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1. (a) What frame property is characterised by the formula p ↔ 2p ? Prove your
answer.

In the lecture we have seen that the multi-modal formula [1]p↔ [2]p charac-
terises the class of frames (W,R1, R2) where R1 = R2.

1 The formula p↔ 2p
can be seen to be an instance of that formula: Consider the modal box [Id]
that we interpret by Id = {(w,w) | w ∈ W}, the identity relation on W .
Then we have

M, s � [Id]ϕ ⇐⇒ M, t � ϕ for all t with (s, t) ∈ Id

⇐⇒ M, s � ϕ .

(Also note that M, s � 〈Id〉ϕ iff M, s � ϕ.)

As the formula p ↔ 2p can be thought of as [Id]p ↔ [R]p, it characterises
the class of frames (W,R) where R = Id. That is, for all frames F = (W,R)
we have

F |= p↔ 2p ⇐⇒ R = Id .

Let F = (W,R) be a frame. We prove both implications.

1 See the Fact on page 4 of the answers to exercises set 5, stating that [1]p → [2]p characterises
R2 ⊆ R1.
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(⇒) Assume F |= p ↔ 2p. We first show R ⊆ Id. So we consider a pair
(x, y) ∈ R, and show that (x, y) ∈ Id, i.e., that x = y. For this, consider
a valuation V on F such that V (p) = {x}. Since p→ 2p is valid in F , it
holds in the point x of the model (F , V ). By definition of V , x � p and
so we get x � 2p. This in turn implies that y � p, as (x, y) ∈ R. But p
is true only in x by definition of V , and we conclude x = y, as desired.

Second, to see that Id ⊆ R, we consider a point x of F and show (x, x) ∈
R. Define V (p) = R[x] = {y | Rxy}, i.e., we let p be true in all R-
successors of x and only there. Then, in the model (F , V ), we clearly
have x � 2p. As we know that also 2p→ p holds in x (as it is valid in F
by assumption), we obtain that x � p. Hence x ∈ V (p), i.e., (x, x) ∈ R.

(⇐) Assume that R = Id. Let V be any valuation on F , and x any point
of (F , V ). We have show x � p → 2p and x � 2p → p. For the first,
assume x � p. Then we also have x � 2p since R[x] = {x}. For the
second, assume x � 2p, then x � p follows from Rxx.

(b) Show that q ↔ 3q characterises the same frame property. (Note that for this
you do not have to know the frame property asked for in (a).)

The two formulas are equivalent (hence they are equivalent in the frame class
of (a) which is actually all we need). The reason is that validity is closed
under taking substitution instances, and the formulas are (equivalent to) sub-
stitution instances of each other. Let C be the class asked for under (a). We
have:

F ∈ C ⇐⇒ F |= p↔ 2p (1)

⇐⇒ F |= ¬p↔ 2¬p (2)

⇐⇒ F |= p↔ ¬2¬p (3)

⇐⇒ F |= p↔ 3p (4)

where steps are justified as follows: Step (1) was shown under (a). The impli-
cation ⇒ of (2) follows from the fact that validity is preserved under taking
substitution instances, (i.e., F � ϕ implies F � ϕσ for all substitutions σ);
here we substitute ¬p for p. The converse implication of (2) uses the same
result and the same substitution, and additionally the fact that we may re-
place equivalents by equivalents without affecting validity (or satisfiability);
here we replace ¬¬p by p. Step (3) uses the equivalence ϕ↔ ψ ≡ ¬ϕ↔ ¬ψ,
and finally step (4) uses ¬2ϕ ≡ 3¬ϕ.
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2. (a) Show that the formula 23p→ 2323p is valid on all transitive frames.

LetM be some model on a transitive frame (W,R), let x be some point inM,
and assume x � 23p. To see x � 2323p, consider a point y with Rxy. By
the assumption, we have y � 3p. This means that z � p for some z with Ryz.
We now show that z � 23p (then we have y � 323p as desired). For this, we
let u be an arbitrary successor of z. Now u � 3p follows from the assumption
that x � 23p plus the fact that, due to transitivity, u is a successor of x too.

(b) Is the formula 23p → 2323p only valid on transitive frames? Prove your
answer.

