initial
condition for (2.2.12). See (Britton, 2003) for a fully worked treatment of the above
problem.
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Figure 2.2.

2.3 Cooperative reactions and the sigmoidal response
In Section 2.1 our emphasis was on processes that were either slow or fast, while

in Section 2.2 we focussed on variables that either change slowly or change fast.
The first is the more mechanistic point of view, the second is more amenable to
analysis. It may require ingenious transformations to translate the first into the
second, see (Lee and Othmer, 2010).

In (2.1.11), we see that the velocity of the S → P transformation saturates for
large substrate concentrations. This is a very general phenomenon: the output of
a “factory” is proportional to input at low input, but is determined by “capacity”
(and hence independent of input) for high input.

Sometimes one observes a remarkable special feature: the output accelerates
in an intermediate input region. In more picturesque language: sometimes the
response is s-shaped and is called sigmoidal. When the acceleration occurs in
a narrow region, but is very strong, one has a “switch” between (almost) no
production and production at (almost) full speed. The three profiles are sketched
in Figure 2.2.

How can a sigmoidal response arise? What kind of biochemical mechanism can
be responsible?

Some enzymes consist of several identical subunits (e.g., haemoglobin has four
binding sites for O2). They are call oligomers (cf. the word polymer to indicate
that there are very many identical building blocks). Here we consider a dimer,
consisting of two subunits. If a protein binds some smaller molecule to one of its
subunits, that smaller molecule is often called a ligand (from ligare = to bind).
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Now assume that each subunit can assume two different spatial conformations,
i.e., shapes. And assume that the reactivity to bind a ligand depends on the
conformation. Let’s go to the extreme: in one of the two conformations the ligand
cannot be bound at all.

Finally, let us assume that transitions between the two spatial conformations
are concerted, i.e., all subunits switch simultaneously. Included in this assumption
is that, if a ligand is bound to a reactive subunit, no switch to the inactive state can
occur for any of the subunits. Now test your physical intuition: can you imagine
how acceleration might arise? Whether or not you can, let’s see what we can learn
from a mathematical analysis.

Let us denote the inactive state by the symbol T (for “tight”) and the reactive
state by R. Let’s use a subscript to denote the number of ligands bound. The
considerations above can be summarised in the reaction scheme

T0 R0 R1 R2

S S S
f

b

2k+s

k−+ k

k+s

2(k−+k)

and translated into the ODE system
dT0
dt

= −fT0+bR0, (2.3.1)

dR0

dt
= +fT0 −bR0 − 2k+sR0+(k− + k)R1, (2.3.2)

dR1

dt
= + 2k+sR0 −(k− + k)R1 − k+sR1+2(k− + k)R2, (2.3.3)

dR2

dt
= + k+sR1−2(k− + k)R2, (2.3.4)

ds

dt
= − 2k+sR0 +k−R1 − k+sR1 +2k−R2, (2.3.5)

dp

dt
= +kR1 +2kR2. (2.3.6)

Assume, for the time being, that s is constant. The enzyme molecule can be in
four states. The four vector (T0, R0, R1, R2) satisfies a linear ODE with matrix M
given by

M =


−f b 0 0
f −b− 2k+s k− + k 0
0 2k+s −(k− + k+s+ k) +2(k− + k)
0 0 k+s −2(k− + k)

 . (2.3.7)

This matrix has an eigenvalue zero (how can we be so sure?). The corresponding
eigenvector is easily computed by expressing the fourth component in the third, the
third in the second, etcetera, while exploiting that terms at some level re-occur one
level higher (this reflects the order structure in the reaction scheme: we can order
the states such that only transitions to adjacent states are possible). If we normalise
such that the sum of the components equals one, each component corresponds to
the fraction of the enzyme molecules in the corresponding state:

1

1 + f
b

(
1 + 2k+s

k−+k

(
1 + k+s

2(k−+k)

))


1
f
b

f
b

2k+s
k−+k

f
b

2k+s
k−+k

k+s
2(k−+k)

 . (2.3.8)
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But are we sure that the solutions of the linear ODE converge to an eigenvector
corresponding to eigenvalue zero? In other words, are we sure that all other
eigenvalues have negative real part? Yes, we are! The point is that M defined
in (2.3.7) is Positive-Off-Diagonal (POD), so that we can use the Perron-Frobenius
theorem, discussed in more detail at the end of this section, to arrive at the desired
conclusion (see also Graham (1987); Horn and Johnson (1990) for two general
references). Equivalently, we can refer to the general theory of continuous time
Markov Chains (Kemeny and Snell, 1963).

If we let Y denote the fraction of the subunits to which ligand is bound, then
Y equals the sum of one half of the third component and the fourth component, so

Y =

f
b

k+s
k−+k

(
1 + k+s

k−+k

)
1 + f

b

(
1 + 2k+s

k−+k

(
1 + k+s

2(k−+k)

)) . (2.3.9)

Now, assuming an excess of substrate relative to the enzyme, let’s look at changes
in s and p at the slow time scale. In the QSSA the last two equations of (2.3.1) can
be written as

dp

dt
= 2kY etot = −ds

dt
(2.3.10)

(can you interpret the middle term? is this what you would expect?). We can
conclude that the way in which the velocity of the S → P transformation depends
on the substrate concentration can be read off from the formula (2.3.9) for Y .

In terms of
s̃ :=

k+s

k− + k
,

we have
Y =

f

b

s̃(1 + s̃)

1 + f
b (1 + s̃)2

,

and one easily verifies the sigmoidal shape of this function. So as a final conclusion,
we have that such a sigmoidal response may arise by the cooperative effect that the
occupation of a first binding site prevents that other, as yet still free sites, switch
back to the inactive state. Was this indeed what you anticipated when we asked
you to test your physical intuition?

[This section is very much inspired by Chapter 4 of Segel (1984)]

2.3.1 Perron-Frobenius theory
Consider the cone of positive vectors v, i.e., vi ≥ 0 for all i. Let K be a positive

square matrix, i.e., Kij ≥ 0. K leaves the cone invariant, since Kv ≥ 0. The norm
for our vectors is chosen to be ‖v‖ =

∑n
i=1 |vi|; for K we choose the sup-norm,

‖K‖ = sup
∥v∦=0

‖Kv‖
‖v‖

= sup
∥v∥=1

‖Kv‖ .

Let the spectral radius ρ(K) be defined by

ρ(K) = lim
m→∞

‖Km‖1/m .

Theorem 2.3.1: Let K ≥ 0. Then
• ρ(K) is an eigenvalue of K;
• For each eigenvalue λ we have |λ| ≤ ρ(K).

Corollary 2.3.2: ρ(K) is the dominant eigenvalue. If ρ(K) is strictly dominant
(meaning |λ| < ρ(K) if λ 6= ρ(K)), and ρ(K) is algebraicly simple, then there
exists a constant c(v) depending on v such that

Kmv = c(v)(ρ(K))mψ + o(ρ(K)m) m→ ∞
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where ψ is the eigenvector corresponding to ρ(K).
Definition 2.3.3: A positive matrix K is called irreducible if for all i, j there exists
an m = m(i, j) ≥ 1 such that (Km)ij > 0.

If we consider a directed graph with n nodes, in which directed edges are drawn
from point i to point j if and only if Kij > 0, then irreducibility of K is equivalent
to requiring that there exists a path from any i to and j in this graph.
Definition 2.3.4: A positive matrix K is called primitive or aperiodic there exists
an m such that (Km)ij > 0 for i, j.

With these preliminaries, we can now state the Perron-Frobenius theorem.
Theorem 2.3.5: Let K ≥ 0 be primitive, with R0 := ρ(K) as one of its eigenvalues.
Then

• R0 is strictly dominant;
• the left and right eigenvectors corresponding to R0 have strictly positive

components (hence c(v) > 0 if v ≥ 0 and v 6= 0);
• R0 is algebraicly simple;
• no other eigenvalue has a positive eigenvector.

For irreducible, but not primitive, matrices we still have the following.
Theorem 2.3.6: Let K ≥ 0 be irreducible, but not primitive. Then all but the first
point from the previous theorem still hold, but are eigenvalues λ with |λ| = R0

forming roots of unity, i.e. λk = 1 for some k ≤ n.
As an example of this latter case, consider

K =

(
0 1
1 0

)
.

Finally, let us briefly see in what precise way the Perron-Frobenius came to
our rescue in the beginning of this paragraph. The matrix M in (2.3.7) is positive
off-diagonal. By conservation of mass, the column vectors add up to zero, so that
M has an eigenvalue zero, and we also immediately see that mass conservation is
reflected in a left eigenvector (1, 1, 1, 1) corresponding to eigenvalue 0. Since this left
eigenvector is strictly positive, the 0 eigenvalue must be the dominant eigenvalue
by the P-F theorem, and all other eigenvalues must have negative real part.

2.4 The force of infection in populations of variable size
If an infectious individual makes “contact” with a susceptible individual, the

infectious agent is transmitted with a certain probability. If we simplify reality
and assume that the just infected individual is infectious right away, we have the
reaction scheme

S + I
β→ 2I,

where β = cp, with p the probability of transmission and c such that an infectious
individual makes contact with susceptible individuals at rate cS. When we take the
point of view of the susceptible, this is usually formulated as: the force of infection
equals βI. Here the force of infection means “the probability per unit of time of
becoming infected”. Yet another common formulation is: the incidence (the number
of new cases per unit time) equals βSI.

The underlying assumption here is that the number of contacts that an
individual has per unit of time is proportional to population density. If you contrast
commuter trains in the Tokyo district with pedestrians on a small rural road, this
seems a fair assumption. But what if “contact” means sexual contact? Shouldn’t, in
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contact rate

population density

?

Figure 2.3.

this case, satisfaction lead to a saturating contact intensity? Or, if not satisfaction,
then lack of time?

If we assume that individuals make contact at a fixed rate c (independent
of population density), the force of infection equals β I

N , where N is the total
population density (and so I/N can be interpreted as the chance that a contact is
with an infectious individual; note that we assume throughout this section that the
infection status has no influence whatsoever on the contact process).

When the total population density N is a constant, the difference between βI
and β I

N is just a difference in the interpretation of β. But what if N is variable,
or if we want to compare various host populations with rather different values of
N? So far, we covered the linear part of the contact response (βI), which probably
works best at low densities, and the fully saturated part (β I

N ), which approximates
the process best at high densities (see Figure 2.3). Can we connect these two parts
on the basis of a mechanistic submodel? The following positive answer is based
on Heesterbeek and Metz (1993), where also variants appropriate for structured
populations are considered.

The key idea is to introduce pair formation and dissolution and to restrict
transmission to pairs. The average duration of partnerships then sets limits to
contact intensity.

So let us distinguish singles (those individuals that at the time considered are
not engaged in a pairwise contact) from couples/pairs. When the first have density
X(t), and the latter density P (t), then

N(t) = X(t) + 2P (t), (2.4.1)

since a pair consists of two individuals. If σ denotes the separation rate and if
a single finds a partner at rate ρX (so at a rate proportional to the supply of
candidates), then

dX

dt
=−ρX2 + 2σP, (2.4.2)

dP

dt
=
1

2
ρX2 − σP. (2.4.3)

Clearly this is a caricatural description of both pair formation and separation; re-
markably, however, a description of the duration of relationships by an exponential
distribution fits the data rather well.

Exercise 2.4.1. Verify that, with ν := ρ
σ ,

X̄ =

√
1 + 4νN − 1

2ν
, P̄ =

1 + 2νN −
√
1 + 4νN

4ν
, (2.4.4)

defines the unique steady state of (2.4.2) and that this steady state is globally
asymptotically stable.
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Next, on top of the distinction between singles and pairs, we introduce the
distinction between susceptible and infectious individuals (for simplicity we shall
assume that infected individuals do not lose their infectiousness). Let S1 denote the
density of susceptible singles, S2 the density of pairs consisting of two susceptibles
and let I1 and I2 be similarly defined. Let M (for “mixed”) denote the density of
pairs consisting of a susceptible and an infective.

Exercise 2.4.2. Interpret all terms in the ODE system
dS1

dt
=−ρS1(S1 + I1) + 2σS2+σM, (2.4.5)

dI1
dt

=−ρI1(S1 + I1) + 2σI2 +σM, (2.4.6)

dS2

dt
=

1

2
ρS2

1 − σS2, (2.4.7)

dM

dt
= ρS1I1 −σM − βM, (2.4.8)

dI2
dt

=
1

2
ρI21 − σI2 + βM. (2.4.9)

and check whether the pair formation and dissolution rules were correctly incorpo-
rated. What is the underlying assumption concerning transmission?

Exercise 2.4.3. The process of pair formation and dissolution proceeds
independently, i.e., the S-I distinction has absolutely no influence at all on it.
Shouldn’t that allow us to recover (2.4.2) from (2.4.5)? Define X and P in terms
of S1, S2, I1, I2, and M and check that (2.4.2) holds!

Exercise 2.4.4. The transmission process does not proceed independently of
the single-pair distinction: on the contrary, it is restricted to mixed pairs. Define
the density of susceptibles S and the density of infectives I in terms of S1, S2, I1,
I2, and M , and show that

dS

dt
= −βM, (2.4.10)

dI

dt
= βM, (2.4.11)

exactly as one would expect (or wouldn’t you?).
If β is very small relative to both ρ and σ, the variables S and I will

change slowly relative to the speed at which the pair formation/dissolution process
equilibrates. The idea of the time scale argument is now as follows: consider, for
fixed S and I, the variant of (2.4.5)–(2.4.9) obtained by deleting the βM terms
at the right hand side; compute how the limiting value of M depends on S and
I; substitute the result into (2.4.10) to describe the slow changes in S and I. So
the QSSA concerns (2.4.5)–(2.4.9) and involves omitting βM terms. Note that
the system (2.4.2) is nonlinear, reflecting the dependence in the pair formation
process. So we cannot rely on the spectral theory of POD matrices or on the
theory of Markov processes. Yet the solution can be found by way of a simple
combinatorial/probabilistic argument.

Exercise 2.4.5. Verify that the quasi-steady-state of (2.4.5)–(2.4.9) is given
by

S̄1 = S
N X̄, Ī1 = I

N X̄,

S̄2 =
(
S
N

)2
P̄ , M̄ = 2 S

N
I
N P̄ , Ī2 =

(
I
N

)2
P̄ ,

(2.4.12)

and explain the logic behind these expressions. (One can check the stability by
exploiting that S and I are constant and that X and P approach limits to reduce
the five dimensional system to, essentially, one equation.)
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Exercise 2.4.6. Write (2.4.10) in the form
dS

dt
= −βC(N)

SI

N
= −dI

dt
, (2.4.13)

and check that
(i) C(N) > 0 for N > 0,
(ii) C is nondecreasing,
(iii) C(N) is approximately linear in N for small N . More precisely, C(N) =

2νN +O(N2) for N → 0,
(iv) C(N) is approximately constant for large N .

The function C(N) studied in the last exercise thus provides us with a
connection between the linear βI and saturated βI/N responses with which we
started, as illustrated in Figure 2.3. We refer to Section 10.2 of Diekmann and
Heesterbeek (2000) for elaborations, remarks on generalisations and additional
exercises.

2.5 Excitability
Cell membranes contain ion channels through which in particular potassium

and sodium are pumped, enabling communication between neighbouring cells, and
indeed signal transduction. These channels contain gates that open and close in
response to voltage changes, giving rise to excitability, as we will see. Simply put,
the current I through a membrane containing N channels may be specified by

I = Ng(V, t)ϕ(V ), (2.5.1)

where ϕ(V ) describes how the current through a single open channel depends on
the voltage V , and g(V, t) is the fraction of channels open at time t and voltage
V . The simplest assumption for ϕ(V ) is that the current depends linearly on the
voltage, and is zero at a particular voltage, called the Nernst potential, VN . So let
us assume that

ϕ(V ) = V − VN .

In general, VN will be different for different ions. Let us consider channels with just
one gate, that may be open or closed. The fraction of open channels g is assumed
to change according to the ‘reaction scheme’

C
α(V )

β(V )
O

where C stands for the closed state of a channel, and O for the open state. This
translates into an equation as follows,

dg

dt
= α(V (t))(1− g)− β(V (t))g. (2.5.2)

In a voltage clamp experimental setup, the voltage is kept constant, and (2.5.2)
simplifies to dg

dt = α(1− g)− βg. We rewrite this as

τg
dg

dt
=

α

α+ β
− g

where τg = 1/(α + β), to highlight that g converges to α/(α + β) at the time
scale τg. For channels with multiple subunits, we have to distinguish the different
possibilities, analogous to our enzyme with multiple binding sites in Section 2.3.
Let us consider a channel with two subunits, with possible states S00 (both subunits
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closed), S10 (one of the two subunits open, so there are two possibilities here), and
S11 (both gates closed), with dynamics specified by the scheme

S00
2α

β
S10

α

2β
S11.

Denoting the fractions of channels with zero, one or two subunits open by x0, x1
and x2 respectively, we have

dx0
dt

= βx1 − 2αx0, (2.5.3)

dx2
dt

= αx1 − 2βx2. (2.5.4)

The dynamics of x1 is prescribed by the requirement x0 + x1 + x2 = 1. If we
denote the total fraction of open subunits by n, then we know that x0 = (1− n)2,
x1 = 2n(1− n), x2 = n2 if we assume that subunits open and close independently
from one another. This change of variables yields

dn

dt
= α(1− n)− βn, (2.5.5)

so again in the form (2.5.2) for a channel with a single gate. This is true more
generally: if there are k subunits in a channel, then xk = nk. In the Hodgkin-Huxley
equations, it is assumed that a channel only pumps ions through its subunits if all
the subunits are open, giving a term n4 for a four subunit K+ channel.

For Na+ channels, there is a further complication, since these may be in either
an active or inactive state. We model this using two kinds of subunits, three m
units for the gate and one h unit for the activation/inactivation. The activation
process is characterized by activation and inactivation rates γ and δ. We now have
to keep track of double the number of channel types (open/closed, active/inactive).
Transitions between the types follows the scheme

S00
3α

β
S10

2α

2β
S20

α

β
S30

γδ

S01

γδ

S11

γδ

S21

γδ

S31
3α

β

2α

2β

α

3β

As before, we use variables xij for the fraction of channels in state Sij . The system
in xij may be simplified by changing variables as before, e.g. by setting x00 =
(1−m)3(1− h) for the first variable. The result is two linear differential equations
for m and h,

dm

dt
= α(1−m)− βm, (2.5.6)

dh

dt
= γ(1− h)− δh (2.5.7)

A channel is now assumed to let through Na+ ions only if it is both active and all
of its channels are open, resulting in a term m3h in the Hodgkin-Huxley equations.

To complete the Hodgkin-Huxley equations, we need a little electrostatics. The
capacitance of an insulator (such as a membrane) is defined as the ratio of the charge
across the capacitor to the voltage potential required to hold the charge, i.e.,

Cm =
Q

V
.
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Figure 2.4.

Since the current I is equal to dQ
dt , we find that an ion current across a membrane

gives rise to a voltage change according to

Cm
dV

dt
= I.

Using (2.5.1) and the assumptions on the potassium and sodium channels discussed
above, we find

Cm
dV

dt
= −gKn

4(V − VK)− gNam
3h(V − VNa)− gL(V − VL) + Iapp. (2.5.8)

Here, the gL(V − VL) is a term in which the other currents, for instance Cl– ions,
are lumped into a leakage current, and VK, VNa and VL are the Nernst potentials
for the respective (lumped) ions. Note the n4 and m3h terms in this equation. The
complete Hodgkin-Huxley model is now given by (2.5.5), (2.5.6), (2.5.7) and (2.5.8).
The only thing still missing in this model is the dependence of α and β on the voltage
(which differs for each ion type). If you have become interested in the details, we
refer to (Cronin, 1987; Keener and Sneyd, 2009) for a more thorough discussion of
the Hodgkin-Huxley model. The original paper by (Hodgkin and Huxley, 1952) is
also one of the most outstanding examples of experimental and theoretical work in
mathematical physiology, and was awarded a Nobel Prize.

From this modelling discussion, it is clear that the system of equations that form
the Hodgkin-Huxley model is too complicated to allow direct analysis. Consider
instead the so-called Fitzhugh-Nagumo system

ε
dv

dt
= f(v)− w, (2.5.9)

dw

dt
= v − γw, (2.5.10)

with f a cubic, specified graphically in Figure 2.4. These equations were proposed
as a somewhat caricatural simplification of the Hodgkin-Huxley equations, and is
much more accessible.

Clearly, (v, w) = (0, 0) is an equilibrium, which we call the rest state. The
Jacobian matrix in this point has the sign pattern(

− −
+ −

)
so the trace is negative and the determinant positive, implying that the rest state
is locally asymptotically stable. We emphasise the word “locally”, because, as we
are going to show, the domain of immediate attraction is rather small. Yet the
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Figure 2.5.

domain of ultimate attraction is very large (presumably the entire plane). The key
feature is that perturbations of the rest state may trigger a large excursion before
the system settles back into the rest state. This is called excitability and it is a
characteristic feature of the nerve pulse.

When ε � 1, the variable v will change fast as long as f(v) 6= w. Note that v
will increase below the graph of w = f(v) and decrease above that graph. Hence
fixing w, we find the dynamics indicated in Figure 2.5. Slow changes in w are
governed by

ẇ = f−1(w)− γw,

but one should keep in mind that f−1 is, on some of its domain, multivalued. In
particular it follows that w increases to the right of the line w = v

γ and decreases
to the left of that line.

The function f is decreasing for −∞ < v < v, where v is such that f assumes
its local minimum w for v = v, increasing for v < v < v̄, where v̄ is such that f
assumes its local maximum w̄ for v = v̄, and decreasing again for v̄ < v < ∞. Let
us call the corresponding inverse functions f−1

− , f−1
0 , and f−1

+ .
A key difference with the examples studied so far is that there are two phases

of fast dynamics. Indeed, while w increases according to
ẇ = f−1

+ (w)− γw,

it will come close to w̄, where v = f−1
+ (w) ceases to be an attractor for the fast

v-dynamics (and in fact also ceases to exist). This then triggers a fast crossing
to the branch v = f−1

− (w), after which the slow dynamics resumes with a gradual
decay of w according to

ẇ = f−1
− (w)− γw,

towards the steady state w = 0.

Exercise 2.5.1. Verify that the orbit in the (v, w) plane leads to a graph of v
as a function of time as depicted in Figure 2.6. When interpreting v as the voltage
across the membrane surrounding the axon, this corresponds to a single nerve pulse
being triggered.

Now let us introduce a positive parameter w0 and change (2.5.9) into

ε
dv

dt
= f(v)− w + w0, (2.5.11)

dw

dt
= v − γw. (2.5.12)

(Physiologically, this corresponds to forcing a current through the membrane.)
Once we have increased w0 such that the steady state lies on the middle branch

v = f−1
0 (w), it is no longer an attractor. Simple graphical considerations suggest

convergence towards a closed orbit in which slow and fast dynamics alternate (see
Figure 2.7). Physiologically this corresponds to repetitive firing: the axon generates
a never ending train of pulses in response to the applied current (as indeed it does
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in reality!). The mathematical jargon for such periodic behaviour with alternating
slow and fast phases is “relaxation oscillation”, see (Grasman, 1987).

Exercise 2.5.2. Use hand waiving to derive that

T =

∫ w̄

w

{
1

f−1
+ (w)− w

− 1

f−1
− (w)− w

}
dw +O(ε)

where T is the period of the oscillation.

With a substantial amount of work one can verify that the transition from a
stable rest state to a stable relaxation oscillation with large amplitude is by way
of a subcritical Hopf bifurcation. The abrupt major attractor change that occurs
when w0 passes the critical value is sometimes called a “hard” bifurcation (see
Figure 2.8).

amplitude

w0

stable

unstable

stable

unstable
Hopf

Figure 2.8.
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2.6 Encore: using the Law of Mass Action to formulate
differential equations and using a conservation law to
check whether or not you made mistakes

Polymers are large molecules built from identical units, called monomers, in
a chain-like manner. Let us denote a polymer consisting of k monomers by Ck.
Assume, for simplicity, that changes in the size k can only occur by addition of a
monomer or by fragmentation into two parts, one of size k− 1 and one a monomer.
Schematically,

Ck−1 + C1

θ+⇌
θ−
Ck

Assume, additionally, that θ± are independent of k.

Exercise 2.6.1. (i) Use the Law of Mass Action to formulate a countable
system of ODEs for the concentrations ck

(ii) Formulate a conservation law and use this law to check your answer to
(i).





Chapter 3
Phase plane analysis of prey-predator systems

3.1 The story of d’Ancona and Volterra
During World War I, Italian fishermen were forced to keep their boats ashore

of the Adriatic sea, because of the danger of being sunk. With relief they resumed
fishing after the war ended. Understandably, it vexed them to discover that the
percentage of shark-like predatory fish (which didn’t fetch an attractive price) in
the haul had increased considerably compared to the pre-war period.

Hearing their complaints, the biologist d’Ancona wondered about an explana-
tion. Unable to produce one, he posed the puzzle to his father in law, a famous
mathematician named Volterra, who produced, first of all, the system of two
differential equations

dv

dt
= av−bvp, (3.1.1)

dp

dt
= dvp− cp. (3.1.2)

Here, v stands for victim (the prey) and p for predator, and a, b, c and d are
non-negative parameters.

Exercise 3.1.1. Explain the modelling assumptions underlying this system.
In particular, explain the assumptions underlying the form of the terms.

Exercise 3.1.2. Draw the null-clines (i.e., zero isoclines). Indicate the steady-
states by dots.

Exercise 3.1.3. Express the non-trivial steady state in terms of the parameters
a, b, c and d.

Exercise 3.1.4. The effect of fishing can be captured by replacing a by a− µ
and −c by −c− µ. Explain the rationale underlying this statement.

Exercise 3.1.5. Reproduce Volterra’s explanation of the change in predator
and prey fish before and after WOI.

Exercise 3.1.6. When spraying insecticides to protect a crop from herbivorous
insects, one should verify first whether the herbivores are currently kept in check
(perhaps, from the farmer’s point of view, at an unacceptably high density) by a
natural enemy which is sensitive to the insecticide too. Why?

25
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3.2 The phase portrait of the Volterra-Lotka system
The zero-isoclines divide the positive quarter of the (v, p)-plane into four

regions.
Exercise 3.2.1. Give a schematic picture of the direction of the flow by putting

arrows on the zero-isoclines, and in each of the four regions (in the spirit of wind-
directions: north-east, etc).

At a glance we see that orbits have a tendency to spin around the non-trivial
steady state, but we can’t see whether they spiral inward or outward. In an attempt
to determine this very close to the steady state, we use linearisation.

Exercise 3.2.2. Compute the Jacobian matrix corresponding to the non-trivial
steady state. Compute the eigenvalues of this matrix. What do you conclude?

In fact, the Volterra-Lotka (after the American mathematical biologist Lotka,
who formulated exactly the same system of differential equations completely
independently at about the same time) phase portrait is rather special: it consists of
a collection of nested closed orbits. To demonstrate this, the function L : R2

+ → R
defined by

L(v, p) = dv − c log v + bp− a log p (3.2.1)
is most helpful. The point is that L is a constant of motion (also called a conserved
quantity), which means that the value of L does not change along an orbit of (3.1.1)–
(3.1.2). In other words: orbits are contained in level sets of L.

We have to do three things:
(1) verify that indeed L is a constant of motion;
(2) explain how one derives L from (3.1.1)–(3.1.2) (this in order to explain how

one could come to the idea of studying L in relation to (3.1.1)–(3.1.2));
(3) use L to show that the orbits of (3.1.1)–(3.1.2) are closed curves.

Exercise 3.2.3. Compute
d

dt
L(v(t), p(t))

for an arbitrary solution t 7→ (v(t), p(t)) of (3.1.1)–(3.1.2). Does it follow that L is
a constant of motion?

Exercise 3.2.4. With (3.1.1)–(3.1.2) as a starting point, we compute
dp

dv
=
dp/dt

dv/dt
=

(−c+ dv)p

(a− bp)v
=

− c
v + d
a
p − b

,

(while simply ignoring that the denominator does, occasionally, become zero). Use
separation of variables to solve this differential equation. What do you conclude?

Exercise 3.2.5. Draw the graph of the function v 7→ dv − c log v. Conclude
that the equation

dv − c log v − c+ c log
c

d
= ε

has, for given ε > 0, exactly two solutions v±(ε). Repeat this analysis for p 7→
bp− a log p. Next, consider for given θ > 0 the equation

L(v, p)− L
( c
d
,
a

b

)
= θ.

Check that, for any ε with 0 < ε < θ the four points (v±(ε), p±(θ − ε)) are solutions.
Thus, we obtain four paths, parametrised by ε, on which L takes the constant value
L
(
c
d ,

a
b

)
+ θ. Check that, by inclusion of the limiting points for ε → 0 and ε → θ,

we obtain a closed curve.
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Figure 3.1.

So the Volterra-Lotka model predicts persisting prey-predator oscillations with
an amplitude determined by the accidentalness of initial conditions. Yet, in
section (3.1), Volterra’s answer to d’Ancona was based on steady state values.
Isn’t there a discrepancy?

Exercise 3.2.6. Show that the average values of v and p over one period are
equal to the steady state values, i.e.,

1

T

∫ T

0

v(τ) dτ =
c

d
, and 1

T

∫ T

0

p(τ) dτ =
a

b
,

where T is the period (corresponding to one full turn of (v, p) along a closed orbit).
Hint: divide the first equation of (3.1.1)–(3.1.2) by v and the second by p; use

that d
dt log v(t) =

1
v(t)

dv
dt (t) and that v(T ) = v(0) and analogue identities for p.

We conclude with two side remarks, formulated as exercises.

Exercise 3.2.7. Show that the trivial steady state is a saddle point.

Exercise 3.2.8. Show that the number of parameters in (3.1.1)–(3.1.2) can be
reduced from 4 to 1 by scaling of v, p and t.

3.3 The effect of limitations in prey growth
The Volterra-Lotka model gives an oversimplified description of prey-predator

interaction. Yet it is a convenient reference point for the incorporation of additional
mechanisms. In particular, the structural instability, as exemplified by the neutral
stability of the steady state and the family of periodic orbits, allows us to to classify
such mechanisms as either stabilising or destabilising, depending on whether the
steady state in the modified model is (locally asymptotically) stable or unstable.
In this and some of the following sections, we discuss various modifications in this
spirit. Meanwhile, we enlarge our arsenal of phase plane techniques and train their
use.

The so-called logistic equation
dv

dt
= av − ev2 = av

(
1− e

a
v
)

(3.3.1)

describes, in a phenomenological manner, that, even in the absence of a predator,
prey growth may be limited, with prey population size settling down at the so-called
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carrying capacity
ṽ =

a

e
. (3.3.2)

The nonnegative parameter e describes the detrimental effects of crowding.
When −c + dṽ < 0, the predator population declines even at the maximal

sustainable level of prey. We expect that the predator is doomed to go extinct.

Exercise 3.3.1. Determine the phase portrait of the system
dv

dt
= v(a− ev − bp), (3.3.3)

dp

dt
= p(−c+ dv), (3.3.4)

for parameter combinations such that

− c+ d
a

e
< 0. (3.3.5)

In particular, draw the isoclines and a “wind-direction” vector field. Show by
geometric arguments that the steady state (ae , 0) is globally asymptotically stable.
Interpret this conclusion biologically.

When, on the other hand, we have the opposite inequality,

− c+ d
a

e
> 0, (3.3.6)

the predator population will start growing when introduced in an environment in
which the prey is at its carrying capacity. We say that the predator can invade
successfully.

Exercise 3.3.2. Assume (3.3.6). Show that
(i) (ae , 0) is a saddle point;
(ii) the nontrivial steady state(

c

d
,
ad− ec

bd

)
is biologically meaningful, and that it is either a stable node or a stable
spiral.

Next, draw the isoclines and the wind-direction field for this case.

In fact, the nontrivial steady state is globally asymptotically stable when (3.3.6)
holds. In other words, orbits starting away from the steady state spiral in towards
it. To demonstrate this, we use an auxiliary function (a slight modification of L
introduced in the previous section), which is decreasing along orbits, and which
achieves its minimum in the nontrivial steady state. Such functions are called
Lyapunov functions and often denoted by the symbol V . There is no general method
for their construction (but for some mechanical systems one can use the energy, for
some chemical systems the entropy, and for some genetic systems the mean fitness),
one has to rely on luck, intuition, experience and perseverance.

We define V : R2
+ → R by

V (v, p) = d
(
v − c

d
log v

)
+ b

(
p− ad− ec

bd
log p

)
. (3.3.7)

Exercise 3.3.3. Show that V decreases along orbits of (3.3.4). More precisely,
show that

d

dt
V (v(t), p(t)) ≤ 0

for an arbitrary solution t 7→ (v(t), p(t)) of (3.3.4), with equality if and only if
v(t) = c

d .
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From this information, one can deduce that every orbit approaches the
nontrivial steady state. The precise argument is a bit technical but goes roughly
like this: points in the ω-limit set1 of an arbitrary orbit must lie in the same level
set of V and all orbits starting in such ω-limit points must lie in that same level set
too; only the nontrivial steady state satisfies these requirements (the appropriate
version of Lyapunov’s theorem goes by the name of LaSalle’s Invariance Principle,
see
http://en.wikipedia.org/wiki/Krasovskii-LaSalle_principle).

We conclude that density dependence in prey population growth is a stabilising
mechanism for prey-predator interaction.

3.4 Deriving the Holling type II functional response by
a time scale argument

The functional response is by definition the per predator per unit of time eaten
number of prey, usually as a function of prey density. The numerical response is the
per predator per unit of time produced number of offspring (as a result of eating
prey). A frequent assumption (which ignores reproduction delays, etc.) is that the
numerical response equals the functional response times a constant, the conversion
efficiency.

Exercise 3.4.1. What is the functional response in the Volterra-Lotka model?
What parameter combination corresponds to the conversion efficiency?

