
Advanced Logic 2014–15

Assignment 3

(deadline: Monday, March 16)

1. Let $\widehat{\mathcal{M}}$ be the PDL-extension of the $\{a, b\}$ -model \mathcal{M} given by:

(a) Compute the transition relations \widehat{R}_{α} , \widehat{R}_{β} , \widehat{R}_{γ} , \widehat{R}_{δ} , $\widehat{R}_{\varepsilon}$ of $\widehat{\mathcal{M}}$ corresponding to the programs:

$$\alpha = aa$$
 $\beta = ba$ $\gamma = \beta^*$ $\delta = \alpha \gamma b$ $\varepsilon = \delta^*$

(25 pt)

- (b) Show that $\widehat{\mathcal{M}} \vDash p \leftrightarrow \langle \varepsilon \rangle p$. (10 pt)
- (c) Give a PDL-formula ψ such that $\widehat{\mathcal{M}} \not\models \psi \leftrightarrow \langle \varepsilon \rangle \psi$. (10 pt)
- **2.** The Hilbert system T is the extension of the system K with the truth axiom A1. System S4 is the extension of T with A2, the axiom of positive introspection.
 - (a) Formulate the completeness theorem for the system S4. (5 pt)
 - (b) Show that A3, the axiom of negative introspection, is not deducible in S4. (10 pt)
 - (c) Prove that a reflexive and euclidean relation is an equivalence relation. $(10 \ pt)$
 - (d) Give a derivation or construct a countermodel:

(i)
$$\vdash_{K^2} K_1 K_2 p \to K_2 K_1 p$$
 (10 pt)

(ii) $\vdash_T (K(p \to q) \land p) \to q$ (10 pt)