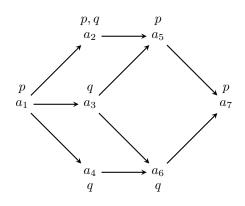
Advanced Logic 2014–15

Exercises Set 1

1. Consider the model $\mathcal{M} = (W, R, V)$ given by the following picture:



- (a) Write out the definitions of W, R and V.
- (b) Show that
 - (i) $\mathcal{M}, a_1 \vDash \Box \Box (p \lor q)$
 - (ii) $\mathcal{M}, a_2 \vDash \Diamond q \rightarrow \Diamond \Diamond q$
 - (iii) $\mathcal{M}, a_3 \vDash \Diamond p \to \Box(q \to \Box(p \to \Box p))$
- (c) Show that
 - (i) $\mathcal{M} \nvDash p \to \Diamond p$
 - (ii) $\mathcal{M} \models \Box \Box \Box \neg q$
 - (iii) $\mathcal{M} \nvDash q \to (\Diamond q \to \Box(q \to \Diamond q))$
- (d) Change the valuation on the frame such that in the new model \mathcal{M}' it holds that: $\mathcal{M}' \models \Box p \rightarrow p$.
- 2. The *binary tree* is the frame $\mathcal{B} = (W, R)$ where the domain W is the set of all finite strings over the alphabet $\{0,1\}$:

$$W = \{0, 1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}$$

(ε denotes the empty string) and where the transition relation $R\subseteq W\times W$ is given by:

Rst if and only if
$$t = s0$$
 or $t = s1$

- (a) Make a drawing of the first four levels of \mathcal{B} .
- (b) Consider a valuation V on \mathcal{B} that makes p true on all strings of even length. Show that $\mathcal{B}, V \vDash \Box \Diamond p \to \Diamond \Box p$.
- (c) Let V' be a valuation on \mathcal{B} which makes the variable p true on all strings whose first letter is 0, and q on strings with first letter 1, so:

 $V'(p) = \{ 0w \mid w \in \{0,1\}^* \}$ $V'(q) = \{ 1w \mid w \in \{0,1\}^* \}$

Use this valuation to show that the formula λ defined by:

$$\lambda = \Diamond p \land \Diamond q \to \Diamond (p \land \Diamond q) \lor \Diamond (p \land q) \lor \Diamond (\Diamond p \land q)$$

is not valid in the binary tree.

- (d) Show that the formula $\Diamond \Diamond p \to \Diamond p$ is not valid in \mathcal{B} .
- 3. Prove or disprove universal validity of the following formulas:
 - (a) $\Box(p \to q) \to (\Diamond p \to \Diamond q)$
 - (b) $\Box(p \land q) \rightarrow (\Diamond p \land \Diamond q)$
 - (c) $\Box(p \land q) \rightarrow (\Box p \land \Box q)$
 - (d) $\Box p \to \Diamond p$
 - (e) $\Diamond p \to \Box p$
 - (f) $\Diamond (p \to q) \to (\Box p \to \Diamond q)$
 - (g) $\Box(\Box p \rightarrow p) \rightarrow \Box p$