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1. (a) Define what it means that a modal formula is globally true in a model. (3 pt)

A formula ϕ is globally true in a model M = (W,R, V ), which we denote by
M � ϕ, if ϕ is true in all of its points, that is,

M � ϕ ⇐⇒ M, w � ϕ, for all w ∈W .

(b) Define what it means that a modal formula is valid in a frame. (3 pt)

A formula ϕ is valid in a frame F = (W,R), which we denote by F � ϕ, if ϕ
is globally true in all models based on F , that is,

F � ϕ ⇐⇒ (F , V ) � ϕ, for all valuations V : Ω→ 2W ,

where Ω is a set of propositional variables containing the variables that occur
in ϕ.

Consider the frame F = (W,R) with W and R given by

W = {a, b, c, d} R = {(a, b), (b, c), (c, a), (d, a), (d, c)}

and the model M = (F , V ) with valuation V defined by V (p) = {a, c} .

(c) Give a graphical representation of M. (2 pt)
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(d) Prove that p→222p is globally true in M, but not valid in F . (4+4 pt)

– To prove that M � p → 222p, we have to show M, x � p → 222p
for all x ∈ {a, b, c, d}. In points b and d the implication p → 222p is
trivially true because they do not satisfy p. To see that M, a � 222p
we note that1 R3[a] = {a} and M, a � p (a is the only third R-successor
of a), or, step by step: M, c � 2p (by R[c] = {a} and M, a � p), hence
M, b � 22p (by R[b] = {c}), and hence M, a � 222p (by R[a] = {b}).
Likewise we see that M, c � 222p since also R3[c] = {c} and M, c � p.
So both a and c satisfy 222p, and so they satisfy p→ 222p. Thus we
have seen that M, x � p → 222p for all points x of the model, an we
conclude M � p→ 222p.

– To prove that F 2 p → 222p, we have find a valuation V ′ on F and a
point x ∈W such that F , V ′, x 2 p→ 222p.

We take V ′(p) = {d}. Then, clearly F , V ′, d � p and F , V ′, d 2 222p
because b ∈ R3[d] and F , V ′, b 2 p.

(e) Prove that for any formula ϕ, the formula 2ϕ↔2222ϕ is valid in F . (8 pt)

a b

cd F

This follows from the observation that, in the frame F , R4 = R, and the
general fact that G � [α]p↔ [β]p follows from Rβ = Rα, for all frames G with
relations Rα and Rβ. A more ad hoc proof goes as follows:

We show that F � 2p↔ 2222p. Then F � 2ϕ↔ 2222ϕ, with ϕ an
arbitrary formula, follows since validity is closed under substitution, that is,
for all frames G, modal formulas ψ and substitutions σ, if G � ψ then G � ψσ.

For x ∈ {a, b, c} we write x′ to denote the (unique) y such that Rxy; so a′ = b,
b′ = c, and c′ = a; clearly we have x′′′ = x. For x ∈ {a, b, c} we see that

N , x � 2222p ⇐⇒ N , x′ � 222p

1Recall that we use the notation R[x] for the set of R-successors of x, i.e., R[x] = {y | Rxy}. Moreover
R3 = R;R;R where R;S denotes the relational composition of R and S, that is, R;S = {(x, y) |
∃u ((x, u) ∈ R and (u, y) ∈ S )}. By the way, instead of the semi-colon ‘;’, many people use the
symbol ◦.
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⇐⇒ N , x′′ � 22p

⇐⇒ N , x′′′ � 2p

⇐⇒ N , x � 2p

⇐⇒ N , x′ � p

For d we find

N , d � 2222p ⇐⇒ N , a � 222p and N , c � 222p

⇐⇒ N , a � p and N , c � p
⇐⇒ N , d � 2p

Thus we have shown that F , U, x � 2222p iff F , U, x � 2p for all x ∈
{a, b, c, d}, i.e., that F , U � 2p↔ 2222p.

Since U was an arbitrary valuation, we conclude that F � 2p↔ 2222p.

2. (a) Let I be an arbitrary index set, and let i, j ∈ I. Prove that the formula
p → [i]〈j〉p characterizes the class of I-frames F = (W, {Rk | k ∈ I}) that
satisfy the property Ri ⊆ R−1j . (10 pt)

The multi-modal formula p→ [i]〈j〉p characterizes the property Ri ⊆ R−1j if

F � p→ [i]〈j〉p ⇐⇒ Ri ⊆ R−1j

for all I-frames F = (W, {Rk | k ∈ I}) and i, j ∈ I. So let F be an arbitrary
I-frame, and let i, j ∈ I. We prove the two directions:

(⇒) By contraposition. Assume that Ri 6⊆ R−1j . We prove F 2 p → [i]〈j〉p.
By the assumption there are (not necessarily distinct) points a and b such
that Riab and ¬Rjba.. In order to show that p→ [i]〈j〉p is not valid in F
we have to find a valuation V on F and a point x such that M, x � p
and M, x 2 [i]〈j〉p.
We choose V to be such that p holds in a only, V (p) = {a}. Then in
the model M = (F , V ) we have M, b 2 〈j〉p since ¬Rjba. Hence, due to
Riab, also M, a 2 [i]〈j〉p. We conclude that M, a 2 p → [i]〈j〉p. Hence
F 2 p→ [i]〈j〉p.

