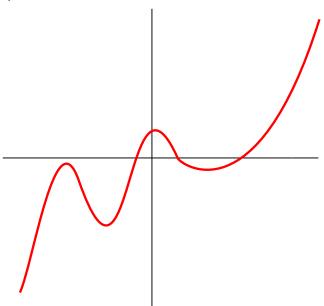
Proper homotopy classes of proper Fredholm mappings

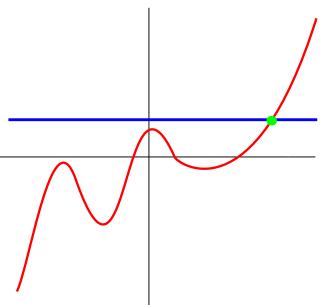
Thomas Rot (VU Amsterdam) joint work with Alberto Abbondandolo (Bochum)

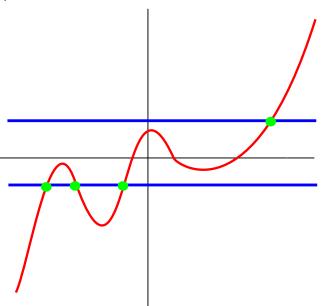
NDNS+ Twente

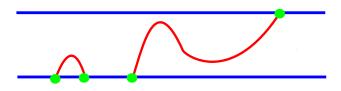
25-06-2018

How can we guarantee that an equation f(x) = y has a solution?









• The solution sets $f^{-1}(y)$ and $f^{-1}(z)$ are related by a *cobordism*: A compact manifold with boundary $f^{-1}(y) \cup f^{-1}(z)$.

- The solution sets $f^{-1}(y)$ and $f^{-1}(z)$ are related by a *cobordism*: A compact manifold with boundary $f^{-1}(y) \cup f^{-1}(z)$.
- Compact one dimensional manifolds with boundary are easily classified: some copies of [0,1] and S^1 .

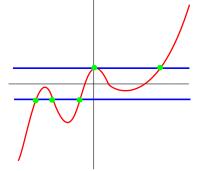
- The solution sets $f^{-1}(y)$ and $f^{-1}(z)$ are related by a *cobordism*: A compact manifold with boundary $f^{-1}(y) \cup f^{-1}(z)$.
- Compact one dimensional manifolds with boundary are easily classified: some copies of [0,1] and S^1 .
- The number of boundary components is even, thus

$$|f^{-1}(y)| \equiv |f^{-1}(z)| \pmod{2}$$

- The solution sets $f^{-1}(y)$ and $f^{-1}(z)$ are related by a *cobordism*: A compact manifold with boundary $f^{-1}(y) \cup f^{-1}(z)$.
- Compact one dimensional manifolds with boundary are easily classified: some copies of [0,1] and S^1 .
- The number of boundary components is even, thus

$$|f^{-1}(y)| \equiv |f^{-1}(z)| \pmod{2}$$

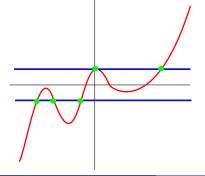
This idea of course requires some hypotheses.

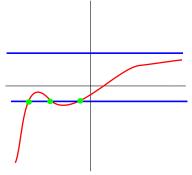


- The solution sets $f^{-1}(y)$ and $f^{-1}(z)$ are related by a *cobordism*: A compact manifold with boundary $f^{-1}(y) \cup f^{-1}(z)$.
- Compact one dimensional manifolds with boundary are easily classified: some copies of [0,1] and S^1 .
- The number of boundary components is even, thus

$$|f^{-1}(y)| \equiv |f^{-1}(z)| \pmod{2}$$

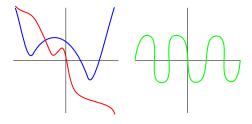
This idea of course requires some hypotheses.





Definition

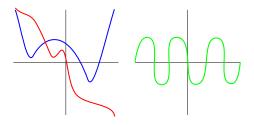
A map $f: M \to N$ is proper if $f^{-1}(C)$ is compact for every C.



