Possible Answers to Exam Advanced Logic

26 March 2013, 15:15–18:00

Dimitri Hendriks

(a) Define what it means that a modal formula is valid in a class of frames. (Give your answer in terms of the notion of truth of a formula in a point of a model.)

 (4 pt)

A modal formula φ is valid in a frame-class C if it is valid in all frames of $C: \mathfrak{F} \vDash \varphi$ for all $\mathfrak{F} \in C$. In turn, φ is valid in a frame $\mathfrak{F} = (W, R)$ if for all valuations $V: \{p, q, \ldots\} \to 2^W$ (mapping proposition variables to subsets of W) on the frame, and for all points $x \in W$ of the frame, we have $\mathfrak{F}, V, x \vDash \varphi$, where $\mathfrak{F}, V, x \vDash \varphi$ denotes the truth of φ in point x of the model \mathfrak{F}, V .

(b) Prove that the formula $\Box \Diamond p \rightarrow \Box \Diamond \Box \Diamond p$ is valid in all transitive frames. (8 pt)

Let $\mathfrak{F} = (W, R)$ be an arbitrary transitive frame. Let V be an arbitrary valuation on \mathfrak{F} , and x an arbitrary point in the model (\mathfrak{F}, V) . Assume $x \models \Box \diamond p$. In order to show $x \models \Box \diamond \Box \diamond p$, we let y be an arbitrary R-successor of x, and prove that $y \models \diamond \Box \diamond p$. From the assumption $x \models \Box \diamond p$ it follows that $y \models \diamond p$, and so there exists a point z with Ryz (and $z \models p$). It suffices to prove $z \models \Box \diamond p$ (as then $y \models \diamond \Box \diamond p$), so we let u with Rzu be arbitrary, and show $u \models \diamond p$. By transitivity of R we obtain Rxz (from Rxy and Ryz), and also Rxu (from Rxz and Rzu). Hence $u \models \diamond p$ follows from the assumption $x \models \Box \diamond p$.

(c) Can the formula of the previous item also be valid in a non-transitive frame? Prove your answer. (5 pt)

Yes that is possible. For example, the formula is valid in the following non-transitive frame:

To see that $\Box \diamond p \to \Box \diamond \Box \diamond p$ is indeed valid in this frame, note that its transition relation R is functional and satisfies $R^2 = R^4$, hence $x \models \Box \diamond p$ if and only if $x \models \Box \diamond \Box \diamond p$, for every $x \in \{a, b, c\}$.

Likewise so, in the following frame (non-transitive since Rab and Rba but $\neg Raa$):

which is again a functional frame whose transition relation R is such that $R^2 = R^4$.

(d) Show that $\mathfrak{F} \vDash \Diamond r \to \Box r$ implies $\mathfrak{F} \vDash (\Box p \to \Box q) \to \Box (p \to q)$, for all frames \mathfrak{F} . (Here p, q, r are proposition variables.) (8 pt)

Let $\mathfrak{F} = (W, R)$ be an arbitrary frame where $\Diamond r \to \Box r$ is valid (note that this formula forces that R is partially functional, i.e., every point has at most one R-successor). Let V be an arbitrary valuation on \mathfrak{F} , let x be an arbitrary point of the model (\mathfrak{F}, V) , and assume $x \models \Box p \to \Box q$. In order to show that $x \models \Box (p \to q)$, we consider an arbitrary R-successor y of x, and show $y \models p \to q$. So we assume $y \models p$ (and show $y \models q$). Then we have that $x \models \Diamond p.1$ Moreover, as we know that $\Diamond r \to \Box r$ is valid in \mathfrak{F} and validity is closed under substitution, we also know that $x \models \Diamond p \to \Box p$. Hence we get $x \models \Box p$, and using the assumption $x \models \Box p \to \Box q$, also $x \models \Box q$. This in turn means that $y \models q$.

2. For $n = 1, 2, 3, \ldots$, let the 'looping frame' $\mathcal{L}_n = (W_n, R_n)$ be defined by

$$W_n = \{0, \dots, n-1\}$$

$$R_n = \{(k, k') \mid k' = k+1 \text{ if } k+1 < n \text{ and } k' = 0 \text{ otherwise } \}$$

(a) Draw the frames \mathcal{L}_2 and \mathcal{L}_4 .

