Modular Forms: Problem Sheet 10

26 April 2016

Throughout this sheet, N and k are positive integers.

- 1. Let $f \in S_k(\Gamma_1(N))$ be a normalised Hecke eigenform with q-expansion $\sum_{n=1}^{\infty} a_n q^n$ (at the cusp ∞) and character $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$.
 - (a) Prove the identity

 $\overline{a_m} = \chi(m)^{-1} a_m$ for all $m \ge 1$ with gcd(m, N) = 1.

Deduce that the quantity $a_m^2/\chi(m)$ is real for all $m \ge 1$ such that gcd(m, N) = 1.

- (b) Prove the following statement, which you could use without proof in problem 2 of problem sheet 9: Let $f \in M_k(SL_2(\mathbb{Z}))$ be a normalised eigenform, and let p be a prime number. Then $a_p(f)$ is real. (*Hint:* treat Eisenstein series and cusp forms separately.)
- 2. Let V be be the space $S_2(\Gamma_1(16))$ of cusp forms of weight 2 for $\Gamma_1(16)$. You may use the following fact without proof: a basis for V, expressed in q-expansions at the cusp ∞ , is

$$f_1 = q - 2q^3 - 2q^4 + 2q^6 + 2q^7 + 4q^8 - q^9 + O(q^{10}),$$

$$f_2 = q^2 - q^3 - 2q^4 + q^5 + 2q^7 + 2q^8 - q^9 + O(q^{10}).$$

- (a) Show that $S_2(\Gamma_1(8)) = \{0\}$ and $V = S_2(\Gamma_1(16))_{new}$. (*Hint:* consider the map $i_2^{8,16}$ on q-expansions.)
- (b) Compute the matrix of the Hecke operator T_2 on V with respect to the basis (f_1, f_2) .
- (c) Compute a basis (g_1, g_2) of V consisting of eigenforms for T_2 .

(Do the computations by hand; you may use a computer to check your results.)

- 3. Let M and e be positive integers, let l be a prime number not dividing M, and let $N = l^e M$. Let f be a Hecke eigenform in $S_k(\Gamma_1(M))$ with character χ . Let V_f be the \mathbb{C} -linear subspace of $S_k(\Gamma_1(N))$ spanned by the forms $f_j = i_{lj}^{M,N}(f)$ for $0 \leq j \leq e$.
 - (a) Prove that the forms f_0, \ldots, f_e are \mathbb{C} -linearly independent.
 - (b) Show that the Hecke operator T_l on $S_k(\Gamma_1(N))$ preserves the subspace V_f , and compute the matrix of T_l on V_f with respect to the basis (f_0, \ldots, f_e) .

Answer:
$$\begin{pmatrix} a_l & 1 & 0 & 0 & \cdots & 0 \\ -\chi(l)l^{k-1} & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$

- 4. Suppose that $S_k(\Gamma_0(N))$ contains some normalised eigenform f. Write $g = f^2 \in S_{2k}(\Gamma_0(N))$. Calculate the first two terms of the q-expansions of g and T_2g , and deduce that the dimension of $S_{2k}(\Gamma_0(N))$ is at least 2.
- 5. Let Γ be a congruence subgroup, and let f be a modular form of weight k for Γ . Define a function $f^* \colon \mathbb{H} \to \mathbb{C}$ by

$$f^*(z) = \overline{f(-\bar{z})}.$$

- (a) Prove that f^* is a modular form of weight k for the group $\sigma^{-1}\Gamma\sigma$, where $\sigma = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.
- (b) Suppose (for simplicity) that both Γ and $\sigma^{-1}\Gamma\sigma$ contain the subgroup $\left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{Z} \right\}$. Show that the standard *q*-expansions of *f* and *f*^{*} in the variable $q = \exp(2\pi i z)$ are related by

$$a_n(f^*) = \overline{a_n(f)}$$
 for all $n \ge 0$.

(c) Show that if $\Gamma = \Gamma_0(N)$ or $\Gamma = \Gamma_1(N)$ for some $N \ge 1$, then $\sigma^{-1}\Gamma\sigma = \Gamma$.

Bonus problem: Give an example of a congruence subgroup Γ such that $\sigma^{-1}\Gamma\sigma \neq \Gamma$.