Graphs of proper and non-proper maps

Definition

A map $f: M \to N$ is proper if $f^{-1}(C)$ is compact for every C.



Graphs of proper and non-proper maps

Theorem

$$[\mathbb{R}^{n}, \mathbb{R}^{m}]_{\text{prop}} \cong [S^{n-1}, S^{m-1}] \cong \pi_{n-1}(S^{m-1})$$

(Last isomorphism holds if n > 1)

Theorem

Let $f: M^m \to N^n$ a proper smooth map. Then for $y \in N$ regular value $X = f^{-1}(y)$ is a closed m - n dimensional manifold. The cobordism class of X does not depend on y or the proper homotopy class of f.

Theorem

Let $f: M^m \to N^n$ a proper smooth map. Then for $y \in N$ regular value $X = f^{-1}(y)$ is a closed m - n dimensional manifold. The cobordism class of X does not depend on y or the proper homotopy class of f.

Question

When is the cobordism class a full invariant?

Theorem

Let $f: M^m \to N^n$ a proper smooth map. Then for $y \in N$ regular value $X = f^{-1}(y)$ is a closed m - n dimensional manifold. The cobordism class of X does not depend on y or the proper homotopy class of f.

Question

When is the cobordism class a full invariant?

Theorem (Pontryagin)

Let M^m be an m-dimensional closed manifold. There is a bijection

$$[M,S^n]\cong\Omega^{\mathrm{fr}}_{m-n}(M)$$

Question

What are the proper homotopy classes of proper Fredholm maps

$$f: M \to \mathbb{H}$$
?

• M be a Hilbert manifold, modeled on an infinite dimensional seperable real Hilbert space \mathbb{H} .

Question

What are the proper homotopy classes of proper Fredholm maps

$$f: M \to \mathbb{H}$$
?

- M be a Hilbert manifold, modeled on an infinite dimensional seperable real Hilbert space \mathbb{H} .
- $\mathbb{H} \cong S^{\infty}$.

Question

What are the proper homotopy classes of proper Fredholm maps

$$f: M \to \mathbb{H}$$
?

- M be a Hilbert manifold, modeled on an infinite dimensional seperable real Hilbert space \mathbb{H} .
- $\mathbb{H} \cong S^{\infty}$.
- Fredholm maps makes differential topology available (Smale-Sard)

Question

What are the proper homotopy classes of proper Fredholm maps

$$f: M \to \mathbb{H}$$
?

- M be a Hilbert manifold, modeled on an infinite dimensional seperable real Hilbert space \mathbb{H} .
- $\mathbb{H} \cong S^{\infty}$.
- Fredholm maps makes differential topology available (Smale-Sard)
- Such maps arise in the study of non-linear elliptic PDE's

Definition

A map $f: M \rightarrow N$ is Fredholm if the differentials

$$df_x: T_xM \to T_{f(x)}N$$

are Fredholm

Definition

A map $f: M \rightarrow N$ is Fredholm if the differentials

$$df_{x}: T_{x}M \rightarrow T_{f(x)}N$$

are Fredholm, i.e. the Fredholm index

 $\dim \ker df_x - \dim \operatorname{coker} df_x = k < \infty.$

Definition

A map $f: M \rightarrow N$ is Fredholm if the differentials

$$df_x: T_xM \to T_{f(x)}N$$

are Fredholm, i.e. the Fredholm index

$$\dim \ker df_x - \dim \operatorname{coker} df_x = k < \infty.$$

In finite dimensions the index is the difference in dimensions of domain and codomain.