(⇐) Assume Ri ⊆ R−1j , that is, Riuv implies Rjvu, for all points u and v.
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We have to show that p → [i]〈j〉p is valid in F . Let V be an arbitrary
valuation on F , x an arbitrary point in the model M = (F , V ), and
assume M, x � p. In order to show M, x � [i]〈j〉p, we consider an
arbitrary Ri-successor y of x, Rixy, and prove M, y � 〈j〉p. By the
assumption Ri ⊆ R−1j we know that Rjyx. Hence, since we have M, x �
p, it follows that M, y � 〈j〉p.

(b) Use the result of the previous question to show that the formula 〈i〉[j]p → p
also characterizes the frame property Ri ⊆ R−1j . (7 pt)

We reason as follows

F � 〈i〉[j]p→ p ⇐⇒ F � 〈i〉[j]¬p→ ¬p (1)

⇐⇒ F � p→ ¬〈i〉[j]¬p (2)

⇐⇒ F � p→ [i]¬[j]¬p (3)

⇐⇒ F � p→ [i]〈j〉p (4)

⇐⇒ Ri ⊆ R−1j (5)

where the steps are justified as follows:

(1) The direction ⇒ follows from the fact that validity is closed under sub-
stitution; here we substitute ¬p for p. The direction ⇐ uses addition-
ally that we may replace subformulas by equivalent subformulas; so from
F � 〈i〉[j]¬p → ¬p we infer F � 〈i〉[j]¬¬p → ¬¬p and then replace ¬¬p
by p.

(2) These are equivalent since one formula is the contraposition of the other.

(3) ¬〈i〉[j]¬p is equivalent to [i]¬[j]¬p.
(4) ¬[j]¬p is equivalent to 〈j〉p.
(5) By the result proven in 2.(a).

(c) Are the formulas p→ [i]〈j〉p and 〈i〉[j]p→ p equivalent? Prove your answer.
(8 pt)

No, they are not. Clearly, inside the class of I-frames with the property
Ri ⊆ R−1j they are equivalent, as we just have shown that they are both valid
in that class. However, outside this class they need not be equivalent, as we
show by the following counterexample.

First we recall the definition of equivalence of modal formulas: Two formulas
ϕ and ψ are equivalent, which we denote by ϕ ≡ ψ, if ϕ ↔ ψ is universally
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valid. In other words, ϕ ≡ ψ when M, x � ϕ iff M, x � ψ for all models M
and all points x of M.

Now consider the following modelM = ({a}, {R1, R2}, V ) with R1 = {(a, a)},
R2 = ∅, and V (p) = ∅. Then we have M, a � p → [1]〈2〉p because of
M, a 2 p. On the other handM, a � [2]p byR2 = ∅, and so, byR1aa, we have
M, a � 〈1〉[2]p. In combination with M, a 2 p this gives M, a 2 〈1〉[2]p→ p.
We conclude that (p→ [1]〈2〉p) 6≡ (〈1〉[2]p→ p).

3. Consider the {a, b}-models M and N defined by:

s

t

u

b a

b a

p

M

n1

n2 n3

n4 n5

a
b a

b

a b ab

p p

N

(a) Define model M by means of set notation. (2 pt)

M = (WM, RMa , RMb , VM)

WM = {s, t, u}
RMa = {(t, s), (u, t)}
RMb = {(s, t), (t, u)}

VM(p) = {t}

(Likewise we will use N = (WN , RNa , R
N
b , V

N ).)

(b) Is there a modal formula that distinguishes state n3 in model N from state t
in model M? Prove your answer. (10 pt)

No, there is no such formula. We show that t and n3 are bisimilar, and we
know that bisimilar states have the same modal theory: if pointed models
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X , x and X ′, x′ are bisimilar then, for all modal formulas ϕ, it holds that
X , x � ϕ if and only if X ′, x′ � ϕ.

Define the relation G ⊆WM ×WN by

G := {(s, n4), (s, n5), (t, n2), (t, n3), (u, n1)} .

We show that G is a bisimulation:

◦ First of all, we notice that G satisfies the requirement of atomic harmony:
for all (x, x′) ∈ G and all propositional variables q we have M, x � q iff
N , x′ � q.
◦ To verify the zig-condition of G, for every pair (x, x′) ∈ G, for every
i ∈ {a, b}, and for every y ∈ WM with RMi xy, we have to find a point

y′ ∈WN such that RNi x
′y′ and (y, y′) ∈ G. This we indicate by

x x′

y y′
i.

s n4
t n3

b
s n5
t n2

b
t n2
s n4

a
t n2
u n1

b
t n3
s n5

a
t n3
u n1

b
u n1
t n3

a

◦ Similarly for diagrams showing the zag condition (when a step RNi x
′y′

has to be matched by a step RMi xy) we write
x x′

y y′
i.

s n4
t n3

b
s n5
t n2

b
s n5
t n2

b
t n2
s n4

a
t n2
u n1

b
t n3
s n5

a
t n3
u n1

b
u n1
t n2

a
u n1
t n3

a

(One diagram more than for zig due to two outgoing a-steps from n1.)

