

in 00 - dimensions

Differential topology in finite dim - GLIR") has complicated to pology 1 (bundles are non drivial)

Differential topology in
$$\infty$$
 dim
Hilbert space $H = l^2(IN) = f(x_1, x_2,) | x_i \in \mathbb{R}$ $\tilde{\xi}_{x_i}^2 < \infty \tilde{\xi}$

Differential topology in
$$\infty$$
 dim
Hilbert space $H = l^2(IN) = \{(x_{i}, x_{e_{j}}, \dots) \mid x_{i} \in \mathbb{R} \ \sum_{i=1}^{n} x_{i}^2 < \infty \}$

Differential topology in
$$\infty$$
 dim
Hilbert space $H = l^2(IN) = \{(x_{i}, x_{e}, \dots) \mid x_i \in \mathbb{R} \mid \sum_{i=1}^{n} x_i^2 < \infty \}$

(

$$-S^{\infty} = \{x \in |H| \mid |x|| = 1\}$$
 is conductible
$$-B = B^{\infty} = \{x \in |H| \mid |x|| \in 1\} \text{ redracts to } S^{\infty}$$

(

$$- S^{\infty} = \{x \in H \mid \|x\| = 1\} \text{ is conductible}$$
$$- B = B^{\infty} = \{x \in H \mid \|x\| \le 1\} \text{ reducts to } S^{\infty}$$
$$- S^{\infty} \cong H$$

-
$$S^{\infty} = \{x \in H \mid \|x\| = 1\}$$
 is conductible
- $B = B^{\infty} = \{x \in H \mid \|x\| \in 1\}$ reducts to S^{∞}
- $S^{\infty} \cong H$
- Hilberd mfds are
homotopy equivalent iff diffeomorphic

x

,

- fin - din (⁻¹, ⁰) (¹, ⁰) in different components of GLIRⁿ)
- dim (⁻¹, ⁰) (¹, ⁰) in different components of GLIRⁿ)
(det)
-
$$\infty - \dim (^{-1}, ^{0}) (^{0}, ^{0})$$
 in some composed of GL(HH)

х.

$$\frac{GL(IHI)}{fin} = \frac{fin}{din} \frac{fin}{0} \frac{f$$

$$\frac{(GLIHH) \text{ is path connected}}{\text{fin - dim}\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \text{ in different components of GLIR"}}
= \infty - \dim\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \text{ in some compared of GL(HH)}
= t = 0 t = 1 t = 1 t = 0 t = 1 t = 0 t = 1 t = 0 t = 1 t = 0 t = 1 t = 0 t = 1 t = 0 t = 1 t = 0 t = 1 t = 0 t = 0 t = 1 t = 0$$

$$\frac{(GLIHH) \text{ is path connected}}{\text{fin - dim}\begin{pmatrix} -1 & 0 \\ 0 & \ddots \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \ddots \end{pmatrix} \text{ in different components of GLIR"})}_{(det)}$$

$$= \infty - \dim\begin{pmatrix} -1 & 0 \\ 0 & \ddots \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \ddots \end{pmatrix} \text{ in some compared of GL(HH)}}_{t=0}$$

$$\frac{t=0}{t=1}$$

$$\begin{pmatrix} \cos \pi t & \sin \pi t \\ -\sin \pi t & \cos \pi t \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -i \end{pmatrix}}$$

 $\begin{pmatrix} \textbf{-l} & & \\ & \textbf{-l} & & \\ & & \textbf{-l} & \\ & & \textbf{-l} & & \\ & & &$

$$\frac{(\mathsf{fl}|\mathsf{H})}{\mathsf{fin}} = \frac{\mathsf{dim}}{\mathsf{fin}} \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} \mathsf{det} \right) \right)$$

$$\frac{\mathsf{fer}}{\mathsf{fin}} = \frac{\mathsf{fin}}{\mathsf{fin}} \left(\begin{array}{c} \mathsf{fin} \mathsf{fin}$$