 $\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ \mathcal{L}_2 \end{array} \qquad \begin{array}{c} 0 \\ 1 \\ 3 \\ \mathcal{L}_4 \end{array}$

(2 pt)

 $\mathbf{2}$

(b) Give a modal formula that distinguishes frame \mathcal{L}_2 from \mathcal{L}_4 , that is, a formula φ such that $\mathcal{L}_2 \vDash \varphi$ and $\mathcal{L}_4 \nvDash \varphi$. Prove your answer. (8 pt)

An example of a formula that is valid in \mathcal{L}_2 but not in \mathcal{L}_4 is $p \leftrightarrow \Diamond \Diamond p$.¹ To see that $\mathcal{L}_2 \vDash p \leftrightarrow \Diamond \Diamond p$ (more generally $\mathcal{L}_n \vDash p \leftrightarrow \Diamond^n p$ for all n > 0), observe that $R_2^2 = (R_2; R_2) = \Delta$ (in general $R_n^n = \Delta$), where Δ denotes the identity relation on W_2 , $\Delta = \{(x, x) \mid x \in W_2\}$. Let $x \in W_2 = \{0, 1\}$, and V an arbitrary valuation on \mathcal{L}_2 . Then in the model $\mathcal{M} = (\mathcal{L}_2, V)$, it clearly holds that $x \vDash p$ if and only if $x \vDash \Diamond \Diamond p$.

To see that $\mathcal{L}_4 \nvDash p \leftrightarrow \Diamond \Diamond p$ (more generally $\mathcal{L}_m \nvDash p \leftrightarrow \Diamond^n p$ for all n, m > 0 with n < m), consider for example the valuation V on \mathcal{L}_4 defined by $V(p) = \{0\}$. In the model (\mathcal{L}_4, V) we then have $0 \vDash p$, but $0 \nvDash \Diamond \Diamond p$ since $2 \nvDash p$ (for n < m, in the model (\mathcal{L}_m, V) , with $V(p) = \{0\}$, we similarly get $0 \nvDash \Diamond^n p$ since $n \nvDash p$).

For questions (c) and (d) you have to define a bisimulation, but reporting on the verification of the bisimulation conditions is not required.

(c) Let \mathcal{M}_2 be some model based on \mathcal{L}_2 . Define a model \mathcal{M}_4 based on \mathcal{L}_4 such that $\mathcal{M}_2, 0 \leftrightarrow \mathcal{M}_4, 0$. (6 pt)

Let $\mathcal{M}_2 = (\mathcal{L}_2, V_2)$ for some valuation V_2 . We define a valuation V_4 on \mathcal{L}_4 by

$$V_4(p) = \{x \mid (x \mod 2) \in V_2\}$$

(So $V_4(p) = \emptyset$ if $V_2(p) = \emptyset$, $V_4(p) = \{0, 2\}$ if $V_2(p) = \{0\}$, $V_4(p) = \{1, 3\}$ if $V_2(p) = \{1\}$, and $V_4(p) = W_4$ if $V_2(p) = W_2$.) Then the relation $E \subseteq W_2 \times W_4$ given by $E = \{(0,0), (0,2), (1,1), (1,3)\}$ is a bisimulation between the models \mathcal{M}_2 and $\mathcal{M}_4 = (\mathcal{L}_4, V_4)$. As $(0,0) \in E$, we conclude $\mathcal{M}_2, 0 \cong \mathcal{M}_4, 0$.

(d) Let \$\mathcal{M}_3\$ be some model based on \$\mathcal{L}_3\$. Define an acyclic model \$\mathcal{N}\$ bisimilar to \$\mathcal{M}_3\$.
(6 pt)

Every model is bisimilar to its tree unfolding (and trees are acyclic). Let $\mathcal{M}_3 = (\mathcal{L}_3, V)$. The tree unfolding of \mathcal{M}_3 is the model $\mathcal{N} = (\mathbb{N}, S, U)$ where $S = \{(n, n+1) \mid n \in \mathbb{N}\}$, and with valuation U defined for all variables p, and all $n \in \mathbb{N}$ by

$$3n \in U(p) \iff 0 \in V(p)$$

$$3n + 1 \in U(p) \iff 1 \in V(p)$$

$$3n + 2 \in U(p) \iff 2 \in V(p)$$

¹Other examples are $p \to \Diamond \Diamond p$, $\Diamond \Diamond p \to p$, or any variation of them obtained by replacing \Diamond 's with \Box 's (whose meanings coincide on these functional frames).

