Proper homotopy classes of Fredholm mappings

Thomas Rot joint work with Alberto Abbondandolo

Vrije Universiteit Amsterdam

19-06-2018

Theorem (Pontryagin)

Let M^m be an m-dimensional closed manifold. There is a bijection

 $[M, S^n] \cong \Omega^{\mathrm{fr}}_{m-n}(M)$

Theorem (Pontryagin)

Let M^m be an m-dimensional closed manifold. There is a bijection

$$[M, S^n] \cong \Omega^{\mathrm{fr}}_{m-n}(M)$$

Question

What are the proper homotopy classes of proper Fredholm maps

 $f: M \to \mathbb{H}$?

• *M* be a Hilbert manifold, modeled on an infinite dimensional seperable real Hilbert space **Ⅲ**.

Theorem (Pontryagin)

Let M^m be an m-dimensional closed manifold. There is a bijection

$$[M, S^n] \cong \Omega^{\mathrm{fr}}_{m-n}(M)$$

Question

What are the proper homotopy classes of proper Fredholm maps

 $f: M \to \mathbb{H}$?

• *M* be a Hilbert manifold, modeled on an infinite dimensional seperable real Hilbert space **Ⅲ**.

• $\mathbb{H} \cong S^{\infty}$.

Theorem (Pontryagin)

Let M^m be an m-dimensional closed manifold. There is a bijection

$$[M, S^n] \cong \Omega^{\mathrm{fr}}_{m-n}(M)$$

Question

What are the proper homotopy classes of proper Fredholm maps

 $f: M \to \mathbb{H}$?

• *M* be a Hilbert manifold, modeled on an infinite dimensional seperable real Hilbert space **Ⅲ**.

• $\mathbb{H} \cong S^{\infty}$.

- Fredholm maps makes differential topology available (Smale-Sard)
- Proper: difference between maps to \mathbb{R}^k or S^k .

Definition

A map $f: M \rightarrow N$ is Fredholm if the differentials

 $df_x: T_x M \to T_{f(x)} N$

are Fredholm

Definition

A map $f: M \rightarrow N$ is Fredholm if the differentials

$$df_x: T_x M \to T_{f(x)} N$$

are Fredholm, i.e. the Fredholm index

dim ker df_x – dim coker $df_x = k < \infty$.

Definition

A map $f: M \rightarrow N$ is Fredholm if the differentials

```
df_x: T_x M \to T_{f(x)} N
```

are Fredholm, i.e. the Fredholm index

dim ker df_x – dim coker $df_x = k < \infty$.

In finite dimensions the index is the difference in dimensions of domain and codomain.

Definition

A map $f: M \rightarrow N$ is Fredholm if the differentials

```
df_x: T_x M \to T_{f(x)} N
```

are Fredholm, i.e. the Fredholm index

dim ker
$$df_x$$
 – dim coker $df_x = k < \infty$.

In finite dimensions the index is the difference in dimensions of domain and codomain.

In infinite dimensions $TM \cong M \times \mathbb{H}$, so differential can be viewed as a map

$$df: M o \Phi_k(\mathbb{H})$$

where $\Phi_k(\mathbb{H})$ is the space of (linear) Fredholm operators of index k.

Homotopy of Fredholm maps

A necessary requirement for two Fredholm maps to be Fredholm homotopic:

- $f, g: M \rightarrow N$ are homotopic as continuous maps
- $df, dg: M \to \Phi_k(\mathbb{H})$ are homotopic as continuous maps.

Homotopy of Fredholm maps

A necessary requirement for two Fredholm maps to be Fredholm homotopic:

- $f, g: M \rightarrow N$ are homotopic as continuous maps
- $df, dg: M \to \Phi_k(\mathbb{H})$ are homotopic as continuous maps.

Theorem (Elworthy-Tromba)

The map $f \rightarrow ([f], [df])$ induces a bijection

 $\mathcal{F}_k[M,N] \cong [M,N] \times [M,\Phi_k(\mathbb{H})]$

Proper mappings

Definition

A map $f: M \to N$ is proper if $f^{-1}(C)$ is compact for every C.

Graphs of proper and non-proper maps

Proper mappings

Definition

A map $f: M \to N$ is proper if $f^{-1}(C)$ is compact for every C.

Graphs of proper and non-proper maps

Invariants of proper Fredholm maps

- Given a regular value y of a proper Fredholm map $f : M \to N$ we get a closed manifold $X = f^{-1}(y) \subset M$, the *Pontryagin manifold*.
- Cobordism class does not depend on regular value y (if N connected)
- Cobordism class is invariant under proper Fredholm homotopy.

Invariants of proper Fredholm maps

- Given a regular value y of a proper Fredholm map $f : M \to N$ we get a closed manifold $X = f^{-1}(y) \subset M$, the *Pontryagin manifold*.
- Cobordism class does not depend on regular value y (if N connected)
- Cobordism class is invariant under proper Fredholm homotopy.

