• The use of books, lecture notes, calculators, etc. is *not* allowed.

• If you are unable to answer a subitem, you are still allowed to use the result in the remainder of the exercise.

Note: Throughout this exam, N and k denote positive integers.

- 1. (a) Define the notion of a *congruence subgroup* of $SL_2(\mathbb{Z})$, and of the *level* of a congruence subgroup. Define the congruence subgroups $\Gamma(N)$, $\Gamma_0(N)$ and $\Gamma_1(N)$.
 - (b) Let p be a prime number not dividing N, and let $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}$. Show that the group

$$\Gamma' = \Gamma_1(N) \cap (\alpha^{-1}\Gamma_1(N)\alpha)$$

is a congruence subgroup, and determine the level of Γ' .

- (c) Describe the action of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}$, and show that for every $x \in \mathbb{P}^1(\mathbb{Q})$ there exists $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ such that $\gamma \infty = x$.
- (d) Let Γ be a congruence subgroup. Define the set $\operatorname{Cusps}(\Gamma)$ of *cusps* of Γ . Show that $\operatorname{SL}_2(\mathbb{Z})$ has exactly one cusp.
- (e) Let E be an elliptic curve over \mathbb{Q} , let $E(\mathbb{Q})$ be its Mordell–Weil group, and let L(E, s) be the *L*-function of E. Recall that $E(\mathbb{Q})$ is finitely generated by the Mordell–Weil theorem, and that L(E, s) can be continued to an analytic function on the whole complex plane. What does the conjecture of Birch and Swinnerton-Dyer predict about the relation between $E(\mathbb{Q})$ and L(E, s)?
- 2. (a) Show that the space $S_{12}(SL_2(\mathbb{Z}))$ contains a unique normalised eigenform Δ .

In the lectures, certain maps on (and between) the spaces $S_k(\Gamma_1(N))$ were introduced. You may use without proof that these are also defined for $S_k(\Gamma_0(N))$, and that the relevant properties for this question are the same for $\Gamma_0(N)$ as for $\Gamma_1(N)$.

- (b) Show that the space $S_{12}(\Gamma_0(6))$ has dimension at least 4.
- (c) Define the *Fricke operator* w_N on $S_k(\Gamma_0(N))$ (also known as the Atkin–Lehner operator).

In parts (d) and (e) of this question, the function $F \colon \mathbb{H} \to \mathbb{C}$ is defined as

$$F(z) = \Delta(z)\Delta(5z).$$

- (d) Prove that F is a cusp form of weight 24 for the group $\Gamma_0(5)$, and compute the order of vanishing of F at the cusps 0 and ∞ .
- (e) Prove that F is an eigenform for the Fricke operator w_5 on $S_{24}(\Gamma_0(5))$, with eigenvalue 5^{12} .
- 3. (a) Define the new subspace $S_k(\Gamma_1(N))_{new}$ (also known as the space of newforms) of $S_k(\Gamma_1(N))$.
 - (b) Sketch a proof of the fact that the \mathbb{C} -vector space $S_k(\Gamma_1(N))_{\text{new}}$ admits a basis of simultaneous eigenforms for all Hecke operators T_m for $m \ge 1$ and all diamond operators $\langle d \rangle$ for $d \in (\mathbb{Z}/N\mathbb{Z})^{\times}$.

(You do not have to reproduce long computations, but you should explain the main steps and ingredients of the proof.)

- 4. Let $f \in S_k(\Gamma_1(N))$ be a primitive form, let f^* be the newform defined by $f^*(z) = \overline{f(-\overline{z})}$, and let η_f be the complex number such that $w_N f = \eta_f f^*$.
 - (a) Define the completed L-function $\Lambda(f, s)$.
 - (b) The *incomplete* Γ -function is defined by

$$\Gamma(s,x) = \int_x^\infty \exp(-t)t^s \frac{dt}{t} \quad \text{for } s \in \mathbb{C} \text{ and } x > 0.$$

Prove the formula

$$\Lambda(f,s) = N^{s/2} \sum_{n=1}^{\infty} a_n (2\pi n)^{-s} \Gamma\left(s, \frac{2\pi n}{\sqrt{N}}\right) + i^k \eta_f N^{-s/2} \sum_{n=1}^{\infty} \bar{a}_n (2\pi n)^{s-k} \Gamma\left(k-s, \frac{2\pi n}{\sqrt{N}}\right).$$

(You may use without proof the identity

$$\Lambda(f,s) = N^{s/2} \int_{1/\sqrt{N}}^{\infty} f(it) t^s \frac{dt}{t} + i^k \eta_f N^{-s/2} \int_{1/\sqrt{N}}^{\infty} f^*(it) t^{k-s} \frac{dt}{t},$$

which follows from a formula given in the lecture by the assumption $a_0(f) = 0$.)

(c) Assume that k equals 2, and take s = 1. Prove the formula

$$\Lambda(f,1) = \sum_{n=1}^{\infty} \left(a_n - \frac{\eta_f}{N} \bar{a}_n \right) \frac{\sqrt{N}}{2\pi n} \exp\left(-\frac{2\pi n}{\sqrt{N}}\right).$$

(This gives an efficient way to approximate $\Lambda(f, s)$ in the *critical point* s = 1, and hence the quantity $L(f, 1) = \frac{2\pi}{\sqrt{N}}\Lambda(f, 1)$, which is important for the conjecture of Birch and Swinnerton-Dyer.)

Maximum scores per subitem			
1a: 5	2a: 6	3a: 6	4a: 6
1b: 6	2b: 4	3b: 10	4b: 6
1c: 6	2c: 4		4c: 8
1d: 6	2d: 6		
1e: 5	2e: 6		
Maximum total = 90			
Mark = 1 + Total/10			