Definition

A map $f: M \to N$ is Fredholm if the differentials

$$df_x: T_xM \to T_{f(x)}N$$

are Fredholm, i.e. the Fredholm index

$$\dim \ker df_x - \dim \operatorname{coker} df_x = k < \infty.$$

In finite dimensions the index is the difference in dimensions of domain and codomain. Examples of such maps are easy to find. Let $g: \mathbb{R}^m \to \mathbb{R}^n$ be proper. Then define $f: \mathbb{R}^m \times \mathbb{H} \to \mathbb{R}^n \times \mathbb{H}$ by

$$f(z,x)=(g(z),x)$$

This is a proper Fredholm map of index k = m - n.

Some funny facts in infinite dimensions.

- Any infinite dimensional Hilbert manifold can be embedded as an open set in ℍ (Palais, Kuiper-Burghelea, Moulis, Eells-Elworthy,...).
- Thus its tangent bundle is trivial!

$$TM \cong M \times \mathbb{H}$$

Some funny facts in infinite dimensions.

- Any infinite dimensional Hilbert manifold can be embedded as an open set in ℍ (Palais, Kuiper-Burghelea, Moulis, Eells-Elworthy,...).
- Thus its tangent bundle is trivial!

$$TM \cong M \times \mathbb{H}$$

The differential of a Fredholm map can be viewed as a map

$$df:M\to\Phi_k(\mathbb{H})$$

where $\Phi_k(\mathbb{H})$ is the space of (linear) Fredholm operators of index k.

Homotopy of Fredholm maps

A necessary requirement for two Fredholm maps to be Fredholm homotopic:

- $f, g: M \rightarrow N$ are homotopic as continuous maps
- $df, dg: M \to \Phi_k(\mathbb{H})$ are homotopic as continuous maps.

Homotopy of Fredholm maps

A necessary requirement for two Fredholm maps to be Fredholm homotopic:

- $f, g: M \rightarrow N$ are homotopic as continuous maps
- $df, dg: M \to \Phi_k(\mathbb{H})$ are homotopic as continuous maps.

Theorem (Elworthy-Tromba, Abbondandolo-R.)

The map $f \rightarrow ([f], [df])$ induces a bijection

$$\mathcal{F}_k[M,N] \cong [M,N] \times [M,\Phi_k(\mathbb{H})]$$

Homotopy of Fredholm maps

A necessary requirement for two Fredholm maps to be Fredholm homotopic:

- $f, g: M \rightarrow N$ are homotopic as continuous maps
- $df, dg: M \to \Phi_k(\mathbb{H})$ are homotopic as continuous maps.

Theorem (Elworthy-Tromba, Abbondandolo-R.)

The map f o ([f], [df]) induces a bijection

$$\mathcal{F}_k[M,N] \cong [M,N] \times [M,\Phi_k(\mathbb{H})]$$

Proof.

Extention theorems.

Invariants of proper Fredholm maps

- Given a regular value y of a proper Fredholm map $f: M \to N$ we get a closed manifold $X = f^{-1}(y) \subset M$, the *Pontryagin manifold*.
- Cobordism class does not depend on regular value y (if N connected)
- Cobordism class is invariant under proper Fredholm homotopy.

Invariants of proper Fredholm maps

- Given a regular value y of a proper Fredholm map $f: M \to N$ we get a closed manifold $X = f^{-1}(y) \subset M$, the *Pontryagin manifold*.
- Cobordism class does not depend on regular value y (if N connected)
- Cobordism class is invariant under proper Fredholm homotopy.

Theorem (Smale)

There is a map

$$\mathcal{F}_k^{\mathrm{prop}}[M,N] \to \mathfrak{N}_k(M).$$

Invariants of proper Fredholm maps

- Given a regular value y of a proper Fredholm map $f: M \to N$ we get a closed manifold $X = f^{-1}(y) \subset M$, the *Pontryagin manifold*.
- Cobordism class does not depend on regular value y (if N connected)
- Cobordism class is invariant under proper Fredholm homotopy.