As the catching and “handling” of prey takes time and the digestive tract has
only limited capacity, the functional response should saturate at high prey density.
The so-called Holling type II functional response

v 7→ bv

1 + bβv
(3.4.1)

does indeed approach a limit 1
β for v → ∞. The aim of this section is to derive this

expression by a time-scale argument from a more complicated model in which we
distinguish two types of predators, those searching for prey and those busy handling
a prey caught earlier:

dv

dt
=av−bvs, (3.4.2)

ds

dt
= −bvs+ 1

β
(1 + η)h−cs, (3.4.3)

dh

dt
= bvs− 1

β
h −ch. (3.4.4)

Here s denotes the searching predators and h the handling predators, so p = s+ h.
Upon catching a prey, the predator turns from searching into handling. There is
a probability per unit of time of 1

β that the handling is completed, whereupon
the handling predator again turns into a searching one, but in addition produces
η = d

b offspring (which starts its life searching). Note that we may also say that
the handling time is an exponentially distributed random variable with mean β and
that the average energy content of a prey suffices to produce η predator.

1(v̄, p̄) belongs to the ω-limit set of (v(0), p(0)) iff there is a sequence tn → ∞ such that
(v(tn), p(tn)) → (v̄, p̄); clearly points on the same orbit have the same ω-limit set, so we also
speak about the ω-limit set of an orbit; if one considers sequences tn → −∞ one speaks about
the α-limit set; note that α is the first and ω the last character in the Greek alphabet.
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Exercise 3.4.2. Assume η, βa, βc and p0

v0
are all very small and of the same

order of magnitude (this means that very little predator can be made out of one
prey, that the handling time is negligible on the time scale of prey population growth
and expected length of time of a predator’s life, and that there are far less predators
than prey). Meanwhile, assume that bp0 is of the same order of magnitude as a
(this means that predation causes changes in prey density at the same time scale
as intrinsic prey population growth takes place). Perform a two-time-scale analysis
of (3.4.4) in the spirit of Chapter 2. In particular, derive the system

dv

dt
= av − bvp

1 + bβv
,

dp

dt
= −cp+ dvp

1 + bβv
, (3.4.5)

for changes in the prey and predator densities at the slow time scale.

3.5 The destabilising effect of a saturating functional
response

Exercise 3.5.1.
(i) Draw the isoclines and the wind-direction-field for system (3.4.5), assum-

ing that d
bβ > c (why?);

(ii) Show that the nontrivial steady state of (3.4.5) is unstable;
(iii) Formulate a conclusion in biological terms (taking the title of this section

as a hint).

Remark 3.5.1. It is a somewhat delicate task to determine where the orbits
of (3.4.5) ultimately go. When prey density gets very large, the predator density
satisfies approximately

dp

dt
=

(
d

bβ
− c

)
p,

so p grows exponentially with exponent d
bβ − c. When d

bβ − c < a, the prey will
escape from predator control, in the sense that both grow exponentially but the
predator at a slower rate. When, on the other hand, d

bβ − c > a, the predator
overtakes the prey and causes its decline. So then cyclic alternations of growth and
decline of each of the two species continue indefinitely.

3.6 The Rosenzweig-MacArthur model
Combining the two modifications of Volterra-Lotka discussed so far, we obtain

the system

dv

dt
= v

(
a− ev − bp

1 + bβv

)
,

dp

dt
= p

(
−c+ dv

1 + bβv

)
. (3.6.1)

Both this system, and the graphical stability criterion that we shall derive in the
next exercise, carry the names of Rosenzweig and MacArthur. The system (3.6.1)
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is of the form
dv

dt
= v (h(v)− pϕ(v)) ,

dp

dt
= p (−c+ ψ(v)) . (3.6.2)

with
(i) h decreasing and h(K) = 0 for some K > 0;
(ii) the functional response v 7→ vϕ(v) is increasing;
(iii) the numerical response v 7→ ψ(v) is increasing;

to which we add
(iv) ψ−1(c) < K,

to avoid that the predator is doomed to go extinct. Systems of the form 3.6.2 are
sometimes called Kolmogorov-type prey-predator systems (see (Freedman, 1980)).

v

p

ψ−1(c)

p = h(v)
ϕ(v)

Figure 3.2.

Exercise 3.6.1.
(i) Demonstrate that (3.6.2) has exactly one steady state with both species

present.
(ii) Compute the Jacobi matrix in this steady state and show that the

determinant is positive.
(iii) Relate the sign of the trace of the Jacobi matrix to the sign of the

derivative of v 7→ h(v)
ϕ(v) in the steady state value of v. So, in other words,

to whether the prey isocline p = h(v)
ϕ(v) is decreasing or increasing in the

steady state.
(iv) Formulate carefully how the stability of the steady state can be read off

from the isocline picture.
(v) Check the result of (iv) against your findings in the sections 3.3,

system (3.3.4) and 3.5, system (3.4.5).
(vi) Use Poincaré-Bendixon theory (Amann, 1990; Perko, 2001; Hirsch et al.,

2004) (and also the Appendix) to show that whenever
– the internal steady state is unstable,
– orbits stay bounded (i.e., cannot escape to infinity),

there must exist at least one limit cycle.
(vii) Apply the results of (iv) and (vi) to system (3.6.1).
(viii) What can you say about Hopf bifurcation (see the Appendix) for

system (3.6.1)?

For the following exercise, consult Rinaldi and Muratori (1992).
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d−βbc +
1
βb

Figure 3.3.

Exercise 3.6.2. Show that under the scaling τ = ct, x = bβv, y = b
ap,

system (3.6.1) transforms into

ε
dx

dτ
= x

(
1− x

K
− y

1 + x

)
dy

dτ
= y

(
−1 + θ

x

1 + x

)
, (3.6.3)

where ε = c
a , θ = d

bβc , and K = bβa
e . Assume that θ > 1 and K > 1 + 2

θ−1 .
Sketch the phase portrait for ε � 1 (this is quite subtle!). What does this

assumption mean? Summarise your conclusions, i.e., interpret the phase portrait
in biological terms.

Hints: the rescaling τ = εt (where t differs from the original t) can be used to
show that on the fast time scale t the y-component is more or less constant while
x varies according to

dx

dt
= x

(
1− x

K
− y

1 + x

)
(3.6.4)

where y is a parameter. By plotting the curve

y = (1 + x)
(
1− x

K

)
(3.6.5)

in the positive (x, y)-quadrant, one can get an overview of the steady states
of (3.6.4), and their stability, in dependence on y.

The slow dynamics are described by
dy

dτ
= y

(
−1 + θ

x(y)

1 + x(y)

)
, (3.6.6)

with x(y) a stable steady state of (3.6.4). All we really need to know is the sign of
the right hand side of (3.6.6), in order to decide whether we move up (increasing
y) or down (decreasing y) along a curve of stable steady states of (3.6.4). If along
the curve the stability is lost, there is a switch back to the fast dynamics.

Exercise 3.6.3. Summarise (in a mixture of mathematical and biological
terms) your knowledge about (3.6.1). You may use the information (which we
now provide) that it has been proven that (3.6.1) admits at most one limit cycle
(the proof is far from easy). A convenient way to sketch how the qualitative
behaviour depends on the parameters is to draw the diagram as in Figure 3.3,
and to describe the dynamical behaviour (in biological terms) for each of the three
parameter domains.



Chapter 4
Movement in space

Our view of the world is structured by time and space and, we believe, this reflects
reality: to interact, entities have to be at the same position at the same time. So
far we concentrated on changes in time, but now we are going to incorporate spatial
position. In the present chapter we only consider independent particles (molecules,
bacteria, . . .) but in the next we shall incorporate interaction.

4.1 Flux
The density of bacteria on an agar plate is, by definition, the number of bacteria

per unit of area. Likewise, the concentration of a chemical substance in solution
is the number of molecules per unit of volume. The density or concentration in a
point is an idealisation, corresponding to the thought experiment of shrinking the
area or volume to zero while focusing our attention on the point. We then write
u = u(t, x) and consider u as a smooth function of time t and position x. Note that
we need to integrate u(t, ·) over space to obtain an amount . If the total number is
conserved, but the individual particles move, u(t, ·) changes with time. How? How
does redistribution over space manifest itself in changes in density/concentration?

Let us first consider a one-dimensional space (one might think of a river) and
deterministic motion with prescribed velocity c = c(x) (one might think of algae
that float with the streaming water). The flux at x is the number of organisms that
pass x, say from left to right, per unit of time. We denote the flux by J = J(t, x).
Clearly

J(t, x) = c(x)u(t, x), (4.1.1)
as is indeed also suggested by the dimensional identity

number
time =

length
time · number

length . (4.1.2)

Equally clearly,
d

dt

∫ b

a

u(t, x) dx = J(t, a)− J(t, b), (4.1.3)

or, in words, if neither creation nor annihilation occurs, then the total number of
organisms between a and b changes only by way of flux in at a and flux out at
b (convince yourself that this terminology is appropriate when a < b and c > 0
or when a > b and c < 0, but should be adjusted otherwise). According to the
fundamental theorem of calculus,

J(t, b)− J(t, a) =

∫ b

a

∂J

∂x
(t, ξ) dξ. (4.1.4)

33
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Hence, ∫ b

a

(
∂u

∂t
(t, ξ) +

∂J

∂x
(t, ξ)

)
dξ = 0, (4.1.5)

and as this holds for arbitrary a and b, the integrand must be zero (see Lemma
of DuBois-Reymond (Lin and Segel, 1998)), and so in combination with (4.1.1) we
arrive at the conservation law

∂u

∂t
+

∂

∂x
(cu) = 0. (4.1.6)

Two important variations on this theme are
(i) in higher space dimension the flux J is a vector and the conservation law

takes the form
∂u

∂t
+∇ · J = 0, (4.1.7)

with the divergence of the flux ∇ · J defined by

∇ · J =

n∑
i=1

∂Ji
∂xi

(4.1.8)

(more explanation below).
(ii) The motion of pollen that the botanist Brown observed under his

microscope was very irregular. So much so that it became the prototype
for random motion. A phenomenological description takes Fick’s law

J = −d∇u, (4.1.9)
as the constitutive relation that links the flux J to the density u
by requiring that J is proportional to the gradient ∇u, with d a
constant of proportionality called the diffusion constant, since when we
substitute (4.1.9) into (4.1.7) we obtain the diffusion equation

∂u

∂t
= d∆u, (4.1.10)

where ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplacian. Note that d has dimension
(length)2/time.

In the next subsection we shall provide various derivations that yield a quasi-
mechanistic underpinning of Fick’s Law. We conclude this subsection with a few
observations on the notion of flux in higher dimensions.

Consider a point in two-space. If we want to talk about the traffic of particles
in that point, we need to specify a direction. This we do by choosing a unit vector
m. The flux J at the point is a vector such that, whatever choice of m, the number
of particles crossing per unit of time a straight line L perpendicular to m in an
interval of length h centred at the focus point equals

J ·m h+ o(h) as h→ 0.

For deterministic motion we have just as in the one-dimensional case that the flux is
the product of the velocity, which is now a vector, and the density (so in particular,
the traffic is maximal in the direction of the velocity and zero in the direction
perpendicular to the velocity).

In the present context, the analogue of the fundamental theorem of calculus is
the Divergence Theorem ∫

Ω

∇ · F dA =

∫
∂Ω

F · nds, (4.1.11)

where n is the outward pointing unit vector (outward normal) perpendicular to the
boundary ∂Ω of the domain Ω.
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h

uleft

uright

Figure 4.1.

In three dimensions, one replaces L by a plane and the interval of length h by
a subset of this plane of area h. The Divergence Theorem now reads∫

Ω

∇ · F dV =

∫
∂Ω

F · ndS, (4.1.12)

and is usually called Gauss’ Theorem.
Note that if we substitute Fick’s Law (4.1.9) into the identity of the Divergence

or Gauss’ Theorem, we obtain ∫
Ω

∆u =

∫
∂Ω

∂u

∂n
. (4.1.13)

4.2 Various ways to motivate Fick’s Law
Derivation 1 Consider one-dimensional space and suppose that at every point

particles move at speed c, but half of them to the left and half to the right. Consider
a point where the density jumps over a gap of length h from a constant density
uleft to a constant density uright (see Fig. 4.1). In a time interval of length ∆t the
net transport to the right equals

1

2
(uleft − uright)c∆t.

So per unit of time 1
2 (uleft − uright)c is transported, which we write as

uleft − uright
h

1

2
ch.

When we now take the limit h→ 0 while assuming that
1

2
hc→ d,

we obtain
flux = −d∂u

∂x
.

The key point of this very debatable “derivation” is that it clearly shows that in
the limit we should have c → ∞. So, in a sense, we consider particles that move
infinitely fast but never can make up their mind about the direction in which they
go.

Derivation 2 Imagine a particle moving on a one-dimensional lattice that we
represent by Z. We take time discrete and at every time step the particle moves to
the left with probability 1

2 and to the right with probability 1
2 . If the particle is at

position zero at time zero then the probability pi(n) that it is at position i at time
n is given explicitly by

pi(n) =

{ (
n

1
2 (n+i)

) (
1
2

)n for n+i even and − n ≤ i ≤ n,

0 otherwise.
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(Indeed, if the particle makes k steps to the right then it makes n− k steps to the
left, and to end up at i we should have k − (n− k) = i. Hence k = 1

2 (n+ i). The
probability that k out of n steps are to the right equals

(
n
k

)
( 12 )

k( 12 )
n−k =

(
n
k

)
( 12 )

n.)
If we now take i = x

λ and n = t
τ , let both λ and τ approach zero but in such

a way that λ2/2τ converges to d, then the binomial distribution converges to the
normal distribution (see e.g. Section 7.3 in (Chung, 1974), or better still, verify this
yourself)

p(t, x) =
1

2
√
πdt

e−
x2

4dt .

This, as we shall see later on, is the fundamental solution of the one-dimensional
diffusion equation. Note that one can interpret λ/τ as the speed and that this
speed grows beyond any bound.

Alternatively, we can shorten the distance between the lattice points as well as
the time intervals between steps. Then, by performing a formal Taylor expansion
for p we derive the diffusion equation directly from the random walk assumptions
by taking a limit. The next derivation is essentially of this type, but considers right
away both space and time as continuous variables.

Note once again that for independently moving particles we need not make a
distinction between the density of many particles and the probability density for
one particle.

Derivation 3 We postulate that

u(t+ τ, x) =

∫ ∞

−∞
u(t, x− y)

1

ε
ϕ
(y
ε

)
dy (4.2.1)

for a function ϕ satisfying ϕ ≥ 0,
∫∞
−∞ ϕ(y) dy = 1, and ϕ(−y) = ϕ(y). Then,

in particular,
∫∞
−∞ yϕ(y) dy = 0. The identity (4.2.1) states that between times t

and t + τ particles are moved over a distance y with probability density 1
εϕ
(
y
ε

)
and the symmetry guarantees that there is no preferred direction. A formal Taylor
expansion yields

u(t+ τ, x) = u(t, x) + τ
∂u

∂t
(t, x) + · · · , (4.2.2)

u(t, x− y) = u(t, x)− y
∂u

∂x
(t, x) +

1

2
y2
∂2u

∂x2
(t, x) + · · · . (4.2.3)

Substituting these expressions in (4.2.1) we find

τ
∂u

∂t
(t, x) =

1

2

∫ ∞

−∞
y2

1

ε
ϕ
(y
ε

)
ydy

∂2u

∂x2
(t, x) + · · · , (4.2.4)

=
ε2

2

∫ ∞

−∞
z2ϕ(z)dz

∂2u

∂x2
(t, x) + · · · (4.2.5)

If we now let both τ and ε converge to zero but in such a manner that
ε2

2τ

∫ ∞

−∞
z2ϕ(z) dz → d,

we arrive at
∂u

∂t
= d

∂2u

∂x2
. (4.2.6)

Exercise 4.2.1. Let u(t, x) satisfy (4.2.6). Show that u as a function of t
decreases where u as a function of x has a maximum, and that u as a function of
t increases where u as a function of x has a minimum. Conclude that the diffusion
equation has an equalising effect. Do you agree that this is already embodied in
Fick’s Law?
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time

distance

infinite speed

slowing down

Figure 4.2.

4.3 Transport by diffusion
The two observations
(1) dim d = (length)2

time ,
(2) the diffusion equation (4.2.6) is invariant under a scaling

t∗ = ε2t, x∗ = εx,

both motivate the following statements:
• the average distance over which diffusion transports particles in a given

time interval of length t is proportional to
√
dt

• the average time it takes to diffuse over a distance h is proportional to
h2/d.

Please contrast Figure 4.2 with the deterministic straight line distance =
velocity · time. It appears that the efficiency of diffusion as a transport mechanism
depends very much on the distance to be travelled! We need the circulatory blood
system for active transport of, among other things, oxygen. But the very last bit
of transport to the muscle tissue is by diffusion! See (Vogel, 1988, Chapter 8) for
some general considerations.

4.4 How to measure the diffusion coefficient
A capillary tube is inserted into a suspension of bacteria of known concentration

(see Fig. 4.3). After a prescribed period of time, the tube is extracted and the
number of bacteria that have entered is counted. Assume that the bacteria can
be described in terms of a concentration u, that they move randomly, that the
concentration at the mouth of the tube is always a constant, u0 say, that there are no
bacteria in the tube at the beginning of the experiment, and that the concentration
in the tube varies only in the length direction and not in the radial direction. A
mathematical formulation of these assumptions reads

∂u

∂t
= d

∂2u

∂x2
0 < x <∞, t > 0 (4.4.1)

u(t, 0) = u0 t > 0 (4.4.2)
u(0, x) = 0 x > 0, (4.4.3)

where x measures the distance down the (infinitely long, by debatable assumption)
tube.

Exercise 4.4.1. Derive the expression

d =
πN2

4u20A
2T

(4.4.4)
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Figure 4.3.

where N denotes the number of bacteria in the tube at time T and A the cross-
sectional area of the tube.

The way (4.4.4) is used is: for several choices of u0 and T the experiment is
performed and N is determined. The right hand side is then computed and if,
within reasonable accuracy, the value is the same for all u0, T and N combinations,
then we have confidence in the model and, in addition, the value serves as an
estimate for d. A typical value is 0.2 cm2/hr.

Hints and remarks: take as a starting point the fundamental solution
1

2
√
πdt

e−
x2

4dt ,

which we will derive later on in Section 5.1. The fundamental solution serves as
a building block: since the equation is linear, the superposition principle applies.
The fundamental solution is the solution of the diffusion equation with initial data
u0(x) = δ(x), the Dirac delta function. For instance, if we replace this initial
condition by the general condition u(0, x) = g(x), for x ∈ R, then

u(t, x) =
1

2
√
πdt

∫
R
e−

(x−y)2

4dt g(y) dy.

To make this formula applicable to (4.4.3), we need the trick of extending the
domain and the initial condition to (−∞,∞) in such a way that the boundary
condition automatically holds (essentially this is based on symmetry). The right
choice is

u(0, x) = 2u0, x < 0,

so that the value for x = 0 is (for t = 0, but in fact also for t > 0) exactly the
average of the value to the left and the value on the right. You should now arrive
at

u(t, x)

u0
=

2√
π

∫ ∞

x/
√
4dt

e−ξ2 dξ. (4.4.5)

To be clear: deriving (4.4.5) forms part of the Exercise! To derive (4.4.4), you may
want to use integration by parts.

4.5 About sojourn times
Suppose particles enter a compartment at a rate F . Let N denote the total

number of particles in the compartment. To find a relation between N and F
we need to know how long particles stay in the compartment. We assume that
this so-called sojourn time is a stochastic variable T with a continuous probability
distribution.

Exercise 4.5.1. Assume that both F and N depend on time t. Explain in
words the bookkeeping considerations underlying the identity.

N(t) =

∫ ∞

0

F (t− σ)P (T ≥ σ) dσ. (4.5.1)
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Exercise 4.5.2. Now assume that both N and F are constant. Let f denote
the probability density of T , so, in particular,

P (T ≥ σ) =

∫ ∞

σ

f(s)ds, and
∫ ∞

0

f(s) ds = 1.

Let
τ =

∫ ∞

0

σf(σ) dσ

denote the mean of T . Show that N = Fτ . Are you surprised? Finally, reflect a
moment on the possibility that τ = ∞. How would you interpret the result N = Fτ
in that case ?

4.6 How long does it take?
Suppose particles are released at x = L and removed upon arrival at x = 0. We

want to check that the rule of thumb formulated in Section 4.3 applies. To do so,
we use a trick: we consider a steady situation with continuous release and removal
rather than following an individual particle (the point being that in this manner
we let the equation take care of the statistics; this works since we are satisfied
with the average, the expected, time and do not aim to derive the full probability
distribution).

Exercise 4.6.1. Why should we supplement the steady state equation

d
∂2u

∂x2
= 0

with the boundary conditions
u(L) = u0 and u(0) = 0.

Compute the steady particle density, i.e., find a function u that satisfies the equation
as well as the boundary conditions. Express the influx Jin, i.e., the number of
particles that enter at x = L per unit of time, in terms of u0, d and L. Next,
compute the total number N of particles that are present.
How are Jin and N related (recall Section 4.2)? Compute the average sojourn time.
Check in particular that it does not depend on u0 (did you already anticipate this?)
and that it confirms nicely to the rule of thumb.

The efficiency of diffusion as a transport mechanism depends not only on size
but also on shape, in particular on the dimension (1, 2 or 3) of the domain. We
now want to demonstrate that it has advantages for a cell to arrange the chemical
“factories” along a two-dimensional membrane (incidentally, recent findings indicate
that a cell is partly an assembly-belt and that the traditional picture of a freely
floating 3D chemical soup is fundamentally flawed). In this connection it is also
good to realise that diffusion can only “work” if there is an excess of particles, as
any one of them may go the wrong direction and/or take ages before reaching the
target (if at all).

Exercise 4.6.2. Consider a radially symmetric two-dimensional setting. Show
that the conservation equation takes the form

r
∂u

∂t
= − ∂

∂r
(rJ),

that Fick’s law amounts to
J = −d∂u

∂r
,
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and that accordingly the diffusion equation reads
∂u

∂t
=

1

r

∂

∂r

(
dr
∂u

∂r

)
.

Next show that in three dimensions one obtains
∂u

∂t
=

1

r2
∂

∂r

(
dr2

∂u

∂r

)
.

For both these exercises, a hint: see Figure 4.4.
Now suppose the particle density is held at u0 > 0 on a circle/ball of radius L

and at zero at a circle/ball of radius a < L. Derive that the average sojourn time
is given by, respectively

1

2d

{
L2

(
log

L

a
− 1

2

)
+

1

2
a2
}
,

and
1

ad

{
1

3
L3 − a

2
L2 +

1

6
a3
}
.

Reflect on the difference for large L.

As a final note along this theme, let us consider phytoplankton cells drifing in
an ocean of depth L, undergoing random motion due to turbulent eddy diffusivity
in the ocean’s mixed layer, and about to be devoured by clams waiting at the ocean
floor. How long does a phytoplankton cell drift on average? Does it drift long
enough to able to grow, absorp light and take up nutrients, and divide? Gravity
is less of a problem than random motion by turbulent eddy diffusivity. The key
observation: let T (x) be the expected time till absorption (i.e., until it is eaten by
the big monster at the boundary). Then

T (x) = t+

∫ ∞

−∞
Φ(t, ξ − x)T (ξ)dξ + small correction

for t small and x not very near to the boundary [This requires some additional
explanation]. Differentiate with respect to t, and use that Φ satisfies the diffusion
equation to find

0 = 1 + d

∫ ∞

−∞

(
Φ(t, ξ − x)

)
xx
T (ξ)dξ + · · ·
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Integrate by parts twice and let t→ 0 to find
0 = 1 + T ′′(x).

The boundary condition are T (0) = 0 (the monster!) and T ′(L) = 0 (no flux,
reflecting). Then the explicit solution is given by

T (x) = −1

2

x2

d
+
L

d
x =

x

d

(
L− x

2

)
. < /0,

T reaches its maximum L2/2d at x = L, and for x = L/2 we have T = 3L2

8d . The
vertical eddy diffusivity in the ocean’s mixed layer is approximately 10−4 m2s−1,
so if the ocean is about 10 meters deep, it takes about 4 days to reach the bottom
and be devoured by the clams.

4.7 A remark on boundary conditions
The idea behind the boundary condition u(L) = u0 in Exercise 4.6.1 is that

to the right of x = L there is a reservoir of particles which is held at a constant
density. Alternatively, we might imagine a pumping device that somehow manages
to generate a constant influx. In that case we should put as boundary conditions

d
∂u

∂x
(L) = prescribed influx ∼ number

time
(note that, as we saw in Section 4.2, Derivation 1, the flux equals −d∂u

∂x if our
orientation is from left to right; but the domain is to the left of x = L, i.e., the
inward normal points to the left). One can redo Exercise 4.6.1 with the alternative
boundary condition and arrive, of course, at the same answer.

If we model animals that can move freely in some domain Ω, but cannot (for
whatever reason) leave Ω, we should put no-flux boundary conditions

∂u

∂n

∣∣∣
∂Ω

= 0.

These are also called (zero-)Neumann conditions and we omitted, as usual, the
factor d since when we put zero at the right-hand side it has no influence (but be
aware of this factor when the flux isn’t required to reduce to zero!). ∂Ω is called a
reflecting boundary.

If u is the density of plants and the diffusion term is used to describe the
dispersal of seeds, it may be that the complement of Ω is simply unsuitable habitat
in which no plant can grow. We may then impose (zero-)Dirichlet conditions

u
∣∣∣
∂Ω

= 0,

but should realise that such a form of heterogeneity of the world as a whole has
a strong impact on pattern formation (we shall return to this point in the next
chapter).

Mixed boundary conditions[
−(1− θ)d

∂u

∂n
+ θu

]
∂Ω

= 0

are, from a mathematical point of view, a one-parameter family that forms a
homotopy between no-flux and zero-Dirichlet and describe, from a biological point
of view, a partially reflecting boundary to a completely hostile exterior. Their
relevance in a biological modelling context is not clear at all.

In some diffusion problems arising in population genetics, the spatial variable
x is actually a fraction of the population carrying a certain allele. In such problems
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d depends on x and declines to zero when x approaches the boundary points x = 0
and x = 1. The classification of the mechanistic effect of the boundary is far more
subtle in such a situation, see (Feller, 1952, 1954, 1955).

Boundary conditions should be chosen on the basis of modelling considerations,
even though this is far less straightforward than one is tempted to believe. Much
mathematical work on biology inspired equations is wasted for the simple reason
that boundary conditions, in particular zero-Dirichlet conditions, are chosen out of
habit and without a critical reflection on their meaning and effect.



Chapter 5
Linear diffusion

5.1 The fundamental solution
The aim of this section is to derive the fundamental solution to the diffusion

equation
∂u

∂t
= d

∂2u

∂x2
, x ∈ R, t ≥ 0, (5.1.1)

subject to far out boundary conditions
u(t,±∞) = 0, t ≥ 0, (5.1.2)

using dimensional analysis. This technique often reveals the basic structure of
solutions to partial differential equations, by simply asking which (combination) of
the variables actually determine the dependent variable we want to study.

Let us model the concentration of some species living on the real line, dispersing
according to (5.1.1). Assume that at time t = 0, all individuals are in one particular
location x = 0. Since the number of individuals remains constant in time, we know
that for each t > 0, ∫ ∞

−∞
u(t, x)dx = 1. (5.1.3)

(Exploiting the linearity of the diffusion equation, we have just taken the liberty of
scaling u such that (5.1.3) holds.) A solution u is now completely determined by
all other quantities involved, so we are looking for a function f such that

u = f(t, x, d). (5.1.4)
We have already seen in Section 4.3 that (5.1.1) is invariant under the scaling
t∗ = ε2t, x∗ = εx. This suggests that we could write f as a function of x/

√
t.

However, x2/t is not dimensionless, and we therefore cannot expect solutions to be
dependent on x/

√
t only. Observe, however, from (5.1.1) that the diffusion constant

d has dimension (length)2/time. So the combination x/
√
dt is dimensionless.

On the other hand, u has dimension 1/length, so we at least need f to be of the
form wϕ(x/

√
dt) for some function w with dimension 1/length and a dimension-less

function ϕ. The conservation equation (5.1.3) now yields

1 =

∫ ∞

−∞
u(t, x)dx

=

∫ ∞

−∞
wϕ

(
x√
dt

)
dx

=

∫ ∞

−∞
w
√
dtϕ(ξ)dξ,

43
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ul0(t)

x/l0(t)

Figure 5.1. In the right time-dependent variables (x/l0(t) and
ul0(t) the fundamental solution of the diffusion equation has a
unique profile for all time.

where ξ = x/
√
dt. So w = 1/

√
dt seems the obvious candidate to make all

dimensions fit. In all, we look for a u of the form

u =
1√
dt
ϕ

(
x√
dt

)
.

This strategy of finding the structure of solutions by considering dimensions is
applicable much more generally (Barenblatt, 1996).

Note that if we define the time-dependent length scale l0(t) :=
√
dt, then

u =
1

l0(t)
ϕ

(
x

l0(t)

)
,

so if we plot ul0(t) versus x/l0(t), we find one curve for all time. See Figure 5.1. This
shows that this solution possesses the property of self-similarity: when scaling both
the spatial variable and the (population) density in an appropriate time-dependent
manner, nothing changes at all. In fact one can also find the form of the solution
by, from the very beginning, searching for a solution such that

u(t, x) = λαu(λt, λβx) for all λ > 0,

and constants α and β to be chosen suitably. The choice λ = t−1 then reveals that
we are looking for a function of one variable.

The great advantage of having to find ϕ(ξ) instead of f(t, x, d) is that the
(partial differential) diffusion equation (5.1.1) reduces to an ordinary differential
equation in which, moreover, neither the independent nor the dependent variable
carries a physical dimension.

Exercise 5.1.1. Show that, in the new variable ξ, (5.1.1) becomes
d2ϕ

dξ2
+
ξ

2

dϕ

dξ
+
ϕ

2
= 0. (5.1.5)

Integrating once, we find that
dϕ

dξ
+
ξ

2
ϕ = constant. (5.1.6)

Since u is symmetric with respect to reflection in 0, ϕ should be symmetric around
ξ = 0, and therefore dϕ

dξ = 0 at ξ = 0. The constant on the right hand side is
therefore zero. Using for instance integrating factors to solve (5.1.6), we conclude
that

ϕ(ξ) = Ae−ξ2/4, (5.1.7)
for some constant A.
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Using the well-known integral identity∫
R
e−ξ2dξ =

√
π.

we finally arrive at a solution of the diffusion equation, which we denote by Φ and
which is explicitly given by the formula

Φ =
1

2
√
πdt

e−
x2

4dt .

We call Φ the fundamental solution. Note that Φ > 0 for arbitrary x, no matter
how small we choose t > 0. This is yet another manifestation of the infinite speed of
propagation that is embodied in the diffusion equation. Also note that Φ is a Gauss
distribution with mean zero and variance 2dt. In particular, Φ is astronomically
small for large |x|. So it is not so clear how we should interpret the positivity of Φ.
We return to the question of the speed of propagation in Section 5.3 below. Finally
note that the variance goes to zero for t ↓ 0. So the distribution at t = 0 corresponds
to a unit (recall (5.1.3)) mass concentrated at x = 0. In the mathematically precise
sense of distributions, u(t, .) converges to the Dirac delta for t ↓ 0.

The reason Φ is called the fundamental solution is that by linearity of the
diffusion equation we may apply superposition: given initial data u(0, x) = u0(x),
the solution of the diffusion problem can be expressed as a convolution of the initial
data and the fundamental solution:

u(t, x) =

∫ ∞

−∞
Φ(t, x− y)u0(y)dy.

This section is greatly inspired by (Barenblatt, 1996, Section 2.1).

5.2 Separation of variables and spectral theory
If du

dt = ru we know that u grows exponentially when r > 0, while it decays
exponentially if r < 0. Now suppose that, additionally, u diffuses in a spatial
domain. Is the conclusion still true? Does u develop any spatial pattern? What is
the influence of boundary conditions? For simplicity we restrict our attention to a
one-dimensional spatial domain. To begin with we provide the diffusion equation

∂u

∂t
= d

∂2u

∂x2
+ ru (5.2.1)

with so-called no-flux boundary conditions
∂u

∂x
(t, 0) = 0 =

∂u

∂x
(t, L) (5.2.2)

at the endpoints x = 0 and x = L of the interval we consider.

Exercise 5.2.1. Explain why we can, without any loss of generality, either
take d = 1 or L = 1. Also explain why, for r > 0, it is no loss of generality to take
r = 1.

We choose to take d = 1, but to keep r as it is (so we scale the spatial variable
but we do not scale time).

Exercise 5.2.2. Show that, in order for
u(t, x) = a(t)ϕ(x)

to be a solution, we must necessarily have that, for some λ,
a(t) = constant · eλt,
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and
ϕ′′(x) = (λ− r)ϕ(x) (5.2.3)
ϕ′(0) = 0 = ϕ′(L). (5.2.4)

Exercise 5.2.3. Show that
(i) both ϕ(x) = cosµx and ϕ(x) = sinµx satisfy the differential equation

ϕ′′ = (λ− r)ϕ, provided λ− r = −µ2.
(ii) only ϕ(x) = cosµx satisfies, in addition, the left boundary condition

ϕ′(0) = 0.
(iii) in order for ϕ(x) = cosµx to also satisfy the right boundary condition

ϕ′(L) = 0, we should have

µ =
kπ

L
for some integer k ≥ 0.

(iv) finally, verify that (5.2.3)–(5.2.4) does not have a solution if λ− r > 0.

Exercise 5.2.4.
(i) Verify that, while making the preceding two exercises, you have deduced

that the following statement is true: for k = 0, 1, 2, . . .,

u(t, x) = erte−(
kπ
L )

2
t cos

(
kπ

L
x

)
(5.2.5)

is a solution of (5.2.1)—(5.2.2).
(ii) A very simple argument shows that of all these solutions the one with

k = 0 has the fastest growth (or the least decay, when r < 0) for t → ∞.
Formulate this argument.