$$\begin{pmatrix} -\mathbf{I} & & \\ & \mathbf{i} & \\ & & \mathbf{i} & \\ & & \mathbf{i} & \\ & & & \mathbf{i} & \\ & & & \mathbf{i} & \\ & & & \mathbf{i} & \mathbf{i} \end{pmatrix} \sim \begin{pmatrix} -\mathbf{I} & & \\ & & \mathbf{i} & \mathbf{i} \\ & & & \mathbf{i} & \mathbf{i} \end{pmatrix} \sim \begin{pmatrix} -\mathbf{I} & & \\ & & \mathbf{i} & \mathbf{i} \\ & & & \mathbf{i} & \mathbf{i} \end{pmatrix}$$

$$\frac{GL(IH)}{fin - dim}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\frac{f(1)}{f(1)} \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\frac{GL(1HH)}{fin} = \frac{fin}{dim} \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c$$

$$\frac{GL(IH)}{fin} = \frac{1}{dim} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0$$

GL(IH) is condracdible.

Sard's theorem fails (Banach space example)
-
$$G: C^{\circ}(C_{0,1}) \longrightarrow C^{\circ}(C_{0,1})$$

 $G(f) = f^{3}$
 $dG(f)h = 3f^{2}h$

Sard's theorem fails (Banach space example)
-
$$G: C^{\circ}(C_{0,1}) \longrightarrow C^{\circ}(C_{0,1})$$

 $G(f) = f^{3}$
 $dG(f)h = 3f^{2}h$

.

• Jn fin din
$$f: X \longrightarrow Y'$$
 always Fredholm

ind
$$f = m - n$$

• In fin din
$$f: X \longrightarrow Y'$$
 always Fredholm

Fredholms	also	solve	lach	J	rigidity
	_			Ø	

as dim
on tractible.

·

	Fredholms	also	solve	lach of	rigidity	
--	-----------	------	-------	---------	----------	--

		Fin dim	os dim
	GL	Complicuted	contractible.
1	Fred	contraclille	Complicated ~ TL × BGL(~)

	Fin dim	as dim
GL	Complicated	contractible.
Fred	contraclille	Complicated $\simeq TL \times BGL(\infty)$
Z'n	fin dim topolog	by is in GL
Jn	as dim topolog	y is in Fred.

An h-principle for Fredholm maps.
• given
$$f: M \longrightarrow N$$
 Fredholm map.
 $df: M \longrightarrow \overline{\Phi} \approx Inver Fredholm operator.$

Sos is not a proper Fredholm vetradorf B. $S^{\circ} \xrightarrow{i} B$ $id \qquad Jf$

•

~

So is not a proper Fredholm vetrad of
$$B$$
.
ind $f = 1$
So i B
y regular value of f
id $S_{S^{\infty}}$

•

•

Basic problem:

Basic problem:

Classify proper Freeholm maps $f: \mathbb{H} \longrightarrow \mathbb{H}$ up to proper Fredholn homotopy Frop [H]

- Recall $H \cong S^{\infty}$

Question : How to produce these maps from finite dimensional ones?

-

Question : How to produce these maps from finite dimensional ones? $g: \mathbb{R}^{n+k} \longrightarrow \mathbb{R}^{k}$ Suspensions

_

Question: How to produce these maps from finite dimensional ones?

$$\underbrace{ Suspensions}_{g: \mathbb{R}^{n+h}} \xrightarrow{\mathbb{R}^{n}} \mathbb{R}^{n} \\
 Sg: \mathbb{R}^{n+h} \xrightarrow{\mathbb{C}} \mathbb{H} \\
 \overset{\mathbb{C}}{\mathbb{H}} \xrightarrow{\mathbb{C}} \mathbb{H} \\
 \overset{\mathbb{C}}{\mathbb{H}} \xrightarrow{\mathbb{C}} \mathbb{H}$$

_

Question: How to produce these maps from finite dimensional ones?
Suspensions g: R^{n+h}
$$\longrightarrow$$
 R^h
Sg: R^{n+h} \bigoplus H \longrightarrow R^h
(x, y) \longmapsto (g(x),y)
 $C^{\infty}_{\text{prop}}(\mathbb{R}^{n+n}, \mathbb{R}^{n}) \longrightarrow \mathbb{F}_{n}^{\text{prop}}(\mathbb{H})$
g \longmapsto Sg
What is $\mathbb{E}\mathbb{R}^{n+n}, \mathbb{R}^{n}\mathbb{F}_{n}^{\text{prop}}$?