Theorem (Smale)

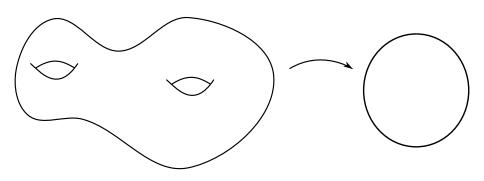
There is a map

$$\mathcal{F}_k^{\mathrm{prop}}[M,N] \to \mathfrak{N}_k(M).$$

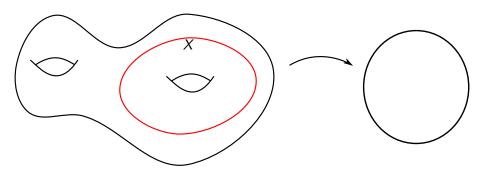
Theorem (Abbondandolo-R.)

This is a poor invariant! If $M = \mathbb{H}$ and $k \neq 0$ the image is 0

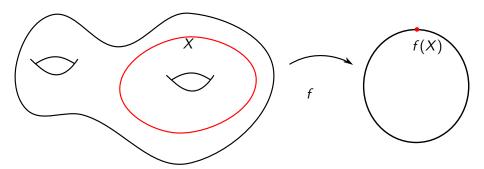
Upgrading the Pontryagin manifold: Framings in finite dimensions



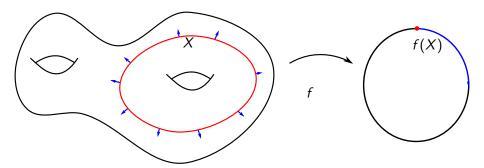
Upgrading the Pontryagin manifold: Framings



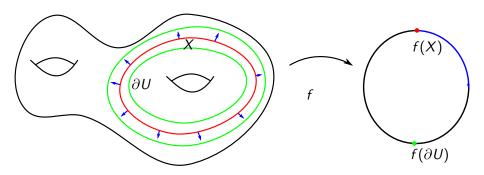
Upgrading the Pontryagin manifold: Framings



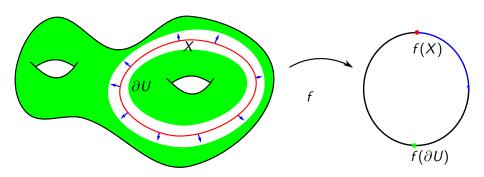
Upgrading the Pontryagin manifold: Framings



Upgrading the Pontryagin manifold: Framings



Upgrading the Pontrygin manifold: Framings



- A framing of X is a (smooth) choice of basis of each normal space.
- A choice of framing allows us to construct a map $f: M \to S^n$ with X as a Pontryagin manifold.
- The preimage of a regular value is framed by (the inverse of) the differential $df_x: N_x X \to T_{f(x)} S^n \cong \mathbb{R}^n$.

- A framing of X is a (smooth) choice of basis of each normal space.
- A choice of framing allows us to construct a map $f: M \to S^n$ with X as a Pontryagin manifold.
- The preimage of a regular value is framed by (the inverse of) the differential $df_x: N_x X \to T_{f(x)} S^n \cong \mathbb{R}^n$.

Theorem (Pontryagin)

Let M^m be an m-dimensional closed manifold. There is a bijection

$$[M,S^n]\cong\Omega^{\mathrm{fr}}_{m-n}(M)$$

A(n inverse of a) framing of $X \subset M$ is a trivialization of the normal bundle, i.e. collection of maps

$$A(x): N_x X \to \mathbb{H}$$

that are isomorphisms.

A(n inverse of a) framing of $X \subset M$ is a trivialization of the normal bundle, i.e. collection of maps

$$A(x): N_x X \to \mathbb{H}$$

that are isomorphisms.

Given framings A_1, A_2 form the map

$$\phi: X \to GL(\mathbb{H}), \quad \phi(x) = A_2(x)(A_1(x))^{-1}$$

A(n inverse of a) framing of $X \subset M$ is a trivialization of the normal bundle, i.e. collection of maps

$$A(x): N_x X \to \mathbb{H}$$

that are isomorphisms.

