Modular Forms: Problem Sheet 3

23 February 2016

1. (a) Prove the formula

$$\sigma_9(n) = \frac{21}{11}\sigma_5(n) - \frac{10}{11}\sigma_3(n) + \frac{5040}{11}\sum_{j=1}^{n-1}\sigma_3(j)\sigma_5(n-j) \text{ for all } n \in \mathbb{Z}_{>0}.$$

- (b) Find similar expressions for σ_{13} in terms of σ_3 and σ_9 , and in terms of σ_5 and σ_7 .
- 2. (a) Find rational numbers λ and μ such that

$$\Delta = \lambda E_4^3 + \mu E_{12}.$$

(b) Let $\tau(n)$ be the *n*-th coefficient in the *q*-expansion of Δ , so that

$$\Delta = \sum_{n=1}^{\infty} \tau(n) q^n.$$

Prove Ramanujan's congruence:

$$\tau(n) \equiv \sigma_{11}(n) \pmod{691}.$$

- 3. Show that the ring $\mathbb{C}[E_2, E_4, E_6]$ is closed under differentiation.
- (a) Show that the modular functions (for SL₂(Z)) form a field F (with addition and multiplication defined pointwise).
 - (b) Prove that $F = \mathbb{C}(j)$ and that j is transcendental over \mathbb{C} .
- 5. Consider the modular function $j : \mathbb{H} \to \mathbb{C}$.
 - (a) Show that j(i) = 1728 and $j(\rho) = 0$ (where $\rho = \exp(2\pi i/3)$).
 - (b) Let $z \in \mathcal{D}$ (the standard fundamental domain for $SL_2(\mathbb{Z})$). Prove:

(z lies on the boundary of \mathcal{D} or $\Re z = 0$) $\Rightarrow j(z) \in \mathbb{R}$.

- (c) Show that $\overline{j} : \mathrm{SL}_2(\mathbb{Z}) \setminus \mathbb{H} \to \mathbb{C}$ given by $\overline{j}([z]) := j(z)$ is well-defined and prove that \overline{j} is bijective.
 - (Here [z] denotes the orbit of z under the action of $SL_2(\mathbb{Z})$.)
- (d) Prove the converse to part (b).
- 6. (a) Show that M_k is spanned by all E^a₄E^b₆ with a, b ∈ Z_{≥0} and 4a + 6b = k.
 (b) Show that E₄ and E₆ are algebraically independent over C.

We remark that this exercise shows that the ring of modular forms (for $\operatorname{SL}_2(\mathbb{Z})$) $M := \bigoplus_{k \in \mathbb{Z}} M_k$ is isomorphic to the ring of polynomials over \mathbb{C} in two variables $\mathbb{C}[x, y]$ with isomorphism $\mathbb{C}[x, y] \xrightarrow{\sim} M$ given by $(x, y) \mapsto (E_4, E_6)$. (If we grade the rings by assigning grade k to a modular form of weight k and grades 4 and 6 to x and y respectively, we get an isomorphism of graded rings.)