Advanced Logic 2014–15

Assignment 1

(deadline: Friday, February 13)

- 1. Prove or disprove the universal validity of the following formulas:
 - (a) $\Box \bot \lor \diamondsuit \intercal$
 - (b) $\Diamond (p \lor q) \to \Diamond p \lor \Diamond q$
 - (c) $\Diamond p \land \Diamond q \rightarrow \Diamond (p \land q)$
 - (d) $\Box(p \rightarrow q) \rightarrow (\Diamond p \rightarrow \Box q)$
 - (e) $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$
- **2.** If the formula $\Box \perp$ is valid in a frame $\mathcal{F} = (W, R)$, then what do you know of its transition relation R? Prove your answer. Same question for $\Diamond \top$.
- **3.** Let K be the class of frames defined by:

 $\mathsf{K} = \{ (W, R) \mid \forall xyz \in W (Rxy \land Rxz \to Ryz \lor Rzy) \}$

(a) Show that K is characterized by the formula κ :

 $\kappa = \Box(\Box p \to q) \lor \Box(\Box q \to p)$

that is, prove that for all frames \mathcal{F} :

$$\mathcal{F} \in \mathsf{K}$$
 if and only if $\mathcal{F} \models \kappa$

(b) Why does it follow from the previous item that also the formula

$$\Box(p \to \Diamond q) \lor \Box(q \to \Diamond p)$$

characterizes the class K?

(see page 2)

4. Consider the frames $\mathcal{A} = (A, R_A), \ \mathcal{B} = (B, R_B), \ \mathcal{C} = (C, R_C)$:

$A = \{a, b, c, d\}$	$R_A = \{(a,b), (a,c), (b,a), (b,d)\}$
$B = \{1, 2, 3, 4\}$	$R_B = \{(1,2), (1,3), (1,4), (2,1)\}$
$C = \{\circ, \bullet\}$	$R_C = \{(\circ, \circ), (\circ, \bullet)\}$

(a) Draw the transition graphs for $\mathcal{A}, \mathcal{B} \in \mathcal{C}$.

Let further $\mathcal{M}_{\mathcal{A}}$, $\mathcal{M}_{\mathcal{B}}$, $\mathcal{M}_{\mathcal{C}}$ be models based on \mathcal{A} , \mathcal{B} , and \mathcal{C} , respectively, such that all propositional variables are false in all states.

- (b) Find a modal formula that *distinguishes* state *a* of model $\mathcal{M}_{\mathcal{A}}$ from state 1 of model $\mathcal{M}_{\mathcal{B}}$; that is, a formula φ such that $\mathcal{M}_{\mathcal{A}}, a \vDash \varphi$ while $\mathcal{M}_{\mathcal{B}}, 1 \nvDash \varphi$.
- (c) Why can we conclude from the previous item that there cannot exist a bisimulation $Z \subseteq A \times B$ such that $(a, 1) \in Z$?
- (d) Show that $\mathcal{M}_{\mathcal{A}}, a \nleftrightarrow \mathcal{M}_{\mathcal{C}}, \circ$.
- (e) Can you find a modal formula which distinguishes state *a* in $\mathcal{M}_{\mathcal{A}}$ from state \circ in $\mathcal{M}_{\mathcal{C}}$?