(c) Let N̂ be the PDL-extension of model N . Compute the transition relation R̂π
corresponding to the PDL-program π = if p then ba else ab . (8 pt)

In PDL syntax we have (if p thenba else ab) = (p?; ba)∪(¬p?; ab). We compute
the transition relations of the component programs:

R̂a = Ra = {(n1, n2), (n1, n3), (n2, n4), (n3, n5)}

R̂b = Rb = {(n2, n1), (n3, n1), (n4, n3), (n5, n2)}

R̂ba = R̂b; R̂a = {(n2, n2), (n2, n3), (n3, n2), (n3, n3), (n4, n5), (n5, n4)}

R̂p? = {(x, x) | N , x � p} = {(n2, n2), (n3, n3)}

R̂p?ba = R̂p?; R̂ba = {(n2, n2), (n2, n3), (n3, n2), (n3, n3)}
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R̂ab = R̂a; R̂b = {(n1, n1), (n2, n3), (n3, n2)}

R̂¬p? = {(x, x) | N , x � ¬p} = {(n1, n1), (n4, n4), (n5, n5)}

R̂¬p?ab = R̂¬p?; R̂ab = {(n1, n1)}

R̂π = R̂p?ba ∪ R̂¬p?ab = {(n1, n1), (n2, n2), (n2, n3), (n3, n2), (n3, n3)}

(d) Determine whether the PDL-formula [b]⊥ → ([π]p→ ⊥) globally holds in N̂ .
Prove your answer. (6 pt)

Yes, N̂ � [b]⊥ → ([π]p → ⊥) holds. To see this, we only have to con-
sider the point n1, as this is the only point that is blind with respect to the
relation Rb; in all other points x 6= n1 we have N , x 2 [b]⊥ and so the im-
plication [b]⊥ → ([π]p→ ⊥) is trivially true there. So N̂ , n1 � [b]⊥. Now for
N̂ , n1 � [π]p → ⊥ to hold we have to verify that N̂ , n1 2 [π]p, i.e., we need
an Rπ-successor of n1 where p does not hold. Indeed, we have (n1, n1) ∈ Rπ
and N̂ , n1 2 p and so N̂ , n1 2 [π]p.

4. System T is the extension of the minimal modal logic K with the axiom of veridi-
cality (if something is known, it is true). System S4 extends T with the axiom of
positive introspection; S5 extends S4 with the axiom of negative introspection.

Prove or disprove the following epistemic claims (you may use completeness theo-
rems):

(a) `T p→ ¬K¬p (5 pt)

1. Kp→ p (veridicality)
2. K¬p→ ¬p (subst. instance of 1)
3. (a→ ¬b)→ (b→ ¬a) (tautology)
4. (K¬p→ ¬p)→ (p→ ¬K¬p) (subst. instance of 3)
5. p→ ¬K¬p (modus ponens, 4, 2)

(b) `S4 q ∨K¬Kq (5 pt)

We show that q∨K¬Kq cannot be derived in S4 by applying the completeness
theorem for S4 which states

`S4 ϕ ⇐⇒ Refl ∩ Trans � ϕ .

That is, we give a concrete model M = (W,R, V ) with R reflexive and tran-
sitive, and a point x such that both M, x 2 q and M, x 2 K¬Kq.
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Consider the following model based on a reflexive an transitive frame:

a b q

In this model we have that a 2 q and a 2 K¬Kq. The latter holds since
b � Kq, so b 2 ¬Kq, and so a 2 K¬Kq. Hence a 2 q ∨ K¬Kq, and Refl ∩
Trans 2 q∨K¬Kq. By the above stated completeness theorem for S4 we thus
obtain 0S4 q ∨K¬Kq

(c) `S5 ¬KKp→ K¬Kp (5 pt)

We give a derivation in S5 :

1. Kp→ KKp (positive introspection)
2. (A→ B)→ (¬B → ¬A) (tautology)
3. (Kp→ KKp)→ (¬KKp→ ¬Kp) (subst. instance of 1)
4. ¬KKp→ ¬Kp (modus ponens, 3, 1)
5. ¬Kp→ K¬Kp (negative introspection)
6. (A→ B)→ ((B → C)→ (A→ C)) (tautology)
7. 4→ (5→ (¬KKp→ K¬Kp)) (subst. instance of 8)
8. 5→ (¬KKp→ K¬Kp) (modus ponens, 7, 4)
9. ¬KKp→ K¬Kp (modus ponens, 8, 5)

(Alternatively we can show that the formula is valid in all frames (W,R),
where R is an equivalence relation, and use the completeness theorem for
system S5 to conclude that the formula is derivable in S5 .)

8