No, the formula ψ = 23p → 2323p can also be valid on frames that
are not transitive. For example, consider the non-transitive frame F =
({a, b, c}, {(a, b), (b, c)}), and let V be an arbitrary valuation on F . We show
that the formula holds in all points of the model (F , V ). First, since c has no
successors, it holds that c � 2ϕ for any formula ϕ; in particular c � 2323p
and c � 23p. By the latter, we get that b � 323p and so a � 2323p. So
we have seen that both c and a satisfy the consequent of ψ, whence ψ holds
in both. To see that it also holds in b, we note that b 2 23p, the reason being
again that c is blind and so c 2 3ϕ for all ϕ, in particular c 2 3p.

3. System S5 is the extension of system K with the truth axiom (if something is
known, it is true), the axiom of positive introspection, and the axiom of negative
introspection.

(a) Show that p→ K¬K¬p is a theorem of S5 .

1. Kp→ p (truth axiom)
2. ¬Kp→ K¬Kp (axiom of negative introspection)
3. K¬p→ ¬p (substitution instance of 1)
4. p→ ¬K¬p (by propositional logic from 3)
5. ¬K¬p→ K¬K¬p (substitution instance of 2)
6. p→ K¬K¬p (by propositional logic from 4 and 5)

(b) Show that the following rule is admissible in S5 :

ϕ→ Kψ

¬K¬ϕ→ ψ

A rule
α1 α2 · · · αn

β
is admissible in a proof system H if β is derivable in H

whenever αi is, for every i with 1 ≤ i ≤ n.
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We will employ the completeness theorem for the proof system S5 (but a syntactic
proof surely is possible too):

`S5 ξ ⇐⇒ Equiv � ξ , for all epistemic formulae ξ,

where Equiv denotes the class of epistemic n-frames F = (W, {R1, R2, . . . , Rn})
such that Ri is an equivalence relation for every i with 1 ≤ i ≤ n. Here we only
have to reason about the knowledge of one agent and we use R to interpret the
box K (i.e., M, x � Kγ iff M, y � γ for all y with Rxy).

Let ϕ and ψ be some epistemic formulas, and abbreviate α = ϕ → Kψ and
β = ¬K¬ϕ → ψ. Assume `S5 α. Then, by completeness for S5 , we know that
Equiv |= α. It suffices to show that Equiv � β, because then by the completeness
theorem for S5 (but now in the other direction), we obtain that `S5 β. Let F be
some frame in the class Equiv, let V be some valuation on F , let s be a state in
the model (F , V ), and assume s � ¬K¬ϕ (goal: s � ψ). Then s 2 K¬ϕ and so
there must be a state t such that Rst and t 2 ¬ϕ, i.e., t � ϕ. Now as we know
that Equiv � α, also t � α. It follows that t � Kψ. Moreover, as we have Rts (by
symmetry of R), we get s � ψ, as desired.

4. Consider the following {a, b}-frames F1 and F2 :

X

Y Z

b

a

a

b

ab

A

B C

D

a
b

a
b

a

b
a

b

F1 F2

(a) Explain why in all models on these frames, the meanings of 〈i〉ϕ and [i]ϕ
coincide for i ∈ {a, b}. That is, explain why in all models M on a frame
F ∈ {F1,F2} for each label i ∈ {a, b}, for all states s, and for all formulas ϕ
it holds: M, s � [i]ϕ ⇐⇒ M, s � 〈i〉ϕ. (An informal proof suffices.)
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The reason is that, in both frames, every state precisely has one outgoing
arrow labelled a, and precisely one labelled b. In other words, for i ∈ {a, b},
the relations RF1

i and RF2
i are serial and deterministic. A relation R ⊆W×W

is called serial when ∀x ∃y Rxy; it is called deterministic when ∀xyz (Rxy ∧
Rxz → z = y); so for every state x, the set R[x] = {y | Rxy} of i-successors
of x is a singleton set. Clearly, when quantifying over a singleton set, the
existential and the universal quantifier have the same meaning. Let M =
(W,R, V ) be a model such that R is serial and deterministic; then:

M, s � 2ϕ ⇐⇒ ∀t ∈ R[s].M, t � ϕ

⇐⇒ ∃t ∈ R[s].M, t � ϕ

⇐⇒ M, s � 3ϕ .