Smale There is a map $\mathcal{F}_k^{\mathrm{prop}}[M,N] \to \mathfrak{N}_k(M).$

Invariants of proper Fredholm maps

- Given a regular value y of a proper Fredholm map $f : M \to N$ we get a closed manifold $X = f^{-1}(y) \subset M$, the *Pontryagin manifold*.
- Cobordism class does not depend on regular value y (if N connected)
- Cobordism class is invariant under proper Fredholm homotopy.

Smale There is a map $\mathcal{F}_k^{\mathrm{prop}}[M,N] o \mathfrak{N}_k(M).$

Theorem

This is a poor invariant! If $M = \mathbb{H}$ and $k \neq 0$ the image is 0

- A choice of framing of $X^{m-n} \subset M^m$ allows us to construct a map $f: M \to S^n$ with X as a Pontryagin manifold.
- The differential $df_x : N_x X \to T_{f(x)} S^n \cong \mathbb{R}^n$ is an isomorphism (the inverse of the framing).

- A choice of framing of $X^{m-n} \subset M^m$ allows us to construct a map $f: M \to S^n$ with X as a Pontryagin manifold.
- The differential $df_x : N_x X \to T_{f(x)} S^n \cong \mathbb{R}^n$ is an isomorphism (the inverse of the framing).

Theorem (Pontryagin)

Let M^m be an m-dimensional closed manifold. There is a bijection

 $[M, S^n] \cong \Omega^{\mathrm{fr}}_{m-n}(M)$

A(n inverse of a) framing of $X \subset M$ is a trivialization of the normal bundle, i.e. collection of maps

$$A(x):N_xX\to\mathbb{H}$$

that are isomorphisms.

A(n inverse of a) framing of $X \subset M$ is a trivialization of the normal bundle, i.e. collection of maps

$$A(x):N_xX\to\mathbb{H}$$

that are isomorphisms. Given framings A_1, A_2 form the map

$$\phi: X \to GL(\mathbb{H}), \quad \phi(x) = A_2(x)(A_1(x))^{-1}$$

A(n inverse of a) framing of $X \subset M$ is a trivialization of the normal bundle, i.e. collection of maps

$$A(x):N_{x}X\to\mathbb{H}$$

that are isomorphisms. Given framings A_1, A_2 form the map

$$\phi: X \to GL(\mathbb{H}), \quad \phi(x) = A_2(x)(A_1(x))^{-1}$$

The group $GL(\mathbb{H})$ is contractible, this map contains *no* topological information.

A(n inverse of a) framing of $X \subset M$ is a trivialization of the normal bundle, i.e. collection of maps

$$A(x):N_{x}X\to\mathbb{H}$$

that are isomorphisms. Given framings A_1, A_2 form the map

$$\phi: X \to GL(\mathbb{H}), \quad \phi(x) = A_2(x)(A_1(x))^{-1}$$

The group $GL(\mathbb{H})$ is contractible, this map contains *no* topological information.

This notion of framing is *not* useful in infinite dimensions!

Rethinking finite dimensional framings.

A (finite dimensional) framing is a section of $Iso(NX, \mathbb{R}^n)$

Rethinking finite dimensional framings.

A (finite dimensional) framing is a section of $\operatorname{Iso}(NX, \mathbb{R}^n)$ this defines a section of $\operatorname{Hom}(TM, \mathbb{R}^n)$ by mapping the tangent space to X to zero. We see the framing as a map $A: X \to \operatorname{Hom}(TM|_X, \mathbb{R}^n)$ such that

$$0 \to T_X X \to T_X M \xrightarrow{A(x)} \mathbb{R}^n \to 0.$$

Rethinking finite dimensional framings.

A (finite dimensional) framing is a section of $\operatorname{Iso}(NX, \mathbb{R}^n)$ this defines a section of $\operatorname{Hom}(TM, \mathbb{R}^n)$ by mapping the tangent space to X to zero. We see the framing as a map $A: X \to \operatorname{Hom}(TM|_X, \mathbb{R}^n)$ such that

$$0 \to T_x X \to T_x M \xrightarrow{A(x)} \mathbb{R}^n \to 0.$$

In finite dimensions this map always extends to the whole of M, i.e. a map

$$A: M \to \operatorname{Hom}(TM, \mathbb{R}^n)$$

Framings infinite dimensions

In infinite dimensions a map

$$A: X \to \Phi_k(\mathbb{H})$$

with ker $X(x) = T_x X$ does not always extend to M. Or might extend in many ways.

Framings infinite dimensions

In infinite dimensions a map

$$A: X \to \Phi_k(\mathbb{H})$$

with ker $X(x) = T_x X$ does not always extend to M. Or might extend in many ways.

Definition

Let $X \subset M$ by a finite dimensional submanifold of a Hilbert manifold M. A framing is a map $A : M \to \Phi_k(\mathbb{H})$ such that

$$0 \to T_x X \to T_x M \xrightarrow{A(x)} \mathbb{H} \to 0$$
 for all $x \in X$.

There is a similar notion of framed cobordism. This gives rise to framed cobordism sets $\Omega_k^{\text{fr}}(M)$.