(iii) An even simpler argument shows that the solution with k = 0 is “flat”,
i.e., has no spatial structure. Provide also this argument.

The spatial solutions found in (5.2.5) can be used as building blocks for a
representation of the general solution. By “general solution” we mean that we add
to (5.2.1)—(5.2.2) an initial condition

u(0, x) = u0(x), (5.2.6)
where u0 is a rather arbitrary function defined on [0, L]. Suppose that we can find
coefficients {bk}∞k=0 such that

u0(x) =

∞∑
k=0

bk cos

(
kπ

L
x

)
. (5.2.7)

Then, by the superposition principle, which holds since (5.2.1)—(5.2.2) is a linear
problem, and (5.2.5) we have

u(t, x) = ert
∞∑
k=0

bke
−( kπ

L )
2
t cos

(
kπ

L
x

)
. (5.2.8)

The justification of (5.2.7) is the subject of Fourier analysis.

Exercise 5.2.5.
(i) In the above introduction of Section 5.2 we formulated three questions.

Provide answers to the first two of these.
(ii) Alternatively to the no-flux boundary conditions (5.2.2), we can consider

the situation in which the concentration is held zero at the boundary
(imagine a big monster at the boundary that eats everything that gets
there):

u(t, 0) = 0 = u(t, L). (5.2.9)
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It follows that now

u(t, x) = ert
∞∑
k=1

ake
−( kπ

L )
2
t sin

(
kπ

L
x

)
. (5.2.10)

Answer the first two questions in the introduction of this section for this
situation. Hint: note that the term with k = 0 is now missing, as sin 0 = 0.

(iii) Give a (partial) answer to the third question in the introduction.
Exercise 5.2.6. Consider a rectangular domain Ω with sides of length L1 and

L2. Determine the eigenvalues and eigenvectors of the diffusion problem with no-
flux boundary conditions. Conclude that the modes are naturally numbered by a
pair of integers. If one orders the eigenvalues according to µk1,k2 , one obtains an
ordering of these pairs. Investigate the influence of the ratio L1/L2 on this ordering
of pairs.

5.2.1 A digression on general theory
For general bounded open subsets Ω of Rn, the eigenfunctions of the Laplace

operator provided with zero Dirichlet boundary conditions form an orthonormal
basis for L2(Ω), i.e., every element f of L2(Ω) can be written as

f =

∞∑
i=1

〈f, vi〉vi,

with ∆vi = λivi for i = 1, 2, . . . The eigenvalues λi are real and negative and λi →
−∞ as i → ∞. The eigenvalue λ1 is simple and the corresponding eigenfunction
v1 is positive (if we make the right choice; note that −v1 is also an eigenfunction,
so “is of one sign” is a slightly more accurate formulation). In fact, this positivity
characterizes v1: if λi 6= λ1 then vi cannot be chosen to be positive!

A cautionary note: often results are states for −∆ and then the eigenvalues are
positive and converge to +∞ for i→ ∞.

One can prove this result by first showing that a Green’s function exists, and
next using this function to convert the boundary value problem for the differential
equation into an integral equation. Then general spectral theory of compact
self-adjoint operators can be used. The positivity follows via the Krein-Rutman
theorem, which is the infinite-dimensional version of Perron-Frobenius.

The idea of a principal eigenvalue with corresponding positive eigenfunction
extends to operators of the form Lu = ∆u + ru where r is a function of x, rather
than a scalar. To determine the sign of the principle eigenvalue (in order to decide
about growth or decline) is a nontrivial task.

In the case of a one-dimensional spatial variable, this is part of the so-called
Sturm-Liouville theory. The no-flux boundary condition is treated just as easily as
the zero Dirichlet case (just compare the Exercises 5.2.4 and 5.2.5).

For higher dimensional Ω, one needs a bit of regularity of ∂Ω when dealing with
no-flux boundary conditions. It is remarkably hard to find a precisely formulated
result for the case of a no-flux boundary condition in the literature. After extensive
searching we found Chapter 11, §A in Smoller (1983).

Finally, note that there also exist variational characterizations of the eigen-
values and eigenfunctions and these are particularly useful for dealing with the
principal eigenvalue.

5.3 The asymptotic speed of propagation
This exercise is, in a way, a continuation of the preceding one. But now we

consider a biological population living in a very large domain. In fact, the domain



48 Linear diffusion

is so large that we use the plane R2 as an idealised mathematical description. So
consider

∂u

∂t
= d∆u+ ru, r > 0, (5.3.1)

where ∆u = ∂2u
∂x2

1
+ ∂2u

∂x2
2

and x = (x1, x2) ∈ R2. There are many situations in which
one wants to know how fast the area occupied by the population expands. We shall
derive the answer in two quite different ways. The first consists of analysing the
fundamental solution

u(t, x) =
1

4πdt
ert−

|x|2
4dt , where |x|2 = x21 + x22. (5.3.2)

describing the effect of a release at t = 0 at x = 0. The second relies on a search
for travelling plane wave solutions, i.e., solutions of the form

u(t, x) = w(x · ν − ct), (5.3.3)
where w : R → R defines the profile, the unit vector ν ∈ R2 the direction and the
real number c the speed.

Exercise 5.3.1. With u given by (5.3.2), for fixed x we have limt→∞ u(t, x) =
∞, while for fixed t we have lim|x|→∞ u(t, x) = 0. To find out where, roughly, the
transition from 0 to ∞ is located, we can consider limt→∞ u(t, x) under various
assumptions about how fast |x(t)| → ∞ as t→ ∞.

(i) Show that this limit equals zero if |x(t)|2 > (4dr + ε)t2 for some ε > 0.
(ii) Show that, on the other hand, this limit equals ∞ if |x(t)|2 < (4dr − ε)t2

for some ε > 0.
(iii) Give arguments in favour of the assertion: “the population expands with

speed 2
√
dr”.

(iv) Substitute (5.3.3) into (5.3.1) and derive an equation for w in which c
figures as an additional (to d and r) parameter. Why did the ν drop out?

(v) Try for w an exponential function. Express the exponent in terms of c, r
and d.

(vi) The biological interpretation requires w to be positive. This condition
leads to a lower bound for the wave speed c. Which bound is this?

(vii) Comparing answers to (iii) and (vi), you find that the minimal speed
of plane wave solutions coincides with the population expansion speed as
derived from (5.3.2). Can you give an intuitive argument why this is to be
expected? Hint: think in terms of fireworks that are ignited by fuses that
we make as long or short as we want but that can also, via connections,
be ignited by nearest neighbours.

(viii) Consider the plane wave solution with minimal speed. Check that at
a fixed position the population grows like e2rt, whereas a uniform (i.e.,
position independent) population grows as ert. Can you explain where
the difference stems from?

ζ

y

Figure 5.2.

We conclude this section with a more general look at the speed of propagation,
without using the travelling wave Ansatz. Let us try to zoom in at the transition
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region by choosing a fixed direction ζ of unit length, and write x = α(t)ζ + y, with
ζ · y = 0, where α is a “local” one- dimensional coordinate corresponding to the ζ
direction (Figure 5.2). With these assumptions, |x|2 = α2 + |y|2, and hence

u(t, x) =
1

4πdt
e
rt
(
1− α2

4rdt2

)
e−

|y|2
4dt .

For y in a bounded set, the last factor converges to 1 uniformly as t → ∞. We
would like to know at what speed α(t) has to progress such that the limit will be
different from both zero and infinity. Call this limit ψ. Put 1

4πdte
rt
(
1− α2

4rdt2

)
= ψ.

Then solving for α2, we find

α2 = 4drt2
(
1− log 4πdt

rt
− logψ

rt

)
,

and hence

α = 2
√
drt−

√
d

r
(log(4πdt)− log(ψ)) +O

(
log2(t)

t

)
.

We write this as α = m(t) + θ + O
(

log2(t)
t

)
, with θ = −

√
d
k log(ψ). The new

function m(t) satisfies the differential equation

ṁ(t) = 2
√
dr −

√
d

r

1

t
.

Thus we see that the speed at which α needs to proceed converges algebraically to
2
√
dr. Note that θ = −

√
d
r log(ψ) ⇐⇒ ψ = e−θ

√
r
d .

Since ζ is arbitrary, we conclude that the fundamental solution u decomposes
into plane waves travelling in all directions with speed 2

√
dr, and that these waves

describe the transition from inside the critically growing ball (ψ → ∞, θ → −∞),
to outside (ψ → 0, θ → ∞).

Travelling waves derive from the combination of a homogeneous medium and
time translation invariance. The waves (in particular, their speeds) are independent
of the direction ζ since the medium is isotropic.

On finite but large domains we still can use self-similar solutions (here travelling
waves) to describe the intermediate asymptotics when the details of the initial
condition do not matter anymore while boundary conditions do not yet influence the
dynamics in a substantial way. For “self-similar”, see Grindrod, box E (Grindrod,
1991), but also the book by Barenblatt devoted to self-similarity and intermediate
asymptotics (Barenblatt, 1996). For each c the equation is invariant with respect
to a group of transformations

T c
ε =

 x → x+ εc,
t → t+ ε,
u → u.

Hence, given a solution we can generate other (possibly, but not necessarily,
different) solutions by applying T c

ε . A similarity solution is one for which the
group orbit T c

εu consists of only one point.





Chapter 6
Reaction-diffusion equations

6.1 Introduction
It happens rarely that the changes in time of some quantity are due to just

one mechanism: as a rule several mechanisms are involved. In a finite time interval
the contributions of the various mechanisms are entangled. The great success of
differential equations as a modelling tool derives to a large extent from the fact
that in infinitesimal time intervals (by which we just mean that we let the length
of the considered time interval go to zero) the contributions to the rate of change
become independent and can simply be added. So in the modelling phase we can
concentrate on one mechanism at a time and derive the corresponding term for the
ultimate differential equation. The solutions of the differential equation then take
into account the joint, intertwined influence of all mechanisms.

In the present chapter we consider the system of equations

∂u

∂t
= d∆u+ f(u) (6.1.1)

where

u =


u1
u2
...
uk

 (6.1.2)

is a vector of, say, the concentrations of k different chemical substances that are
subject to both diffusion and reaction. The function f : Rk → Rk describes
the velocities and the stoichiometry of the various reactions. The Laplacian acts
componentwise and d is a diagonal matrix with elements d1, . . ., dk, so d∆u is the
vector 

d1∆u1
d2∆u2

...
dk∆uk

 (6.1.3)

If the space variable

x =


x1
x2
...
xm


51
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has m components, then

∆ui =
∂2ui
∂x21

+
∂2ui
∂x22

+ · · ·+ ∂2ui
∂x2m

(6.1.4)

In Chapters 2 and 3 we concentrated on the reaction part and ignored spatial
dependence. In Chapter 4 we concentrated on the diffusion part and ignored
reactions. At the level of formulation we do not need to invest further work: (6.1.1)
is obtained by adding the contributions to the rate of change of u. But at the
level of model analysis, things are not at all clear. What new phenomena can we
expect? And are the values of k and m important in this respect? And what about
boundary conditions?

Concerning the last point, we shall give most attention to two cases in which
the boundary conditions per se do not have any “forcing” influence:

• a bounded domain Ω with no-flux boundary conditions at ∂Ω
• Ω = Rm (with very mild boundedness conditions which are usually not

even mentioned)
(But for k = 1, m = 1, Ω = interval, we shall also study the case of zero Dirichlet
boundary conditions, to get at least a feel for the difference between no-flux and
zero Dirichlet boundary conditions.)

The new phenomena that we shall encounter are:
• pattern formation
• growth (or decay) by way of travelling waves, i.e., growth by way of spatial

expansion
But for mathematicians a very important point is also that we need to enlarge our
toolbox, as we enter into the realm of infinite dimensional dynamical systems (the
infinity aspect of a partial differential equation stems from the fact that x ∈ R, so
for each fixed x we in fact have a differential equation, coupled to all the others;
another way of looking at it is that, for fixed time t, solutions to partial differential
equations are functions u(t, ·), which depend on infinitely many x ∈ R). Due to the
smoothing effect of diffusion, not that much changes though. If we consider, for
instance, linearised stability, then, in a sense, the main difference is that we have
to analyse countably many matrices rather than just one.

6.2 Stability criteria for uniform steady states
A solution of (6.1.1) that is independent of time is called a steady state. If that

solution is also independent of spatial position, we speak about a uniform steady
state. If we denote both such a solution and the value it takes in Rk by ū, then we
should have

f(ū) = 0 (6.2.1)
For k = 1, we can find solutions of (6.2.1) by a graphical analysis and, in one go,
also determine their stability with respect to the reaction dynamics with spatial
dependence ignored. See Figure 6.1. The analytical criterion is

Df(ū) < 0 =⇒ ū is stable
Df(ū) > 0 =⇒ ū is unstable

For k > 1, (6.2.1) is short hand for k equations in as many unknowns and in the
absence of space dependence the stability can be determined from the eigenvalues
of the Jacobian matrix Df(ū):

• if <λ < 0 for all eigenvalues λ of Df(ū), then ū is (locally asymptotically;
in fact exponentially) stable
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f

us u s

‘s’ means stable
‘u’ means unstable

Figure 6.1.

• if <λ > 0 for some eigenvalue λ of Df(ū), then ū is unstable
The proof is based on linearisation, i.e., on an analysis of the linearised equation

dv

dt
= Df(ū)v (6.2.2)

combined with estimates for higher order terms (note that the proof of stability is
much easier than the proof of instability, since in general an unstable steady state
is a saddle point and there are solutions that actually do approach the steady state
for t→ ∞). The connection between (6.2.2) and the eigenvalue problem

Df(ū)v̄ = λv̄ (6.2.3)

is separation of variables (with variables t and the index indicating the component):
if we substitute

v(t) = ψ(t)v̄ (6.2.4)
with ψ(t) ∈ R and v̄ ∈ Rk into (6.2.2) we find that

ψ′

ψ
v̄ = Df(ū)v̄

which can hold only if ψ′/ψ is a constant (i.e., independent of t), say λ. Hence
ψ(t) = ψ(0)eλt, and (6.2.3) must hold.

Now, let us include the diffusion term and investigate its impact. If we
supply (6.1.1) with no-flux boundary conditions

∂u

∂n

∣∣∣
∂Ω

= 0 (6.2.5)

then solutions of (6.2.1) yield uniform steady states. The linearised equation now
reads

∂v

∂t
= d∆v +Df(ū)v (6.2.6)

∂v

∂n

∣∣∣
∂Ω

= 0 (6.2.7)

We apply, as before, separation of variables, but this time there are three variables:
t, x, and the index that indicates the component. So we substitute

v(t, x) = ψ(t)ϕ(x)v̄ (6.2.8)

with ψ(t), ϕ(x) ∈ R, and v̄ ∈ Rk. After division by ψ(t)ϕ(x) we obtain
ψ′(t)

ψ(t)
v̄ =

∆ϕ(x)

ϕ(x)
dv̄ +Df(ū)v̄ (6.2.9)

which requires that ψ′/ψ and ∆ϕ/ϕ are constant. Hence, as before, ψ(t) = ψ(0)eλt.
With foresight (inspired by Section 5.2) we call the constant value that ∆ϕ/ϕ takes
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−µ2, so require that

∆ϕ = −µ2ϕ (6.2.10)
∂ϕ

∂n

∣∣∣
∂Ω

= 0 (6.2.11)

and, in addition,
[Df(ū)− µ2d]v̄ = λv̄ (6.2.12)

Note the order: we can determine the relevant values of µ first by studying (6.2.10),
and only after that determine, for each relevant µ, the values of λ that satisfy

det
(
Df(ū)− µ2d− λI

)
= 0 (6.2.13)

with I the k × k identity matrix. Equation (6.2.13) is often called a dispersion
relation, as it links a characteristic of the time dependence, λ, to a characteristic
of the space dependence, µ.

We now first concentrate on (6.2.10)–(6.2.11) for bounded Ω. In Section 5.2 we
dealt with the case m = 1, d = 1, Ω = [0, L], and found that µ should be of the
form

µ =
kπ

L
, k = 0, 1, 2, . . . (6.2.14)

This generalises in the sense that for

µ0 = 0 (6.2.15)

we have a solution ϕ = constant and that there exist µ1, µ2, . . ., with µi+1 > µi for
i = 0, 1, 2, . . ., with corresponding λi determined by the dispersion relation (6.2.13),
for which (6.2.10)–(6.2.11) has a nontrivial solution while there is no such solution
for any other value of µ. The mathematical background of this result has various
facets (see e.g., (Renardy and Rogers, 1993)):

• elliptic differential equations
• self-adjoint operators with compact resolvent
• positivity

Unless Ω is symmetric, for instance a rectangle in R2, it is not feasible to
determine the µi for i ≥ 1 explicitly. But the fact that we know that µ0 = 0 is the
smallest of all µi is often very helpful!

In the special case k = 1, i.e., a scalar equation, (6.2.13) reads

λ = Df(ū)− dµ2

and it follows that
• for every µ there is exactly one λ, which is real
• the λ’s are ordered exactly as the −µ2

• λ = Df(ū) is the largest
The so-called Principle of Linearised Stability, see the “Theorem” below, now
implies that ū is exponentially stable if Df(ū) < 0 and unstable if Df(ū) > 0
(we often formulate this as: ū is linearly stable iff Df(ū) < 0).

“Theorem” (Principle of Linearised Stability)
(i) if for every eigenvalue −µ2 of the diffusion problem with no-flux boundary
conditions, every eigenvalue λ of Df(ū) − µ2d has negative real part, then ū is a
(locally exponentially) stable steady state.
(ii) if for some eigenvalue −µ2 of the diffusion problem with no-flux boundary
conditions, some eigenvalue λ of Df(ū) − µ2d has positive real part, then ū is an
unstable steady state.

Several questions now come to mind:
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Figure 6.2.

• if k > 1 and all eigenvalues of Df(ū) have negative real part, does it
follow that <λ < 0 for all λ that satisfy (6.2.13) for some µ = µk? The,
perhaps surprising, answer is: NO. It was Alan Turing’s great idea that
diffusion driven instability is possible in the case of systems of equations
provided the diffusion constants of the various components are sufficiently
different. In Section 6.6 you shall demonstrate this in detail. The bottom
line is that pattern formation takes place when reaction-stable uniform
steady states turn unstable due to differences in the diffusion constants of
the various components

• for k = 1 and no-flux boundary conditions, is it possible to have a stable
non-uniform steady state? The short answer is: no, unless you force it
by combining bistable dynamics with a special domain shape involving
almost disconnected components. In more detail:
(i) if m = 1, Ω = [0, L], then no, see Section 6.3
(ii) if m > 1, and Ω is convex, then no, see (Kishimoto and Weinberger,
1985)
(iii) if m = 2 and Ω is a “halter” domain (see Figure 6.2) and f has at least
two stable steady states, then yes, provided the connecting pipe line is thin
enough (the non-uniform steady state is close to different reaction-stable
steady state values in the two ball-like parts of the domain; see (Matano,
1979))

6.3 Scalar Reaction-Diffusion equations: global bi-
furcation theory based on phase plane analysis and
symmetry arguments

One reason to focus on steady states and their stability is that the corresponding
analysis is relatively easy. But for scalar equations there is a better reason: solutions
do converge to steady states. To demonstrate this, we introduce the Lyapunov
function

V (ϕ) =
1

2

∫ L

0

(ϕ′(x))
2
dx−

∫ L

0

F (ϕ(x))dx (6.3.1)

where
F (w) :=

∫ w

0

f(σ)dσ (6.3.2)

Let u = u(t, x) be a solution of
∂u

∂t
=
∂2u

∂x2
+ f(u) (6.3.3)

∂u

∂x
(t, 0) = 0 =

∂u

∂x
(t, L) (6.3.4)
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(Note that we scaled the spatial variable such that the diffusion constant d equals
1.) Then, performing a partial integration, and using the boundary conditions,

d

dt
V (u(t, ·)) =

∫ L

0

{
∂u

∂x
(t, x)

∂2u

∂t∂x
(t, x)− f(u(t, x))

∂u

∂t
(t, x)

}
dx

= −
∫ L

0

(
∂2u

∂x2
(t, x) + f(u(t, x))

)
∂u

∂t
(t, x)dx

= −
∫ L

0

(
∂u

∂t
(t, x)

)2

dx

≤ 0

This rules out the possibility of time-periodic solutions or any other kind of
persistent behaviour for which ∂u

∂t is not identically zero. So only steady states
are potentially attractors. Note that local minima of V are stable steady states. It
appears that non-constant steady states are saddle points of V .

The function V is also a Lyapunov function when we impose Dirichlet rather
than no-flux boundary conditions. Moreover, using one of Green’s formulas, the
proof is easily extended to the case of higher space dimension, i.e., m > 1.

We now know that non-uniform steady states cannot be stable when k = 1,
m = 1, Ω = [0, L] and we impose no-flux boundary conditions. But do they exist?

In Section 5.2 we found that in the linear case the diagram in Figure 6.3
summarizes the situation: if we consider the growth rate r as fixed and the length
of the domain L as a parameter, then a non-uniform steady state only exists if

L = Lk =
kπ√
r
, k = 1, 2, . . .

and it is then, modulo a multiplicative constant, given by

ū(x) = ūk(x) = cos

(
kπ

L
x

)
The physicists jargon is that ūk is the k-th spatial mode and that this mode turns
unstable if L is increased beyond Lk.

In this section we replace the linear function u 7→ ru by the nonlinear
function u 7→ f(u) and next investigate how Figure 6.3 deforms as a result of
the nonlinearity. We shall find Figure 6.4, which we call a bifurcation diagram
(cf. Appendix) with bifurcation parameter L. The choice of L as the key parameter
is somewhat arbitrary: it is easy to translate Figure 6.4 into a bifurcation diagram
with parameter either the diffusion constant d or the derivative f ′(0). Indeed, by
scaling we can transform the equation

ut = uxx + f(u) x ∈ [0, L],



6.3 Scalar Reaction-Diffusion equations 57

0
π√
f ′(S)

L

amplitude of
non-uniform
steady state

Figure 6.4.

into
ut =

1

L2
uξξ + f(u) (taking ξ = x/L, ξ ∈ [0, 1])

and next into

uτ = uξξ + L2f(u) (taking τ = t/L2, ξ ∈ [0, 1])

To investigate the steady state problem, we first rewrite the second order equation,
uxx + f(u) = 0 as a first-order system of ODEs:

ux = v (6.3.5)
vx = −f(u) (6.3.6)

The point is that we can analyse this first order system by phase plane methods
(so we are going to look at (6.3.5)–(6.3.6) from a dynamical systems point of view,
but note that this is just an auxiliary tool and that it has nothing to do with the
infinite dimensional dynamical system generated by the diffusion equation (6.1.1)
with appropriate boundary conditions!)

With, as defined in (6.3.2),

F (u) :=

∫ u

0

f(σ)dσ

we find that this first order system has a conserved quantity,

H(u, v) :=
1

2
v2 + F (u), (6.3.7)

also called a Hamiltonian. Since v2 = (−v)2, the phase portrait is symmetric
with respect to reflection in the u-axis. Orbits are mapped by (u, v) 7→ (u,−v) to
orbits, which, however, are traversed in the opposite direction. If f happens to be
antisymmetric in u (i.e., f(−u) = −f(u)), then F (−u) = F (u), and we also have
symmetry of the phase plane with respect to reflection in the v-axis. Orbits are
now also mapped by (u, v) 7→ (−u, v) to orbits.

We now first show that there are no bifurcations from a stable (with respect to
well-stirred dynamics) uniform steady state. Assume that f(0) = 0, and f ′(0) < 0.
Then F has a maximum in u = 0, and consequently the origin in phase space is
a saddle point (Figure 6.5) in the sense of dynamical systems (and also a saddle
point as a critical point of the function H).

Therefore, there are locally near the origin neither connections from the v-axis
to the v-axis nor connections from the u-axis to the u-axis. So for both the boundary
value problem with no-flux conditions and for the zero Dirichlet boundary value
problem we can conclude that bifurcations from such a steady state are impossible.
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Exercise 6.3.1. Use the principle of linearised stability, to show that the stable
uniform state 0 remains stable if we add diffusion and add either no-flux BCs or
compatible (i.e., zero in this case) Dirichlet BCs. In particular, show that the
eigenvalues are just the eigenvalues of the Laplacian shifted over f ′(0), so in the
negative direction, making the new solution even more stable.

Our next aim is to use phase plane analysis to derive the bifurcation diagram
depicted in Figure 6.4 for the no-flux nonlinear boundary value problem

uxx + f(u) = 0

ux(0) = 0 = ux(L)

with bifurcation parameter L. We assume that the graphs of f and F (recall (6.3.2))
have the form shown in Figure 6.6.

y = f(u)

u

y

y = F (u)

u

y

S

K

S K

Figure 6.6.

Note that u = 0 and u = K are stable as steady states for the dynamical
systems generated by the ODE u̇ = f(u), while the unstable steady state u = S
separates their domains of attraction. Also note that we assumed that F (K) > 0
(in other words, that the area below the u-axis and above the graph of f is less than
the area above the u-axis and below that graph of f , if we consider the interval
[0,K]). The consequence is that the phase portrait is as depicted in Figure 6.7.

In particular: the family of closed orbits surrounding (S, 0) “ends” in a
homoclinic loop issuing from the saddle (0, 0). In an ecological context, u represents
the density of a population subject to an Allee effect (meaning that it is bound to
go extinct for low densities but that, due to positive density dependence, it grows
to the carrying capacity K if abundant enough; the underlying mechanism may be
sexual reproduction, so the difficulty of finding a mate when the species is rare in
the considered area).
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We parameterise the family of closed orbits by the minimum value that u takes
and we shall denote this minimum value by p. Note that the corresponding value
of H equals F (p). We denote

• the corresponding maximum value of u by g(p)
• the corresponding period by T (p)

Note that

T (p) = 2

∫ g(p)

p

du√
2(F (p)− F (u))

(6.3.8)

Exercise 6.3.2. (i) Derive this identity
(ii) Show that limp↓0 T (p) = ∞
(iii) Show that limp↑S T (p) =

2π√
f ′(S)

The question whether or not T is a monotone function of p is, in general, not
easy to answer (see e.g. (Chicone, 1987)). But in any case, we know that the range
of T includes the interval ( 2π√

f ′(S)
,∞).

Now suppose that 2L belongs to the range of T . Because of the symmetry of
the phase portrait with respect to reflection in the u-axis, we know that it takes “as
long” for u to increase from p to g(p) as it takes u to decrease subsequently again
from g(p) to p. So if T (p) = 2L, each of these changes happens during a stretch L
of the independent variable. The corresponding solutions are indicated by N1 and
they are sketched in Figure 6.8. The index specifies the number for intervals on
which the solution is monotone. If we denote one solution by u+ and the other by
u−, then

u+(x) = u−(L− x)

or, in other words, one solution is obtained from the other by a reflection in the
midpoint of the interval.

The solutions indicated by N2 correspond to p such that T (p) = L, so they
correspond to a full turn. The midpoint of the x-interval is reached after half a
turn, so these solutions are themselves symmetric with respect to reflection in the
midpoint. Both solutions have exactly one interval of increase and one of decrease,
but if we first decrease and then increase the maximum is at the boundary and the
minimum in the interior, while with the other order it is the other way around (see
Figure 6.8).

The solutions indicated by N3 correspond to p such that 3
2T (p) = L, so to

1 1
2 turns. In general we consider p such that k

2T (p) = L and solutions that make
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k
2 turns.1 For k even these are symmetric, while for k odd the two solutions are
related to each other by a symmetry.

Assuming that p 7→ T (p) is monotone we can now draw a more detailed version
of Figure 6.4, shown in Figure 6.9.

If T is not monotone, there are wiggles in these branches.
How should we interpret this diagram in the context of the infinite-dimensional

dynamical system generated by (6.3.3)–(6.3.4)? The constant steady state u ≡ S
is now a saddle point (recall (6.3.1) and note that the term involving F has the
opposite sign as the term involving F in the formula (6.3.7) for the Hamiltonian
H). For small L it has a one-dimensional unstable manifold, but as L increases
the dimension of this manifold increases (or, in more physical jargon, more and
more modes turn unstable). Presumably, the domains of attraction of the stable
constant (i.e., spatially uniform) steady states u ≡ 0 and u ≡ K are separated by
the union of the stable manifolds of u ≡ S and all the existing non-constant steady

1Above we used k to denote the number of components of a system of equations. Below we
shall use the symbol k to specify a mode number, i.e., to indicate the number of minima and
maxima of a steady state solution. The aim of this warning is to avoid that you get confused.
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states “around” it. So the bifurcations change the structure of the flow within this
separatrix.

Consider once more the zero-flux nonlinear boundary value problem

uxx + f(u) = 0, (6.3.9)
ux(0) = 0 = ux(L), (6.3.10)

with parameter L. We now want to derive relations between solutions by using
extension and symmetry arguments instead of phase plane analysis. (The key
advantage of such arguments is that they also work for systems.)

Exercise 6.3.3. Show that if u is a solution of (6.3.9)–(6.3.10), so is w, defined
by w(x) = u(L − x). We call u symmetric if w = u. What symmetry does this
amount to?

Exercise 6.3.4. Assume f(0) = 0, f ′(0) > 0. Show that then bifurcations
occur if L = kπ√

f ′(0)
. Consider k = 1. Give arguments in favour of the claim

that the bifurcating solutions are not symmetric. Show that, consequently, the
bifurcation must be a pitchfork.

Exercise 6.3.5. Whenever u is a solution, extend it to a 2L-periodic function
by

u(−x) := u(x), 0 ≤ x ≤ L,
u(x+ 2L) := u(x).

Show that the extension is a solution for parameter value kL, k = 1, 2, 3, . . ..
Conclude that the branch bifurcating for k = 1 repeats itself for every higher
value of k.

Exercise 6.3.6. Show that u is symmetric if and only if the extension has
period L. Show that all branches corresponding to even k consist of symmetric
solutions. How are in that case the two solutions (one for each subbranch) related
to each other?

Exercise 6.3.7. Show that some branches for the problem with Dirichlet
boundary conditions u(0) = S = u(L) can be obtained from extended solutions
of the zero flux boundary value problem.

Next, let us look at the situation where there is a big monster at the boundary,
so where we replace the no-flux boundary conditions by the zero-Dirichlet conditions

u(0) = 0 = u(L) (6.3.11)

In terms of the phase portrait Figure 6.7 this means that, in search for steady
states, we look for pieces of orbits that start and end at the v-axis.

A glance at Figure 6.7 shows that we can parameterise candidate orbits by the
maximum q of u, with

g(0) < q < K

and that the corresponding steady state solutions of the boundary value problem
are symmetric with respect to reflection in the midpoint x = L

2 where the maximum
q is assumed. Let us denote by T̃ (q) the “time” it takes to arrive at the negative
v-axis when starting at the positive v-axis. Then

T̃ (q) = 2

∫ q

0

du√
2(F (q)− F (u))
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and, as movement slows down near saddle points, necessarily
lim

q↓g(0)
T̃ (q) = ∞

lim
q↑K

T̃ (q) = ∞

So T̃ assumes a minimum and the equation T̃ (q) = L has for
L < min T̃ no solution
L > min T̃ at least two solutions

If there are exactly two solutions of T̃ (q) = L for L larger than the minimum of T̃ ,
then the bifurcation diagram has the form shown in Figure 6.10.

So there is a saddle-node bifurcation for L = min T̃ at which a stable steady
state and an unstable (saddle) steady state are born. Presumably the stability
character of these two steady states does not change when L is further increased.
The stable manifold of the saddle steady state serves again as a separatrix (note that
u ≡ 0 is a stable steady state for all L). By using Maximum Principle arguments,
cf. (Aronson and Weinberger, 1975, 1978; Ludwig et al., 1979), or more precisely, by
constructing sub- and supersolutions, one can get some partial information about
the initial conditions for (6.3.3) and (6.3.11) that yield solutions converging to either
u ≡ 0 or to the stable non-uniform steady state. Note that for very large L the
values that the latter takes are very close to K on most of the interval.

Our main conclusion is that the population can persist, despite the big monster
at the boundary, provided the domain is large enough.

6.4 The non-existence of patterns for scalar equations
We will now show that non-trivial equilibrium solutions (‘patterns’) to scalar

reaction-diffusion equations subject to Neumann boundary conditions can never be
stable. This is often loosely summarised with the phrase in the title of this section.

Consider {
ut = uxx + f(u) on [0, L]
ux(t, 0) = ux(t, L) = 0

(6.4.1)

Let U(x) be a non-trivial equilibrium solution, i.e., U(x) 6≡ U0. The eigenvalue
problem for V , which describes the linear stability of U , is given by{

Vxx + [∂f∂u (U(x))− λ]V = 0 on [0, L]
Vx(0) = Vx(L) = 0

(6.4.2)

This is a standard Sturm-Liouville problem. The eigenvalues, denoted with λNi to
signify that they belong to the Neumann problem, are again all real and simple,
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−∞ < . . . < λN2 < λN1 < λN0 , and the eigenfunction corresponding with λi has i
zeroes. We need to show that λN0 > 0, thus showing that U(x) is unstable. Note
that a similar ordering of eigenvalues exists for the Dirichlet problem. Also now
the i-th Dirichlet eigenvalue, λDi has an eigenfunction with i zeroes.

Now observe that, by differentiating the steady state equation for U with
respect to x, we know that W = Ux solves{

Wxx + ∂f
∂u (U(x))W = 0 on [0, L],

W (0) =W (L) = 0.

Therefore, problem (6.4.2) with homogeneous Dirichlet boundary conditions instead
of homogeneous Neumann boundary conditions has λ = 0 as eigenvalue. Denoting
the eigenvalues of the Dirichlet problem by λDi , i = 0, 1, . . ., we thus know that
λDi = 0 for a certain i.

We can now use the following Lemma, stating that we can order the eigenvalues
of two solutions, if we can order the solutions in some manner.
Lemma 6.4.1: Let g(x) be given. Let Φ and Ψ satisfy

Vxx + (g(x)− λ)V = 0

with eigenvalues λ and µ respectively. Assume Φ(0) = Φ(L) = 0, and Φ(x) > 0 on
(0, L), and Ψ(x) > 0 on [0, L]. Then λ < µ.