(b) Draw the first three levels of the tree unravelling (or unfolding) of F2 taking
state A as root node.

〈A〉

〈A,B〉

〈A,B,B〉

a

〈A,B,D〉

b

a

〈A,C〉

〈A,C,C〉

a

〈A,C,A〉

b

b

Now consider the models M1 = (F1, V1) and M2 = (F2, V2) where V1(p) = {Z}
and V2(p) = {C,D}, and V1(q) = V2(q) = ∅ for all propositional variables q 6= p.

(c) If possible, give a multi-modal formula over the index set {a, b} that distin-
guishes state Y of M1 from state A of M2. Otherwise, prove that there is no
such formula.

There is no modal formula distinguishing state Y from A. As we will show,
states Y and A are bisimilar, and we know that bisimilar states have equal
modal theories, i.e., for all states s, t, if s ↔ t, then for all modal formulas ϕ,
[s � ϕ iff t � ϕ]. We use RM1

a , etc., for the transition relation with label a in
model M1, etc.

We define a relation G ⊆ {X,Y,Z} × {A,B,C,D} by

G = { (X,A), (X,B), (Y,A), (Y,B), (Z,C), (Z,D) } .
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Next we show that G is a bisimulation.2

For all pairs (x, x′) ∈ G, we have that x ∈ V1(p) if and only if x′ ∈ V2(p), thus
the condition of ‘atomic harmony’ is fulfilled.

To verify the zig-condition of G, for every pair (x, x′) ∈ G, for every label
i ∈ {a, b} and for every y of M1 with RM1

i xy, we have to find a state y′ of

M2 such that RM2
i x′y′ and (y, y′) ∈ G. This we indicate by

x x′

y y′
i. Due to

the nature of the modelsM1 andM2 (every state has precisely one outgoing
arrow labelled a, and precisely one labelled b), not only is there only one i-
step possible from x (i = a, b), there is also precisely one candidate witness y′.
For the zag-condition the situation is analogous. What is more, the diagrams
that we have to give to verify that G fulfills the zag-condition are exactly
those that we gave for ‘zig’. Thus, the following 2× |G| = 12 diagrams verify
both ‘zig’ and ‘zag’:

X A

X B
a

X A

Z C
b

X B

X B
a

X B

Z D
b

Y A

X B
a

Y A

Z C
b

Y B

X B
a

Y B

Z D
b

Z C

X C
a

Z C

Z A
b

Z D

X C
a

Z D

Z B
b

The following question is about propositional dynamic logic (PDL).

(d) Prove that p↔ [a∗(bb)∗]p is globally true in the PDL-extension of M2.

Write just Rα for the relation interpreting a PDL-program α in M̂1, the
PDL-extension ofM1 = ({X,Y,Z}, Ra, Rb, V ). We first compute the relation
Ra∗(bb)∗ corresponding to the PDL-program π = a∗(bb)∗, as follows:

Ra = {(X,X), (Y,X), (Z,Z)}
Ra∗ = R∗a = {(X,X), (Y,Y), (Z,Z), (Y,X)}
Rb = {(X,Z), (Y,Z), (Z,Y)}
Rbb = Rb ◦Rb = {(X,Y), (Y,Y), (Z,Z)}

R(bb)∗ = R∗bb = {(X,X), (Y,Y), (Z,Z), (X,Y)}
Rπ = R∗a ◦R∗bb = {(X,X), (Y,Y), (Z,Z), (Y,X), (X,Y)} .

2 We note that the relation G \ {(X,A)} is a bisimulation too.
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Next we show that both p → [π]p and [π]p → p are true in all states of the

PDL-model M̂1: For the first, let s ∈ {X,Y,Z}, and assume s � p. Then s = Z
and since Rπ[Z] = {Z} we have Z � [π]p. For the second, let s ∈ {X,Y,Z},
and assume s � [π]p. That is, Rπ[s] ⊆ V (p). This only holds for s = Z, and
we have Z � p.
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