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bundles are nontrivial

Typical values of mappings f

f M N

are regular

fly is a mfd for

y regular
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Hilbert space 1H l IN x x xier Erica

G 11H is contractible

lack of rigidity

Sards theoren fails
lack of genericity
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Consequences

50 xelH I 11211 13 is contractible

B B Ke 1H 11211 13 retracts to 5

5 1H

Hilbert mfds are

homotopy equivalent iff diffeomorphic
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det

a dim f in same component of G H

t o t 1
Cos it sinitt

init cont i

1 I I

GL 11H is contractible
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Sard's theorem fails Banachspace example

G 0,17 0,1

G f f dG f h 3f h

f is criticalpointif it has a zero

if find so and fix.is

y s.t flyl o INT

The set of such is open and is mapped
to itself by G

The set of critial values contain an openset



goodadjective fordifferentiftopology
M N connected Hilbert mfds

f M N is Fredholm if linearization

df T.CM Team is
in imdfdimkendfsccn dincokendtnca



goodadjective fordifferentiftopology
M N connected Hilbert mfds

f M N is Fredholm if linearization

df T.CM Tfa N is

FHI.in
imdf.c.dimkendfsccndincorendtica

indf dinkezdfic dincohendt.is Fredholm index
indep of x



goodadjective fordifferentiftopology
M N connected Hilbert mfds

f M N is Fredholm if linearization

df T.CM Team is

FHI.in
imdf.c.dimkendfsccndincorendtica

indf dinkezdfic dincohendt.is Fredholm index
indep of x

In fin din f Y always Fredholm

ind f m n



goodadjective fordifferentiftopology
M N connected Hilbert mfds

f M N is Fredholm if linearization

df T.CM Tfa N is

FHI.in
imdf.c.dimkendfsccndincorendtica

ind f din Keadfic dinchendtic Fredholm index
indep of x

In fin din f Y always Fredholm

ind f m n

Hilbertmfd Fredholm
maps arise naturally in PDE theory
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jÉi is compas so all a compact

propermap non propermap

α goes to a

Smale IFT

Regular values of proper
Fredholmmap f M N

are open and dense

If ye N regular value then f y is coupad
manifold of dimension dinf cg indf

Fredholm solves genericity issues
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EIlsosc frigidity

Fin dim a dim

GL complicated contractible

Fred contractible complicated
I BGL a

In fin din topology is in GL

In a din topology is in Fred
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A principle feedings
given f M N Fredholm nap

df M I
linear Fredholm opendon

h principle

f Fredholm honotopi to g

Iff
f honotp c to g dfhonohpic.to dg

as continuous maps
with Abbundandolo

Fred M N CAN M I
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homotopy theory of proper Fredholmmaps
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Basic problem

Classify proper
Fredholm maps

f 1H 1H

up to proper
Fredholm homotopy

FTP HI

Recall 1H so
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Iii How to produce these maps from finite dimensional ones

pensions 9 12 Rh

Sg IR 014 IR 1H

x y l gesel y

Coprop R R F POPE

g Sg

what is Ruth R
P P

A proper map extends to one point ionpartification
hence related to 5

th 5
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Aday
5ᵗʰ i g Ruth Ryrop

5
IP qµ

reclusion

suspension f x R

I I

I
pin pup

P

Stable homotopy

groups ofspheres

s
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TheTherence with Toussaint

The S it EP P 1H is surjective but not injective

Sca Sb iff a b

Thy let for P 1H oriented maps 5 FO 1H is a bijection

The hto let f e Fi IH Then there exists a

kelns.ttEEE
is proper Fredholm homotopic to a non surjective properFredholm map
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Where does the identification come from

Infinitdimens.in mpis not proper
to motopic to degree 1 map

It 1 11 HI T.E.I.CH.VE f.i

SI proper Fredholm honotopic to ST
GLUH is contractible

Inverse of f S S is f Tof

S f S Tof STDS I 54
i

No other identifications
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m Generalizations
findin uld

with

M is of finite type ME 1H
Toussaint

describe F M H in terms of

suitable quotient of twisted stable

cohomology of X

Jung describe Fp P H Y Y universalbundle
Toussaint

in terms of bordism groups with structure



PartII
homology theory of proper
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maps
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Morse theory primer f M IR Mase function

C f o etc

f f l a c c

f fee f uB f
c

B OB
OB

K dimB Mc

H f f
c

L sent if k finite

H fate f
c

if k infinite



Question Is there a homology theory ia
sensitie to

proper
Fredholm maps



Question Is there a homology theory ia
Sansitie to

proper
Fredholm maps

H f f
c



Question Is there a homology theory ia
sensitie to

proper
Fredholm maps

H f f
c

For experts
Will surpress discussion of polarization

important for Floer type problems

Δ
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Ingredients
nice subset ofM

Measure the topology of cm.tt tp ifY.n

For every k l implicer proper Fredholmnaps

0 I B M

with image in X l independent of K

do restriction of o to faces with sign

I2 It 1 t

B
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Du degenerate simplics Iex B M
24 see Yi Yu __ 1

independent of see or 9

issue also arises in fin din with
cubical homology

Ck Q
u

H X Hulce du
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Wcw Find
Functoriality exact sequence of pair
Dimension axiom This is hard

O

H 1H 2 a 2

70

let 5 x Ie 5 1 24 la o

Codin Ktl sphere

Then
H 1H Him 5

4

let B be the open unit ball

H B
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fE
We know explicit generator of Ho 1H

B 1H B 1 1H B

flipping ball inside out I

B

There is a non trivial intersection pairing for E1H

H X He 1H 1H 2 Hee X
112

He_ 11H X
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s
What do we hope expect plan todo

H 1H

Intersection pairing induces Alexander type duality

H X HallH X K

Can define old H for which is

an iso with 2 coefficients

Can do Floer theory via sublevel sets



Thank
you foryour attention