Proof. Multiplying the eigenvalue equation for Φ by Ψ and vice versa, and
subtracting these two, we find

ΦΨ′′ − Φ′′Ψ+ (µ− λ)ΦΨ = 0.

Hence, integrating over [0, L], and using partial integration yields

ΨΦ′
∣∣∣L
0
− ΦΨ′

∣∣∣L
0
+ (µ− λ)

∫ L

0

ΦΨ = 0.

The last integral is strictly positive by the assumptions on Φ and Ψ. Since Φ is a
Dirichlet solution, the second term vanishes. The first term is a priori only non-
positive, which would yield λ ≤ µ. Note, however, that if Φ′(0) = 0 or Φ′(L) = 0,
then Φ ≡ 0, and hence by uniqueness of the boundary value problem we find
Φ′(0) > 0 and Φ′(L) < 0. Therefore λ < µ. □

Recall that the smallest eigenvalue λN0 , which is the one we are actually
interested in, corresponds to an eigenfunction without zeroes. Therefore, this
function solves (6.4.2) and has the properties of Ψ in the lemma. So from the
lemma we conclude that λN0 > λD0 ≥ λDi = 0, and that indeed U(x) is unstable.

This argument also works in higher space dimensions, provided that the domain
Ω is convex. As we discussed in Section 6.2, stable non-uniform steady states do
exist if we choose a bistable function f on a halter-shaped domain (recall Figure 6.2).

Now we turn to the scalar Dirichlet problem{
ut = uxx + f(u) on [0, L]
u(0) = u(L) = 0

(6.4.3)

Let again U(x) be an equilibrium solution and assume that U(x) changes sign on
(0, L). Then U(x) is again unstable!

To see this, we again study W = Ux. Since U changes sign, there exist 0 <
x1 < x2 < L such that W (x1) =W (x2) = 0. So W solves{

wxx + f ′(U)w = 0 on [0, L],
w(x1) = w(x2) = 0.
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Applying Lemma 6.4.1 again to Φ = ±W (choose the sign so that Φ > 0), with
λ = 0, and Ψ = ΦD

0 with µ = λD0 , restricted to [x1, x2], we conclude µ = λD0 > λ =
0, and that U is unstable.

6.5 Travelling waves for mono- and bistable scalar
Reaction-Diffusion

Diffusion, as a mechanism to generate signals used in for instance development,
is a very slow process, and doesn’t work efficiently over large distances. As we
already saw in Section 5.3, augmenting diffusion with some kind of reaction, be it
multiplication of a species or the interaction between different species or chemicals,
can lead to patterns that travel much faster viz. with constant speed. It may
therefore come as no surprise that reaction-diffusion is a mechanism that abounds
in all kinds of biological areas. In this section we are going to study the existence of
travelling wave profiles for nonlinear scalar reaction-diffusion equations, determine
at what speeds these can travel, and in what direction.

Two prototype equations will be studied: the monostable and the bistable case.
The first is also known as the Fisher-Kolmogorov equation, and is given by

ut = duxx + ku(1− u), x ∈ R (6.5.1)

which, using the rescaled variables t∗ = kt and x∗ = x
√
k/d becomes

ut = uxx + u(1− u). (6.5.2)

Here the stars have immediately been dropped. It is a model equation which
was originally devised by Fisher to model the spread of a favourable gene in a
population (Fisher, 1937). It was simultaneously (and presumably independently)
studied by, as Aronson (1985) put it, the famous troika of Kolmogorov, Petrovskii
and Piscunov (Kolmogorov et al., 1937). The bistable equation in non-dimensional
form is given by

ut = uxx + u(u− a)(1− u), x ∈ R (6.5.3)
where 0 < a < 1. As we will see, both these equations admit travelling wave
profiles, but the range of speeds with which such waves progress is quite different.

Let us first consider the monostable case. If we ignore space for the moment,
the equation reduces to

u′ = u(1− u).

This is the standard model for logistic growth, having u = 0 and u = 1 as steady
states, the first of which is unstable, and the second stable. This suggests it might
be possible to find travelling wave profiles w(z) = u(x − ct) that connect 0 and 1
and which travel at speed c. Let us try to find these. Substituting the travelling
wave Ansatz, taking also into consideration the choice of behaviour at ±∞, we
obtain

− cw′ = w′′ + w(1− w) (6.5.4)
lim

z→−∞
w(z) = 1, lim

z→∞
w(z) = 0 (6.5.5)

Writing (6.5.4) in phase plane form,

w′ = v (6.5.6)
v′ = −cv − w(1− w) (6.5.7)
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we again find two equilibria, (w, v) = (0, 0) and (1, 0). The Jacobian of this system
is (

0 1
−1 + 2w −c

)
(6.5.8)

and hence we find the following eigenvalues for the two steady states. For (0, 0),

λ± = − c
2
± 1

2

√
c2 − 4

whereas for (1, 0),

λ± = − c
2
± 1

2

√
c2 + 4

Hence, if c2 > 4, the origin is a stable node, and if c2 < 4, it is a stable spiral, giving
rise to physically unrealistic solutions since the solutions then become negative.
The other steady state, (1, 0), is always a saddle. The phase plane for (6.5.6) for
the case c2 > 4, see Figure 6.11, now strongly suggests that the relevant part of
the unstable manifold (1, 0) always has to connect to the stable origin, and thus
form a heteroclinic orbit connecting w = 1 and w = 0. Since we can perform
this construction for any c2 > 4, we find a continuum of possible wave speeds
for travelling waves of the Fisher-Kolmogorov equation (Kolmogorov et al., 1937;
Hadeler and Rothe, 1975).

Having argued that travelling waves do exist for a continuum of wave speeds,
we may wonder for which initial conditions the solution in time tends to a travelling
wave (or a combination of two travelling waves, one moving to the left, and one to
the right)? Kolmogorov, Petrovskii and Piscunov (Kolmogorov et al., 1937) already
showed in 1937 that initial conditions of the form{

w ≡ 1 for x < p
w ≡ 0 for x > p

for some p ∈ R do indeed tend to travelling wave profiles which travel with minimum
speed c = 2. But also a localized initial condition, relevant for instance in models
of introduced species, grows out to form an expanding block with two fronts, one
travelling to the left and the other to the right (see Figure 6.12).

Let us now turn to the bistable equation and repeat the linear stability analysis.
For a general scalar reaction diffusion equation

ut = uxx + f(u)

the equation for the travelling wave profile w(z) = u(x− ct) is

w′′ + cw′ + f(w) = 0.
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Writing this as a two-dimensional system

w′ = v (6.5.9)
v′ = −cv − f(w) (6.5.10)

we have the Jacobian (
0 1

−f ′(w) −c

)
(6.5.11)

with eigenvalues

λ± =
c

2
± 1

2

√
c2 − 4f ′(w).

For our particular problem, f(u) = u(u − a)(1 − u), so there are three equilibria,
which for the 2D system are written as (w, v) = (0, 0), (a, 0), or (1, 0). Computing
the eigenvalues at each of these steady states, we find that (0, 0) and (1, 0) are
always saddle points, and (a, 0) is a stable node if c2 > 4f ′(a) and a stable spiral if
c2 < 4f ′(a). Finding travelling wave solutions w with speed c connecting a stable
and unstable equilibrium, such as from w = 0 to w = a or from w = a to w = 1
is possible for many choices of c, essentially by the reasoning outlined above for
the monostable case. Can we also find heteroclinic orbits connecting the unstable
manifold of w = 0 to the stable manifold of w = 1? It is not likely that this is going
to be possible: for most speeds c the solution coming from the unstable manifold
will converge to the stable node or spiral (a, 0), or will overshoot (the unstable
direction at (1, 0) then converges to (a, 0)) . However, the phase planes for small
and for large c (see Figure 6.13, top row), together with continuity arguments, do
suggest that for some exceptional intermediate c∗ a heteroclinic from 1 to 0 exists
(see Figure 6.13, bottom). This can indeed be made rigorous.

There is a more general rule: if a reaction term f(u) has a number of roots,
they generically come alternatingly as saddle points and stable nodes or spirals.
Most (in terms of c) heteroclinic orbits connect stable and saddle steady states,
and only a few connect two saddle equilibria.

Let us now turn to the question of the direction of the wave. After all, within
biological contexts it may be all important to know if a wave of some disease or
introduced species retreats or advances. A simple argument gives the direction of
the speed, i.e., the sign of c. Recall that travelling wave profiles w(z) solve

w′′ + cw′ + f(w) = 0. (6.5.12)

Equation (6.5.12) is invariant under z 7→ −z, c 7→ −c, so we need to choose the
behaviour of solutions for z → ±∞ to be able to determine the true direction
of travelling wave solutions. We focus on solutions w which tend to 1 for z →
−∞ and to 0 for z → ∞. In particular, then also w′(z) → 0 for z → ±∞.
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(
1− u

q
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− u2
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u

Figure 6.14.

Multiplying (6.5.12) by w′ and integrating over R, we find

0 =

∫ ∞

−∞
[w′′ + cw′ + f(w)]w′dz (6.5.13)

= 0 + c

∫ ∞

−∞
w′2 dz +

∫ ∞

−∞
f(w)w′dz (6.5.14)

= c

∫ ∞

−∞
w′2 dz +

∫ 0

1

f(w)dw (6.5.15)

where we have used partial integration and the above limits. We thus conclude that
the sign of c is given by

∫ 1

0
f(w)dw, since

c =

∫ 1

0
f(w)dw∫∞

−∞ w′2 dz

In the monostable case,
∫ 1

0
u(1 − u)du = 1/6, so the wave is always describing an

increase of u (for x fixed, u(x − ct) increases from 0 to 1). In the bistable case,∫ 1

0
u(u− a)(1− u)du = 1

12 (1− 2a). So for 0 < a < 1
2 , the unique wave speed c∗ is

positive, for a = 1
2 we find a standing wave (c∗ = 0), while for 1

2 < a < 1, the wave
speed is negative.
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Let us consider a well-known example from scalar reaction-diffusion equations,
the spread of the spruce budworm, which is a pest in North American forests. The
equation, in nondimensional form, reads

ut = uxx + ru

(
1− u

q

)
− u2

1 + u2

The reaction term is sketched in Figure 6.14. Depending on parameter values, there
are up to four equilibria, and if we ignore space dependence two of these are stable,
and two unstable. As before, including space again and looking for travelling wave
profiles, the time-stable steady states become saddle points, and the time-unstable
steady states become stable nodes or spirals. There exist travelling wave profiles
connecting the two saddles, which have a certain unique speed. By adjusting the
(scaled) carrying capacity q (for instance, by limiting the amount of food available to
the budworms), the direction of the wave may be controlled, and thus the outbreak
of these pests may be contained. See (Murray, 2002) for a detailed discussion of
this much-studied problem.

6.6 Pattern formation: The Turing instability
A key aim of developmental biology is to understand morphogenesis: how can,

starting from a uniform state, spatial structure, i.e., pattern, develop? Localised
differentiation of cells is certainly an essential component. But how do cells know
which differentiation pathway to follow? If this hinges on positional information,
then how do these cells know “where” they are? Genetic information needs physico-
chemical mechanisms to be expressed, to be translated into form.

Earlier we observed that for a scalar quantity that diffuses and reacts, spatial
structure disappears (rather than originates), unless we force it upon the system
by the boundary conditions or the shape of the domain (recall the halter from
Figure 6.2). What if there are several quantities that interact and diffuse?

Here we focus on the system of reaction-diffusion equations 6.4.1 for k = 2 (two
components) and m = 1 (one-dimensional spatial domain) and establish conditions
such that a uniform steady state, that is stable as a steady state of the purely kinetic
system, turns unstable if we allow both components to diffuse, but with rather
different diffusion constants. So differences in the time scale of spatial transport of
the various components can interfere with the interaction and localised instability
can manifest itself as spontaneous pattern formation (to show this in mathematical
detail one needs to go beyond linearised instability and apply bifurcation methods
to construct non-uniform steady states).

It is most efficient to first consider
∂u1
∂t

= d1
∂2u1
∂x2

+ f1(u1, u2) (6.6.1)

∂u2
∂t

= d2
∂2u2
∂x2

+ f2(u1, u2) (6.6.2)

for x ∈ R and only later consider the effect of no-flux boundary conditions on a
bounded domain.

Let
ū =

(
ū1
ū2

)
be such that f(ū) = 0, and assume that all eigenvalues of the Jacobian matrix

M = Df(ū) =

(
∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

)
u=ū
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with entries mij have negative real part.

Exercise 6.6.1. Repeat the steps leading to equation (6.2.13) and show that,
written out in detail, this equation reads
λ2 + λ(−m22 −m11 + d2µ

2 + d1µ
2) + {(m11 − d1µ

2)(m22 − d2µ
2)−m12m21} = 0

(6.6.3)

Exercise 6.6.2. By assumption the inequalities
m11 +m22 < 0, (6.6.4)
m11m22 −m12m21 > 0

hold (why?). Verify that if we write (6.6.3) as
λ2 + θ1λ+ θ2 = 0 (6.6.5)

then θ1 > 0. Explain why we may conclude from this that destabilization is never
by way of Hopf bifurcation.

Exercise 6.6.3. A transcritical bifurcation occurs when λ = 0 is a root
of (6.6.5) (or, more precisely, if a real root of (6.6.5) changes sign when parameters
are varied). Evidently, this requires

0 = θ2 := d1d2(µ
2)2 − (d1m22 + d2m11)µ

2 +m11m22 −m12m21 (6.6.6)
Check that, as a function of µ2, θ2 describes a parabola with a minimum at

µ2 =
1

2

(
m11

d1
+
m22

d2

)
(6.6.7)

Compute that the minimum value equals

θmin
2 = m11m22 −m12m21 −

1

4

(d1m22 + d2m11)
2

d1d2
(6.6.8)

Show that θmin
2 < 0 iff

m11d2 +m22d1 > 2
√
d1d2(m11m22 −m12m21) > 0 (6.6.9)

Check that the right hand side of (6.6.7) is positive if (6.6.9) holds (why is this
important?). Show that under our assumptions, (6.6.9) cannot hold if d1 = d2.
Show that (6.6.9) requires (under our assumptions) that m11 and m22 have opposite
signs. Show that then also m12 and m21 should have opposite signs.

Exercise 6.6.4. If the sign structure of M is(
+ −
+ −

)
we call species/substance 1 an activator and species/substance 2 an inhibitor.
Explain the rationale of this terminology.

Exercise 6.6.5. Without loss of generality we may assume that the sign
structure is as assumed in the preceding exercise. Substantiate this claim.

Hint: the other possibilities are(
+ +
− −

)
,

(
− +
− +

)
, and

(
− −
+ +

)
It is, of course, rather arbitrary how we number the species. In addition one might
do the bookkeeping in terms of −u2 rather than u2 (but note carefully that often
the interpretation requires quantities to be positive; yet deviations from a strictly
positive steady state value may assume both signs. The message is that “without
loss of generality” is a subtle notion when the interpretation leads to constraints
on mathematical transformations).
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u2 f2 = 0
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Figure 6.15. Local phase portrait of the kinetic system in Exercise 6.6.8.
.

Exercise 6.6.6. One often encounters statements like “Diffusive instability
requires long range inhibition and short range activation”. With the sign structure
of M as in Exercise 6.6.4 we can rewrite (6.6.9), with the middle part omitted, as

τ1d1 < τ2d2 (6.6.10)
with τ1 := m−1

11 and τ2 = |m22|−1. Explain the relation between this inequality and
the statement between the quotation marks.

Exercise 6.6.7. Assume that M − µ2d has eigenvalue zero and that M has
activator-inhibitor sign structure, cf. Exercise 6.6.4. Let v̄ be the eigenvector
corresponding to this eigenvalue zero. Show that sign v̄1 = sign v̄2. Explain in
a hand-waiving manner that accordingly the two components of a bifurcating non-
uniform steady state are in-phase, meaning that one increases as a function of x if
and only the other does too. What changes if the sign pattern of M is

(
+ +
− −

)
?

Exercise 6.6.8. Assume that M has activator-inhibitor sign structure and that
M has a positive determinant. Show that the local phase portrait of the kinetic
system is as shown in Figure 6.15. Hint: solve fi = 0 for u2 as a function u1 by way
of the Implicit Function Theorem. How does the phase portrait look if

(
+ +
− −

)
?

Exercise 6.6.9. Show that by scaling of the spatial variable we may arrive
at a ratio of diffusion coefficients and that this, for a particular choice of scaling,
amounts to replacing µ2 by µ2/D1 so that (6.6.6) transforms into

0 = θ2 =
d2
d1

(µ2)2 −
(
d2
d1
m11 +m22

)
µ2 +m11m22 −m12m21 (6.6.11)

or, if we solve for d2/d1 as a function of µ2,
d2
d1

=
m22µ

2 −m11m22 +m12m21

µ2(µ2 −m11)
(6.6.12)

Show that under the conditions (6.6.4) and (6.6.9) the graph of the right hand side,
as a function of µ2, is as depicted in Figure 6.16.

Thus we have determined the stability boundary in the two parameter plane
formed by the ratio d2/d1 of the diffusion constants and the mode parameter µ2

(which is a continuous quantity when the spatial domain is the line −∞ < x <∞).
This graph is an essential ingredient for the stability analysis for finite intervals
with no-flux boundary conditions, as we shall see in the next exercise.

Exercise 6.6.10. Now restrict the spatial domain to
0 ≤ x ≤ L



6.6 Pattern formation: The Turing instability 71

µ2

d2

d1

instability

stability

m11
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and impose the no-flux boundary conditions
ux(0) = 0 = ux(L)

Derive that necessarily

µ ∈
{
kπ

L
: k = 1, 2, . . .

}
By considering L as a parameter we regain continuity (i.e., we eliminate to a certain
extent the imposed discreteness), but we obtain denumerably many curves, one for
each mode (see Figure 6.17). Describe the instability domain in (d2

d1
, L)-space and

its boundary. Describe what happens when we consider L as a free parameter for
d2/d1 fixed at a value just slightly above drel

min (you may find it useful to think
in terms of “resonance” between the “natural” wave length associated with the
instability on the one hand, and the size of the domain on the other).

Exercise 6.6.11. If we cross the curve corresponding to a particular k, the
nonlinear system undergoes a pitchfork bifurcation. How can we be so sure about
“pitchfork” without doing any calculations? Also, formulate that there is a certain
arbitrariness in the pattern that arises in a real experiment.

Exercise 6.6.12. (builds on the Appendix on Bifurcation Methods) Derive a
formula for the direction of the pitchfork bifurcation, i.e., determine whether it is
is subcritical or supercritical. Formulate the Principle of Exchange of Stability for
this particular case.

Exercise 6.6.13. Reflect on the patterns that one expects to see on a two-
dimensional rectangular spatial domain, depending on the ratio of the two lengths
(so when we enlarge the domain but keep this ratio fixed). Next, go to the zoo and
look for spotted bodies and striped tails!
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We now consider a concrete example which is rather debatable from a modelling
point of view (in particular because of the H in the denominator) but which has
the great advantage that the calculations are not too cumbersome. It is often called
the Gierer-Meinhardt model, see (Meinhardt, 1982).

The system of reaction diffusion equations
∂A

∂t
= 1 +R

A2

H
−A+

∂2A

∂x2
, (6.6.13)

∂H

∂t
= Q(A2 −H) + P

∂2H

∂x2
(6.6.14)

provided with no-flux boundary conditions
∂A

∂x
(t, 0) = 0 =

∂A

∂x
(t, L), (6.6.15)

∂H

∂x
(t, 0) = 0 =

∂H

∂x
(t, L) (6.6.16)

describes the interaction between an autocatalytic activator A and an inhibitor H
in a one-dimensional spatial domain, the x-interval [0, L]. The system (6.6.14) is
already in a scaled form and only three parameters, R, Q, and P (all assumed
positive) remain. In particular, the spatial variable x has been scaled to make the
diffusion constant of A equal to 1. In the term RA2/H, the denominator H is an
approximation to (constant + H) and accordingly, predictions based on (6.6.14)
should not be trusted when they involve small values of H. The greatest advantage
of this approximation is that it makes the calculations below far simpler, which is
why it is made.

Exercise 6.6.14.
(i) Find the uniform (in x) steady (in t) state.
(ii) Compute the Jacobian matrix of the reaction part.
(iii) Show that the constant steady state is stable with respect to homogeneous

(i.e., x-independent) perturbations, provided the parameter inequality
R− 1

R+ 1
< Q (6.6.17)

holds.

Exercise 6.6.15.
(i) Show that the k-th mode, characterised by dependence on x of the form

cos
(
kπx
L

)
, is stable when

P

(
kπ

L

)4

+

(
Q− P

R− 1

R+ 1

)(
kπ

L

)2

+Q > 0 (6.6.18)

but unstable when the reverse inequality holds. In your answer, do not
start with equation (6.6.6), but go through the arguments starting with
the dispersion relation (6.2.13) which leads to (6.6.3) in Exercise 6.6.1.

(ii) Deduce from (6.6.18) that a necessary condition for instability is

Q < P
R− 1

R+ 1
(6.6.19)

(iii) Deduce, by comparing (6.6.17) and (6.6.19), that a necessary condition
for pattern forming instability is

P > 1

and interpret this condition.
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Exercise 6.6.16. Show that the quadratic polynomial in α,

Pα2 +

(
Q− P

R− 1

R+ 1

)
α+Q

has minimum value

−1

4
P

(
R− 1

R+ 1
− Q

P

)2

+Q

and check that it is attained for a positive value of α when (6.6.19) holds.

Exercise 6.6.17. (Re)formulate the results in biological terms and draw
conclusions. In particular, think about how diffusion facilitates pattern formation,
what kind of activator-inhibitor system this is, and which modes are potentially
unstable for given parameter values.

6.7 Discrete-space version of spectral decoupling as in
Turing

Let X be a k×n matrix with components xij , to be interpreted as the density
of the i-th species in the j-th patch. So for j = 1, . . . , n, the column k-vector
xij = (x1j , . . . , xkj)

T describes the desities of the various species in the j-th patch,
while for i = 1, . . . , k, the row n-vector (xi1, . . . , xin) describes the densities of
species i in the various patches.

Let now f : Rk → Rk describe given (nonlinear) local interactions; C : Rn → Rn

a linear map describing redistribution, so that cij describes movement from i to j;
and M : Rk → Rk a linear and diagonal map describing the tendency to migrate
with components mi, i = 1, . . . , k.

We now lift all three of these maps to Rk×n by the definitions

f(X) =
(
f(x·1, . . . , x·n)

)
local interaction

XC =
(
x1·C, . . . , xk·C)

)T
species independent redistribution

MX = (Mx·1, . . . ,Mx·n) patch independent migration tendency

The problems to be investigated are

Ẋ = f(X) +MXC continuous time, (6.7.1)

and
X ′ = f(X) +Mf(X)C discrete time. (6.7.2)

Compared with the continuous-space problem
∂u

∂t
= D∆u+ f(u),

matrix M has the role of D, and C the role of the Laplacian ∆.
If a ∈ Rk and b ∈ Rn we shall write X = ab as a shorthand for Xij = aibj . Let

1n = (1, . . . , 1), and assume that 1nC = 0. Let y be a Rk-valued function of time
such that

ẏ = f(y) or y′ = f(y)

so that y is a solution of the 1-patch problem. Then X = y1n is a solution of the
n-patch problem (note that f(X) = f(y)1n when verifying the discrete time case).
Conversely, if X = y1n is a solution of the n-patch problem, then necessarily y is
a solution of the 1-patch problem. We call these the flat solutions.
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Let X = y1n be a flat solution. The Jacobi k×k-matrix Df(y) is lifted to Rk×n

exactly as M . Then the linearised problems of (6.7.1) and (6.7.2) are respectively

ξ̇ = Df(y)ξ +MξC,

ξ′ = Df(y)ξ +MDf(y)ξC.

Next assume that C has n linearly independent eigenvectors ψi, i = 1, . . . , n,
corresponding to eigenvalues λi, i.e.,

ψiC = λiψ
i, i = 1, . . . , n.

The result, that any n-vector can be written as a linear combination of the ψi, can
be lifted to Rk×n:

ξ =

n∑
i=1

aiψi for some ai ∈ Rk, i = 1, . . . , n.

With this respresentation for ξ we have

Df(y)ξ =

n∑
i=1

Df(y)aiψi

(where the right hand side Df(y) is again the k × k matrix), and

MξC =

n∑
i=1

MaiψiC =

n∑
i=1

λiMaiψi.

The independence of the ψi then implies that the k × n-dimensional problems
decouple into n problems of dimension k,

ȧi = Df(y)ai + λMai,

or
(ai)′ = Df(y)ai + λMDf(y)ai.

And each of these can be analysed by spectral methods, i.e., the decay or growth
of the solutions is completely determined by the eigenvalues of

Df(y) + λiM position relative to imaginary axis,
or

Df(y) + λiMDf(y) position relative to unit circle.
The analysis above is completely the same as the standard Turing instability analysis
of

∂u

∂t
= D∆u+ f(u).

To conclude, we make some remarks about C and, in particular, the interpre-
tation of the assumption 1nC = 0.

The matrix Cn is positive-off-diagonal (i.e., only diagonal elements can be
negative). If migrants cannot die in the process, we should have the conservation
relation

n∑
j=1

cij = 0.

If redistribution is only governed by relative distances, we should have the symmetry
cji = cij ,

and consequently
n∑

i=1

cij = 0.
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The latter relation expresses, when written in the form
n∑

i=1, i ̸=j

cij = −cjj ,

that immigration into a patch is matched by emigration from a patch at the per
capita level. This could be called a “no accumulation” condition. As a consequence
of the conservation relation, the column n-vector 1T

n is a right eigenvector of Cn

corresponding to eigenvalue zero. Under the no-accumulation condition 1n is a left
eigenvector corresponding to eigenvalue zero.

It helps to think of λ in
Df(y) + λM

as a continuous variable (taking only negative values).





Chapter 7
Chemotaxis

7.1 Introduction

Organisms often direct their movement by external cues, a process called
taxis. Depending on the cue in question, we may term such directed movement
thermotaxis (warmth), phototaxis (light), chemotaxis (chemical substances), and
so on, and this may be both an attracting or repelling movement. Several kinds
of common bacteria, such as E. coli, Salmonella, or the slime mould Dictyostelium
(Dicty in short) have been shown to form intricate patterns when grown in semi-
solid or liquid media in the laboratory. An example pattern showing spirals of the
chemoattractant cyclic AMP (cAMP) in Dictyostelium is presented in Figure 7.1.

The reason for aggregation or repulsion may be many. Bacteria use scents to
find food; immune cells chemotactically find enemies such as bacteria; insects use
pheromones to find each other, either for reproduction as in moths, or to hunt
collectively, as in army ants; reproduction is also the main drive behind Dicty
aggregation.

Because of the simplicity of this organism, and the richness of its collective
behaviour, Dicty has been used as a model organism for many years, especially to
understand how signal transduction of cAMP induces aggregation and subsequent
development (Othmer and Schaap, 1998).

Aggregation in Dicty is basically done through a feedback loop, in which the
individual cells release cAMP into the environment while reacting to the cAMP
levels they perceive. When general food levels become too low to sustain the slime
mold cells individually, the cells start to produce cAMP in order to aggregate. They
first form centra, which then concentrate to become ‘slugs’. These slugs move about
for a while until a suitable place is found. There, the multicellular slug undergoes
cell differentiation to form a (pre)stalk on which a (pre)spore is formed. The stalk
contains nonreproducing Dicty cells, i.e., there is cooperation among the cells so
that few may reproduce. This is indeed an intricate evolutionary question, and to
find the answer you should read the Selfish Gene and The Extended Phenotype
by Richard Dawkins! The fruiting body on top finally contains spores which are
dispersed by the wind. Some excellent videos of this remarkable progression may
be found on the internet, including those made by the person who started much of
this field, John Bonner, whilst still an undergraduate.

Mathematically, the description of the evolution of concentrations of organisms
in some domain Ω begins with a general conservation law. This states that the
total amount of organisms in Ω at time t + δt must be equal to the total amount
at time t plus the net concentration of particles which either flows out of Ω or is
created inside Ω within the timespan δt. If we denote this net flow out of Ω by a

77
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Figure 7.1. Spiraling waves of cyclic AMP, the chemoattractant
used by colonies of Dictyostelium bacteria

flux J(t, x) then we can write∫
Ω

u(t+ δt, x)dx =

∫
Ω

u(t, x)dx− δt

∫
∂Ω

J(t, x)dS (7.1.1)

Since this argument holds for any domain Ω, and
∫
∂Ω
J(t, x)dS =

∫
Ω
∇ · Jdx, we

have the general evolution equation
ut +∇ · J = 0. (7.1.2)

This flux J may be due to different kinds of motion, such as diffusion or taxis.
We could also easily take creation of particles in Ω into account. If we let f(t, x)
denote the creation of organisms at time t and position x, then the above equation
becomes simply

ut +∇ · J − f = 0

Phenomenologically, we may pose the following equation for organisms whose
movements are described as stochastic random walks with a bias towards chemoat-
tractant concentrations:

ut +∇ · (d∇u− uχ(s)∇s) (7.1.3)
known as a Keller-Segel equation (Keller and Segel, 1971). Here the chemotactic
flux Jc due to attraction by the chemical s is

Jc = uχ(s)∇s
where χ(s) is termed the chemotactic sensitivity. The Keller-Segel equation (7.1.3)
is often coupled to an equation for the chemoattractant s, which usually diffuses
and is produced either by the cells itself or by an external source, e.g.

st = ∆s+ u− s.

Note that we have conveniently scaled the diffusion constant for s to 1 by rescaling
space, the production rate by u to 1 by rescaling u and the degredation rate of s
to 1 by rescaling time. We supply no-flux BCs to the equations for u and S to
complete the Keller-Segel model.

The plan for the rest of the chapter is as follows. First we will study the
initiation of pattern formation for a Keller-Segel model in one spatial dimension,
and briefly discuss whether solutions exist for all time or may blow up in finite
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time. Lastly, we will try to derive macroscopic Keller-Segel-like equations from
microscopic behaviour of the individual cells, such as run-and-tumble movement in
bacteria, signal transduction, and so on.

7.2 Initiation of pattern formation
Let us focus on the following set of equations on a domain [0, L], with no-flux

BCs,
∂u

∂t
= d

∂2u

∂x2
− χ

∂u

∂x

∂s

∂x
− χu

∂2s

∂x2
, (7.2.1)

∂s

∂t
=
∂2s

∂x2
+ u− s. (7.2.2)

The last term in the u equation is due to cross diffusion. Note that there is
conservation of mass for u, since d

dt

∫
u dx = 0.

There exists a uniform steady state u = ū, s = s̄, as long as ū = s̄, and we can
thus treat ū as a parameter. Introducing u = ū + U and s = s̄ + S. Linearizing
around (ū, s̄) gives

∂U

∂t
= d

∂2U

∂x2
− χū

∂2S

∂x2
, (7.2.3)

∂S

∂t
=
∂2S

∂x2
+ U − S. (7.2.4)

Making the usual separation of variables Ansatz(
U
S

)
(t, x) = eλt cosµx

(
U0

S0

)
gives

λU0 = µ2dU0 + χūµ2S0,

λS0 = −µ2S0 + U0 − S0,

which in matrix form reads(
λ+ µ2d −χūµ2

−1 λ+ µ2 + 1

)(
U0

S0

)
=

(
0
0

)
.

The condition for a nontrivial solution is thus given by requiring that this matrix
has determinant zero, i.e.,

(λ+ µ2d)(λ+ µ2 + 1)− χūµ2 = 0,

which is written more transparently as
λ2 + (µ2(d+ 1) + 1)λ+ µ2(d(µ2 + 1)− χū) = 0.

Denoting the first and zeroth order coefficients of this polynomial in λ by B and
C, we know that

λ± =
−B ±

√
B2 − 4C

2
.

Observe that if =λ 6= 0 then <λ < 0, and that if =λ = 0 then λ− < 0 and λ+ > 0
if and only if C < 0.

We conclude that the uniform steady state is unstable iff
C < 0 ⇐⇒ d(µ2 + 1) < χū. (7.2.5)

We may offer directly the following biological interpretation of this inequality.
Instability, and thus the initiation of pattern formation, is promoted by a high initial
concentration of cells, a high chemotactic sensitivity χ, or a low random motility d.
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Additionally, we do well to remember that several quantities were hidden inside the
nondimensional equations by the rescaling of variables we had assumed. Making
these explicit again revels that a high rate of cAMP production and low degredation
rate of cAMP also promote pattern formation. Finally, we focus on the spatial mode
µ = kπ/L of the perturbation we have analyzed. Inequality (7.2.5) is more easily
satisfied for small µ, i.e. for long waves, or equivalently, on large intervals [0, L].

Overall, we may conclude that the feedback loop of involving signal production
and moving towards stronger signals may lead to growing peaks provided the
“equalizing” influence of diffusion is not too strong.

Finally we make some remarks on the asymptotic behaviour for large t. If the
spatial dimension is 1, then solutions stay bounded. (Note that

∫
u dx remains

constant, so there is never blow up in the L1-norm. Also
∫
S →

∫
u as t → ∞.)

If the spatial dimension is two, then if
∫
u is large enough, a Dirac may form in

finite time. If the spatial dimension is 3, then Dirac’s may form in infinite time.
Keller-Segel chemotaxis in the plane may thus account for aggregation in one spot.
(There are are some ways to extend the model in order to capture the subsequent
movement of Dirac’s.)

The literature on Keller-Segel-like models has grown enormously since the early
1970s. The interested reader may consult (Horstmann, 2003) or (Perthame, 2007).

7.3 Derivation of chemotaxis models
One of the main obstacles to use (7.1.3) directly is that one has to specify χ(S).

There is no general theory which allows us to translate the bacteria’s perception
of the chemoattractant and their subsequent change of behaviour (moving towards
higher chemoattractant concentrations) to a macroscopic chemotactic sensitivity
function.

