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1 Introduction

As mentioned in the previous lecture, there exists an important connection between modular
forms and elliptic curves by means of their L-functions. Since knowledge of elliptic curves is
not a prerequisite for this course, in this lecture we will introduce some background on elliptic
curves that will enable us to explain this connection. Two illustrations of the connection between
L-functions and modular forms are the modularity theorem for elliptic curves over Q and the
conjecture of Birch and Swinnerton-Dyer.

The modularity theorem predicts that the L-function attached to any elliptic curve over Q is
also the L-function of some primitive cusp form. This was stated as a conjecture by Shimura and
Taniyama in the 1950s. Around 1995, Andrew Wiles (with the help of Richard Taylor) proved
enough of the modularity theorem to deduce Fermat’s last theorem. The proof of the modularity
theorem was completed in 2001 by the work of Breuil, Conrad, Diamond and Taylor.

An elliptic curve E over Q has an L-function L(E, s), which is defined purely in terms of local
data (the reductions of E modulo prime numbers). The conjecture of Birch and Swinnerton-Dyer
predicts the behaviour of the function L(E, s) at the point s = 1 in terms of global data (the rank
of the group of rational points). This conjecture can be compared to the analytic class number
formula from algebraic number theory, which links the residue at s = 1 of the Dedekind ζ-function
ζK(s) of a number field K to various arithmetic invariants attached to K.

2 Elliptic curves

We first give a ‘canonical’ definition of elliptic curves, and then say somewhat more concretely
what an equation for an elliptic curve looks like.

Definition. An elliptic curve over a field K is a smooth cubic curve E in the projective plane
over K together with a K-rational point O ∈ E(K).
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After a suitable choice of coordinates, every elliptic curve over K is given by a Weierstrass
equation. This is a homogeneous equation of the form

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

with a1, . . . , a6 ∈ K (subject to some condition expressing the smoothness of E), with the point
O having coordinates (0 : 1 : 0). This is usually written in affine coordinates as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We write E(K) for the set of all K-rational points of E. This can be thought of as the set of
all pairs (x, y) ∈ K ×K satisfying the above equation, together with the ‘infinite’ point O.

One of the most fundamental facts about elliptic curves is that the set E(K) has the structure
of an Abelian group with identity element O. The group structure is determined uniquely by
the property that three points add up to O if and only if they are the three intersection points
(counted with multiplicities) of E with a line.

For elliptic curves over Q (or more general number fields), the structure of E(K) has been
studied very extensively. The basic result about E(K) in this case is the Mordell–Weil theorem.

Theorem 2.1 (Mordell–Weil). If K = Q (or more generally any number field), then the Abelian
group E(K) is finitely generated.

If E is an elliptic curve over a number field K, then E(K) is called the Mordell–Weil group
of E. The above theorem implies that if E is an elliptic curve over Q, we can write

E(Q) = T × Zr,

where T is a finite Abelian group (the torsion subgroup E(Q)tor of E(Q)) and r is some non-
negative integer, called the (algebraic) rank of E.

Given an elliptic curve E over Q, there is a straightforward way of computing E(Q)tor, and
there are only finitely many possibilities for the group E(Q)tor up to isomorphism. However, it
is in general much harder to determine r, and it is not known whether r can be arbitrarily large.
Furthermore, it is in general ‘hard’ to determine a finite set of points P1, . . . , Pr ∈ E(Q) such that
P1, . . . , Pr together with E(Q)tor is a generating set of E(Q).

3 The L-function of an elliptic curve

We assume that E is an elliptic curve over Q given by a Weierstrass equation as above, and such
that in addition the ai are in Z and the equation is minimal (a notion that we will not make
precise). Then for every prime number p, we consider the equation over Fp obtained by reducing
the equation modulo p. The curve EFp

defined by this equation is called the reduction of E
modulo p.

We say that E has good reduction at p if EFp
is a smooth curve; otherwise we say that E has

bad reduction at p. There exists a positive integer N (called the conductor of E, and related to the
minimal discriminant of E) such that E has bad reduction at p if and only if p | N . In particular,
E only has bad reduction at finitely many prime numbers p.

For every prime number, the set E(Fp) is finite. We define integers ap for p prime by

ap = p+ 1−#E(Fp).

Remark. This is the correct definition even when the reduction of E modulo p is singular.

Theorem 3.1 (Hasse). The integers ap satisfy

|ap| ≤ 2
√
p.
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Furthermore, we define

ǫ(p) =

{

1 if p ∤ N,

0 if p | N.

(In other words, ǫ is the trivial Dirichlet character modulo N .)
We now define

L(E, s) =
∏

p prime

1

1− app−s + ǫ(p)p1−2s
.

It follows from Hasse’s theorem that this infinite product converges absolutely and uniformly for
ℜs ≥ σ, for any σ > 3/2. This implies that the product defines a holomorphic function on
{s ∈ C | ℜs > 3/2}. However, unlike in the setting of modular forms, where we have the Mellin
transform at our disposal, there seems to be no easy way to prove that L(E, s) has an analytic
continuation and functional equation.

4 The modularity theorem

To be able to say anything really interesting about the L-function of an elliptic curve over Q, we
will need the modularity theorem. This is the following statement.

Theorem 4.1 (Modularity of elliptic curves over Q). Let E be an elliptic curve over Q. Then
there exist N ≥ 1 and a primitive form f ∈ S2(Γ0(N)) of weight 2 such that L(f, s) is equal to
L(E, s).

Example. Let E be the elliptic curve defined by the equation

E : y2 + y = x3 − x2.