 $[\]mathbf{3}$

Then the relation $\{(0, 3n), (1, 3n + 1), (2, 3n + 2)\}$ is a bisimulation between the models \mathcal{M}_3 and \mathcal{N} .

3. Consider the $\{a, b, c\}$ -models \mathcal{A} and \mathcal{B} defined by:

(a) Is there a modal formula that distinguishes state k in model \mathcal{A} from state u in model \mathcal{B} ? Prove your answer. (8 pt)

No such formula exists, because, as we will prove, states k and u are bisimilar, and we know that modal truth is invariant under bisimilarity, that is, if x is bisimilar to x', then $x \models \varphi$ if and only if $x' \models \varphi$.

We show that the relation

$$Z = \{(k, u), (\ell, v), (\ell, v'), (m, w), (m, w')\}$$

is a bisimulation.

For $i \in \{a, b, c\}$, we denote by $R_i^{\mathcal{A}}$, the transition relation labeled of model \mathcal{A} labeled *i*. Likewise so for model \mathcal{B} .

Clearly all Z-related points have the same atomic information.

To see that Z satisfies the zig-condition, we check for every Z-link $(x, x') \in Z$, that for every step $R_i^{\mathcal{A}}xy$, there exists a step $R_i^{\mathcal{B}}x'y'$ and $(y, y') \in Z$; we indicate this by $\begin{pmatrix} x & x' \\ y & y' \end{pmatrix}_i$. The 10 diagrams we thus find are:

$$\begin{pmatrix} k & u \\ \ell & v' \end{pmatrix}_a \begin{pmatrix} k & u \\ m & w \end{pmatrix}_a \begin{pmatrix} \ell & v \\ m & w \end{pmatrix}_b \begin{pmatrix} \ell & v' \\ m & w' \end{pmatrix}_b \begin{pmatrix} m & w \\ m & w' \end{pmatrix}_b \begin{pmatrix} m & w \\ k & u \end{pmatrix}_c \begin{pmatrix} m & w \\ \ell & v' \end{pmatrix}_c \begin{pmatrix} m & w' \\ m & w \end{pmatrix}_b \begin{pmatrix} m & w' \\ \ell & v \end{pmatrix}_c \begin{pmatrix} m & w'$$

Checking the zag-condition proceeds in a similar way.

(b) Let $\widehat{\mathcal{A}}$ be the PDL-extension of model \mathcal{A} . Compute the transition relation \widehat{R}_{α} corresponding to the PDL-program α = while $\neg p$ do $a \cup bc$. (8 pt)

We know that while φ do π is syntax for $(\varphi?; \pi)^*; \neg \varphi?$. So, in order to compute \widehat{R}_{α} we compute the transition relation corresponding to the program $(\neg p?; (a \cup bc))^*; \neg \neg p?$, in a compositional way as follows; here, we use a second abbreviation

$$\beta = \neg p?; (a \cup bc)$$

so that $\alpha = \beta^*$; p? (of course the test $\neg \neg p$? is equivalent to p? (i.e., have the same transition relation in all PDL models)).

$$\begin{split} R_{a} &= \{(k,\ell),(k,m)\}\\ R_{b} &= \{(\ell,m),(m,m)\}\\ R_{b} &= \{(\ell,m),(m,m)\}\\ R_{c} &= \{(m,k),(m,\ell)\}\\ \widehat{R}_{bc} &= R_{b}; R_{c} = \{(\ell,k),(\ell,\ell),(m,k),(m,l)\}\\ \widehat{R}_{a\cup bc} &= R_{a} \cup \widehat{R}_{bc} = \{(\ell,k),(k,m),(\ell,k),(\ell,\ell),(m,k),(m,l)\}\\ \widehat{R}_{\neg \neg p?} &= \widehat{R}_{p?} = \{(x,x) \mid x \vDash p\} = \{(\ell,\ell)\}\\ \widehat{R}_{\neg p?} &= \{(x,x) \mid x \nvDash p\} = \{(\ell,k),(m,m)\}\\ \widehat{R}_{\beta} &= \widehat{R}_{\neg p?}; \widehat{R}_{a\cup bc} = \{(k,k),(m,m),(m,k),(m,l)\}\\ \widehat{R}_{\beta^{*}} &= (\widehat{R}_{\beta})^{*} = \{(k,k),(k,l),(k,m),(\ell,\ell),(m,k),(m,l),(m,m)\}\\ \widehat{R}_{\alpha} &= \widehat{R}_{\beta^{*}}; \widehat{R}_{p?} = \{(k,\ell),(\ell,\ell),(m,\ell)\} \end{split}$$