Given framings A_1, A_2 form the map

$$\phi: X \to GL(\mathbb{H}), \quad \phi(x) = A_2(x)(A_1(x))^{-1}$$

The group $GL(\mathbb{H})$ is contractible, this map contains *no* topological information.

A(n inverse of a) framing of $X \subset M$ is a trivialization of the normal bundle, i.e. collection of maps

$$A(x): N_x X \to \mathbb{H}$$

that are isomorphisms.

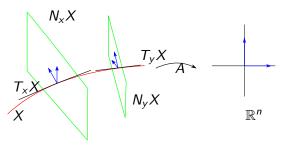
Given framings A_1, A_2 form the map

$$\phi: X \to GL(\mathbb{H}), \quad \phi(x) = A_2(x)(A_1(x))^{-1}$$

The group $GL(\mathbb{H})$ is contractible, this map contains *no* topological information.

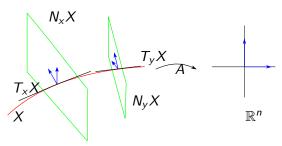
This notion of framing is *not* useful in infinite dimensions!

Rethinking finite dimensional framings.



A (finite dimensional) framing is a section of $\operatorname{Iso}(NX,\mathbb{R}^n)$

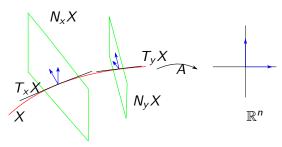
Rethinking finite dimensional framings.



A (finite dimensional) framing is a section of $\operatorname{Iso}(NX,\mathbb{R}^n)$ this defines a section of $\operatorname{Hom}(TM,\mathbb{R}^n)$ by mapping the tangent space to X to zero. We see the framing as a map $A:X\to\operatorname{Hom}(TM|_X,\mathbb{R}^n)$ such that

$$\ker A(x) = T_x X$$
, for all $x \in X$.

Rethinking finite dimensional framings.



A (finite dimensional) framing is a section of $\operatorname{Iso}(NX,\mathbb{R}^n)$ this defines a section of $\operatorname{Hom}(TM,\mathbb{R}^n)$ by mapping the tangent space to X to zero. We see the framing as a map $A:X\to\operatorname{Hom}(TM|_X,\mathbb{R}^n)$ such that

$$\ker A(x) = T_x X$$
, for all $x \in X$.

In finite dimensions this map always extends to the whole of M, i.e. a map

$$A: M \to \operatorname{Hom}(TM, \mathbb{R}^n)$$

Framings infinite dimensions

In infinite dimensions a map

$$A: X \to \Phi_k(\mathbb{H})$$

with $\ker X(x) = T_x X$ does not always extend to M. Or might extend in many ways.

Framings infinite dimensions

In infinite dimensions a map

$$A:X\to\Phi_k(\mathbb{H})$$

with $\ker X(x) = T_x X$ does not always extend to M. Or might extend in many ways.

Definition

Let $X \subset M$ by a finite dimensional submanifold of a Hilbert manifold M. A framing is a map $A: M \to \Phi_k(\mathbb{H})$ such that

$$\ker A(x) = T_x X$$
 for all $x \in X$

There is a similar notion of framed cobordism. This gives rise to framed cobordism sets $\Omega_{\nu}^{fr}(M)$.

Theorem (Abbondandolo-R.)

A proper Fredholm map $f: M \to N$ gives rise to a framed cobordism class via the map $f \mapsto [(f^{-1}(y), df)]$.

Theorem (Abbondandolo-R.)

A proper Fredholm map $f: M \to N$ gives rise to a framed cobordism class via the map $f \mapsto [(f^{-1}(y), df)]$. The above map induces a bijection

$$\mathcal{F}_k^{\mathrm{prop}}[M,\mathbb{H}] \cong \Omega_k^{\mathrm{fr}}(M)$$

Theorem (Abbondandolo-R.)