Then the conductor N of E equals 11. (This is the smallest possible conductor of an elliptic curve
over Q.) There exists exactly one primitive cusp form of weight 2 for Γ0(11), namely

q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 +O(q10).

Hence this is the primitive form attached to E by the modularity theorem.

The modularity theorem (formerly the Taniyama–Shimura conjecture) is a very deep result.
One of its most important consequences is that it implies that L-functions of elliptic curves over Q
admit an analytic continuation to all of C and satisfy a functional equation relating L(E, s) and
L(E, 2 − s) (again via completed L-functions, like in the case of L-functions of modular forms).
This is not at all obvious, and the modularity theorem is currently the only known way to prove
the analytic continuation and functional equation for L-functions of elliptic curves. For elliptic
curves over other number fields than Q, only very partial results are known.

The modularity theorem was proved first for an important class of elliptic curves (the semi-
stable ones, corresponding to square-free N) in 1995 by work of Wiles [4], completed by Taylor and
Wiles [2], from which Fermat’s last theorem follows. (More about Fermat’s last theorem will be
said in the last lecture of this course.) The modularity theorem was then proved in more generality
by Diamond (1996), Conrad, Diamond and Taylor (1999) and finally for arbitrary E by Breuil,
Conrad, Diamond and Taylor (2001).

The proof of the modularity theorem combines many different techniques, which we cannot
explain here. Just to mention one key part of the proof that is related to this course: one ingredient
is to show that certain Hecke algebras are isomorphic to so-called deformation rings. This is then
used to prove a modularity lifting theorem, which is a statement of the type that if the coefficients
an of L(E, s) are congruent to the coefficients of a modular form modulo some prime number l,
then the coefficients an are actually equal to the coefficients of a modular form.

Remark. We have phrased the modularity theorem in terms of L-functions, but there are many
other formulations; see Diamond and Shurman’s book for alternative versions.
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5 The conjecture of Birch and Swinnerton-Dyer

Around 1958, Birch and Swinnerton-Dyer performed some of the first computer calculations in
number theory. Given an elliptic curve over Q given by a Weierstrass equation with coefficients in
Z, they studied the way in which the number of points #E(Fp) of the reduction depends on the
rank of E over Q. Based on their calculations, they stated a conjecture that can be formulated in
one way as follows.

Conjecture 5.1 (Birch, Swinnerton-Dyer). Let E be an elliptic curve over Q. Then the order
of vanishing of function L(E, s) in s = 1 (which is defined thanks to the modularity theorem) is
equal to the rank of E.

Remark. The order of vanishing of L(E, s) in s = 1 is called the analytic rank of E; hence the
Birch–Swinnerton-Dyer conjecture claims that the analytic rank of an elliptic curve is equal to its
algebraic rank.

The conjecture of Birch and Swinnerton-Dyer is as yet unproved. It is in fact one of the
“Millennium Prize Problems”; a proof is therefore worth one million dollars. The only general
result known so far is the following.

Theorem 5.2 (Gross, Zagier; Kolyvagin). Let E be an elliptic curve over Q. If the analytic rank
of E is either 0 or 1, then it is equal to the algebraic rank of E.

The proof of this theorem heavily relies on modular forms, modular curves, L-functions and
related techniques.

In addition, Bhargava and Shankar proved in recent years that a positive proportion (in a
precise sense) of all elliptic curves over Q have analytic rank 0, which implies that the conjecture
of Birch and Swinnerton-Dyer holds for a positive proportion of all elliptic curves over Q. (It
seems, however, that they have not been awarded the corresponding fraction of the prize money.)

Remark. Let r denote the analytic rank of E. We consider the non-zero complex number

L∗(E, s) = lim
s→1

(s− 1)−rL(E, s).

There is a refined variant of the conjecture of Birch and Swinnerton-Dyer, which predicts the
exact value of L∗(E, s) in terms of certain analytic and arithmetic invariants of E (namely periods,
Tamagawa numbers, the regulator, the order of the torsion group E(Q)tor, and the order of the
Tate–Shafararevich group).

6 The congruent number problem

In this last section, we discuss how elliptic curves, modular forms and the conjecture of Birch and
Swinnerton-Dyer can be applied to a classical Diophantine problem.

A positive rational number n is called congruent if there exists a right-angled triangle with
rational side lengths and area n. The congruent number problem is the question which n are
congruent. This comes down to the question for which n the system of equations

a2 + b2 = c2 and ab = 2n

has a solution in non-zero rational numbers a, b, c.

Proposition 6.1. A positive rational number n is congruent if and only if the equation

y2 = x3 − n2x (1)

has a solution (x, y) ∈ Q×Q with y 6= 0.
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It suffices to study the case where n is a square-free positive integer. The equation (1) defines
an elliptic curve En over Q. The congruent number problem was solved by Tunnell [3] assuming
the Birch–Swinnerton-Dyer conjecture for elliptic curves of the form En. We define integers cn for
n ≥ 1 by the following identities of holomorphic functions H → C (or of power series in q):

h = η(8z)η(16z)

= q
∏

m≥1

(

(1− q8m)(1− q16m)),

f = hθ(2z),

g = hθ(4z),

cn =

{

an(f) if n is odd,

an/2(g) if n is even.

Here η and θ are the Dedekind η-function and the Jacobi θ-function defined in the course. (The
functions f and g are in fact “modular forms of weight 3/2”.)

Theorem 6.2 (Tunnell [3]). Let n be a square-free positive integer. If n is congruent, then cn = 0.
The converse is true if the Birch–Swinnerton-Dyer conjecture holds for the elliptic curve En.

Tunnell’s proof of the first implication relies on partial results on the Birch–Swinnerton-Dyer
conjecture due to Coates and Wiles.
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