(c) Determine whether the PDL-formula $[\alpha]p \to \langle b \rangle \top$ globally holds in $\widehat{\mathcal{A}}$. Prove your answer. (4 pt)

All states in the model have precisely one \widehat{R}_{α} -successor, namely state ℓ where p holds. Hence $[\alpha]p$ is true at all states. However not all states can do a R_b -step: state k is blind with respect to R_b . So we find that $k \nvDash \langle b \rangle \top$, and so, in combination with $k \vDash [\alpha]p$, we obtain $k \nvDash [\alpha]p \to \langle b \rangle \top$. Hence $[\alpha]p \to \langle b \rangle \top$ is not globally valid in $\widehat{\mathcal{A}}$.

- 4. System T is the extension of the minimal modal logic K with the axiom of veridicality (if something is known, it is true). System S4 extends T with the axiom of positive introspection; S5 extends S4 with the axiom of negative introspection. Assume there are n ≥ 2 agents.
 - (a) Prove or disprove the following epistemic claims:

(i)
$$\vdash_T K_1 K_2 p \to K_2 \neg K_1 \neg p$$
 (5 pt)

We give a derivation in system T:

1.	$K_1 p \to p$	(Axiom A1)
2.	$K_1 \neg p \rightarrow \neg p$	(Substitution, 1)
3.	$(A \to \neg B) \to (B \to \neg A)$	(Tautology)
4.	$(K_1 \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg K_1 \neg p)$	(Substitution, 3)
5.	$p \to \neg K_1 \neg p$	(Modus Ponens, 4, 2)
6.	$K_2(p \to \neg K_1 \neg p)$	(Necessation, 5)
7.	$K_2(p \to q) \to (K_2p \to K_2q)$	(Distribution Axiom)
8.	$K_2(p \to \neg K_1 \neg p) \to (K_2 p \to K_2 \neg K_1 \neg p)$	(Substitution, 7)
9.	$K_2 p \to K_2 \neg K_1 \neg p$	(Modus Ponens, 8, 6)
10.	$K_1 K_2 p \to K_2 p$	(Substitution, 1)
11.	$(A \to B) \to ((B \to C) \to (A \to C))$	(Tautology)
12.	$10 \to (9 \to (K_1 K_2 p \to K_2 \neg K_1 \neg p))$	(Subtitution, 11)
13.	$9 \to (K_1 K_2 p \to K_2 \neg K_1 \neg p)$	(Modus Ponens, 12, 10)
14.	$K_1 K_2 p \to K_2 \neg K_1 \neg p$	(Modus Ponens, 13, 9)

(Alternatively (and much easier) we could have shown that the formula is valid in all frames $(W, \{R_1, R_2, \ldots, R_n\})$ where the R_i are reflexive, and use the completeness theorem for system T to conclude that the formula is derivable in T.)

(ii)
$$\vdash_{S4} \neg K_1 K_1 p \to K_1 \neg K_1 p$$
 (5 pt)

By the completeness theorem for system S4, we know that $\vdash_{S4} \varphi$ if and only if $\mathfrak{F} \models \varphi$ for all frames \mathfrak{F} that are reflexive and transitive. Hence, to show that $\neg K_1K_1p \to K_1\neg K_1p$ is *not* derivable in S4 it suffices to give a reflexive, transitive frame $\mathfrak{F} = (W, R_1)$ where the formula is *not* valid (in turn proved by giving a valuation V and a point x of the frame such that $\mathfrak{F}, V, x \nvDash \varphi$). Consider the frame $\mathfrak{F} = (W, R_1)$ with $W = \{a, b\}$ and $R_1 = \{(a, a), (a, b), (b, b)\}$ which is clearly reflexive and transitive. Take the valuation V given by $V(p) = \{b\}$. Then, in the model (\mathfrak{F}, V) , we have that $a \nvDash p$, and hence $a \nvDash K_1p$ since R_1aa . Then also $a \nvDash K_1K_1p$, by $a \nvDash K_1p$ and R_1aa . Hence $a \vDash \neg K_1K_1p$. On the other hand, we have $b \vDash p$, and so $b \vDash K_1p$ since b is the only R_1 -successor of b. Hence $b \nvDash \neg K_1R_1p$, with $a \nvDash K_1 \neg K_1p$, we obtain $a \nvDash \neg K_1K_1p \to K_1 \neg K_1p$.