Question: How to produce these maps from finite dimensional ones?
Suspensions g: R^{n+k}
$$\longrightarrow$$
 R^k
Sg: R^{n+k} \bigoplus H \longrightarrow R^k \otimes H
 $\stackrel{K}{\longrightarrow} H$
 $(x, y) \longmapsto (g(x), y)$
 $C^{\infty}_{prop}(R^{n+u}, R^{u}) \longrightarrow F^{prop}_{n}(H)$
 $g \longmapsto Sg$
What is ER^{n+k} R^uJ^{prop}?
A proper map extends to one point conpuctification.
hence related by ES^{n+k}, S^uJ

 $[\mathbb{R}^{n+\mu},\mathbb{R}^{n}]^{p^{r}\circ p} \xrightarrow{S} \mathcal{F}_{n}^{p^{r}\circ p}[\mathbb{H}]$

-

 $\begin{bmatrix} S^{n+k-1}, S^{k-1} \end{bmatrix} \xrightarrow{\cong} \begin{bmatrix} \mathbb{R}^{n+k}, \mathbb{R}^{k} \end{bmatrix}^{p^{r} \circ p} \xrightarrow{S} \mathcal{F}_{n}^{p^{r} \circ p} \begin{bmatrix} \mathbb{H} \end{bmatrix}$

-

$$\begin{bmatrix} S^{n+k-1}, S^{k-1} \end{bmatrix} \xrightarrow{\cong} \begin{bmatrix} R^{n+k}, R^{k} \end{bmatrix}^{p^{r} \circ p} \xrightarrow{S} F_{n}^{p^{r} \circ p} \begin{bmatrix} H \end{bmatrix}$$

Suspension
$$\begin{bmatrix} x R \\ x R \end{bmatrix} \xrightarrow{\cong} \begin{bmatrix} R^{n+k+1}, R^{k+1} \end{bmatrix}^{p^{r} \circ p} \xrightarrow{S}$$

The Theorems (with Toussaint)
The S:
$$\pi_n^S \longrightarrow F_n^{prop}[H]$$
 is surjective bud not injective
 $S(a) = S(b)$ iff $a = \pm b$.

r

The Theorems (with Toussaint)
Thm
$$S: \pi_n^S \longrightarrow F_n^{prop}[H]$$
 is surjective bud not injective
 $S(a) = S(b)$ iff $a=tb$.

The led FO " [H] oriented maps S: TIN ->> FO "(H) is a bijection.

r

$$\frac{\text{The Theorems}}{\text{Thm S}: \pi_n^S \longrightarrow F_n^{prop} [H] \text{ is surjective bud not injective}} \\ S(a) = S(b) \quad \text{iff} \quad a = \pm b. \end{cases}$$

$$\frac{\text{Thm}}{\text{Thm}} = FO_n^{prop} [H] \text{ oriented maps} \quad S: \pi_n^S \longrightarrow FO_n^{prop} [H] \text{ is a bijection}.$$

$$\frac{\text{Thm}}{\text{Thm}} = h \neq 0 \quad \text{led} \quad f \in F_n^{prop} (H). \text{ Then there exists a } K \in \mathbb{N} \text{ s.t.}$$

$$\frac{f^n}{\kappa} = \frac{f \circ \cdots \circ f}{\kappa \text{ times}}$$

is proper Fredholm homodopic to a non-surjective proper Fredholm mup

Where does the identification come from?
Jn finite dimensions degree 1 map is not proper
ho motopic to degree -1 map.