A proper Fredholm map $f: M \to N$ gives rise to a framed cobordism class via the map $f \mapsto [(f^{-1}(y), df)]$. The above map induces a bijection

$$\mathcal{F}_k^{\mathrm{prop}}[M,\mathbb{H}] \cong \Omega_k^{\mathrm{fr}}(M)$$

Note that $N = \mathbb{H} \cong S^{\infty}$.

Theorem (Abbondandolo-R.)

A proper Fredholm map $f: M \to N$ gives rise to a framed cobordism class via the map $f \mapsto [(f^{-1}(y), df)]$. The above map induces a bijection

$$\mathcal{F}_k^{\mathrm{prop}}[M,\mathbb{H}] \cong \Omega_k^{\mathrm{fr}}(M)$$

Note that $N = \mathbb{H} \cong S^{\infty}$.

Proof.

Can't collapse as in finite dimensions. Proper Fredholm extention theorem.

Computation of $\Omega_k^{\mathrm{fr}}(M)$ when k<0

Proposition

For k < 0 there is a bijection

$$\Omega_k^{\mathrm{fr}}(M) \cong [M, \Phi_k(\mathbb{H})]$$

Computation of $\Omega_k^{\text{fr}}(M)$ when k < 0

Proposition

For k < 0 there is a bijection

$$\Omega_k^{\mathrm{fr}}(M) \cong [M, \Phi_k(\mathbb{H})]$$

Theorem (Atiyah-Jänich)

If the topology of M is mild (e.g. when M deformation retracts to a finite dimensional closed manifold) we have

$$[M,\Phi_k(\mathbb{H})]\cong \tilde{K}(M)$$

as
$$\Phi_k(\mathbb{H}) \simeq \lim_{n \to \infty} Gr(n, \mathbb{H})$$
.

(We understand the topology of this space better than the topology of the two sphere S^2)

The case of index 0: Orientable framings.

Definition

A map $A: M \to \Phi_0(\mathbb{H})$ is called *orientable* if

$$A_*:\pi_1(M) o\pi_1(\Phi_0(\mathbb{H}))\cong \mathbb{Z}/2\mathbb{Z}$$

is trivial. Otherwise it is non-orientable.

The case of index 0: Orientable framings.

Definition

A map $A:M o \Phi_0(\mathbb{H})$ is called *orientable* if

$$A_*:\pi_1(M) o\pi_1(\Phi_0(\mathbb{H}))\cong \mathbb{Z}/2\mathbb{Z}$$

is trivial. Otherwise it is non-orientable.

The set $[M, \Phi_0(\mathbb{H})]$ decomposes as

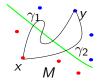
$$[M,\Phi_0(\mathbb{H})]=[M,\Phi_0(\mathbb{H})]_{\mathrm{or}}\cup [M,\Phi_0(\mathbb{H})]_{\mathrm{no}}$$

Degree theory

Given an oriented framed submanifold (X, A) we define an equivalence relation on elements of X.

$$x \sim y \Leftrightarrow [A \circ \gamma] = 0 \in \pi_1(\Phi_0(\mathbb{H}), GL(\mathbb{H})) \cong \mathbb{Z}/2\mathbb{Z}$$

where γ is a path in M from x to y.

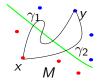


Degree theory

Given an oriented framed submanifold (X, A) we define an equivalence relation on elements of X.

$$x \sim y \Leftrightarrow [A \circ \gamma] = 0 \in \pi_1(\Phi_0(\mathbb{H}), GL(\mathbb{H})) \cong \mathbb{Z}/2\mathbb{Z}$$

where γ is a path in M from x to y.