In this section we will show how one can obtain Keller-Segel equations, or other
evolution equations for chemotactic bacteria, using the dynamics at a mesoscopic
scale as starting point. The main point is that it is often easier to describe dynamics
on a level at which pattern is not observed, and then lift these equations to the level
at which it is observed. In the current context, it is easy to specify how individual
particles change their direction due to external cues or random motion. This gives
us evolution equations for a density u(t, x, v), say, which thus depends on velocities
v. The mathematical goal is then to derive an evolution equation for a function
n, say, which does not depend on v anymore, but only on time and space (which
is the quantity one observes when one describes the bacterial patterns such as in
Figure 7.1).

The simplest example in which we can derive a parabolic equation from a
mesoscopic one is in one space dimension. Let particles move according to a so-
called velocity-jump process. In this process, the particles move at a certain speed
(here assumed to be a constant s), and reorient at random instants in time according
to a Poisson process with intensity λ. In one space dimension, the particles can
only move in two directions. Let u±(t, x) be the density of particles at (t, x) and
moving to the right (+) or left (-) respectively. Then u± satisfy the hyperbolic
equations

∂u+

∂t
+ s

∂u+

∂x
= −λu+ + λu− (7.3.1)

∂u−

∂t
− s

∂u−

∂x
= −λu− + λu+ (7.3.2)
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The density of particles at (t, x), u(t, x), is the sum of u+(t, x) and u−(t, x), and
the particle flux j equals s(u+ − u−). These satisfy

∂u

∂t
+
∂j

∂x
= 0 (7.3.3)

∂j

∂t
+ 2λj = −s2 ∂u

∂x
(7.3.4)

Differentiating the first of these equations with respect to t and the second to x
and combining both equations leads to the telegraph equation

∂2u

∂t2
+ 2λ

∂u

∂t
= s2

∂2u

∂x2

The diffusion equation follows formally in the limit λ→ ∞, s→ ∞, while keeping

s2

λ
=: d (7.3.5)

constant.
To understand pattern formation in bacteria or other chemotactic organisms

such as ants, we need to derive continuum models in higher dimensions. Now
particles can travel in an infinity of directions, and we denote by p(t, x, v) the density
of particles at time t and position x ∈ Rn moving in the direction v ∈ V := sSn−1

(still with constant speed s). This density now satisfies the transport equation

∂u

∂t
+∇ · (vu) = −λu+ λ

∫
V

T (v, v′)u(t, x, v′)dv′

which resembles the Boltzmann equation, but it is linear in u rather than quadratic.
It is nothing but a conservation equation like (7.1.2), but now over the domain
Rn × V rather than a domain Ω ⊂ Rn. Within the current context, T (v, v′) is a
turning kernel, and signifies the probability of changing direction from v′ to v if
a switch is made, which happens with probability λ. It has a number of obvious
properties. Most importantly, T ≥ 0 and∫

V

T (v, v′)dv′ = 1

The main goal here is to find an evolution equation for n(t, x) :=
∫
u(t, x, v)dv such

as a diffusion equation or a Keller-Segel equation. The method makes crucial use of
a small parameter which has to be identified in the mesoscopic model. Within the
current context, this parameter, ε, is usually the ratio sL/T , where L is a typical
length scale of the pattern and T a measure of the typical time scale. The method
now consists of three steps

(1) introduce a scaling which reflects the type of model you want to find using
a small parameter

(2) write u as an asymptotic expansion in this small parameter
(3) find out what equations the different parts of this expansion have to satisfy

in order for the problem to be solvable. In many cases, these solvability
conditions give rise to the evolution equations you are after

In our case, we will study a parabolic scaling, i.e., ξ = εx and τ = ε2t. Hyperbolic
scalings are also often useful, and give rise to chemotaxis models with quite different
properties. The rescaled transport equation now becomes

ε2
∂u

∂τ
+ ε∇ξ · (vu) = −λu+ λ

∫
V

T (v, v′)u(τ, ξ, v′)dv′ (7.3.6)
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The second step is two write u as an asymptotic expansion

u(τ, ξ, v) =

k∑
i=0

εiui(τ, ξ, v) +O(εk+1) (7.3.7)

Let us denote
Lϕ(v) = −λϕ(v) + λ

∫
V

T (v, v′)ϕ(τ, ξ, v′)dv′

for functions ϕ ∈ L2(V ). Note that the natural choice of function space here would
be L1(V ), but choosing L2 makes the exposition more straightforward, since the
dual of L2 is again L2.

Plugging this expansion (7.3.7) into (7.3.6) and grouping the terms in the
resulting equation by orders of ε, we find

O(ε0) : Lu0 = 0 (7.3.8)
O(ε1) : Lu1 = v · ∇u0 (7.3.9)

O(ε2) : Lu2 =
∂u0
∂t

+ v · ∇u1 (7.3.10)

...

O(εi) : Lui =
∂ui−2

∂t
+ v · ∇(ui−1) 3 ≤ i ≤ k (7.3.11)

The properties of T imply that 0 is a simple eigenvalue of Lu = −λu +
λ
∫
V
T (., v′)u(v′)dv′ with eigenfunction u ≡ 1. We can hence conclude that, since

Lu0 = 0, u0 does not depend on v! This means that u0 only depends on τ and ξ and
is the dependent variable for which we are trying to derive an evolution equation.

Were L invertible, we could simply proceed by first setting

u1 = L−1(v · ∇u0)

and then
u2 = L−1 ∂u0

∂t
+ v · ∇(L−1(v · ∇u0))

and so on. But L is singular, and is only invertible on the orthogonal complement in
L2(V ) of the eigenspace at eigenvalue 0, 〈1〉⊥. This is nothing but those functions
ϕ ∈ L2 such that ∫

V

ϕ(v)dv = 0

Hence, to be able to express u1 in u0, we have to make sure that the right hand
side of (7.3.9) satisfies this orthogonality condition, which reads∫

V

(v · ∇u0)dv = 0. (7.3.12)

Then u1 = F(v · ∇u0), where F is the pseudoinverse of L (i.e., the inverse of L
where it is well-defined).

To solve (7.3.10) we similarly have to require that∫
V

∂u0
∂t

+ v · ∇u1dv = 0

Using u1 = F(v · ∇u0) this becomes∫
V

∂u0
∂t

+ v · ∇(F(v · ∇u0))dv = 0
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Since u0 is independent of v, the integrand vanishes, and we find the desired
evolution equation for u0,

∂u0
∂t

+ v · ∇(F(v · ∇u0)) = 0 (7.3.13)

which can be written in the more familiar form
∂u0
∂t

−∇ · (d∇u0) = 0 (7.3.14)

where
d = − 1

|Sn−1|

∫
V

vFvdv

Fortunately, in many cases this pseudoinverse F can be computed explicitly. In the
simplest case, when T (v, v′) = 1/|Sn−1| and V = sSn−1, we find

d =
s2

λn

This is a straighforward generalisation of the diffusion constant (7.3.5) we found in
the one-dimensional telegraph equation.

This technique of scaling, substituting an asymptotic expansion and finding an
evolution equation as a solvability condition, is a very general one and occurs in
many applied mathematics problems. Let us here extend this idea to incorporate
sensing of a chemoattractant, with a Keller-Segel model as the final result.

The main ingredient we need to add to include chemotaxis is to change the
turning kernel T . We suppose that this is now a function of an external signal
S(t, x). Intuitively, if a bacterium senses the signal it should swim in the direction
of highest concentration. The probability of choosing a new direction should thus
depend on the concentration around the position x, in other words on ∇S. We will
make this assumption at the very end.

We continue the above technique at the rescaled transport equation, which now
reads

ε2
∂u

∂τ
+ ε∇ξ · (vu) = −λu+ λ

∫
V

T (v, v′, S)u(τ, ξ, v′)dv′

Next to the asymptotic expansion (7.3.7) of u, we also introduce an expansion for
T . Let us assume that the influence of S only occurs in the order ε term:

T (v, v′, S) = T0(v, v
′) + εT1(v, v

′, S) (7.3.15)

Substituting this gives

ε2
∂u

∂τ
+ ε∇ξ · (vu) = L0u+ ελ

∫
V

T1(v, v
′, S)u(τ, ξ, v′)dv′

where
L0u = −λu+ λ

∫
V

T0(., v
′)u(v′)dv′

We continue by substituting the expansion for u. The ui again satisfy a coupled set
of equations analogous to (7.3.8)–(7.3.11), which can only be solved under certain
solvability conditions. The lowest order contribution u0 is still independent of v,
and the solvability condition for u0 at order ε2 is now∫

V

(
∂u0
∂t

+ (v · ∇)F0(v · ∇u0)− λ(v · ∇)F0

(∫
V

T1(v, v
′)dv′u0

))
dv

− λ0

∫
V

∫
V

T1(v, v
′, S)u1(v

′)dv′dv = 0 (7.3.16)
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Figure 7.2. Typical dynamics of the internal excitation variable
y1 as the bacterium passes a sudden increase of chemoattractant.
Note that the bacterium is first more excitable, but that this
excitability slowly decreases back to a rest state. Adapted
from Erban and Othmer (2004).

Here F0 is the pseudoinverse of L0. If we define

vc = − λ

|Sn−1|

∫
V

∫
V

vF0T1(v, v
′, S)dv′dv

as the chemotactic velocity, then u0 satisfies an equation which starts to resemble
a Keller-Segel equation

∂p0
∂τ

= ∇ · (d∇u0 − vcu0)

If we moreover make the same simplifying assumptions as before, T0 = 1/|Sn−1|,
then

d =
s2

λn
, vc =

1

|Sn−1|

∫
V

∫
V

vT1(v, v
′, S)dvdv′

Finally, to obtain the classical Keller-Segel model, we make the additional
assumption that T1 depends linearly on ∇S to which we hinted at the beginning of
this derivation. Then vc is of the form χ(S)∇S, with

χ(S) =
λk(S)

|Sn−1|
d

Note, however, that we are effectively not very much further. Rather than having
to choose an arbitrary function χ(S), we now have to choose an equally arbitrary
k(S).

There are many variations and extensions on this theme. We may also introduce
dependence of the turning rate λ on the chemoattractant, and again find that the
this dependence has to be of order ε to give us a Keller-Segel equation. Starting
either with a turning kernel T or a turning rate λ in which this S-dependence
is already present in the O(1) term (T0 or λ0) does not result in a Keller-Segel
equation, but reduces the evolution equation to simple diffusion.

One of the most exciting extensions in this field has been the additional
modelling of the signal transduction pathways by which bacteria sense the
chemoattractant. Rather than modelling directly how the turning angle depends
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on S (which resulted in our having to choose k(S) in the chemotactic sensitivity
χ(S)), we let it depend on some internal state of the bacterium. This pathway
is known to be very complex indeed, and mathematical models of its reaction
dynamics often contain 30 or more dependent variables. Fortunately, it has
been shown convincingly that this system may be approximated well using two
phenomenologically chosen variables, a fast excitation variable y1 changing at time
scale τe, and a slow adaptation variable y2 varying at time scale τa. See Figure 7.2
for the kind of dynamics this creates. These two ingredients of excitation and
adaptation are very commonly found in many sensory systems following an external
concentration. We now introduce an internal state y = (y1, y2) for each individual
particle, evolving according to

dy

dt
= h(y, S) (7.3.17)

or more specifically,

τe
dy1
dt

= g(S(x))− (y1 + y2) (7.3.18)

τa
dy2
dt

= g(S(x))− y2 (7.3.19)

We may resort to the conservation equation (7.1.2) again, but now the flux is not
in space or in velocity space, but in internal state space. The evolution of particle
densities and their internal states can be given by

∂u

∂t
+∇y · (hu) = 0

So rather than treating y as an dependent variable, we can treat it as an independent
variable. This is entirely analogous to the situation in which dx/dt = v and u solves
ut +∇ · (vu) = 0.

Putting this new ingredient into the transport equation is straighforward. Now
u(t, x, y, v) satisfies
∂u

∂t
+∇x · (vu) +∇y · (hu) = −λ(y)u+ λ(y)

∫
V

T (v, v′, y)u(t, x, v′, y)dv′ (7.3.20)

The three-step technique works also for this more elaborate example. Assuming
that the turning rate depends linearly on the excitation variable (which detects the
signal and thus influences when to change direction) we write λ(y) = λ0 − by1 for
λ0 > 0, b > 0. A macroscopic evolution equation for U(x, t) =

∫ ∫
u(t, x, y, v)dydv,

can now be derived, and is indeed a classical Keller-Segel equation for large times
∂U

∂t
= ∇ ·

( s2
λ0

∇U −
[ bs2τag

′(S(x))

λ0(1 + 2λ0τa)(1 + 2λ0τe)

]
U∇S

)
. (7.3.21)

Not only have we understood under what circumstances mesoscopic dynamics give
rise to Keller-Segel equations, we have also obtained insight how the parameters
specifying the individual bacteria’s behaviour influence the diffusion or aggregation
parts of the final macroscopic equation (7.3.21).

This is but one way to derive Keller-Segel models from lower-level dynamics.
One may also start from a stochastic description, see e.g. Stroock (1974); Stevens
(1995). For more information and much detail on recent developments on velocity-
jump processes and their relation to chemotaxis models, see Alt (1980); Othmer
et al. (1988); Othmer and Hillen (2002); Erban and Othmer (2004, 2007); Xue and
Othmer (2009). The analysis of the resulting chemotaxis models has become a
large field. The interested reader may consult Horstmann Horstmann (2003) for a
detailed review of many mathematical aspects of chemotaxis.





Chapter 8
Physiologically structured populations

Often we are not only interested in just the spatial or temporal dynamics of a
population, but also in the internal structure of the individuals in this population.
Examples include the demography of a population (how many individuals of what
age), or its size distribution. The first of these, age structure, is considerably
easier than the latter, since age simply passes linearly with time, while size may
depend on the environment (how much food was consumed, for instance). This
chapter thus focuses on the simpler case of age structure. This does not preclude
interesting behaviour, as we will see when discussing the consumption of one’s own
kind: cannibalism of adults of juveniles.

In any model description of physiologically structured populations, a distinction
must be made between the state of an individual or i-state, and how it changes,
and the population state or p-state and its change. Individuals are subject to the
rest of the population and the environment, and the whole population in turn
changes as a result of individual births and deaths (and potential other causes,
such as immigration). This distinction thus immediately means more involved
bookkeeping and a greater proliferation of processes and constants than in more
macroscopic model approaches such as reaction-diffusion equation. Nevertheless,
much of the modelling we will encounter boils down to mere bookkeeping and well-
chosen notation.

8.1 Age structure
Let us first introduce the function n(t, a) which denotes the density of

individuals of age a at time t. The total number of individuals at time t will
be denoted by A(t), and these together give birth to offspring at a rate b(t). We
further denote the per capita birth rate at age a by β(a). The population birth
rate b(t) is given by

b(t) =

∫ ∞

0

β(a)n(t, a)da. (8.1.1)

Individuals are assumed to survive up to age a with probability F(a), and die at
a per capita rate µ(a). The number of individuals of age a at time t is then those
individuals that were born a time ago and are still alive,

n(t, a) = b(t− a)F(a). (8.1.2)

The relation between F and µ is given by
dF
da

= −µ(a)F . (8.1.3)

87
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which can be solved using an initial condition F(0) = 1,

F(a) = e−
∫ a
0

µ(α)dα. (8.1.4)

Equivalently, we can express µ in F ,

µ(a) = − d

da
logF(a).

Usually, age-specific mortality rates can not be estimated reliably from demographic
data, but F(a) can be, and is called the cohort-survival probability.

If we start an experiment at time t = 0 with some known initial age density
n(0, a), then (8.1.2) only holds for 0 ≤ a ≤ t. For a > t we instead have the
conditional survival probability

n(t, a) =
F(a)

F(a− t)
n(0, a− t).

After all, these individuals already had a positive age at time zero, and had to have
survived from birth to the initial time of the experiment. Now, (8.1.1) becomes

b(t) =

∫ t

0

β(a)F(a)b(t− a)da+ f(t) (8.1.5)

with
f(t) =

∫ ∞

t

F(a)

F(a− t)
β(a)n(0, a− t)da. (8.1.6)

Note that f(t) is a known quantity since it involves the initial condition n(0, t)
which we assume to be known. An equivalent way to prescribe an initial condition
would be to supply a function b(a) for a ≤ 0: if we take t = 0 in (8.1.2), we find

n(0, a) = b(−a)F(a), a ≥ 0,

which allows us to find n(0, a) from b(a) and vice versa.
Another useful quantity known from data is the average number of offspring

produced by age a, L(a), given by

L(a) =

∫ a

0

β(a)F(a)da, (8.1.7)

which is equivalent to

β(a) =
1

F(a)

dL

da
(a).

Combining (8.1.1) and (8.1.2) we find the renewal equation

b(t) =

∫ ∞

0

β(a)F(a)b(t− a)da, (8.1.8)

a Volterra integral equation of convolution type, which is to be solved with the
initial condition b(a), a < 0. Both (8.1.5) and (8.1.8) are called renewal equations.

An alternative way to describe the dynamics of age structure is to keep in mind
that age increases at rate 1 as time progresses, so that n(t, a) satisfies the first-order
partial differential equation

∂n

∂t
+
∂n

∂a
= −µn, (8.1.9)

first studied by McKendrick (1926). As boundary condition we supply a birth rate,
n(t, 0) = b(t) by (8.1.1). The left hand side of (8.1.9) is just a version of the general
bookkeeping rule (4.1.7) from Chapter 4, i.e., (8.1.9) is a transport equation. Here
the flux is ∂n

∂a
da
dt = ∂n

∂a since da
dt = 1.
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s

R0

r

1 ∫∞
0
β(a)F(a)e−sada

Figure 8.1. For R0 > 1, the characteristic equation (8.1.10) has
a real positive solution r.

8.1.1 Growth or decline
Equation (8.1.5) is more complicated than (8.1.8), but is more useful for

existence and uniqueness questions. However, as time progresses the extra term f(t)
vanishes since all the individuals that existed at time 0 will have died. Therefore,
(8.1.5) becomes identical to (8.1.8). Since this equation is linear in b we can try to
find possible solutions by setting b(t) = b0e

rt. Such a solution satisfies (8.1.8) if

1 =

∫ ∞

0

β(a)F(a)e−rada. (8.1.10)

This is the Euler-Lotka equation for the population growth rate r. The basic
reproduction number

R0 :=

∫ ∞

0

β(a)F(a)da = L(∞) (8.1.11)

gives the population growth on a generation basis, while the Malthusian parameter
r measures the real time growth of the population. It is also called the intrinsic
rate of increase. The most important relation between R0 and r is that

R0 > 1 ⇐⇒ r > 0. (8.1.12)
More precisely, equation (8.1.10) has a strictly positive real root r if and only
if R0 > 1, which is conveniently illustrated in Figure 8.1. Intuitively, it seems
obvious that a population can only grow in real time if and only if it can grow on
a per-generation basis. The Euler-Lotka equation states that the discounting rate
r should be adjusted to make the discounted basic reproduction number exactly 1.

Cautionary example. If we assume that cells give birth to two offspring
exactly at time 1, then L jumps from zero to two at age 1 (ignoring the possibility
of dying), and the difference equation b(t) = 2b(t − 1) leads to the characteristic
equation 1 = 2e−z with roots z = log 2 + 2πki, k ∈ Z. This is analogous to the
situation with discrete age classes, modelled using Leslie matrices, in which the
matrix is nonprimitive (see Section 2.3.1).

The large-time behaviour of the renewal equation for the birth rate, equa-
tion (8.1.5), is best studied using the Laplace transform, which is defined by

h̄(s) =

∫ ∞

0

h(t)e−stdt.

Its most useful feature in the present context is that the Laplace transform converts
convolutions into products, so that (8.1.5) is equivalent to

b̄(s) = βF(s)b̄(s) + f̄(s),
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which we can solve for b̄(s) to find

b̄(s) =
f̄(s)

1− βF(s)
. (8.1.13)

Note that the Euler-Lotka equation (8.1.10) also has the form of the Laplace
transform of βF(s). Indeed,

βF(s) =

∫ ∞

0

β(a)F(a)e−sada = 1

when s equals the intrinsic growth rate r. All other roots have real part smaller
than r. We may transform b̄(s) back to b(t) using the Inverse Laplace transform

h(t) =
1

2πi

∫ c+i∞

c−i∞
h̄(s)estds,

where the c is greater than the real part of all singularities of h̄(s). In the case
that the roots of the Euler-Lotka equation are simple, denoted by r, s1, s2, . . ., the
original birth rate, backtransformed from (8.1.13), has a particularly transparent
form,

b(t) =
f(r)

(βF)′(r)
ert +

∞∑
i=1

f(si)

(βF)′(si)
esit.

This shows that the large-time behaviour of the birth rate is dominated by the first
term, which indeed becomes the asymptotic growth rate for the total population.

One can also show that n(t, a) for almost all initial conditions n(0, a) = n0(a),
converges towards a stable age distribution v(a) that grows exponentially at rate
r (Feller, 1941; Gripenberg et al., 1990; Diekmann et al., 1995), where

v(a) =
e−raF(a)∫∞

0
e−rαF(α)dα

.

The age density v(a) is found by interpretation: it is the density of individuals of
age a, so that

v(a) = lim
t→∞

n(t, a)∫∞
0
n(t, α)dα

= lim
t→∞

b(t− a)F(a)∫∞
0
b(t− α)F(α)dα

≈ er(t−a)F(a)∫∞
0
er(t−α)F(α)dα

for t large

=
e−raF(a)∫∞

0
e−rαF(α)dα

.

Note that the age density is steeply declining when the population is growing
fast. In other words, a slowly growing population has many elderly people at steady
state, which reflects the current situation in many western countries.

A much more general discussion of Laplace transforms to solve renewal
equations, and indeed of delay equations in general, may be found in (Diekmann
et al., 1995).

8.2 Cannibalism
Things start to become more interesting in age structure models if the old

consume the young. Under what conditions can cannibalism have a positive effect
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β
us

Ā

µeµτ

Figure 8.2. Without taking cannibalism into account we find that
for small per capita birth rates β, populations (indicated by size of
the adult population Ā) crash (s for stable trivial solution), while
for large ones they grow unbounded (u for unstable trivial solution.

on total (or just adult) population sizes? To start, let us divide the population into
adults A, and juveniles, which mature to adulthood at a fixed age τ .

8.2.1 Focusing on the victims: higher juvenile death rates
The condition for long term survival of the population is given by R0 > 1. With

the introduction of adults and juveniles, the long term survival of the population
is given by

β
1

µ
F(τ) > 1,

Simply put, the expected number of offspring from one newborn individual is the
product of the birth rate, the life expectancy of an individual and the probability
to reach adulthood, and this should exceed one. To keep things simple, we assume
that both juveniles and adults have a fixed death rate µ (due to all other causes
than cannibalism), so that

F(τ) = e−µτ .

From the previous discussion we know that the adult population either collapses if
R0 < 1, or grows unbounded when R0 > 1. When these inequalities are written
from the perspective of birth rate β, we find Figure 8.2.

We now build up the model by first considering the fate of juveniles,
by augmenting the juvenile death rate but keeping the birth rate fixed, i.e.,
independent of cannibalism. The death rate µ is assumed to become

µ+ h(a)A

where h(a) is a vulnerability function that depends on the age a of the juvenile.
Note that we have assumed independence of individuals here, to invoke the Law of
Mass Action (the cannibalism rate is assumed to be proportional to the product of
juvenile and adult population sizes). We assume that h has a graph more or less
as in Figure 8.3: its support is confined to (0, τ).

Now we introduce an important piece of notation. Let ϕt denote the history of
a function ϕ, in the sense that

ϕt(θ) := ϕ(t+ θ), θ ≤ 0.

In this notation, individuals born at time t − a survive to age a at time t with a
probability that depends on the size of the adult population during the time period
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aτ

h(a)

Figure 8.3. The vulnerability function h(a) as function of age a,
with compact support in (0, τ).

[t− a, t],
F(a,At) = e−µa−

∫ a
0

h(α)A(t−a+α)dα,

As we said at the start, assume that cannibalism does not augment the birth rate
of adults, and keep β constant. The renewal equation for b now becomes

b(t) = β

∫ ∞

τ

F(a,At)b(t− a)da. (8.2.1)

By definition, the adults in the population comprise those individuals that were
born more than τ time ago and survived to reach adulthood,

A(t) =

∫ ∞

τ

F(a,At)b(t− a)da. (8.2.2)

By our assumptions on h, we can evaluate this integral in steps, which is called the
“method of steps” in the theory of delay equations. We can take the derivative of
A(t) using (8.2.2) to arrive at

dA

dt
(t) = b(t− τ)F(τ, At)− µA(t),

which may be interpreted in biological terms in a clear way: the number of
adults increases due to births τ time ago, and surviving their youth in the face
of cannibalism, and decreases due to natural mortality. If we use that

b(t) = βA(t)

in dA/dt, we find
dA

dt
(t) = βA(t− τ)F(τ, At)− µA(t), (8.2.3)

which nicely summarises this model in one delay differential equation.
Let us now focus on steady states and see if Figure 8.2 changes already. A

prerequisite for a steady state is that the population growth rate over generations,
R0, is exactly one. The adult population size is of course a constant A. Recall that
we have

R0 = L(∞) = β

∫ ∞

0

F(a,A)da,

so that
R0 = β

1

µ
e−µτ−HA,

where
H =

∫ τ

0

h(σ)dσ.
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Figure 8.4. A supercrticical transcritical bifurcation. Stability
changes at β = µeµτ , but we don’t yet know whether this stability
is maintained for larger β, as indicated by the question mark.

The steady state equation R0(A) = 1 has solution

A = Ā =
1

H
log
(β
µ
e−µτ

)
.

For biologically relevant steady states, we need Ā ≥ 0, which means that

β > µeµτ ,

the same value as before. Plotting the steady state Ā as a function of β, we find
Figure 8.4, in constrast to Figure 8.2. From this analysis we only find that the
steady state is stable near the bifurcation point (See the Appendix for a brief
introduction to bifurcation theory). However, as the question mark in the figure
indicates, it is not yet clear whether the steady state remains stable for larger β.
This is not so easy to establish.

To summarise, the point where populations become viable remains the same,
but we now find that populations do not grow unbounded, but that they are kept
in check by cannibalism.

8.2.2 Focusing on the perpetrators: including higher birth rates
So far, we have assumed that cannibalism was uncommon enough (with respect

to additional resources available to the adults) that birth rates were not affected
by it. Now we do include a higher birth rate due to consumption of juveniles, and
assume that β becomes β +B(t) where

B(t) =

∫ τ

0

E(α)h(α)F(α,At)b(t− α)dα. (8.2.4)

In words, cannibalised juveniles that contribute to extra births are born at time
t − α, survive to the age of being eaten by conspecifics with probability F(α,At)
(which thus depends on the historic population size of adults, are predated upon
with rate h(α) and converted into offspring according to some conversion function
E(α)). The renewal equation for the birth rate now becomes

b(t) = (β +B(t))

∫ ∞

τ

F(a,At)b(t− a)da. (8.2.5)

The complete model is now given by equation (8.2.5) for b, (8.2.4) for B, and (8.2.3)
for A.
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Figure 8.5. A subcritical transcritical bifurcation

The steady states are given by solving the following three equations for the
three constants, b, A and B,

R0 = 1 ⇐⇒ 1 = (β +B)
1

µ
e−µτ−HA, (8.2.6)

A = β

∫ ∞

τ

F(a,A)da =
β

µ
e−µτ−HA, (8.2.7)

B = b

∫ τ

0

E(α)h(α)e−µα−
∫ α
0

h(σ)dσdα. (8.2.8)

Solving (8.2.7) for b, substituting this into (8.2.8), then solving for B and finally
substituting this into (8.2.6), we find

β = µeµτ+HA
(
1−A

∫ τ

0

E(α)h(α)e−µα−A
∫ α
0

h(σ)dσdα
)
. (8.2.9)

This is one equation in A, with solution Ā. It of course gives β as a function of Ā,
so we can at least make a sketch. Figure 8.5 is one such sketch, where a subcritical
transcritical bifurcation is shown. The criterion for this to be the case is given by
the sign of β′(0),

dβ

dA

∣∣∣
A=0

= Heµτ
(
1− 1

H

∫ τ

0

E(α)h(α)e−µada
)
. (8.2.10)

So we find a supercritical bifurcation such as in Figure 8.4 when

1

H

∫ τ

0

E(α)h(α)e−µada > 1, (8.2.11)

and a subcritical bifurcation, see Figure 8.5, when

1

H

∫ τ

0

E(α)h(α)e−µada < 1. (8.2.12)

This condition has an interesting biological interpretation, revolving around the
positive and negative gains from cannibalism. To derive this interpretation,
we introduce Φ(a), the expected number of newborns produced as a result of
cannibalism, per newborn, up to reaching age a, at constant adult population size
A. Note that this quantity is not the complete benefit of cannibalism, since these
newborns themselves give rise to Φ(a) new offspring through cannibalism, making
the total number of newborns of these first two generations Φ(a)+Φ2(a). Summing
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over all generations in this way, we find that the total benefit is thus
∞∑
k=1

Φk. (8.2.13)

This variable Φ satisfies{
dΦ
da (a) = AE(a)h(a)e−µa−A

∫ a
0

h(σ)dσ,
Φ(0) = 0,

so that
Φ(τ) = A

∫ τ

0

E(α)h(α)e−µα−A
∫ α
0

h(σ)dσdα. (8.2.14)

For small A, Φ(τ) < 1, and hence our focal quantity (8.2.13) equals
1

1− Φ(τ)
.

Now we turn to the negative effect of cannibalism, which is much simpler: it is the
term e−HA in the probability to survive cannibalism till adulthood. The net gain
from cannibalism is thus positive if the overall growth rate exceeds one, i.e.,

e−HA

1− Φ(τ)
> 1,

which we rewrite as
e−HA > 1− Φ(τ)

Close to A = 0, e−HA is well approximated by 1−HA, so that the inequality above
becomes 1−HA > 1− Φ(τ), i.e.,

Φ(τ)

HA

∣∣∣
A=0

> 1.

Using expression (8.2.14) for Φ, we find precisely condition (8.2.11) which we sought
to derive.

Finally, to get some feeling for the behaviour of steady states away from the
bifurcation point A = 0, assume that h(a) is concentrated at a point, h(a) =
Hδ(a− τ̂). Then the birth rate β becomes

β = µeµτ+HA
(
1− E(τ̂)e−µτ̂ (1− e−HA)

)
.

Therefore,
dβ

dA
(A) = Hµeµτ+HA(1− E(τ̂)e−µτ̂ ).

The last factor was found as the condition for local stability of A = 0, but since the
above argument is valid all along the β(A) curve, it is now also the global condition.

One remarkable point to note is that if we assume that the birth rate due to
normal (non-cannibalistic feeding) β is zero, then the steady state Ā solves

Ā = − 1

H
log
(
1− eµτ (E(τ̂))−1

)
,

which is potentially positive! In that case, the “bend” in Figure 8.5 extends
beyond the Ā-axis. The adult population manages to feed exclusively on juvenile
conspecifics, and the only energy uptake from outside the population is from
juveniles feeding on other food. Indeed, there are lakes in which there is only
one, predatory, fish species, whose juveniles feed exclusively on zooplankton, and
all adults are obligate cannibalists. See (van den Bosch et al., 1988) for a full
account of this remarkable story.





Chapter 9
Infectious Diseases

There was a time (the middle of the last century) when the World Health
Organization declared impending victory in the battle against infectious diseases
and expressed that medicine should now focus on cardiovascular diseases and cancer.
Today we are aware that bugs hit back hard and fast (evolution is an ally of anybody
and does not care about human interest in particular), and that new bugs emerge.
On top of that, both livestock and crops are vulnerable to a multitude of bacteria,
viruses and fungi. So any tool that enhances our understanding of infectious disease
dynamics is most welcome (since understanding is a first step towards control).
The present chapter is a short introduction to mathematical modeling tools in this
direction. The monograph by Diekmann et al. (2012) provides a more encompassing
treatment of the subject.

9.1 The force of infection
A very special feature of population dynamics of micro-parasites is that the

parasites are represented indirectly in the form of infected hosts (for macro-
parasites, in particular worms, hosts are often characterized in terms of parasite
load, giving a somewhat more direct representation). A manifestation of this
indirectness is that the analogue of the birth rate is the incidence, i.e., the number
of new cases per unit of time. Ignoring, for convenience, the practical complication
of delayed onset of symptoms and delayed reporting, and pretending that a newly
infected host is immediately recognizable as such, the incidence is

i(t) =
# new cases

time at time t. (9.1.1)

As the analogue of the age of an individual we introduce
τ = time on the clock that starts when host gets infected. (9.1.2)

With some delay (whence the introduction of τ) infected individuals produce
propagules that have the potential to infect other hosts. We define

S(t) = size of the population of susceptible individuals, (9.1.3)
where “size” may refer to spatial density, to absolute numbers or to the fraction of
the total population, depending on the context. We postulate

i(t) = F (t)S(t), (9.1.4)
and say

F (t) = force of infection at time t (9.1.5)
= probability per unit time for a susceptible to become infected.

97
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The constitutive equation

F (t) =

∫ ∞

0

i(t− τ)A(τ) dτ (9.1.6)

closes the feedback loop. It expresses that the force of infection is made up from
contributions by individuals that themselves were infected some time τ ago. Indeed

A(τ) = expected contribution to the force of infection at time τ (9.1.7)
after becoming infected.

So A(τ) is proportional to the expected production of propagules at time τ after
becoming infected. The constant of proportionality incorporates the relevant
quantification of the contact process that provides suitable opportunities for
propagules to jump over from infected hosts to susceptible hosts. The function
A(τ) is the key modeling ingredient.

By combining (9.1.4) and (9.1.6) we obtain the renewal equation

i(t) = S(t)

∫ ∞

0

i(t− τ)A(τ) dτ (9.1.8)

for the incidence i. To complete the model formulation, we need to specify the
dynamics of S.

