Modular Forms: Problem Sheet 2

16 February 2016

- 1. (a) Show that $G_4(\exp(2\pi i/3)) = 0$. (Hint: $G_4(-1/z) = z^4 G_4(z)$.) (b) Show that $G_6(i) = 0$.
- 2. Define $f : \mathbb{H} \to \mathbb{C}$ by

$$f(z) := G_2(z) - \frac{\pi}{\Im z}.$$

(a) Show that

$$f(\gamma z) = j(\gamma, z)^2 f(z)$$
 for all $\gamma \in SL_2(\mathbb{Z})$ and $z \in \mathbb{H}$.

- (b) Is f(z) a modular form?
- 3. Let $f : \mathbb{H} \to \mathbb{C}$ be a modular form of weight 0.
 - (a) Show that there exists some $C \in \mathbb{R}_{>0}$ such that: any element in \mathbb{H} is $SL_2(\mathbb{Z})$ -equivalent to some $z \in \mathbb{H}$ with $\Im(z) \geq C$. (Take e.g. $C = \sqrt{3}/2$.)
 - (b) Deduce that |f| attains a maximum.
 - (c) Conclude that the space of modular forms of weight zero consists exactly of the (C-)constant functions. (Hint: maximum modulus principle.)