$$I\begin{pmatrix}x_{i}\\x_{i}\end{pmatrix} = \begin{pmatrix}x_{i}\\\vdots\\x_{i}\end{pmatrix} = \begin{pmatrix}x_{i}\\\vdots\\x_{i}\end{pmatrix}$$

Where does the identification come from?
Jn finite dimensions degree 1 map is not proper
ho motopic to degree -1 map.

$$I\left(\frac{x_{i}}{x_{i}}\right) = \begin{pmatrix} x_{i} \\ x_{i} \end{pmatrix} =$$

SI proper Fredholm honodopic to ST (GLIH) is contractible)

Where does the identification come from?
Jn finite dimensions degree 1 map is not proper
ho motopic to degree -1 map.

$$I\begin{pmatrix}x_{i}\\z_{k}\end{pmatrix} = \begin{pmatrix}y_{i}\\z_{k}\end{pmatrix} = \begin{pmatrix}x_{i}\\z_{k}\end{pmatrix} = \begin{pmatrix}x$$

SI proper Fredholm homodopic to ST
(GL(H) is contractible)
Inverse of
$$f: S^{n+k} \rightarrow S^k$$
 is $f' = T \circ f$

Where does the identification come from?
Jn finite dimensions degree 1 map is not proper
ho motopic to degree -1 map.

$$I\begin{pmatrix}x_{i}\\x_{i}\end{pmatrix} = \begin{pmatrix}x_{i}\\y_{i}\end{pmatrix} = \begin{pmatrix}x$$

SI proper Fredholm homotopic to ST
(GL(H) is contractible)
Inverse of
$$f: S^{n+n} \rightarrow S^n$$
 is $f'' = T \circ f$
 $S(f'') = S(T \circ f) = S(T)S(f) = S(f)$

Where does the identification come from?
Jn finite dimensions degree 1 map is not proper
ho motopic to degree -1 map.

$$I\begin{pmatrix}x_{i}\\x_{i}\end{pmatrix} = \begin{pmatrix}x_{i}\\y_{i}\end{pmatrix} = \begin{pmatrix}x$$

SI proper Fredholm homodopic to ST
(GLUH) is contractible)
Inverse of
$$f: S^{n+n} \rightarrow S^n$$
 is $f'' = T \circ f$
 $S(f'') = S(T \circ f) = S(T) S(f) = S(f)$

•

• No other identifications!

 $\left(\int_{c} \frac{c}{c} \frac{c}{c}\right)$

Morse theory primer.
$$f: M \longrightarrow \mathbb{R}$$
 Mass function

$$f:=f^{(-\infty)}(-\infty) C + \mathcal{E}]$$

$$B = f^{(-\infty)}(-\infty) C - \mathcal{E}]$$

$$(f^{(+)}, f^{(+)}) \simeq (f^{(+)}, C - \mathcal{E})$$

$$(f^{(+)}, f^{(+)}) \simeq (f^{(+)}, C - \mathcal{E})$$

$$K = \dim \mathbb{B} = \int_{\mathbb{R}}^{\infty} \int_{\mathbb{$$

۰.

Morse theory primer.
$$f: M \longrightarrow \mathbb{R}$$
 Mase function

$$f: f' \longrightarrow \mathbb{R} \xrightarrow{f' \longrightarrow \mathbb{R}} \xrightarrow{f'$$

)

Question Js there a homology theory
- scholine to proper Fredholm maps,

$$- H_{\epsilon}^{2}[f^{\leq C+\epsilon}, f^{\leq C-\epsilon}] \neq 0$$
?

Question 3s there a homology theory
- scholing to proper Fredholm maps,

$$- H_{\epsilon}^{2}[f^{\leq C+\epsilon}, f^{\leq C-\epsilon}] \neq 0$$
?

Ingredients nice subset of M
Ingredients nice subset of M
Measure the topology of X C M with polarization
For every K, l "Cimplices", proper Fredholn maps

$$\sigma: I^{e} \times B \longrightarrow M$$
 ind $\sigma = k$
width image in X. l independent of K!

· Que generaled by Cimplices of index K. frall R.

