Modular Forms: Problem Sheet 4

1 March 2016

- 1. Let $\mathcal{L}_1(N)$ be the set of pairs (Λ, P) where Λ is a lattice in \mathbb{C} and P is a point of order N in the group \mathbb{C}/Λ .
 - (a) Show that on $\mathcal{L}_1(N)$ there is an equivalence relation ~ with the property that $(\Lambda, P) \sim (\Lambda', P')$ if and only if there exists $\alpha \in \mathbb{C}^{\times}$ such that for any $\omega \in \mathbb{C}$ with $\omega + \Lambda = P$ in \mathbb{C}/Λ we have $\alpha\Lambda = \Lambda'$ and $\alpha\omega + \Lambda' = P'$ in \mathbb{C}/Λ' .
 - (b) Recall that $\Gamma_1(N)$ is the subgroup of $\operatorname{SL}_2(\mathbb{Z})$ consisting of matrices of the form $\begin{pmatrix} a & b \\ Nc & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{Z}$, $a \equiv d \equiv 1 \pmod{N}$ and ad Nbc = 1. Prove that there is a bijection

$$\mathcal{L}_1(N)/\sim \cong \Gamma_1(N) \setminus \mathbb{H}.$$

(*Hint:* consider lattices together with a suitable \mathbb{Z} -basis (ω_1, ω_2) , and use a similar argument as for the bijection $\mathcal{L}_0(N)/\sim \cong \Gamma_0(N) \setminus \mathbb{H}$) constructed in the lecture.)

- Show that the cusps of Γ₁(4), viewed as Γ₁(4)-orbits in P¹(Q), are represented by the elements 0, 1/2 and ∞ of P¹(Q). For each of these cusps c, determine whether c is regular or irregular, and compute its width h_Γ(c).
- 3. Let p be an odd prime number. Determine a set of representatives for the $\Gamma_1(p)$ -orbits in $\mathbb{P}^1(\mathbb{Q})$. For each of the corresponding cusps \mathfrak{c} of $\Gamma_1(p)$, compute its width $h_{\Gamma}(\mathfrak{c})$.
- 4. Let N be a positive integer, and let H be a subgroup of $(\mathbb{Z}/N\mathbb{Z})^{\times}$. Show that the set

$$\Gamma_H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid a, d \mod N \text{ are in } H \text{ and } c \equiv 0 \pmod{N} \right\}$$

is a congruence subgroup, and determine its level.