1 March 2016

1. Let $L_1(N)$ be the set of pairs (Λ, P) where Λ is a lattice in \mathbb{C} and P is a point of order N in the group \mathbb{C}/Λ.

 (a) Show that on $L_1(N)$ there is an equivalence relation \sim with the property that $(\Lambda, P) \sim (\Lambda', P')$ if and only if there exists $\alpha \in \mathbb{C}^\times$ such that for any $\omega \in \mathbb{C}$ with $\omega + \Lambda = P$ in \mathbb{C}/Λ we have $\alpha \Lambda = \Lambda'$ and $\alpha \omega + \Lambda' = P'$ in \mathbb{C}/Λ'.

 (b) Recall that $\Gamma_1(N)$ is the subgroup of $SL_2(\mathbb{Z})$ consisting of matrices of the form $\begin{pmatrix} a & b \\ Nc & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{Z}$, $a \equiv d \equiv 1 \mod N$ and $ad - Nbc = 1$. Prove that there is a bijection $L_1(N)/\sim \cong \Gamma_1(N)\backslash \mathbb{H}$.

 (Hint: consider lattices together with a suitable \mathbb{Z}-basis (ω_1, ω_2), and use a similar argument as for the bijection $L_0(N)/\sim \cong \Gamma_0(N)\backslash \mathbb{H}$ constructed in the lecture.)

2. Show that the cusps of $\Gamma_1(4)$, viewed as $\Gamma_1(4)$-orbits in $\mathbb{P}^1(\mathbb{Q})$, are represented by the elements $0, 1/2$ and ∞ of $\mathbb{P}^1(\mathbb{Q})$. For each of these cusps ϵ, determine whether ϵ is regular or irregular, and compute its width $h_{\Gamma}(\epsilon)$.

3. Let p be an odd prime number. Determine a set of representatives for the $\Gamma_1(p)$-orbits in $\mathbb{P}^1(\mathbb{Q})$. For each of the corresponding cusps ϵ of $\Gamma_1(p)$, compute its width $h_{\Gamma}(\epsilon)$.

4. Let N be a positive integer, and let H be a subgroup of $(\mathbb{Z}/N\mathbb{Z})^\times$. Show that the set

 $$\Gamma_H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid a, d \mod N \text{ are in } H \text{ and } c \equiv 0 \pmod N \right\}$$

is a congruence subgroup, and determine its level.