 Q_k generaled by Cimplices
 D_k degenerate simplies of index K. fnall l. I x B ---> M (x,,---xe, y, y, y, ---) independent of x, ... xe or y,

•
$$H_{k}^{?}(X) := H_{u}(C_{k}, \partial_{k}).$$

What do we know? - Functoriality, exact sequence of pair, ...

What do we know?
- Functoriality, exact sequence of pair, --
- Dimension axion (This is hard!)

$$H_{r}^{2}(H) = \begin{cases} 0 & x < 0 \\ Z & 0 & Z_{2} & x = 0 \end{cases}$$

What do we know?
- Functoriality, exact sequence of pair, ...
- Dimension axion (This is hard!)

$$H_{K}^{2}(H) = \begin{cases} 0 & x < 0 \\ Z & Z_{2} & x = 0 \\ \vdots & x > 0 \end{cases}$$

What do we know?
- Functoriality, exact sequence of pair, ...
- Dimension axiom (This is hard!)

$$H_{r}^{2}(H) = \begin{cases} 0 & x < 0 \\ Z & Z_{2} & x = 0 \\ ? & x > 0 \end{cases}$$

- let $S^{\infty-k} = \{(x_{1}, ...,) \in S^{\infty} \mid x_{1}, ..., x_{k} = 0\}$
Then $H_{r}^{2}(H) \cong H_{k-k-1}^{2}(S^{\infty-k})$

What do we know?
- Functoriality, exact sequence of pair, ...
- Dimension axiom (This is hard!)

$$H_{k}^{2}(IH) = \begin{cases} 0 & k \leq 0 \\ Z & Z_{2} & k = 0 \\ Z & Z_{2} & k = 0 \\ \vdots & k > 0 \end{cases}$$

- let $S^{\infty-k} = \{(x_{i}, ...) \in S^{*} \mid x_{i}, ..., x_{k} = 0\}$
Then $H_{k}^{2}(IH) \cong H_{k-k-1}^{2}(S^{\infty-k})$
- let \mathring{B} be the open unit ball
 $H_{k}^{2}(\mathring{B}) = 0$

- We know explicit generator of H.º (H)

- We know explicit generator of H.[?](H) "flipping ball inside out".

- We know explicit generator of
$$H^{?}_{\circ}(H)$$

B \cong H - B
'flipping ball inside out".

- There is a non-trivial intersection pairing for
$$X \not\subseteq H$$

• $H_{\mu}^{?}(X) \times H_{e}(H_{J}|H-X_{J}Z_{2}) \longrightarrow H_{k-e}(X_{J}Z_{2})$

 $H_{e-i}(H-X)$

What do we hope expect ! plan to do?

• $H_{+}^{?}(H) = \begin{cases} \mathbb{Z}_{2} & * = 0 \\ 0 & * \neq 0 \end{cases}$

•

- $H_{+}^{?}(H) = \begin{cases} \mathbb{Z}_{2} & * = 0 \\ 0 & * \neq 0 \end{cases}$

- Intersection pairing induces Alexander type dudity $H^{?}_{-\kappa}(X) \cong H_{\kappa-1}(H-X; Z_{2})$

• $H_{+}^{?}(H) = \begin{cases} \mathbb{Z}_{2} & * = 0 \\ 0 & * \neq 0 \end{cases}$

Intersection pairing induces Alexander type dudity
H²_{-k} (X) ≅ H_{k-i}(H-X;Z₂) t
Can define arented H²_x^a for which t is an iso with Z coefficients.

• $H_{+}^{?}(H) = \begin{cases} \mathbb{Z}_{2} & * = 0 \\ 0 & * \neq 0 \end{cases}$

- Intersection pairing induces Alexander type dudity

$$H^{?}_{-\kappa}(X) \cong H_{\kappa-1}(H-X_{j}Z_{2}) \qquad \clubsuit$$

- Can define oriented H[?], for which to is an iso with 2 coefficients.

- Can do Floer theory via sublevel sets.

Thank you for your adtention.