There are two equivalence classes $X = X_- \cup X_+$. We define the absolute degree by

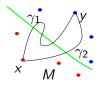
$$| \deg |(X, A) = | \# X_{-} - \# X_{+} |.$$

Degree theory

Given an oriented framed submanifold (X, A) we define an equivalence relation on elements of X.

$$x \sim y \Leftrightarrow [A \circ \gamma] = 0 \in \pi_1(\Phi_0(\mathbb{H}), GL(\mathbb{H})) \cong \mathbb{Z}/2\mathbb{Z}$$

where γ is a path in M from x to y.



There are two equivalence classes $X=X_-\cup X_+$. We define the absolute degree by

$$| \deg |(X,A) = | \# X_{-} - \# X_{+} |.$$

If (X, A) is not orientable we define the Cacciopoli-Smale mod 2 degree by

$$\deg_2(X,A) = \#X \pmod{2}.$$

Theorem (Abbondandolo-R.)

We have a bijection

$$\Omega_0^{\mathrm{fr}}(M) = \Omega_0^{\mathrm{fr}}(M)_{\mathrm{or}} \oplus \Omega_0^{\mathrm{fr}}(M)_{\mathrm{no}}$$

where

$$\Omega_0^{\mathrm{fr}}(M)_{\mathrm{or}} \cong [M, \Phi_0(\mathbb{H})]_{\mathrm{or}} \times \mathbb{N}$$

and

$$\Omega_0^{\mathrm{fr}}(M)_{\mathrm{no}} \cong [M, \Phi_0(\mathbb{H})]_{\mathrm{no}} \times \mathbb{Z}/2\mathbb{Z}$$

The isomorphisms are given by the degrees.

Explicit representatives

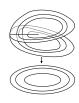
$$\mathcal{F}_0^{\mathrm{prop}}[\mathbb{H},\mathbb{H}] \cong [\mathbb{H},\Phi_0(\mathbb{H})]_{\mathrm{or}} \times \mathbb{N} \cong \mathbb{N}$$

Explicit representatives

$$\mathcal{F}_0^{\mathrm{prop}}[\mathbb{H},\mathbb{H}] \cong [\mathbb{H},\Phi_0(\mathbb{H})]_{\mathrm{or}} \times \mathbb{N} \cong \mathbb{N}$$

Write $\mathbb{H} \cong \mathbb{C} \times \mathbb{H}$. Then we have

$$f_n(z,x) = \begin{cases} (|z|^2,x) & n=0\\ (z^n,x) & n>1 \end{cases}$$



Explicit representatives

$$\mathcal{F}_0^{\mathrm{prop}}[\mathbb{H},\mathbb{H}] \cong [\mathbb{H},\Phi_0(\mathbb{H})]_{\mathrm{or}} \times \mathbb{N} \cong \mathbb{N}$$

Write $\mathbb{H} \cong \mathbb{C} \times \mathbb{H}$. Then we have

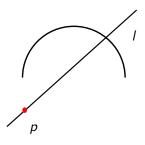
$$f_n(z,x) = \begin{cases} (|z|^2,x) & n=0\\ (z^n,x) & n>1 \end{cases}$$

The theorem implies that f_n and $\overline{f_n}$ are proper Fredholm homotopic! This does not hold in finite dimensions!

Explicit representative of degree 1 non-orientable map

Consider the tautological line $\gamma \to \mathbb{RP}^1$. Define the map: $f: \gamma \times \mathbb{H} \to \mathbb{R}^2 \times \mathbb{H}$ by

$$f(I,p,x)=(p,x).$$



Thank you for your attention.

- A. Abbonandolo and T. O. Rot, "On the homotopy classification of proper Fredholm maps into a Hilbert space," *J. Reine und Angewandte Mathematik*, Ahead of print 2018.
- K. D. Elworthy and A. J. Tromba, "Differential structures and Fredholm maps on Banach manifolds," in *Global Analysis* (S. S. Chern and S. Smale, eds.), vol. 15 of *Proc. Sympos. Pure Math.*, pp. 45–94, 1970.
- K. Geba, "Fredholm σ -proper maps of Banach spaces," *Fund. Math.*, vol. 64, pp. 341–373, 1969.