9.2 The introductory phase
Susceptibles are the substrate for the pathogen. Susceptibles are needed for

reproduction, but are “consumed” in the process, in particular when immunity
results. If no new fuel is provided, a fire will go extinct. If we light a pile of wet
wood, extinction is immediate. If we light a pile of very dry wood, a blazing fire may
result and yet, ultimately, the fire goes extinct. Even though the end result is the
same, the two situations are clearly rather different and we want to distinguish them
from each other. To do so, we ignore that the fire itself diminishes the amount of
combustible material. This denial of a fact allows us to easily and clearly make the
distinction between the introductory phase of the two cases. Once the distinction
is made, we should realize that in the case of the dry wood our denial is exposed,
that we need to take the fact into account once the fire becomes substantial.

The “denial of a fact” alluded to above, is in mathematics called “linearization”.
The usual procedure is to formulate a complete nonlinear model, compute some
derivatives and then use these to define the linearized system. When discussing
the introduction of a species, there is a shortcut! One has to think in terms of
environmental condition and feedback. In the present setting, and from the point
of view of the parasites, the environmental condition is fully determined by S(t).
Feedback entails that S decreases when hosts get infected. Linearization simply
means that we ignore the feedback. Indeed, if we consider (9.1.8) and assume that
i(t) is small, then small deviations from a given S(t) lead to quadratically small
terms that are ignored in the linearization.

Finally, a relatively easy situation of great relevance is when the environmental
condition is constant in time. The key point is that, when the environment is
constant, it does not matter when you are “born” (i.e., infected), and hence it
makes perfect sense to study the (implicit discrete time) dynamics of generations.
We will use this heavily in Section 9.4 below.

So let us take S(t) to be constant in time, S0. The linear renewal equation

i(t) = S0

∫ ∞

0

i(t− τ)A(τ) dτ (9.2.1)
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is, apart from notation, identical to (8.1.8). So motivated by (8.1.11) we call

R0 = R0(S
0) = S0

∫ ∞

0

A(τ) dτ (9.2.2)

the basic reproduction number. In the current context
R0 = expected number of secondary cases per primary case. (9.2.3)

The corresponding Euler-Lotka equation

1 = S0

∫ ∞

0

e−λτA(τ) dτ (9.2.4)

has a unique real root λ = r and
sign r = sign(R0 − 1). (9.2.5)

If r > 0 and the incidence grows like ert, we say that a major outbreak is initiated.
If r < 0 we say that only minor outbreaks are possible (cf. the wet wood). We say

R0 has threshold value one (9.2.6)
to express that for a major outbreak to be possible, R0 should exceed the value one.
Since R0 is proportional to S0 we can, in particular when S0 is a spatial density,
also say that the population density has to exceed a critical density before a large
outbreak is possible. And indeed, the burden of infectious disease for mankind
increased a lot when, in the Middle Ages, population density in walled towns grew
substantially.

9.3 The final size in a closed population
If the population is demographically closed (no birth/death, no emigra-

tion/immigration) and the disease leads to permanent immunity, the change in
S(t) is entirely due to new infections. Or, in equations

dS

dt
(t) = −i(t) = −F (t)S(t) (9.3.1)

and, upon integration
S(t) = S0e−

∫ t
−∞ F (σ) dσ, (9.3.2)

where S0 is the size of the susceptible population way back in the past, before
the disease entered stage. Combining (9.1.4), (9.3.2) and (9.1.6) we obtain the
nonlinear renewal equation

F (t) = S0

∫ ∞

0

F (t− τ)e−
∫ t−τ
−∞ F (σ) dσA(τ) dτ (9.3.3)

Integrating this identity from −∞ to t, while using

F (t− τ)e−
∫ t−τ
−∞ F (σ) dσ = − d

dt
e−

∫ t−τ
−∞ F (σ) dσ,

we deduce ∫ t

−∞
F (σ) dσ = S0

∫ ∞

0

[
1− e−

∫ t−τ
−∞ F (σ) dσ

]
A(τ) dτ. (9.3.4)

This is a convolution type nonlinear renewal equation for∫ t

−∞
F (σ) dσ = − ln

S(t)

S0
(9.3.5)

(cf. (9.3.2)). Taking the limit t→ ∞ we find

− ln
S(∞)

S0
=
(
1− S(∞)

S0

)
R0. (9.3.6)
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1
R0solution

1

R0(1− x) + ln(x)R0(1− x) + ln(x)

xx

R0 > 1R0 < 1

solution

Figure 9.1. Solutions of (9.3.6) for R0 < 1 (left) and R0 > 1 (right).

(A rigorous proof combines monotonicity with respect to t with integrability of A.)
A simple graphical argument establishes that (9.3.6) has a unique solution with

0 <
S(∞)

S0
< 1

when R0 > 1, and no such solution (meaning that S(∞)/S0 = 1 is the relevant
solution) when R0 < 1, see Figure 9.1.

So once again we conclude that a major outbreak requires R0 > 1 but now we
found the additional information that the size of such a major outbreak, expressed
by 1−S(∞)/S0 as the fraction of the population that falls victim to the disease, can
be determined by finding the appropriate root of (9.3.6). In particular we conclude
that some fraction escapes (note, however, that S(∞)/S0 ∼ exp(−R0) for R0 � 1).

Cautionary remark: the final size equation depends on the assumptions
about the contact process, see (Diekmann et al., 2012, Section 1.3.3).

9.4 The probability of a minor outbreak (an interlude
on branching processes)

Some of the formulations above were a bit awkward or cryptic, since we wanted
to avoid suggesting that R0 > 1 guarantees that a major outbreak occurs. It
does once a small fraction of the large (to justify our deterministic description)
population is infected. But it does not if only a small number of individuals is
infected. The point is that the potential to generate a lot of secondary cases is
computed as an average, an expected value, but that as long as numbers are small
we need to take into account that the actual realizations may not at all realize this
potential. Bad luck can have decisive impact when numbers are small. Indeed, the
pathogen may go extinct after triggering only a minor outbreak.

Branching processes are stochastic models that can capture such effects very
well. We now return to the setting of Section 9.2, i.e., we again ignore the feedback
and assume that the availability of substrate, of susceptibles, is constant in time.
Recall that in a constant environment we can adopt a generation perspective.

A stochastic formulation of “ignore the feedback” reads “assume that individu-
als behave (in our case: reproduce) independently of each other”. The specification
of a model then amounts to providing numbers

qk ≥ 0, k = 0, 1, 2, 3, . . . (9.4.1)
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such that
∞∑
k=0

qk = 1 (9.4.2)

and with the interpretation that qk is the probability that an individual produces
k offspring during its entire life. In more technical jargon: the total number of
offspring of an individual is a random variable with probability distribution {qk}∞k=0.
One also says: offspring is an independent and identically distributed (abbreviated
to i.i.d.) random variable. Note that in the context of infectious diseases one should
interpret “offspring” as “host infected by the individual under consideration”.

To be able to characterize the probability of extinction, it is useful to introduce
the generating function

g(z) :=

∞∑
k=0

qkz
k (9.4.3)

and to verify that g has the following properties

i) g(0) = q0,

ii) g(1) = 1,

iii) g′(1) =

∞∑
k=1

kqk, (9.4.4)

iv) g′(z) > 0, for z ≥ 0,

v) g′′(z) > 0 for z ≥ 0.

Now assume that q0 > 0, which means that with positive probability an individual
will beget no offspring at all. If we start with exactly one individual, then q0 is the
probability that the first generation consists of zero individuals. More generally, let
us define

zn := probability that the nth generation consists of
zero individuals, given that the zeroth generation
consists of one individual

Then the above observation can be reformulated as z1 = q0.
If the first generation consists of k individuals, then, in order that the second

generation consists of zero individuals, each of these should die childless. The
independence implies that this event has probability qk0 . Thus we find

z2 = q0 +

∞∑
k=1

qkq
k
0 = q0 +

∞∑
k=1

qkz
k
1 ,

which is the case n = 1 of the general recursion relation

zn+1 = q0 +

∞∑
k=1

qkz
k
n = g(zn). (9.4.5)

The interpretation of (9.4.5) is as follows: the (n + 1)-generation consists of zero
individuals if already the first generation consisted of zero individuals, or if the first
generation consisted of k individuals and each of these seeds a clan that is extinct
by generation n.

Using the relations (9.4.4) we can easily analyse the recursion (9.4.5) graphically
by making “staircase plots”, see Figure 9.2.

If g′(1) ≤ 1 then limn→∞ zn = 1, or in words, the population goes extinct with
probability one.
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g′(1) ≤ 1

z

y = z

y = g(z)

0 1

1
g′(1) > 1

z

y = z

0 1

1

q0 q0

z∞

Figure 9.2. Staircase plots of zn+1 = g(zn) for the case g′(1) ≤ 1
(left) and g′(1) > 1 (right).

If g′(1) > 1, then limn→∞ zn = z∞, where z∞ is the unique root in (0, 1) of the
equation

z = g(z) (9.4.6)
So in that case the population goes extinct with probability z∞ and with the
complementary probability 1− z∞ it persists indefinitely.

In the epidemic context we interpret this as follows: with probability z∞ the
introduction of one case leads to a minor outbreak, where “minor” means that the
total number of cases is, expressed as a fraction of the very large total population
of hosts, negligible; with probability 1 − z∞ the introduction of one case leads to
a major outbreak, where “major” means that a non-negligible fraction of the very
large population of hosts becomes infected (such that our assumption that feedback
can be ignored becomes untenable).

We end this section with the crucial observation that R0 is just the mean
number of offspring from a single individual, which in terms of the probability
distribution {qk}∞k=0 means

R0 = expected number of offspring =

∞∑
k=1

kqk = g′(1). (9.4.7)

For more in-depth treatments on the use of branching processes in biology,
consult (Kimmel and Axelrod, 2002; Haccou et al., 2005).

9.5 Model ingredients (special submodels)
In Section 9.2 we introduced S0 and A(τ) as model ingredients and in

Section 9.4 we worked with {qk}. A legitimate question is: how are such ingredients
related to each other? By combining the respective relations for the basic
reproduction number R0, (9.2.2) and (9.4.7), we have as a consistency condition

S0

∫ ∞

0

A(τ) dτ =

∞∑
k=1

kqk (9.5.1)

but one would like to come up with less coarse relations. In order to derive these,
we need to go “down” and provide a more detailed model specification from which
both A(τ) and {qk} can be deduced. We shall do this for a very special and very
simple submodel that enjoys great popularity.
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Assume that an individual can be either Susceptible or Infectious or Removed
(meaning recovered and immune, or deceased). We shall use the labels S, I and
R to denote these i-states. (Note that we shall soon use the same labels to denote
the number of individuals (or the fraction of the total population) in that state.)
Assume that the length of the period that an infected individual stays infectious is
exponentially distributed with parameter α. Assume also that, while infectious, an
individual has a constant contribution β to the force of infection. Then

A(τ) = βe−ατ . (9.5.2)
At the i-level these assumptions correspond to

dpS
dt

= −FpS ,

dpI
dt

= FpS − αpI , (9.5.3)

dpR
dt

= αpI ,

where plabel(t) is the probability that an individual is in the state corresponding to
the label at time t , and where F denotes the force of infection (we need p-level data
to specify F ). Of course, we need to provide an initial condition for (9.5.3). If we
consider an individual that has just entered state I at time t, the initial condition
is pS(t) = 0, pI(t) = 1, pR(t) = 0.

If we denote the time on the clock that starts at t by τ , then
pI(t+ τ) = e−ατ .

Thus we derived/explained one of the two factors in (9.5.2).
At the p-level the assumptions correspond to

dS

dt
= −FS,

dI

dt
= FS − αI, (9.5.4)

dR

dt
= αI,

supplemented by
F = βI. (9.5.5)

Exercise 9.5.1. Demonstrate that (9.1.8), (9.3.1) and (9.5.2) are equivalent
to (9.5.4), (9.5.5).

In other words (and as already demonstrated by Kermack and McKendrick in
1927 (and republished in (Kermack and McKendrick, 1991a,b)), the familiar ODE
formulation of the SIR-model,

dS

dt
= −βSI,

dI

dt
= βSI − αI, (9.5.6)

dR

dt
= αI,

is but a very special case in a very particular guise of the general class of
deterministic models that have S0 and A(τ) as ingredients.

But let us now address the task of finding expressions for the qk in this
particular situation. To do so, we need to provide a more detailed specification
of the contact process at the i-level. The obvious option is to assume that
an individual makes contact according to a Poisson process with an intensity
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that scales with the population size. In addition, we need to specify the
probability of transmission, given a contact between an infectious and a susceptible
individual. The parameter β is the product of the intensity-scaling-parameter and
the probability of transmission.

The upshot is that, in the initial phase where feedback can be ignored, an
individual that has an infectious period of length T generates k secondary cases
with probability

P (k, T ) =
(βS0T )k

k!
e−βS0T .

It follows that

qk = α

∫ ∞

0

P (k, t)e−αtdt = α

∫ ∞

0

(βS0t)k

k!
e−βS0te−αt dt, (9.5.7)

and, using that the generating function for a Poisson distribution with intensity
parameter µ is g(z) = eµ(z−1), consequently

g(z) = α

∫ ∞

0

eβS
0t(z−1)−αt dt =

α

α− βS0(z − 1)
. (9.5.8)

The equation
z = g(z)

is a quadratic equation in this case, and since we know that z = 1 is a solution, we
do not even have to apply the general formula to find the other solution. We find,
for R0 = βS0/α > 1, as the relevant solution

z∞ =
α

βS0
=

1

R0
. (9.5.9)

So for this particular submodel, the probability of a minor outbreak (upon
introducing one newly infected individual) is simply the inverse of R0 when we
are in the supercritical situation R0 > 1.

Side remark: See (Diekmann et al., 2012, Section 1.3.4) for a Markov chain
description of an epidemic in a finite population, using the same submodel for
infectiousness as above.

9.6 Endemicity
In order to include demography, we may change (9.5.6) into

dS

dt
= B − µS − βSI,

dI

dt
= −µI + βSI − αI, (9.6.1)

dR

dt
= −µR+ αI.

Here B is a population level constant birth rate, and µ a per capita constant death
rate (so the population size equals B/µ and if the variables S, I and R are actually
fractions we should choose B = µ). According to this description, the survival
probability of an individual to at least age a equals

F(a) = e−µa, (9.6.2)
which is at variance with observed survival probabilities in present-day developed
countries. So let us try to find an alternative for (9.6.1) incorporating a general
survival probability, i.e., a stable age distribution of the general form

BF(a), (9.6.3)
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where B > 0 and F is a monotone non-increasing positive function with F(0) = 1
(and for all practical purposes, compact support). We assume

• the disease leads to permanent immunity
• age has no influence on contact (i.e., the probability that two individuals

have contact does not depend on their ages)
The second assumption is clearly as much at variance with known facts as an
exponential survival function (see (Mossong et al., 2008)). But our aim here is to
introduce some improvement in the formalism for infectious disease modelling and
not to go all the way to realistic models of specific diseases.

The key point of the second assumption is that the force of infection is not age
specific. Realising that an individual with age a at time t must have been born at
time t− a, we write

S(t, a) = BF(a)e−
∫ a
0

F (t−a+σ) dσ, (9.6.4)
where, as before, S refers to “susceptible”. Equation (9.1.4) is replaced by

i(t, a) = F (t)S(t, a) (9.6.5)

and equation (9.1.6) by

F (t) =

∫ ∞

0

∫ ∞

0

i(t− τ, a)
F(a+ τ)

F(a)
daA(τ) dτ. (9.6.6)

Here, the conditional survival probability incorporates that, in principle, an
individual that was infected at age a at time t − τ may not be alive anymore
at time t. (Note that, when the support of A makes that only τ values that do not
exceed on or two weeks are relevant, while individuals live on average for 80 years,
the difference between F(a+ τ)/F(a) and 1 is negligible except, possibly, for very
high values of a.) Combining (9.6.4)–(9.6.6) we obtain a scalar nonlinear renewal
equation

F (t) = B

∫ ∞

0

F (t− τ)

∫ ∞

0

e−
∫ a
0

F (t−τ−a+σ) dσF(a+ τ) daA(τ) dτ (9.6.7)

for the force of infection F . Clearly, F (t) ≡ 0 is a constant solution of (9.6.7),
usually called the “disease free steady state”. Linearisation around this steady
state amounts to replacing exp(−

∫ a

0
F (t− τ − a+ σ) dσ) by 1. We now briefly list

some observations, inviting the reader to embark upon the exercises in Section 9.9
for background, motivation, understanding.

The linearisation of the disease free steady state leads to

R0 = B

∫ ∞

0

∫ ∞

0

F(a+ τ) daA(τ) dτ (9.6.8)

and the Euler-Lotka equation

1 = B

∫ ∞

0

e−λτ

∫ ∞

0

F(a+ τ) daA(τ) dτ (9.6.9)

Whenever R0 > 1, (9.6.7) has an endemic steady state F > 0 characterized by the
equation

1 = B

∫ ∞

0

∫ ∞

0

e−aFF (a+ τ) daA(τ) dτ (9.6.10)

With a bit of effort one can linearise about the endemic steady state and next
deduce the characteristic equation

1 = B

∫ ∞

0

∫ ∞

0

F (a+ τ)e−aF

(
1− F

λ
(1− e−aλ)

)
da e−λτA(τ) dτ (9.6.11)
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It can be shown that for the special case F(a) = e−µa all roots of (9.6.11) belong
the left half plane of C. It is unknown whether or not this also holds for general
survival functions F .

9.7 Heterogeneity
Recall the description of (9.1.7) as an expectation: there are many possibilities

for how much an infected individual does contribute to the force of infection and
all of these are incorporated by averaging. In Chapter 2 of (Diekmann et al., 2012),
called “Heterogeneity: the art of averaging”, it is explained that differences in
susceptibility are less easily handled. Part II of that book provides the appropriate
methodology. Here we restrict to an example.

We use a label i to distinguish individuals from each other according to relevant
properties (for concreteness, think of i as an indicator of sexual activity in the
context of an STD (Sexually Transmitted Disease) in a homosexual population; so
note that i specifies the “type” of an individual, and not the individual itself; in
particular, we work with a deterministic model and the subpopulation of individuals
of type i should be large for all i). Let i range from 1 to m. We consider a closed
population, as in Section 9.3. We replace (9.3.1) by

dSi

dt
(t) = −Fi(t)Si(t) (9.7.1)

and

Fi(t) =

m∑
j=1

cij

∫ ∞

0

Fj(t− τ)Sj(t− τ)Aj(τ) dτ, (9.7.2)

where we interpret cij as the number of contacts per unit time in an ordered
pair consisting of an i-individual and a j-individual. So whenever contacts are
symmetric, the order is irrelevant and we should have cij = cji (note that blood-
transfusion provides an example of asymmetric contact). By integrating (9.7.2),
using also (9.7.1), we obtain∫ t

−∞
Fi(σ) dσ =

m∑
j=1

cijS
0
j

∫ ∞

0

[
1− e−

∫ t
−∞ Fj(σ) dσ

]
Aj(τ) dτ, (9.7.3)

as the analogue of (9.3.4).
Now we define the m×m matrix K by

Kij = cijS
0
j

∫ ∞

0

Aj(τ) dτ, (9.7.4)

and next the basic reproduction number by

R0 = spectral radius of K, (9.7.5)

and finally the Malthusian parameter r as a real root of the characteristic equation

spectral radius
(
cijS

0
j

∫ ∞

0

e−λτAj(τ) dτ

)
= 1.

Exercise 9.7.1. Whenever Kij = aibj we speak about “separable mixing”.
Analyse this very special case, with due attention for the interpretation.



9.8 Spatial epidemic spread 107

9.8 Spatial epidemic spread
The general idea is the replace i by a continuous variable x and cij by a function

of two variables x and ξ that is in fact only a function of the distance |x− ξ|. One
obtains greater generality by incorporating this dependence on two spatial positions
in the kernel A. If we think of a fungal disease spreading via dispersal of spores in
an agricultural crop, we may describe the introductory phase by the linear equation

F (t, x) = S0

∫ ∞

0

∫ ∞

−∞
F (t− τ, ξ)A(τ, x− ξ) dξdτ (9.8.1)

when the density of susceptible plants S0 is uniform, i.e., independent of the spatial
position. In the spirit of Section 6.5 we can now look for travelling wave solutions
of the form

F (t, x) = e−λ(x−ct) (9.8.2)
In order for (9.8.2) to provide a solution of (9.8.1) we should have that

L(c, λ) = 1 (9.8.3)
where

L(c, λ) = S0

∫ ∞

0

∫ ∞

−∞
e−λ(cτ−ξ)A(τ, ξ) dξdτ (9.8.4)

Under appropriate conditions on A one can define c0 as the minimal value of c for
which (9.8.3) has a real solution λ. With considerable effort one can subsequently
prove that c0 is the asymptotic speed of propagation, see (Radcliffe and Rass, 2003).
Also see (Metz et al., 2000).

9.9 Infectious diseases with demographic turnover taken
into account

We consider the following variables
• t time
• S number of susceptibles
• i incidence, i.e., the number of new cases per unit of time
• F force of infection, i.e., the probability per unit time that a susceptible

is infected
• B population birth rate
• µ per capita death rate

We assume that the infection leads to permanent immunity and that the
infection does not lead to a higher death rate. These assumptions lead to the
following equation

dS

dt
(t) = B − µS(t)− i(t), (9.9.1)

i(t) = F (t)S(t), (9.9.2)

F (t) =

∫ ∞

0

i(t− τ)A(τ)e−µτdτ. (9.9.3)

Exercise 9.9.1. Interpret equation (9.9.3). In particular, describe in words
the meaning of A(τ).

Exercise 9.9.2. Show that the definition

S(t) = B

∫ ∞

0

e−µa−
∫ a
0

F (t−a+σ)dσda (9.9.4)
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is compatible with (9.9.1)–(9.9.2), i.e., show that S defined by (9.9.4) satisfies (9.9.1)
with i(t) defined by (9.9.2). Hint: rewrite (9.9.4) as

S(t) = B

∫ t

−∞
e−µ(t−η)−

∫ t
η
F (σ)dσdη.

Exercise 9.9.3. Describe the meaning of (9.9.4) when a is interpreted as the
age of an individual.

Exercise 9.9.4. By substituting (9.9.4) into (9.9.2) and next (9.9.2) into (9.9.3),
we obtain the nonlinear renewal equation

F (t) =

∫ ∞

0

F (t− τ)B

∫ ∞

0

e−µa−
∫ a
0

F (t−τ−a+σ)dσdaA(τ)e−µτdτ. (9.9.5)

Determine the steady states of this equation. Hint: do not try to take a time
derivative to set to zero.

Exercise 9.9.5. What is the condition for the (in)stability of the trivial steady
state F = 0? What is the ecological interpretation of this condition? How does
this condition relate to the (non-)existence of a biologically meaningful nontrivial
steady state?

Exercise 9.9.6. Linearise the renewal equation (9.9.5) around the nontrivial
steady state F̄ .

Exercise 9.9.7. Derive the corresponding characteristic equation

1 =
λ+ µ

λ+BĀ(µ)

Ā(λ+ µ)

Ā(µ)
, (9.9.6)

where
Ā(s) :=

∫ ∞

0

e−stA(t)dt

is the Laplace transform of A(t).

Exercise 9.9.8. Assume that BĀ(µ) > µ (recall Exercise 9.9.5 to interpret
this condition). Show that (9.9.6) cannot have a root with <λ ≥ 0. Hint: take
absolute values at both sides of (9.9.6).

Corollary 9.9.1: The endemic steady state is locally asymptotically stable whenever
it exists.

Exercise 9.9.9. As an encore, consider the special case
A(τ) = βe−ατ .

Verify that in that case (9.9.2), (9.9.3) can be replaced by the familiar ODE
dI

dt
= βIS − (α+ µ)I, (9.9.7)

where I = 1
βF represents the number of infectious individuals.



Chapter 10
Adaptive Dynamics

10.1 Introduction

How does natural selection shape the life history of a species? A popular,
but naive, view is that survival of the fittest leads to optimal adaptation to the
environment. The complication is that often part of the environmental conditions
(in particular food availability and predation pressure) are, in turn, influenced by
the population itself. And if indeed the ecological feedback loop mediates the
selection, we cannot pretend that the environment is unaffected while evolution
takes its course.

Adaptive Dynamics is a theory/approach that focuses on two processes:

• ecological interaction via environmental variables
• mutation

While doing so, it ignores that phenotypes are determined by genotypes and that
sexual reproduction shakes up genotypes. In other words: no genes and no sex.
The phenotypes are characterised by “traits” (which are sometimes also called
“strategies”) and in principle clonal reproduction leads to offspring with exactly
the same trait. But occasionally offspring may carry a slightly mutated trait, i.e.,
variation is created by rare and small mutations. Can we predict how the interplay
of selection and mutation leads to the evolutionary dynamics of the trait?

The aim of this chapter is

• to explain concepts, like unbeatable strategy (often called ESS, for
Evolutionarily Stable Strategy), invasion exponent, selection gradient and
trait substitution sequence

• to describe results, like the pessimization principle, the principle of
indifference and the classification of singular points (introducing in
particular branching points, where populations turn dimorphic)

We shall do so by way of the example of consumer-resource dynamics. In fact, we
first consider competition for one resource and then continue to investigate how
the repertoire of possibilities increases when the environmental condition (from
the point of view of the consumer) is two-dimensional, simply since there are
two (substitutable) resources. The trait concerns the up-take rate. When dealing
with one resource, we shall introduce a trade-off that relates the up-take rate to
the conversion efficiency. When dealing with two resources, the trait determines
the relative up-take rate and hence we can analyse the (dis)advantages of being a
specialist or a generalist.

109



110 Adaptive Dynamics

S0 V = 1 S X

D (vol/time) D

Figure 10.1. The chemostat

10.2 The pessimization principle
The chemostat (see Figure 10.1) is a laboratory device to culture micro-

organisms like algae or bacteria. In a vessel of volume V = 1 all they need to grow
is provided in excess, except for one substance (e.g., phosphate) which accordingly
is called the limiting substrate (or, resource). We refer to Smith and Waltman
(1995) for a systematic exposition of the insights about chemostat dynamics that
can be obtained by modelling, with due attention for the mathematical methods
that are used to derive these insights.

We denote by S and X the concentrations of, respectively, the substrate and
the micro-organisms. The substrate in the fresh medium is denoted by S0 and is
assumed to be a given constant. By choosing the time unit appropriately, we can
achieve that the rate D, at which fluid is pumped in and out of the vessel, equals 1.
As the vessel is continuously stirred, the concentrations in the outflowing medium
are exactly what they are inside the vessel.

We assume that up-take of substrate by the micro-organisms is governed by
the Law of Mass Action. The proportionality constant we call u and it this u that
we consider as the trait. In other words, our aim is to understand the evolutionary
dynamics of u due to the combined effect of selection and mutation. The idea is
that by fine-tuning their biochemical machinery, the micro-organisms may improve
their efficiency for binding the substrate molecules to the cell surface and next
swallow them. But of course this may come at a physiological cost. Let η denote
the conversion efficiency, i.e., to produce one unit of micro-organism η−1 units of
substrate are needed. Then one can imagine that to build chemical pathways that
increase u, the micro-organism needs to sacrifice chemical pathways involved in
conversion, so that η decreases. At first we shall neglect such a constraint, but
later on we will investigate the trade-off that it generates.

The consumer-resource dynamics are described by

dS

dt
= S0 −S − uSX (10.2.1)

dX

dt
= −X + ηuSX = (−1 + ηuS)X

We require that ηuS0 > 1, which amounts to assuming that the growth rate
−1+ηuS is positive when micro-organisms are introduced in the virgin environment
characterised by S = S0. By consumption the growing population of micro-
organisms reduces the substrate concentration to the steady state level

S̄ =
1

ηu
(10.2.2)
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Figure 10.2. PIP showing the sign of the invasion exponent. Note
that there is necessarily neutrality at the diagonal.

Exercise 10.2.1. Show that (10.2.1) has a globally stable steady state. Hint:
try to reduce the dimension by a conservation law for Stotal, the free substrate plus
the substrate incorporated in X.

Note that, of course, the growth rate −1+ ηuS equals zero in the steady state.
Now imagine that in this steady situation, by mutation, a micro-organism arises

that has a slightly different up-take coefficient, i.e., a slightly different trait. Of
course, it may be unlucky and be washed out right away, in which case nothing
happens. In other words, strictly speaking we should deal with the demographic
stochasticity pertinent to low numbers and, for instance, adopt a description in
terms of branching processes. But if we only want to know whether the mutant has
any chance at all of surviving in an environment set by the resident, we might as
well adopt a deterministic description and pretend that the mutant constitutes a
small fraction of the population of micro-organisms. So we want to know whether
it has a positive growth rate.

As there are now two types of micro-organisms, we need labels to distinguish
them from one another. We shall use ures to denote the trait of the resident
and uinv to denote the trait of the mutant, where inv stands for invader. The
invasion exponent is, by definition, the population growth rate of the invader in
the environmental conditions as set by the resident. So in this particular case,

invasion exponent = −1 + ηuinv
1

ηures
= −1 +

uinv
ures

(More generally, it makes sense to define “fitness” as the long term population
growth rate as a function of two variables, the trait and the environmental condition,
see Metz et al. (1992).)

Clearly the invasion exponent is positive if uinv > ures, exactly as common sense
predicts. We can embody this graphically in a PIP, a Pairwise Invasibility Plot,
see Figure 10.2. Next we observe that for this trait and this ecological interaction,
there is never mutual invasibility: if u2 can invade successfully (meaning that its
growth rate is positive) in the environment set by u1, then u1 cannot invade in the
environment set by u2. It is a folk theorem that this implies that a successful invader
outcompetes the resident, i.e., drives it to extinction (and by doing so becomes the
new resident). We then say that a trait substitution took place. For small mutation
the folk theorem has been verified, see Geritz (2005).
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ures

uinv
+

−

Figure 10.3. A trait substitution sequence: note that the height
of the jumps is a stochastic facet of mutation, but that the
direction of evolutionary change (i.e. the fact that u increases)
is a consequence of natural selection.

To verify the folk theorem for the present situation, we need to study the
three-dimensional system

dS

dt
= S0 −S − uresSX −uinvSY

dX

dt
= −X + ηuresSX (10.2.3)

dY

dt
= −Y +ηuinvSY

Exercise 10.2.2. Use reduction to a two-dimensional system and next
Poincaré-Bendixson theory (see Appendix) to prove the folk theorem for sys-
tem (10.2.3).

Note that in our analysis we exclude the possibility of a new mutation during the
period of ecological interaction between resident and invader. That is, we assume
time scale separation in the sense that the time scale of ecological interaction is very
short relative to the time scale at which mutation yields candidates for evolutionary
change. The upshot is that the combined effect of mutation and selection manifests
itself as a trait substitution sequence, see Figure 10.3.

If we write
invasion exponent = sures(uinv)

we can determine the direction in which small mutational steps and selection will
drive the trait, by computing the selection gradient

∂

∂v
su(v)

∣∣∣
v=u

In the present case the selection gradient equals 1
u and, in particular, it is positive

for every u. We conclude once more that, given our assumptions, evolution leads
to an ever increasing up-take rate u.

Realizing that nothing comes for free, we change the assumptions.
Indeed, let us assume that η is a linearly decreasing function of u. More

precisely, we assume that all variables are already dimensionless and that
η = η(u) = 1− u (10.2.4)

and that S0 > 4. The function u 7→ η(u)u assumes its maximum 1
4 for u = 1

2 .
There exists an interval (umin, umax) such that η(u)uS0 > 1 for u in this interval
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4

Figure 10.4. Graphical representation of the way to find the
interval where η(u)uS0 > 1.
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Figure 10.5. The PIP when η is given by (10.2.4).

(see Figure 10.4). The invasion exponent is given by

su(v) = −1 +
(1− v)v

(1− u)u
=

(v − u)(1− v − u)

(1− u)u
(10.2.5)

and we see that, in addition to the diagonal neutrality curve, we have a neutrality
curve v = 1 − u (Figure 10.5). The two neutrality curves intersect at the singular
point u = 1

2 where the selection gradient 1−2u
(1−u)u vanishes. The PIP (see Figure 10.5)

clearly shows that small mutations lead to increasing u when ures < 1
2 but to

decreasing u when ures > 1
2 . In other words, evolutionary change brings ures

ever closer to 1
2 . One says that the singular point u = 1

2 is convergence stable
. Moreover, the vertical line through u = 1

2 lies entirely in the − region. So u = 1
2

is unbeatable or, as it is often called, evolutionarily stable (the word “stable” is
actually a misnomer; it would be better to replace it by “steady”, but the standard
meaning of ESS is probably itself evolutionarily stable in the sense that attempts to
change it are doomed to fail). A singular point that is both ESS and convergence
stable is often called a CSS for Continuously Stable Strategy. It is a (local) attractor
with respect to the adaptive dynamics.

Now recall 10.2.2: the steady state substrate level is given by

S̄ =
1

ηu

Since η(u)u is maximal for u = 1
2 , we conclude that S̄ is minimal for u = 1

2 . This is
the pessimization principle: if the population growth rate is a monotone increasing
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function of a one-dimensional variable that fully describes the environmental
condition, then the evolutionary winner is the trait that minimises this variable.

Exercise 10.2.3. Suppose that a population of individuals with trait x grows
under constant environmental conditions characterised by a variable I like

er(x,I)t.

Assume that both x and I are real numbers. Assume that r is monotone in I and
that the equation r(x, I) = 0 has, for given x, a unique solution Ī(x). Assume
that population dynamics always leads to steady state and that the folk theorem
applies. Show that adaptive dynamics leads to a trait substitution sequence for
which Ī(x) is monotone. Show that if the sequence converges, then Ī necessarily
has an extremum at the limit and interpret this result in terms of local evolutionary
stability (i.e., unbeatability).

We conclude that adaptive dynamics is rather predictable if the ecological feed-
back loop that drives the selection just involves a one-dimensional environmental
condition. Will the repertoire become richer if we change to a higher dimensional
environmental condition?

