Modular Forms: Problem Sheet 12

10 May 2016

Throughout this sheet, N and k are positive integers.

1. Consider functions $f: \mathbb{R} \to \mathbb{C}$ that are infinitely continuously differentiable and such that for all $m, n \geq 0$ the function $x^m f^{(n)}(x)$ (where $f^{(n)}$ is the *n*-th derivative of x) tends to zero as $|x| \to \infty$. Recall that the Fourier transform of such a function f is defined as

$$\hat{f}(t) = \int_{-\infty}^{\infty} f(x) \exp(-2\pi i tx) dx,$$

and that f can be recovered from \hat{f} using the Fourier inversion formula,

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(t) \exp(2\pi i x t) dt.$$

Use this to give a proof of the Mellin inversion formula (see §6.1 of the notes) for 'sufficiently nice' functions g(t).

2. (a) Suppose k is even and $k \ge 4$. Prove that the L-function of the Eisenstein series E_k admits the factorisation

$$L(E_k, s) = \zeta(s)\zeta(s - k + 1),$$

where $\zeta(s)$ is the Riemann ζ -function.

(b) (This part is optional and depends on the optional exercises from problem sheet 6.) Let α , β be primitive Dirichlet characters modulo M and N, respectively, satisfying $\alpha(-1)\beta(-1) = (-1)^k$. Prove that the *L*-function of the Eisenstein series $E_k^{\alpha,\beta} \in M_k(\Gamma_1(MN))$ associated to the pair (α, β) admits the factorisation

$$L(E_k^{\alpha,\beta},s) = L(\alpha,s)L(\beta,s-k+1).$$

Note: The fact that the *L*-function of an Eisenstein series has such a factorisation is one of the manifestations of the rule of thumb that Eisenstein series are 'easier' than cusp forms.

- 3. Let $f \in S_k(\Gamma_1(N))$ be an eigenform such that all coefficients $a_n(f)$ for $n \ge 1$ are real.
 - (a) Show that the complex number ϵ_f defined in Theorem 6.4 of the notes is either +1 or -1.
 - (b) Let r be the order of vanishing of the holomorphic function L(f,s) in s = k/2. Prove that r is even if $\epsilon_f = +1$ and that r is odd if $\epsilon_f = -1$. (*Hint:* expand the completed L-function $\Lambda(f,s)$ in a power series around s = k/2.)