(iii)
$$\vdash_{S5} \neg K_2 K_2 p \to K_2 \neg K_2 p$$
 (5 pt)

We give a derivation in S5:

1.	$K_2 p \to K_2 K_2 p$	(Axiom A2)
2.	$(A \to B) \to (\neg B \to \neg A)$	(Tautology)
3.	$(K_2p \to K_2K_2p) \to (\neg K_2K_2p \to \neg K_2p)$	(Substitution, 2)
4.	$\neg K_2 K_2 p \rightarrow \neg K_2 p$	(Modus Ponens, $3, 1$)
5.	$\neg K_2 p \to K_2 \neg K_2 p$	(Axiom A3)
6.	$(A \to B) \to ((B \to C) \to (A \to C))$	(Tautology)
7.	$4 \to (5 \to (\neg K_2 K_2 p \to K_2 \neg K_2 p))$	(Substitution, 8)
8.	$5 \to (\neg K_2 K_2 p \to K_2 \neg K_2 p)$	(Modus Ponens, $7, 4$)
9.	$\neg K_2 K_2 p \to K_2 \neg K_2 p$	(Modus Ponens, $8, 5$)

(Alternatively we could have shown that the formula is valid in all frames $(W, \{R_1, R_2, \ldots, R_n\})$, where the R_i are equivalence relations, and use the completeness theorem for system S5 to conclude that the formula is derivable in S5.)

(b) Show that validity of the axiom $Cp \to ECp$ in an epistemic frame forces that the frame has the property $R_E; R_C \subseteq R_C$. (Recall that $R_E; R_C$ denotes the relational composition of R_E and R_C .)² (8 pt)

Let \mathfrak{F} be any frame with relations R_E and R_C ; let W denote its domain. Contrapositively, assume that R_E ; $R_C \not\subseteq R_C$, so that there are points $x, z \in W$ such that $(x, z) \in (R_E; R_C)$ and $(x, z) \notin R_C$. The assumption $(x, z) \in (R_E; R_C)$ means that $(x, y) \in R_E$ and $(y, z) \in R_C$, for some $y \in W$. Our goal is to prove that $Cp \to ECp$ is not valid in \mathfrak{F} , and to this end we want a model on \mathfrak{F} so that $x \models Cp$ and $x \nvDash ECp$. In other words, we need a valuation V that makes p true in all R_C -successors of x, and at the same time we need one R_E -successor of x where Cp fails; for the latter we naturally choose point y where Cp fails to hold if we define V such that $z \notin V(p)$. The two demands we have for V are not conflicting because we know $(x, z) \notin R_C$. Thus we define the desired valuation V on \mathfrak{F} by putting $V(p) = \{s \in W \mid (x, s) \in R_C\}$.³

²This question is not phrased clear enough. The intention was to ask to prove that $\mathfrak{F} \models Cp \to ECp$ implies $R_E; R_C \subseteq R_C$ in all frames \mathfrak{F} with relations R_E and R_C used for interpreting the box modalities E and C, without any further information on R_E and R_C . However, one may argue that the definition of epistemic frames includes that $R_C = (R_E)^+$, and then $R_E; R_C \subseteq R_C$ follows trivially. The question is thus better rephrased into: Let I be an index set. Show that for all $i, j \in I$, validity of the axiom $[j]p \to [i][j]p$ in an I-frame $\mathfrak{F} = (W, \{R_k \mid k \in I\})$ forces that \mathfrak{F} has the property $R_i; R_j \subseteq R_j$.

³This is the minimal valuation that works; a maximal one would be $W \setminus \{z\}$ so that p holds everywhere except for point z.

⁷

we check that in the model (\mathfrak{F}, V) we indeed have $x \vDash Cp$ and $x \nvDash ECp$, due to $y \nvDash Cp$ and $(x, y) \in R_E$, with $y \nvDash Cp$ in turn due to $z \nvDash p$ and $(y, z) \in R_C$.