10.3 The principle of indifference
Assume that the fresh medium contains not one, but two resources, in

concentrations S10 and S20 respectively. We assume that these are substitutable,
meaning that they both provide the one substance that is not available in excess.
We also assume (in order to make the algebra as simple as possible) that the
conversion efficiency η for both equals one. So we consider the system

dS1

dt
= S10−S1 − u1S1X

dS2

dt
= S20−S2 − u2S2X (10.3.1)

dX

dt
= −X + u1S1X + u2S2X = (−1 + u1S1 + u2S2)X

Provided u1S10 + u2S20 > 1 there exists a unique steady state. It is found by first
choosing X̄ as the unique solution of

− 1 +
u1S10

1 + u1X
+

u2S20

1 + u2X
= 0 (10.3.2)

and next defining S̄1 and S̄2 by the explicit formulas

S̄1 =
S10

1 + u1X̄
, S̄2 =

S20

1 + u2X̄
(10.3.3)

Exercise 10.3.1. Show that this steady state is globally asymptotically stable.
Hint: first show that S1+S2+X → S10+S20 for t→ ∞, next perform a standard
phase plane analysis of the two dimensional system obtained by putting X = S10+
S20 − S1 − S2 in the equations for S1 and S2.

Now that we understand the population dynamics, we can superimpose the
adaptive dynamics. We introduce a one-dimensional trait x and assume that both
u1 and u2 depend on x. More specifically, we assume that u1 is an increasing
function of x and u2 a decreasing function. The idea is the same as before: the
micro-organism can improve the chemical pathways involved in uptake of S1, but
only at the expense of the chemical pathways involved in uptake of S2.
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The invasion exponent is now given by

sx(y) = −1 + u1(y)S̄1(x) + u2(y)S̄2(x) (10.3.4)

and consequently,

selection gradient = u′1(x)S̄1(x) + u′2(x)S̄2(x) (10.3.5)

Singular points are, by definition, characterised by a vanishing selection gradient.
The condition

u′1(x)S̄1(x) + u′2(x)S̄2(x) = 0 (10.3.6)
can be interpreted as follows: an infinitesimal change in x leads to an infinitesimal
gain or loss in uptake of S1 and to an infinitesimal loss or gain in uptake of S2, and
singular points are exactly those for which the two cancel, i.e., for which there is
no net change.

This is the marginal value theorem of economic optimisation under constraints
and it is the mechanism behind the ideal free distribution in population ecology.
We like to call it the Principle of Indifference: a population of individuals tunes
the environmental conditions such that the various options that are open become
equally attractive, so that infinitesimal re-allocations don’t make any difference.

Let us consider the special case that S10 > 1, S20 > 1 and

u1(x) = x, u2(x) = 1− x (10.3.7)

in some detail. In this case (10.3.6) reduces to

S̄1 = S̄2. (10.3.8)

Let us denote the common value by S̄. Since in steady state we should have (note
that u1 + u2 = 1 for all x!)

0 = −1 + u1S̄ + u2S̄ = −1 + S̄

it follows that necessarily S̄ = 1. Next, if we solve for X̄ in both identities in (10.3.3)
we find

S10 − S̄

u1S̄
=
S20 − S̄

u2S̄

which, using (10.3.7) and S̄ = 1, after a few manipulations leads to the expression

xsingular =
S10 − 1

S10 + S20 − 2
(10.3.9)

Much more important than this explicit expression, however, is the following
observation. From (10.3.4), (10.3.8) and (10.3.7) we see that

sxsingular(y) = 0 for all y! (10.3.10)

or, in words, the second neutrality curve, that intersects the diagonal at the singular
point, is a vertical line (see Figure 10.6). Clearly small mutation will bring the
resident trait to a small neighbourhood of the singular point. But once we are
very near, an overshoot may occur. The key point of the overshoot is that, in
the present situation, it brings us in a region of mutual invasibility (implying that
successful invasion is not followed by extinction of the former resident—instead we
find coexistence: the monomorphism is replaced by a dimorphism).

Exercise 10.3.2. Check that a dimorphic population with traits at opposite
sides of xsingular sets the environmental condition at S̄1 = S̄2 = 1, after which there
is complete neutrality.
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Figure 10.6. The PIP for the special case (10.3.7).

Tilted to the left:
convergence stable and ESS

Tilted to the right:
convergence stable but not ESS
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Figure 10.7. The two generic perturbations of a vertical
neutrality curve (with the key local features extended globally,
eventhough that need not be the case).

The key point about (10.3.7) is that it makes the invasion exponent sx(y)
linear in y, such that the local indifference condition that characterises the singular
point has a global effect. Indeed, the vertical neutrality curve is a very strong
manifestation of the Principle of Indifference and as such it is not robust (the local
characterisation of the singular point persists under perturbation, but the global
features of the second neutrality curve do not). We will now change (10.3.7) and
investigate the effects. But before doing any algebra, we consider the geometry.
From Figure 10.7 it appears that under perturbation the singular point may or may
not turn into a (local) ESS. In the first case, overshoots may, by mutual invasibility,
still lead to dimorphisms but one can show that these are converging, meaning that
a mutant in between the two resident traits can successfully invade, resulting in
extinction of one of the two resident traits. So after the trait substitution the two
resident traits are closer together, whence the name converging dimorphism. In
the second case, a diverging dimorphism arises. So then the dimorphic population
structure is lasting (maybe not everlasting, as later on (i.e., far away from the
singular point) other things may happen) rather than transient.
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u1

u2

z = x

z = y

−1 + u1S1 + u2S2 = 0

Figure 10.8. Plot of the curve z 7→ (u1(z), u2(z)) and of the
straight line −1 + u1S1 + u2S2 = 0. Intersections correspond to
the dimorphism. The invasibility condition sx,y(z) > 0 means that
the point on the curve corresponding to trait z should be above
the straight line. So in the depicted situation we have a diverging
dimorphism.

So let us look at dimorphic populations. These are described by the system
dS1

dt
= S10 −S1 − u1(x)S1X1 − u1(y)S1X2

dS2

dt
= S20 −S2 − u2(x)S2X1 − u2(y)S2X2

dX1

dt
= −X1 + u1(x)S1X1 + u2(x)S2X1 (10.3.11)

dX2

dt
= −X2 + u1(y)S1X2 + u2(y)S2X2

Exercise 10.3.3. Show that the corresponding steady states are given by(
S1

S2

)
=

1

u1(x)u2(y)− u1(y)u2(x)

(
u2(y)− u2(x)
u1(x)− u1(y)

)
(10.3.12)

and (
X1

X2

)
=

(
u2(y)S10

u2(y)−u2(x)
− u1(y)S20

u1(x)−u1(y)
− u1(y)−u2(y)

u1(x)u2(y)−u1(y)u2(x)
−u2(x)S10

u2(y)−u2(x)
+ u1(x)S20

u1(x)−u1(y)
+ u2(x)−u1(x)

u1(x)u2(y)−u1(y)u2(x)

)
(10.3.13)

Show that whenever the expressions at the right hand side of (10.3.13) are positive
(as they should be in order to be meaningful) then 0 < Si < Si0 for i = 1, 2 with Si

defined by (10.3.12). The global stability of this steady state is established in Ballyk
et al. (2005).

The invasion exponent in such a dimorphism is given by
sx,y(z) = −1 + u1(z)S1 + u2(z)S2 (10.3.14)

with Si given by (10.3.12). Choosing rather general functions u1(z) and u2(z) once
more, the situation of a diverging dimorphism is depicted in Figure 10.8.
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Chapter 11
Stochastic approaches to dynamical prob-
lems

This book deals mostly with deterministic approaches to biological situations. This
is partly our own shortcoming, since stochastic models are also found in abundance
in the literature. The reasons for a probabilistic look at dynamics are several.
First of all, one can ask new questions that determinstic models cannot answer.
For example, in epidemiology, one of the main questions one is interested in is the
probability that an outbreak of a disease will occur. Such a question is beyond the
analyses that differential equations of continuous variables have to offer. A second
good reason to study probabilistic models is that these models give a host of new
variables to track and measure. Examples here are the mean, variance and higher
moments of the probability density function of the process under consideration.
The first of these may have a direct counterpart in the deterministic description
(and may indeed be identical), but the time evolution of the variance is also often
interesting in applications. We might also be interested in the first time a particular
event occurs.

When setting up a stochastic model, the first thing one might try to is to
discretize all the independent variables, vz. time and state space. This gets you into
the realm of discrete Markov chains, a topic covered in many courses in probability
and not (yet) covered here. Instead, we discretize only state space, and keep time
continuous, which takes us into the field of Master Equations.

If we discrete neither time nor space, one can still develop stochastic models,
using stochastic differential equations. This is technically by far the hardest, and
requires a separate master’s course. It is therefore left out here.

11.1 Master Equations
Let us consider a random variable which takes values in Z. In many instances,

these values are naturally restricted to a subset, e.g., N or a finite interval within
N, but we leave such restricted processes for later.

We assume that in small enough time intervals of length ∆t, transitions may
occur so that the random variable changes state from n, say, to either n − 1 or
n + 1. In other words, we only consider state transitions between neighbouring
states. (The field of Master Equations also deals with the more general case when
arbitrary state transitions occur, but we restrict ourselves to the case above, which
applies naturally in many biological settings.) Let the probability that a transition
n→ n+1 occurs within a time interval of length ∆t be given by λn∆t+O((∆t)2),
and let analogously the transition n→ n−1 occur with probability µn∆t+O((∆t)2).

119
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Note that these functions λn and µn may indeed depend on n, and often do as we
will see. The point is that the probability for an event to occur depends on the
time span which one considers, and that the above probability only make sense for
small ∆t.

Let Pn,m(t) be the probability that the random variable is in state n at time
t when initially starting at state m at time t = 0. Clearly, Pn,m(t) satisfies the
following equation up to order (∆t)2,

Pn,m(t+∆t) = λn−1∆tPn−1,m(t) + µn+1∆tPn+1,m(t) + (1− (λn + µn))∆tPn,m(t).
(11.1.1)

It considers the fate of the variable each time starting out at the same position and
arriving at state n at time t and is therefore called a forward equation. (There also
exists a backward equation, but it is used less often.) Taking the limit ∆t→ 0, we
find the forward master equation for Pn,m(t),

d

dt
Pn,m(t) = λn−1Pn−1,m(t) + µn+1Pn+1,m(t)− (λn + µn)Pn,m(t), (11.1.2)

(11.1.3)

If we first solve this equation for Pn,m(t) with initial conditions

Pn,m(0) = δn,m,

then the complete solution satisfying the general initial condition

Pn,m(0) = p(m),

is given by superposition

Pn(t) =
∑
m

Pn,m(t)p(m).

In general, it is too much to ask for a full description of Pn,m(t). Instead, the first
few moments of Pn,m(t) are enough to get a good feel for the behaviour of solutions.
So let us introduce the moments of Pn,m(t) by

〈n〉 :=
∑
n

nPn,m(t), the mean of Pn,m(t),

〈
n2
〉
:=
∑
n

n2Pn,m(t),

· · ·〈
nk
〉
:=
∑
n

nkPn,m(t).

The variance of Pn,m(t) is then given by
〈
n2
〉
− 〈n〉2. These moments satisfy their

own differential equations, which may be derived from the forward (and backward)
master equation by multiplying by nk and summing over n. For instance, the mean
〈n〉 satisfies the equation

d

dn
〈n〉 = d

dt

∑
n

nPn,m(t) =
(∑

n

nλn−1Pn−1,m −
∑
n

nλnPn,m

)
(11.1.4)

+
(∑

n

nµn+1Pn+1,m −
∑
n

nµnPn,m

)
.

Note that ∑
nλn−1Pn−1,m =

∑
(n+ 1)λnPn,m,
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so that the first term on the right hand side of (11.1.4) becomes
∑
λnPn,m.

Similarly, the second term reduces to
∑
µnPn,m. We thus find that

d

dt
〈n〉 =

∑
λnPn,m −

∑
µnPn,m =: 〈λn〉 − 〈µn〉 .

Along the same lines, the variance var(n) satisfies

d

dt
var(n) = 2(〈nλn〉 − 〈nµn〉) + (1− 2 〈n〉) 〈λn〉+ (1 + 2 〈n〉) 〈µn〉 .

Initial conditions Pn,m(0) = δn,m carry over to initial conditions for the moments,〈
nk
〉
(0) = mk, k = 1, 2, . . . ,

and in particular, var(n)(0) = 0. These equations for the moments are not directly
solvable without an explicit description of λn and µn. If λn and µn are linear
functions of n (or constants), then the equation for

〈
nk
〉

only depends on
〈
nk
〉

and
lower moments, making this a closed system of equations. E.g., if we consider

λn = an, µn = bn,

for real constants a and b, then the differential equation for the mean 〈n〉 becomes
simply

d

dt
〈n〉 = (a− b) 〈n〉 ,

so that 〈n〉 = me(a−b)t, just as in the deterministic case.
If, however, λn and µn are polynomials of degree higher than 1, then the

equation for
〈
nk
〉

depends on higher moments,
〈
nk+1

〉
, for each k, and we would

never be able to close this without making extra assumptions. To make headway
in such situations, moment closure techniques are invoked which prescribe how
higher order moments may be written in terms of lower order moments to close the
equations. This is quite a field in itself, particularly in epidemiology.

11.2 Generating functions for master equations
Let

Gm(t, z) :=
∑
n

Pn,m(t)zn

be the probability generation function for Pn,m(t). Gm(t, z) is often also called
the z-transform of Pn,m(t). Evidently, finding Gm(t, z) is equivalent to finding
the complete solution Pn,m(t). Having found the generating function, it is easy to
compute the moments of Pn,m(t). First, introduce y = log z, so that z = ey, and
note that

∂k

∂yk
G(t, ey) =

∑
n

nkPn,m(ey)n.

Hence
∂k

∂yk
G(t, ey)

∣∣∣
y=0

=
∂k

∂ log zk
G(t, z)

∣∣∣
z=1

=
〈
nk
〉
m
(t).

So let us find out how to translate the master equations for Pn,m(t) into a partial
differential equation for Gm(t, z). We start with the time derivative of Gm(t, z),
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and compute, using the original master equation (11.1.2) for Pn,m(t),
∂

∂t
Gm(t, z) =

∑
n

zn
d

dt
Pn,m(t) (11.2.1)

=
∑
n

[λn−1Pn−1,m(t) + µn+1Pn+1,m(t)− (λn + µn)Pn,m(t)] zn.

(11.2.2)
Now observe that ∑

n

λn−1Pn−1,m(t)zn =
∑
n

λnPn,m(t)zn+1

and similarly for the µn+1Pn+1,m(t) sum, so that (11.2.1) simplifies to
∂

∂t
Gm(t, z) =

∑
n

(
λn(z − 1) + µn

(
1

z
− 1

))
Pn,m(t)zn

=

(
λn(z − 1) + µn

(
1

z
− 1

))
Gm(t, z). (11.2.3)

This is not yet a partial differential equation for G(t, z), and for general λn and µn

it cannot be reduced to one. But for polynomial λn, µn it can. Note that if we
introduce f1(n) = λn and f−1(n) = µn, then

f1

(
z
∂

∂z

)
zn = f1(n)z

n,

since z ∂
∂z z

n = znzn−1 = nzn. For instance, if λn = n2, then

f1

(
z
∂

∂z

)
zn = z

∂

∂z

(
z
∂

∂z
(zn)

)
= n2zn = f1(n)z

n.

Equation (11.2.3) is now
∂

∂t
Gm(t, z) =

(
(z − 1)f1

(
z
∂

∂z

)
+
(1
z
− 1
)
f−1

(
z
∂

∂z

))
Gm(t, z), (11.2.4)

a PDE for Gm(t, z).

11.3 Examples of known solutions
Luckily, the PDE for the generating function can be explicitly solved for a

number of concrete cases that arise in applications. In each of the cases below,
we assume that a process starts at position m at time 0. If we now for instance
consider a Poisson process with the properties λn = ν ∈ R, µn = 0, then

G(t, z) = zmeνt(z−1),

from which we compute that 〈n〉 = m + νt, and var(n) = νt. Similarly, setting
µn = ρ, λn = 0, we find

G(t, z) = zmeρt(
1
z−1),

and 〈n〉 = m − νt, var(n) = ρt. A general Poisson process with λn = ν, µn = ρ
yields

G(t, z) = zme−(ν+ρ)t+(νz+ρ/z)t,

so that 〈n〉 = m+ (ν − ρ)t, and var(n) = (ν + ρ)t.
Another important example is when we consider simple birth and death

processes. In such processes, the rates at which events occur scale with the
population size and are thus density dependent. The simplest and most common
choice is for λn and µn to depend linearly on n. The choice λn = λn, µn = 0 (for
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example, a unidirectional chemical reaction A → B, which we will consider later),
gives

G(t, z) =
(
1− eλt

(
1− 1

z

))
.

The mean is found to be 〈n〉 = meλt, just as we would get from the deterministic
model u′ = λu, but we now we also know how the variance changes in time, var(n) =
meλt(eλt − 1). For the general birth and death process, with λn = λn, µn = µn,
and assuming λ 6= µ, we introduce auxially variables

σ = e(λ−µ)t, γ =
λ

µ
.

With these, the generating function is found to be

G(t, z) =

[
(σ − 1) + (γ − σ)z

(γσ − 1) + γ(1− σ)z

]m
.

The mean 〈n〉 is simply mσ, and the variance is

var(n) =
mσ(γ + 1)(σ − 1)

γ − 1
.

There are many more explicitly known solutions, and also the Pn,m(t) are known
in each case (but are more cumbersome). For variations, we may consider so-called
restricted processes, which have N as state space instead of Z, with either absorbing
boundaries (hitting 0 means the end of the process) or reflecting boundaries (hitting
0 means the random variable will ‘bounce back’ to 1 in the next time step). Just as
for regular PDE theory, we then need to change the boundary conditions, or extend
the initial conditions to obtain the master equations on such restricted state spaces.
Much detail may be found in the classic reference by Goel and Richter-Dyn (1974).
This book also contains a wealth of information about explicitly known expressions
for dwell times (the time before an event occurs), and related quantities.

11.4 Species diversity on islands
A classical field in ecology is that of biogeography, the distribution of species

over time and space. Current species distributions are often the result of a mix of
processes occurring over shorter (on the order of thousands of years, e.g., ice ages)
and much longer time spans (millions of years). The relative contributions of each
are often hard to unravel. Perhaps the easiest situation to consider is one in which
numbers of individuals (and thus also species) is relatively small and turnover of
individuals is large. Such a situation may be found on islands which are closer
or farther away from a mainland continent. On the continent, the evolutionary
dynamics will contribute vitally to the species composition, but especially on young
islands, this cannot be the case. In that case, the species dynamics should be chiefly
caused by immigration and emigration of new individuals from the mainland.

This was precisely the case considered in a famous monograph by MacArthur
and Wilson (1967), a theory still taught in introductory courses in ecology. The idea
is very simple. We consider individuals coming from a fixed mainland. Initially,
we assume that there are no species at all on the island. Hence, new individuals
will almost invariably be new species, but the immigration rate of new species will
decline as diversity increases. The established species on the island are assumed
to be in some sort of direct or indirect competition, so that sometimes species go
extinct. If the probability that any species on the island goes extinct is fixed, then
the probability that any one goes extinct scales with species numbers.



124 Stochastic approaches to dynamical problems

The simplest concrete implementation of the above processes is λn = λ(K−n),
µn = µn. After a simple change of variables for λn, this is a simple birth and death
process discussed in the previous section. The generating function Gm(t, z) is thus
explicitly known, and so are the Pn,m(t). For this context, the most interesting
quantity is

Pn,0(t) =

(
K

n

)(1 + γσ

1 + γ

)K−n(γ(1− σ)

1 + γ

)n
,

where γ = λ/µ, σ = e−(λ+µ)t. For t → ∞, the species composition approaches a
binomial distribution,

Pn,0(t) →
(
K

n

)
γn(1 + γ)−K , , n = 1, . . . ,K.

The mean number of species over time is given by

〈n〉 = Kλ

λ+ µ

(
1− e−(λ+µ)t

)
→ Kλ

λ+ µ
.

The variance is found to be similar but somewhat more complicated, with
equilibrium value

Kλµ

(λ+ µ)2
.

This process thus gives a wealth of information to test in real island systems,
and for a comprehensive overview of such result we refer to the monograph by
MacArthur and Wilson. For a more modern theory of biodiversity which also takes
evolutionary time scales into account, and which has caused quite a stir in the
ecological community, read (Hubbell, 2001).

11.5 Simple (bio)chemical reactions
We now turn to systems of chemical reactions, one of the main fields of

applications, next to population genetics, of master equations. We start simple,
with a unimolecular reaction

A k B.
The random variable we track is the number of A molecules at time t. The master
equation for the probability of finding n molecules of type A when initially starting
out with m such molecules is given by

d

dt
Pn,m(t) = µn+1Pn+1,m(t)− µnPn,m(t). (11.5.1)

After all, there are two ways by which the probability of finding n molecules may
change: either there were n + 1 molecules, and one molecule of A was converted
into B, or there were n molecules, and after a single reaction there are now n− 1.
Chemical reactions clearly fall in the class of birth and death processes, since the
probability that any one of the n molecules is converted through reaction (11.5) is
proportional to the number of molecules. Hence, we choose µn = kn.

From Section 11.3, we know that the mean satisfies the deterministic equation,
d

dt
〈n〉 = −k 〈n〉 ,

so that 〈n〉 = me−kt. This nice coincidence between the mean of the stochastic
process and the deterministic version does not generally hold true, but is restricted
to unimolecular reactions.



11.5 Simple (bio)chemical reactions 125

In the same vain, we may write down the master equations for Michaelis-Menten
kinetics of the enzymatic conversion of a substrate. Recall equations (2.1.2)–(2.1.5)
from Section (2.1),

ds

dt
=−k+se+ k−c,

de

dt
=−k+se+ k−c +kc,

dc

dt
= k+se− k−c −kc,

dp

dt
= +kc.

Recall that e(t) + c(t) = e0, the total amount of enzyme in the reaction vessel.
The product P does not appear in the reaction equations, and can thus be ignored,
leaving us with two variables, e and s. We now make e and s discrete variables. The
master equations are written for the variable P (e, s; t), the probability of finding e
molecules of type E, and s molecules of type S at time t. From the above reaction
scheme we deduce that

d

dt
P (e, s; t) = k+(e+ 1)(s+ 1)P (e+ 1, s+ 1; t)

+ k−(e0 − (e− 1))P (e− 1, s− 1; t)

+ k(e0 − (e− 1))P (e− 1, s; t)

− k+es+ (k− + k)(e0 − e))P (e, s; t).

For instance, if the reaction

C k P + E

takes place, then e− 1 → e, s→ s, and c = e0 − (e− 1) → e0 − e, so that we get a
contribution

k(e0 − (e− 1))P (e− 1, s; t)

to the master equations above.
Certainly from a simulation perspective, but also from one of biological insight,

it would be preferable to reduce the above system of equations for P (e, s; t).
Computationally, this system has a number of equations totalling the product of
s0, the initial substrate concentration, and e0. But we also know that “not all
chemical species are equal”, i.e., that the enzyme is often bound in equilibrium to
the substrate, and that the substrate changes but slowly compared to the enzyme
kinetics. We would like to perform some kind of QSSA reduction, just as in
Section (2.1.19) resembling the Michaelis-Menten equation

ds̄

dτ
= − Vmaxs̄

Km + s̄
.

Now the hopeful end result would be of the form of unimolecular reaction (11.5.1),
with master equations

d

dt
P (s̄; t) = ak+1P (s+ 1; t)− akP (s̄, t). (11.5.2)

This is the subject of the next section.
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11.6 The QSSA approximation for general chemical
reactions

Until the 1970s, the main focus in master equations research was to derive full
descriptions of Pn,m(t), its generating function, or its moments, akin to trying to
find explicit solutions for ODE or PDE problems. This has severe limitations, and
it is often more useful to try to find structure in equations, or uncover qualitative
properties of solutions. The QSSA approximation falls in the first category.
By reducing the number of equations, they become more manageable, but more
interestingly, the new equations show how the long-term dynamics may be captured
in a succinct form.

A general reaction scheme has master equations of the form

d

dt
P (x, t) =

m∑
k=1

ak(x− vk)P (x− vk; t)− ak(x)P (x; t). (11.6.1)

Here, x is a vector denoting the numbers of molecules of each species xi, there are
m reactions involved, ak(x) measures the propensity of the k-th reaction, and vk
denotes the number of molecules of the various species involved in the k-th reaction
(the stoichiometry of the reaction). If a QSSA reduction is to be expected, then we
should be able to divide the chemical species into primary species and intermediary
species. If we would apply this to the familiar Michaelis-Menten context, the former
would play the role of the substrate and would have slow dynamics, and the latter
would have the role of enzyme and complex and have fast dynamics. In other
words, the intermediary species will have zero net flux in the slow time scale. Let
us thus split our vector x in these two classes, and write x = (y, z), where y form
the (numbers of molecules of) primary species, and z the intermediary species.
Similarly, the stoichiometry vectors vk will be split into their vyk and vzk counterparts.
Then the master equations (11.6.1) read

d

dt
P (y, z) =

m∑
k=1

[ak(y − vyk , z − vzk)P (y − vyk , z − vzk)− ak(y, z)P (y, z)]. (11.6.2)

The time dependence of P (y, z; t) is suppressed in this notation to keep the formulas
a bit more transparent. We want to separate out P (y; t) to find the master equations
that it satisfies, and to do so we use conditional probabilities for finding z given y,

P (y, z; t) = P (z|y; t)P (y; t).

By the product rule, (11.6.2) is equivalent to

P (y)
d

dt
P (z|y) + P (z|y) d

dt
P (y) =

m∑
k=1

[ak(y − vyk , z − vzk)P (z − vzk|y − vyk)P (y − vyk)

− ak(y, z)P (z|y)P (y)].

The main point is that z should hardly change when y is fixed, i.e.,

d

dt
P (z|y) ≈ 0.

Assuming that z conditional on y is Markovian, we may approximate d
dtP (z|y) by

d

dt
P (z|y) =

m∑
k=1

[ak(y − vyk , z − vzk)P (z − vzk|y)− ak(y, z)P (z|y)
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Setting this to zero and solving for P (z|y) (now truly time independent), we find

P (z|y) d
dt
P (y) ≈

m∑
k=1

[ak(y − vyk , z − vzk)P (z − vzk|y − vyk)P (y − vyk)

− ak(y, z)P (z|y)P (y)].
Since

∑
z P (z|y; t) = 1, we may find the marginal distribution P (y; t) by summing

the above equation over z. Then
d

dt
P (y; t) =

∑
z

P (z|y) d
dt
P (y; t) ≈

m∑
k=1

[bk(y − vyk)P (y − vyk)− bk(y)P (y), (11.6.3)

where
bk(y) :=

∑
z

ak(y, z)P (z|y).

Equation is a problem only for y, and is our QSSA approximation of (11.6.1).
Let us apply this to our favourite benchmark, Michaelis-Menten kinetics. As

in Section 2.1, we need to rescale the variables so that a small parameter appears
in the system. Vector x consists only of two chemical species s and e, the first of
which is primary, the second intermediate. Set

s̄ =
s

s0
, ē =

e

e0
, ϵ =

e0
s0
, τ = e20t.

In this scaling, ē and s̄ are no longer integers, but change with increments d = 1
e0

.
We find master equations of the form

ϵ
d

dτ
P (ē, s̄; τ) = f(P (ē, s̄; τ), P (ē− d, s; τ), P (ē+ d, s; τ), P (ē+ d, s+ ϵd; τ)),

for a suitable function f . Setting ϵ = 0, we obtain an algebraic relation, which may
be inserted into the master equation for P (e, s; t) for unscaled e and s in original
time t. In short,

d

dt
P (e, s; t) ≈ P (e|s; t) d

dt
P (s; t),

and taking the marginal density over e, we find
d

dt
P (s; t) = k2E(e|s+ 1)P (s+ 1; t)− k2E(e|s)P (s; t),

where the expectation is of the form

E(e|s) = e0s

Km + s
.

To sum up, we have indeed recaptured the Michaelis-Menten rate equation
d

dt
P (s; t) =

Vmax(s+ 1)

Km + s+ 1
P (s+ 1; t)− Vmaxs

Km + s
P (s; t)

which has the form (11.5.2) we sought to find. See (Rao and Arkin, 2003) for more
details.





Chapter 12
Pitfalls in modelling biological phenomena

In this chapter, we review a number of common modelling mistakes, made by
beginners and experts alike.

12.1 Theme 1: continuous versus discrete time
First of all, the principle of mass action applies to rates, not to maps. Consider

for instance everyone’s favourite starting point for a model of population dynamics
of one species, the (continuous) logistic equation,

dN

dt
= rN

(
1− N

K

)
. (12.1.1)

Naively, we might write down its direct discrete counterpart, which is maybe even
more famous among mathematicians for its relation with period-doubling and chaos,
the (discrete) logistic map

Nt+1 = rNt

(
1− Nt

K

)
. (12.1.2)

The maximum of the latter right hand side is rK/4, achieved for N = K/2. This
maximum exceeds K if r > 4 and then Nt can become negative, even if N0 is
positive. In other words, the positive cone N ≥ 0 is not invariant under the
dynamics of the logistic map. There is evidently something wrong with this map
as a discrete time population model.

The appropriate discrete time version of the logistic equation (12.1.1) is the
Beverton-Holt map,

Nt+1 =
r

1 + r−1
K Nt

Nt. (12.1.3)

Note that the multiplication factor
r

1 + r−1
K N

is a decreasing function of N , while

N 7→ rN

1 + r−1
K N

is increasing, leading to montone orbits, just as for the logistic differential equation.
For the Ricker map,

Nt+1 = re−
log r
K NtNt, (12.1.4)

the multiplication factor
re−

log r
K N

129
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is decreasing as well, but
N 7→ re−

log r
K NN

has a humped graph, creating the possibility of oscillations (one speaks of
overcompensatory density dependence). Ricker introduced this map in order to
incorporate that adults might eat the eggs and larvae that they produced (so, in
other words, to incorporate cannibalistic activity). In a certain year, the N adults
produce r̃N eggs. During a certain time window they eat, perhaps accidentally, aE
eggs per unit of time if egg density equals E. Let τ denote time during this time
window and let τ be varying between 0 and τmax. Then

dE

dτ
= −aEN,

E(0) = r̃N,

and consequently
E(τmax) = r̃Ne−aτmaxN .

Now assume that the adult density in the next year is proportional to E(τmax) with,
say, constant of proportionality p. Then we obtain the Ricker map by choosing

r = r̃p, K =
log r

aτmax
.

It is, quite generally, much better to derive discrete time models by using continuous
time building block as above (see (Geritz and Kisdi, 2004)). Reproduction is
often concentrated in a very short period of the year, but interactions (predation,
competition for food, transmission of an infectious disease) often happen during
the entire year. Hybrid models are built by combining continuous time differential
equations describing interaction with a reproduction event at a specified period
sequence of time points. Sometimes, one can, like we did above when deriving the
Ricker map, explicitly solve the differential equations and obtain an explicit map.
In general, one obtains a map that is implicitly defined in terms of solutions of
differential equations.

Exercise 12.1.1. What is wrong with the discrete time formulation
St+1 = St − βStIt,

It+1 = (1− α)It + βStIt,

of a model for the epidemic spread of an infectious disease? Reformulate the
equations such that they do make sense, and derive how one arrives from these
at the formulation above.

Example 12.1.1. Let us consider a metapopulation model, i.e., populations
living in patches and coupled by migration. The two patch variant of the logistic
equation reads

dN

dt
= r1N

(
1− N

K1

)
− d1N + d2θ12M, (12.1.5)

dM

dt
= r2M

(
1− M

K2

)
+ θ21d1N − d2M. (12.1.6)

Here N denotes the population density in patch 1 and M the population density
in patch 2, and di is the rate of emigration out of patch i. The constants θij
incorporate two effects,

• a migrating individual may not survive the trip;
• if the patches are not of equal size, one needs to convert the change of

density in one patch to the change of density in the other (the safe way
of doing this is by computing the number of emigrants).
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Let us make our life easy and assume that r1 = r2 = r, K1 = K2 = K, d1 = d2 = d,
the patches are of equal size and no death occurs during travel from one patch to
the other. Note, incidentally, that the formulation ignores that the travelling may
take time.

Due to seasonality, a discrete time model is more often appropriate (in
particular for plants that flower once per year during a short period). Suppose
the one patch formulation is

Nt+1 = f(Nt),

then what is the two-patch formulation? Is it

Nt+1 = f(Nt)− dNt + dMt,

Mt+1 = f(Mt) + dNt − dMt?

No! In fact, one has to go into the derivation of f from a description of the life cycle
and then incorporate dispersion of seeds (or whatever is the appropriate migration
mechanism).

For instance, consider an annual plant and assume that the variables correspond
to the density of flowering plants. Let p(x) be the probability that, given seed
density x, a seed survives the winter, wins the local competition with other seeds
and develops into a flowering plant the next year. Define

f(x) = xp(x).

Assume that a flowering plant produces on average r seeds. Then in the one-patch
situation we obtain

Nt+1 = f(rNt),

but in the two-patch situation

Nt+1 = f((1− d)rNtdrMt),

Mt+1 = f(drNtMt(1− d)rMt).

Here, we hope it is clear how to put the indices and insert the θ when patches differ
(in size, quality, or both) and dispersing seeds may land in unsuitable habitat.

As a final remark, note that the two-patch model for plants would become quite
different potentially if the moment of census would have been chosen differently.
Then one would for instance count ungerminated seeds, rather then plants, which
have quite different dynamics. This is clearly a silly thing to do in the above
example, but when modelling parasitoids with complex life cycles, there are often
several obvious choices to be made of what to do the bookkeeping on, with different
final results.

Exercise 12.1.2. What if the population census is based on seed density at
the beginning of the winter?

More realistic models often take a seed bank into account.

12.2 Theme 2: the danger of delay
The otherwise quite respectable ecologist G. E. Hutchinson published in 1948

the paper Circular causal systems in ecology and introduced in that paper the
delayed logistic equation

u̇(t) = ru(t)
(
1− u(t− 1)

K

)
,
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which became a favourite prototype of a scalar nonlinear differential equation with
delay for quite a few applied mathematicians. The problem with this equation is
that is very hard, if not impossible, to interpret the term

−ru(t)u(t− 1)

K
.

If we think of maturation delay, more appropriate versions are
u̇(t) = βu(t− 1)− µu(t)− σu(t)u(t),

(where the last term reflects increased per capita mortality at higher densities) and
u̇(t) = βu(t− 1)e−u(t−1) − µu(t),

(where the first term incorporates egg cannibalism or other effects, see the paper
by Gurney et al. (1980)). Another, more phenomenological, option is

u̇(t) = β(K − u(t− 1))+ + u(t− 1)− µu(t),

where x+ := max{0, x} and where the first term reflects reduced fertility at higher
densities. Now recall the equations (??) from Chapter ??

dv

dt
= v
(
1− ev − bp

1 + bβv

)
, (12.2.1)

dp

dt
= p
(
− c+

dv

1 + bβv

)
, (12.2.2)

corresponding to a prey/resource (v) - predator/consumer (p) model. A persistent
mistake made by applied mathematicians that love delay equations, but are not
willing to devote a small fraction (say 5 or 10 percent) of their research time to
thinking about the model motivation, assumptions, meaning, etc., is to give all
functions argument t except for the rightmost term in the second equations, which
they take as

dv(t− 1)

1 + bβv(t− 1)
.

If again we think of maturation delay and if we assume that juvenile predators have
another source of food, we should write the second equation as

dp

dt
(t) = −cp(t) + dp(t− 1)v(t− 1)

1 + bβv(t− 1)
.

Next, recall equation (6.1.1) from Chapter ??,
∂u

∂t
= d∆u+ f(u),

with for instance f(u) = ru(1 − u
K ). How do we incorporate maturation delay in

the setting of spatially distributed populations? When juveniles do not move, we
can replace f(u) by, for instance

βu(t− 1, x)e−u(t−1,x) − µu(t, x).

So this would correspond to a situation where eggs are dropped and stay put until
they hatch (with the mother moving on). A debatable model, for sure, but at least
without inconsistency.

If juveniles do move, we have to realise that those who are at position x at time
t have different histories in the sense that they were at different positions in the
recent past. It is now safer to write the equation in the form

∂u

∂t
= d∆u+ h− µu,

and to specify separately how the source term h depends on the history of u as
a function of the spatial variable x. If movement and survival of juveniles is not
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influenced by population density, we may introduce as a higher level modelling
ingredient

p(1, x, ξ) := probability that a juvenile that is at ξ at some time
is still alive one time unit later and is then located at x

and next write

h(t, x) =

∫
Ω

p(1, x, ξ)βu(t− 1, ξ)e−u(t−1,ξ)dξ.

If Ω = Rn, juveniles diffuse with diffusion constant d̃ and are subject to a per capita
mortality rate µ̃, we may compute p by solving

∂p

∂t
= d̃∆p− µ̃p,

p(0, x, ξ) = δξ(x).

and evaluate for t = 1. For bounded domains, we need to take boundary conditions
into account. See (Gourley et al., 2004) for further details. The moral is

• distinguish carefully between death terms and birth terms when writing
bookkeeping equations

• think in terms of i-state, i.e., the state of individuals, and mechanisms
(how does density dependence come about? is death affected by density
or birth or movement or maturation or all of these?)

• do not write vague sentences like “what happens now, manifests itself
somewhat later” or “all processes take some time to complete” as a
motivation for changing somewhere in an equation an argument t by t−1
(or, the unscaled variant t− τ)

Exercise 12.2.1. Starting from the Lotka-Volterra prey-predator model
described by (3.1.1)–(3.1.2) on page 25, formulate a variant where both prey and
predator diffuse and prey eaten is converted into predator offspring with gestation
delay of one unit of time.

12.3 Theme 3: going astray while bookkeeping
The PDE formulation of age-dependent population growth is given by

∂n

∂t
+
∂n

∂a
= −µn

n(t, 0) =

∫ ∞

0

β(α)nt, α)dα.

The differential equation captures aging and survival, while the boundary condition
expresses that the influx of newborns equals the rate at which offspring is produced.

Next, suppose we distinguish individuals from each other by their size x (rather
than their age a). Assume that newborn individuals have size xb. The differential
equation now reads

∂n

∂t
+

∂

∂x
(gn) = −µn, x > xb,

where g = g(x) is the growth rate of an individual of size x (i.e., a new modelling
ingredient that we need to specify). You should recognize gn as the flux, i.e., the
density times velocity, recall (4.1.6), page 34. Every now and then it happens that
a mathematician who is not really interested in modelling writes the boundary
condition as

n(t, xb) =

∫ ∞

xb

β(ξ)n(t, ξ)dξ.
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A first way to see that this must be wrong is to consider the physical dimension:
at the left side we have a number per unit of size, while at the right we have a
number per unit of time. Another way is to integrate the differential equation
with respect to x from xb to infinity, and to interpret the boundary term as the
inflow of newborns. Equivalently, just recall the definition of “flux”. Any of these
considerations leads to the correct boundary condition

g(xb)n(t, xb) =

∫ ∞

xb

β(ξ)n(t, ξ)dξ.

Now return to the age-structured population and recall from equation (8.1.2) the
formula

n(t, a) = b(t− a)F(a),

where b(t) is the population birth rate and F(a) the survival probability (so F(a) =
exp(−

∫ a

0
µ(α)dα) and b(t) =

∫∞
0
β(α)n(t, α)dα if one specifies the model in terms

of a per capita death rate µ and a per capita fertility rate β). In some models it
is assumed that individuals die instantaneously upon reaching some maximal age
amax. In other words, F(a) = 0 for a > amax. Next it is sometimes assumed
that amax is dynamic, say determined by environmental conditions like resource
abundance, etc. Now note that if one allows the possibility that

damax
dt

> 1

and if one does not modify the formula n(t, a) = b(t− a)F(a), it may happen that
already dead individuals are resurrected!

In case of a size-structured population, a frequent assumption is that individuals
become adult (i.e., start to reproduce) upon reaching a certain size xA. The
individual growth rate g is often a function of both the i-state x and the
environmental condition S, where S is the resource concentration. To facilitate
the exposition, assume that g is independent of x.

In order to know at what time the individuals were born that mature (i.e.,
become adult) at time t, we need to solve the equation

xA = xb +

∫ t

t−τ

g(S(η)dη

for τ , given the food history as described by the function S. By differentiation with
respect to t we deduce that

0 = g(S(t))− g(S(t− τ))
(
1− dτ

dt
(t)
)

and hence that
dτ

dt
(t) = 1− g(S(t))

g(S(t− τ))
.

Note that, under reasonable assumption concerning S and g, this implies that
dτ
dt < 1, or in words, rejuvenation is impossible!

Suppose that juveniles die at a per capita rate µ1, adults at a per capita rate µ2

and that adults produce offspring at a per capita rate β. Let A denote the size of
the adult population. It is tempting to describe the dynamics of A by the equation

dA

dt
(t) = βe−µ1τ(t)A(t− τ(t))− µ2A(t),

but this is incorrect. The safe way of deriving the equation is to write first

A(t) =

∫ ∞

τ(t)

b(t− a)F(a)da =

∫ t−τ(t)

−∞
b(σ)F(t− σ)dσ,



12.3 Theme 3: going astray while bookkeeping 135

(where, admittedly, our notation for the somewhat complicated survival probability
arising from a possible difference between µ1 and µ2 is rather sloppy). Differentia-
tion then leads to

dA

dt
(t) = −µA(t) + b(t− τ(t))F(τ(t))

(
1− dτ

dt
(t)
)
.

If we now insert b(t) = βA(t), F(τ(t)) = e−µ1τ(t)) and the expression for dτ
dt (t), we

arrive at
dA

dt
(t) = −µA(t) + βA(t− τ(t))e−µ1τ(t)

g(S(t))

g(S(t− τ(t))
,

where the last factor accounts for the fact that, modulo changes due to death, the
flux is conserved, and not the density!





Chapter 13
Appendix

13.1 Bifurcation theory
13.1.1 Structural (in)stability by way of example

The phase portrait of the Volterra-Lotka system (3.1.1)–(3.1.2) is structurally
unstable. By this we mean that arbitrarily small perturbations of the vector
field yield phase portraits which are truly different. Indeed, the family of closed
orbits can either develop into inward spiralling orbits (Section 3.3) or into outward
spiralling orbits (Section 3.4), depending on how we perturb.

For the Rosenzweig-MacArthur system (3.6.1) there are two relations among
parameters that mark transitions in the essential features of the phase portrait.
When

a

e
=

c

d− bcβ
(13.1.1)

the predator isocline hits the prey-only steady state on the v-axis. One can think
of this relation as defining a 5-dimensional surface in the 6-dimensional parameter
space. On the side of the surface where

a

e
<

c

d− bcβ

the predator goes extinct and all orbits converge to (v, p) = (ae , 0). On the other
side of the surface, the system has a positive (non-trivial) steady state, which is
stable for parameter values near to the surface. In fact, the second relation

a

e
=

2c

d− bcβ
+

1

bβ
(13.1.2)

characterises the loss of stability of the positive steady state (indeed, when (13.1.2)
holds the predator isocline hits the top of the parabola forming the prey isocline).

There are both technical and physiological/psychological reasons to prefer two-
dimensional pictures. So we shall consider four of the six parameters as fixed and
only two as variable. The relations (13.1.1) and (13.1.2) then define curves in the
plane, which we can sketch.

We choose the dimensionless compound parameters a
e and bβ as our variable

parameters. The first is the carrying capacity of the prey, the second a measure for
predator efficiency. Considering d

c as fixed, we then represent (13.1.1), (13.1.2) and
the results of Section 3.6 graphically in Figure 13.1.

Each of the regions 1, 2 and 3 is characterised by a certain phase portrait. If
we pick a parameter point inside a region, the phase portrait is structurally stable
(in the sense that small changes of the vector field do not change it). In contrast,
the regions are separated from one another by boundary curves corresponding to
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βb

a
e

(1)

(2)

(3)

d
c

c
d

a
e = c

d−βbc

a
e = 2c

d−βbc +
1
βb

Figure 13.1. The phase portrait of the Rosenzweig-MacArthur system.

parameter values for which the phase portrait is structurally unstable. The curve
defined by (13.1.2) is called the stability boundary in the parameter space, as it
separates region 2, where the positive steady state is stable, from region 3, where
this steady state is unstable.

13.1.2 Topological equivalence and structural (in)stability
What exactly do we mean when we say that two phase portraits (or two

dynamical systems) are the same? How do we translate the intuitive idea of two
pictures that look the same into a precise formal definition?

A homeomorphism is a one-to-one map that is continuous and has a continuous
inverse. Two dynamical systems are called topologically equivalent if there exists
a homeomorphism between their state spaces that maps orbits onto orbits, while
preserving the order in which orbits are traversed in the course of time. One then
also speaks (as we did above) about the topological equivalence of the two phase
portraits.

The aim of the qualitative theory of dynamical systems is to give a catalogue of
all equivalence classes and, in addition, to be able to derive from information about
the generating vector field what is the phase portrait in a particular case. This
is too ambitious. A more pragmatic approach is to concentrate on special orbits
(points, circles) or, more generally, invariant subsets (tori, chaotic attractors) and
describe the structure of the phase portrait in a neighbourhood (the local phase
portrait) as well as the behaviour within the invariant subset.

The (local) phase portrait is called structurally stable if the topological
equivalence class does not change when we perturb the vector field a little. To
make this precise, we need to specify how we measure perturbations of the vector
field. We do this by means of the C1-topology, which basically means that the
values of both the function itself and of its derivative should be close in order to
call the perturbation small.

We emphasise that often it makes sense to require that the perturbations
preserve a certain structure (like invariance of the v- and p-axes for prey-predator
systems, or Hamiltonian structure for mechanical systems).

Structurally unstable systems might be called degenerate, atypical, non-generic.
Degeneracy, however, occurs in degrees. The relations (13.1.1) and (13.1.2) describe
degeneracies that occur naturally in one-parameter families of vector fields, in the
sense that they cannot be eliminated by a small perturbation of the one-parameter
family (if you visualise the one-parameter family as a curve crossing the two curves
corresponding to (13.1.1) and (13.1.2), you see that small perturbation in the curve
cannot eliminate the crossings). Higher degeneracies require more parameters to
be a natural phenomenon.
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Figure 13.2. Bifurcation diagram for a fold bifurcation corre-
sponding to equation (13.1.3). Note that there are no solutions for
α > 0. Bold lines signify stable (s) solution branches, thin lines
unstable (u) ones.

A bifurcation diagram is a (local) partitioning of the parameter space in
regions of (local) topological equivalence of the dynamical system, together with
a representative picture of the flow for each region (and each boundary). A
boundary point is called a bifurcation point (and the codimension is the difference
between the dimension of the parameter space and the dimension of the boundary;
equivalently, the codimension is defined as the number of independent conditions
determining the bifurcation; in other words, the degree of degeneracy is measured
by the codimension and the two relations (13.1.1) and (13.1.2) each determine a
codimension one bifurcation; incidentally, the bifurcation corresponding to (13.1.2)
is called a Hopf bifurcation and is characterised by the appearance of a limit cycle
when a steady state changes stability character due to a pair of complex conjugated
eigenvalues crossing the imaginary axis, see the next section).

13.1.3 Bifurcations associated with steady states
The local phase portrait near a steady state is structurally stable when none

of the eigenvalues of the linearisation is critical. The meaning of “critical” depends
on the structure of the time variable: in the discrete time case it means “having
modulus 1”, and in the continuous time case it means “having real part zero”.

So bifurcations are characterised by critical eigenvalues. We distinguish three
cases:

(i) eigenvalue 1 (discrete time) or 0 (continuous time)
(ii) two complex conjugate roots on the unit circle (discrete time) or on the

imaginary axis (continuous time)
(iii) eigenvalue -1 in the discrete time case

For each case, we describe a simple example displaying the typical bifurcation
diagram. For case (i) we describe several additional examples that show the effect
of special structure. A much more detailed discussion on bifurcation theory can be
found in Kuznetsov (2004).

(ia) fold (also called saddle-node, limit point, turning point): Let the state
variable be x ∈ R and the parameter α ∈ R. With the differential equation

ẋ = α+ x2 (13.1.3)
we associate the bifurcation diagram in Figure 13.2.

Exercise 13.1.1. Construct the diagram for ẋ = α− x2.
Exercise 13.1.2. Analyse the discrete time system

x(n+ 1) = α+ x(n)± (x(n))2.



140 Appendix

α

s

u

s

u

x

Figure 13.3. Bifurcation diagram for a transcritical bifurcation
(top). Bifurcation diagrams of perturbed systems can be seen
below it. In the left case there are no bifurcations, in the right
there are two folds. Bold lines signify stable (s) solution branches,
thin lines unstable (u) ones.

(ib) transcritical bifurcation: The top part of Figure 13.3 corresponds to
ẋ = x(α− x),

and illustrates the Principle of Exchange of Stability. It is typical for
systems of the form ẋ = xg(x, α) but if one allows perturbations that
destroy this structure one can get the bifurcation diagrams shown in the
bottom part of Figure 13.3.

(ic) pitchfork bifurcation (from which the name “bifurcation” originated):
For

ẋ = x(α− x2) (13.1.4)
we have the diagram shown in the left part of Figure 13.4. The right part
shows the bifurcation structure of

ẋ = x(α+ x2). (13.1.5)
This form of bifurcation is typical for systems with reflection symmetry.

In the − case we speak about a supercritical bifurcation since the
nontrivial steady states exist for parameter values for which the trivial
steady state is no longer stable. The nontrivial steady states inherit the
stability character of the trivial steady state and for parameter values
near the critical parameter value they are close to the trivial steady state.
When we increase the parameter α we notice a change when we pass
the critical value α = 0, but not a dramatic change. The bifurcation is
called soft. In contrast, the subcritical + case exhibits a hard/catastrophic
bifurcation since, when the trivial steady state loses stability, no nearby
attractor takes over (for the present caricatural system, orbits approach
infinity).

Exercise 13.1.3. When perturbations destroy the symmetry, the
diagram may break into two components. Draw the various components.
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Figure 13.4. Bifurcation diagrams for a pitchfork bifurcation.
The left figure corresponds to equation (13.1.4), the right
to (13.1.5). Bold lines signify stable (s) solution branches, thin
lines unstable (u) ones.
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Figure 13.5. Supercritical (left) and subcritical Hopf bifurcation
diagrams. Bold lines signify stable (s) solution branches, thin lines
unstable (u) ones.

(ii) Hopf bifurcation: The system

ẋ1 = αx1 − x2 ± x1(x
2
1 + x22) (13.1.6)

ẋ2 = x1 − αx2 ± x2(x
2
1 + x22) (13.1.7)

takes in polar coordinates the form

ṙ = r(α± r2) (13.1.8)
ϕ̇ = 1 (13.1.9)

There are two different bifurcation diagrams, for the + and − cases, shown
in Figure 13.5. The − case is called a supercritical Hopf bifurcation, and
the + case a subcritical Hopf bifurcation.

The discrete time version of the Hopf bifurcation is often called the
Neimark-Sacker bifurcation. It is characterised, like the continuous time
case, by the origination of an invariant circle. But it is somewhat more
subtle than the continuous time case in that there are various possibilities
for the dynamics on this circle: there may or may not be an attracting
periodic orbit.

(iii) flip (or period doubling) bifurcation: The typical example is

x(n+ 1) = −(1 + α)x(n)± (x(n))3.
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What happens is that at α = 0 the fixed point x̄ = 0 loses its stability
by an eigenvalue that leaves the unit circle at −1, and that two points of
period two originate. There is again a subcritical and a supercritical case.

Exercise 13.1.4. The discrete time logistic equation
x(n+ 1) = αx(n)(1− x(n))

has a nontrivial fixed point

x̄ = 1− 1

α
.

Show that at α = 3 a supercritical period doubling occurs. Hint: define
f(x) = αx(1 − x) and compute f (2)(x) = f(f(x)). The equation x =
f (2)(x) is a fourth order polynomial equation, but we know the solutions
x = 0 and x = 1− 1

α , so we can reduce it to a quadratic equation.
Determine the stability of the period two solution. Hint: consider a

periodic point of period two as a fixed point of the iteration x(n + 1) =
f (2)(x(n)).

Show that l’histoire se répète: at α = 1+
√
6 the period two solution

loses stability (and a period four solution arises; it is not part of the
exercise to prove this last part of the statement).

Hysteresis refers to the phenomenon that the state in which we find a system
may depend on the history, viz. how parameters attained their current values. A
dynamical system may have several attractors (at the same parameter values), in
which case we speak about bistability or multistability. The domain of attraction of
an attractor may enlarge or shrink as parameters are varied. For fixed parameter
values the system may be brought from (the domain of attraction of) one attractor
to another by a sufficiently large disturbance. The same transition may alternatively
be achieved by parameter variations that are sufficiently large, in which case we may
come across hysteresis. Continuous changes in parameters may not be reversible.
Coexistence of attractors implies that both chance and necessity play a role: we
can predict on the basis of deterministic relations between cause and effect, yet
initial conditions and parameter histories may have a decisive influence on what
will actually happen.

Figure 13.6 shows a typical bifurcation plot exhibiting hysteresis. As a
parameter is changed from low to high, the system first follows the lower branch of
stable steady states, until a saddle-node bifurcation occurs. It then jumps to the
higher branch. By lowering the parameter again, the system now first follows the
higher branch, and after another saddle-node bifurcation drops down to the lower
branch again.

Exercise 13.1.5. Consider the consumer-resource interaction in the chemostat
as described in Section (10.1), but now in the form

dS

dt
= DS0 −DS − g(S)X (13.1.10)

dX

dt
= −DX + ηg(S)X (13.1.11)

with up-take function g that we don’t know and that we like to determine
experimentallly. The dilution rate D can be easily tuned by the experimenter
by just turning the tap (of course S0 can also be adjusted, but this requires more
work, so here we assume S0 is fixed once and for all). For any particular value
of D, the steady state values S̄ and X̄ can be measured in the outflowing fluid.
As a first check on the model, we can compute X̄(S0 − S̄)−1 for all measured
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Figure 13.6. A typical hysteresis diagram, with two saddle-node
bifurcations at the turning points. Bold lines signify stable (s)
solution branches, thin lines unstable (u) ones.

(S̄, X̄) combinates with S̄ < S0, to see whether this yields (approximately) the
same number. Explain the rationale underlying this test.

Next we can plot the points (
S̄,
D(S0 − S̄)

X̄

)
in the plane. Convince yourself that the result should look more or less like
Figure ?? when g is of the Michaelis-Menten/Holling type. The dashed lines
indicate unobserved unstable (and possibly unphysical) steady states. How would
you classify the bifurcation in the terminology introduced in this section?

Some substrates are toxic at high concentrations. In such a case the graph of
g may look like Figure ??. Assume that S0 exceeds the value of S for which g
is maximal. Following the experimental procedure described above, what do you
observe when increasing D? (The answer should be a picture!) And what do you
observe if, subsequently, you repeat the experiment while decreasing D? (You may
assume that the algae are never washed out completely, or that every now and then
re-seeding with a tiny amount of algae is carried out.) Combine the two pictures
now into one, add unobserved untable steady states and interpret the result in
terms of hysteresis.

13.1.4 Poincaré-Bendixson theory
For dynamical systems on the plane R2, much information on the existence of

steady states or of periodic orbits may be obtained using topological arguments.
So let us consider the system

u̇ = f(u), u ∈ R2 (13.1.12)
where continuously differentiable f will suffice for our purposes. In Section 3.3 we
briefly encountered the notion of the ω-limit set of an orbit of system (13.1.12): a
point p ∈ R2 belongs to the ω-limit set of an orbit u(t) if there exists a sequence
n → ∞ such that u(tn) → p as tn → ∞. Different points on the same orbit have
the same ω-limit set, so we can speak of the ω-limit set of an orbit too. The ω-limit
set of a positive orbit γ (taking only t ≥ 0) will be denoted by ω(γ).

The Poincaré-Bendixson Theorem now states that bounded orbits either
converge to periodic orbits (or are periodic already), or converge towards a steady
state.
Theorem 13.1.1 (Poincaré-Bendixson): Consider a bounded positive orbit γ of (13.1.12)
with ω-limit set ω(γ). Then one of the following possibilities holds:

(1) ω(γ) is an equilibrium
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(2) ω(γ) is a perdiodic orbit
(3) ω(γ) consists of equilibria and orbits having these equilibria as their α-

and ω-limit sets (heteroclinic orbits or one homoclinic orbit).
Of course, analogous results hold for bounded negative orbits (taking t ≤ 0

only) too. These either come from steady states or from limit cycles, or are
steady states or periodic themselves. For a proof of this important result, see
e.g. (Coddington and Levinson, 1955; Verhulst, 1996).

13.2 Lyapunov-Schmidt reduction
One of the main problems in nonlinear partial differential equations is to

understand the structure of the set of steady state solutions as parameters are
varied. In most cases, the Implicit Function Theorem (IFT) ensures that in the
neighbourhood of a steady state (u0, λ0) at some given parameter λ0 the steady
state solutions can be parametrized by λ. In other words, we find a one-parameter
family of steady states ū(λ) such that ū(λ0) = u0. When the IFT cannot be
invoked, we are at a bifurcation point. Of course, these points are our main points
of interest, since there the number of steady state solutions changes. The idea of
Lyapunov-Schmidt reduction is to split the problem into to parts, in such a way
that “known” solution can be divided out and the IFT still applies. The method
is fully general for finite or infinite systems of nonlinear equations. To get a feel
for the method, let us stick to a finite dimensional setting first. The extension to
infinite dimensions (and thus, PDEs or integral equations) is then mostly a matter
of some technical requirements on the operators involved.

13.2.1 Finite dimensional Lyapunov-Schmidt reduction
Consider a smooth nonlinear map H : Rn × Rk+1 → Rn, and the problem of

finding the variables x1, . . . , xn and parameters λ0, λ1, . . . , λk such that H vanishes,

Hi(x, λ) = 0, i = 1, . . . , n. (13.2.1)

Let DH(0, 0) be the Jacobian matrix (∂Hi

∂xj
) evaluated at the origin (x, λ) = (0, 0).

If DH(0, 0) has full rank n, then we may apply the IFT, and know that (13.2.1)
may be solved uniquely for x as a function of λ. This is the case in which there is no
bifurcation. Consider now the minimally degenerate case, when rankDH(0, 0) =
n− 1. Write L = DH(0, 0) for convenience. The Lyapunov-Schmidt reduction now
consists of five steps.

Step 1: Choose vector space complements of kerL and rangeL respectively,

Rn = kerL⊕M,

Rn = N ⊕ rangeL.

Step 2: Let P be the projection of Rn onto rangeL, with kerP = N . The
complementary projection (I−P ) has range(I−P ) = N , and ker(I−P ) = rangeL.

Step 3: Project the original equations (13.2.1) and use the IFT. Since
H(x, λ) = 0, we know that

PH(x, λ) =0, (13.2.2)
(I − P )H(x, λ) =0. (13.2.3)

The basic idea of Lyapunov-Schmidt reduction is that (13.2.2) may be solved using
the IFT restricted to rangeL, i.e., in n−1 of the components of x. Equation (13.2.3)
then gives an equation for the remaining unknown if we substitute the solution
from (13.2.2). Why does this work? Decompose the vector x ∈ Rn into v + w,
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with v ∈ kerL and w ∈ M . Eq. (13.2.2) is now PH(v + w, λ) = 0. Note that the
derivative with respect to w of PH(v + w, λ) at the origin is

P (DH(0, 0)) = PL = L, (13.2.4)
since P is precisely the projection of Rn onto the range of L. Most importantly,
L : M → rangeL is invertible, so we can use the IFT to solve (13.2.2). Denote
the solution w = W (v, λ), so W : kerL × Rk+1 → M . The argument of W is
just the collection of all remaining variables and parameters for which we cannot
solve (13.2.1). With this solution, (13.2.2) reads

PH(v +W (v, λ), λ) = 0, where W (0, 0) = 0. (13.2.5)
Step 4: Now substitute this solution into the other equation (13.2.3) still to

be solved,
(I − P )H(v +W (v, λ), λ) =: h(v, λ). (13.2.6)

The zeros of h(v, λ) are in one-to-one correspondence with the zeros of H(x, λ),
h(v, λ) = 0 ⇐⇒ H(v +W (v, λ), λ) = 0.

Step 5: To actually compute things, we have to choose explicit coordinates on
kerL and Rk+1 on which h is defined, to get a map g : R×Rk+1 → R instead of h.
The usual choice is to choose vectors vi ∈ kerL, v∗i ∈ (rangeL)⊥ (in our case just
one each, v0 and v∗0 , say, because dimkerL = dim(rangeL)⊥ = 1). Every vector
v ∈ kerL can be written as tv0 for t ∈ R. Now define

g(t, λ) = 〈v∗0 , h(tv0, λ)〉.
Since h(tv0, λ) ∈ N , g(t, λ) = 0 if and only if h(tv0, λ) = 0. Hence, the zeros of g
are also in one-to-one correspondence with the zeros of H(x, λ). Writing out g in
full, the projection I − P occurring in the definition of h(v, λ) drops out and we
find

g(t, λ) = 〈v∗0 ,H(tv0 +W (tv0, λ), λ)〉. (13.2.7)
This is the final bifurcation equation that gives a complete picture of the steady
state solutions of H(x, λ) = 0 we were interested in, in the neighbourhood of the
bifurcation point (x, λ) = (0, 0). The reason that the projection I − P disappears
in (13.2.7) is that v∗0 ∈ (rangeL)⊥, and that Pv ∈ rangeL for any vector v, so that
〈v∗0 , Pv〉 = 0. Hence 〈v∗0 , v〉 = 〈v∗0 , (I − P )v〉 for any v ∈ Rn.

The character of the bifurcation is determined by the derivatives of g(t, λ). In
principle, this just requires taking derivatives of (13.2.5) and (13.2.6) and using the
chain rule. Without spelling out all the details of these calculations (which can for
instance be found in (Golubitsky and Schaeffer, 1985)), the end result is

gt = 0, (13.2.8)
gtt =

〈
v∗0 , D

2H(v0, v0)
〉
, (13.2.9)

gttt =
〈
v∗0 , D

3H(v0, v0, v0)− 3D2H(v0, L
−1PD2H(v0, v0)

〉
, (13.2.10)

gλ = 〈v∗0 ,Hλ〉 , (13.2.11)
gλt =

〈
v∗0 , DHλ · v0 −D2H(v0, L

−1PHλ

〉
. (13.2.12)

Here, all derivatives are evaluated at (t, λ) = (0, 0), and

D2H(v, w) =

n∑
i,j=1

∂2H

∂yi∂yj
(t, λ)viwj .

As an example, the bifurcation point (0, 0) exhibits a pitchfork if the following
conditions are met

g = gt = gtt = gλ = 0, gtttgλt < 0.
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13.2.2 Infinite dimensional Lyapunov-Schmidt reduction
All we really need to require from some operator L defined on a function space

X for the reduction method to work is that L has a finite dimensional kernel and
finite dimensional corange. Such operators are called Fredholm operators.
Definition 13.2.1: Let L : X → Y be a bounded linear operator between Banach
spaces. L is called Fredholm if kerL ⊂ X is finite dimensional and rangeL ⊂ Y
is closed and has finite dimensional codimension. The index of L is defined by
dimkerL− codim rangeL.

To perform Step 1 in the reduction, we need to choose closed subspaces M
and N such that X = kerL ⊕M and Y = N ⊕ rangeL. Precisely for Fredholm
operators, such closed subspaces M and N can be found.

Often, the index of L is zero, which ensures that if kerL = 0, then L is invertible.
If L is a differential operator, X and Y are typically subspaces of L2(Ω) for some
bounded domain Ω, and L2 is equipped with inner product

〈u, v〉 =
∫
Ω

u(x)v(x)dx,

The context of a particular problem often gives Ck functions for X and Y . We
would like to set M = (kerL)⊥ and N = (rangeL)⊥, but it is generally not
guaranteed that X is fully spanned by kerL and its complement, or Y by rangeL
and its complement. However, in the important case that L is an elliptic differential
operator this choice for M and N is justified. Of course, reaction-diffusion problems
are always of this type.

The one additional technical requirement for the Implicit Function Theorem in
Banach spaces is that rangeL is closed. Note that Fredholm operators have this
property by definition.

The upshot is that Lyapunov-Schmidt reduction works for Fredholm operators
of index zero.

13.2.3 A concrete example
Let us consider the following problem

H(u, λ) := Lu+ λf(u) = 0, (13.2.13)

for u ∈ C2([0, 1]), u(0) = 0 = u(1), Lu = u′′ and f a smooth function. Suppose
we have a solution (u0, λ0). We are interested which other functions solve (13.2.13)
in the neighbourhood of λ0. Linearizing around u0, we find the derivative in the
direction v to be

Av := Lv + λDf(u0)v.

L has eigenvalues −m2π2, for m = 1, 2, . . . and corresponding eigenfunction ϕm =
sinmπx. The kernel of A is nonempty if λDf(u0) = n2π2 for some n ≥ 1. If this is
not the case, then A has full rank and we can use the IFT to find a unique solution
u(λ) parametrized by λ with the property that u(λ0) = u0. Suppose that n = 1,
however, and let A = L+π2. The kernel of A is all functions v of the form tϕ1, for
some t ∈ R. To see this, write v in Fourier series, v =

∑∞
n=1 cnϕn, so that

Av =

∞∑
n=1

(−n2π2 + π2)ϕn =

∞∑
n=2

(−n2π2 + π2)ϕn,

and Av = 0 if and only if cn = 0, n ≥ 2. The range of A is all functions w such
that Av = w. Using Fourier series for w, it is easily seen that w is in the range if
and only if w does not contain a multiple of ϕ1. Hence, rangeA = (kerA)⊥. Let
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P be the projection onto the range of A, so that I − P is the projection onto the
kernel of A,

(I − P )v(x) = 2ϕ1(x)

∫ 1

0

ϕ1(y)v(y)dy.

We can now split L2([0, 1]) (or its C2 subspace?) as kerA⊕ rangeA. A function u
is split accordingly into u1 + u2.

To perform the third and most important step in the reduction, project the
original equation (13.2.13),

PH(u, λ) = 0, (13.2.14)
(I − P )H(u, λ) = 0. (13.2.15)

The first of these, PH(u, λ) = P (Lu+ λf(u)) = 0 is written as
0 = P (Lu+ π2u+ (λf(u)− π2u)) = P (Au+ h(u, λ)),

where h(u, λ) := λf(u)−π2u are the higher order terms split off from Au. Now we
can properly project with P . Note that

PAu = PA(u1 + u2) = PAu2 = Au2

by construction, as discussed in (13.2.4). Au2 is thus the derivative of PH(u, λ) at
(u0, λ0), and is invertible on rangeA. Therefore, we apply the IFT and solve for
u2 as a function of u1 and λ, with solution U2(u1, λ). Note that u1 = tϕ1 since
u1 ∈ kerA, so we can write U2(u1, λ) as Ũ2(t, λ).

Finally, in step 4, this solution is inserted into the remaining equation to be
solved, (13.2.15). Since

(I − P )H(u, λ) = (I − P )(Au+ h(u, λ)) = (I − P )h(u, λ)

equation (13.2.15) becomes
g(t, λ) := (I − P )h(tϕ1 + Ũ2(t, λ), λ) = 0,

which by definition I − P is〈
ϕ1, h(tϕ1 + Ũ2(t, λ), λ)

〉
= 0.

As noted before, this can be rewritten to〈
ϕ1,H(tϕ1 + Ũ2(t, λ), λ)

〉
= 0.

This, then, is the (finite dimensional!) bifurcation equation for this problem.
Two example papers that specifically deal with Lyapunov-Schmidt reduction

in systems of reaction-diffusion equations are (Mimura et al., 1979; Mimura and
Nishiura, 1979).
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