Theorem (Abbondandolo-R.)

A proper Fredholm map $f : M \to N$ gives rise to a framed cobordism class via the map $f \mapsto [(f^{-1}(y), df)]$.

Theorem (Abbondandolo-R.)

A proper Fredholm map $f : M \to N$ gives rise to a framed cobordism class via the map $f \mapsto [(f^{-1}(y), df)]$. The above map induces a bijection

 $\mathcal{F}_k^{\mathrm{prop}}[M,\mathbb{H}]\cong \Omega_k^{\mathrm{fr}}(M)$

Theorem (Abbondandolo-R.)

A proper Fredholm map $f : M \to N$ gives rise to a framed cobordism class via the map $f \mapsto [(f^{-1}(y), df)]$. The above map induces a bijection

 $\mathcal{F}_k^{\mathrm{prop}}[M,\mathbb{H}]\cong \Omega_k^{\mathrm{fr}}(M)$

Note that $N = \mathbb{H}$.

Theorem (Abbondandolo-R.)

A proper Fredholm map $f : M \to N$ gives rise to a framed cobordism class via the map $f \mapsto [(f^{-1}(y), df)]$. The above map induces a bijection

 $\mathcal{F}_k^{\mathrm{prop}}[M,\mathbb{H}]\cong \Omega_k^{\mathrm{fr}}(M)$

Note that $N = \mathbb{H}$.

Proof.

Can't collapse as in finite dimensions. Proper Fredholm extention theorem.

Computation of $\Omega^{ ext{fr}}_k(M)$ when k < 0

Proposition

For k < 0 there is a bijection

 $\Omega_k^{\mathrm{fr}}(M) \cong [M, \Phi_k(\mathbb{H})]$

Computation of $\Omega_k^{\text{fr}}(M)$ when k < 0

Proposition

For k < 0 there is a bijection

 $\Omega^{\mathrm{fr}}_k(M) \cong [M, \Phi_k(\mathbb{H})]$

Remark (Atiyah-Jänich)

If the topology of M is mild (e.g. when M deformation retracts to a finite dimensional closed manifold) we have

 $[M,\Phi_k(\mathbb{H})]\cong \tilde{K}(M)$

as $\Phi_k(\mathbb{H}) \simeq BO$.

The case of index 0: Orientable framings.

Definition

A map $A: M \to \Phi_0(\mathbb{H})$ is called *orientable* if

$$A_*:\pi_1(M) o \pi_1(\Phi_0(\mathbb{H}))$$

is trivial. Otherwise it is *non-orientable*.

The case of index 0: Orientable framings.

Definition

A map $A: M \to \Phi_0(\mathbb{H})$ is called *orientable* if

 $A_*:\pi_1(M)\to\pi_1(\Phi_0(\mathbb{H}))$

is trivial. Otherwise it is *non-orientable*. The set $[M, \Phi_0(\mathbb{H})]$ decomposes as

 $[M,\Phi_0(\mathbb{H})]=[M,\Phi_0(\mathbb{H})]_{\mathrm{or}}\cup[M,\Phi_0(\mathbb{H})]_{\mathrm{no}}$

Degree theory

Given an oriented framed submanifold (X, A) we define an equivalence relation on elements of X.

$$x \sim y \Leftrightarrow [A \circ \gamma] = 0 \in \pi_1(\Phi_0(\mathbb{H}), GL(\mathbb{H})) \cong \mathbb{Z}/2\mathbb{Z}$$

where γ is a path in *M* from *x* to *y*.

Degree theory

Given an oriented framed submanifold (X, A) we define an equivalence relation on elements of X.

$$x \sim y \Leftrightarrow [A \circ \gamma] = 0 \in \pi_1(\Phi_0(\mathbb{H}), GL(\mathbb{H})) \cong \mathbb{Z}/2\mathbb{Z}$$

where γ is a path in *M* from *x* to *y*.

There are two equivalence classes $X = X_{-} \cup X_{+}$. We define the absolute degree by

$$|\deg|(X,A) = |\#X_{-} - \#X_{+}|.$$

Degree theory

Given an oriented framed submanifold (X, A) we define an equivalence relation on elements of X.

$$x \sim y \Leftrightarrow [A \circ \gamma] = 0 \in \pi_1(\Phi_0(\mathbb{H}), GL(\mathbb{H})) \cong \mathbb{Z}/2\mathbb{Z}$$

where γ is a path in *M* from *x* to *y*.

There are two equivalence classes $X = X_{-} \cup X_{+}$. We define the absolute degree by

$$|\deg|(X,A) = |\#X_{-} - \#X_{+}|.$$

If (X, A) is not orientable we define the Cacciopoli-Smale mod 2 degree by

$$\deg_2(X,A) = \#X \pmod{2}.$$

Theorem (Abbondandolo-R.)

We have a bijection

 $\Omega^{\mathrm{fr}}_0(M) = \Omega^{\mathrm{fr}}_0(M)_{\mathrm{or}} \oplus \Omega^{\mathrm{fr}}_0(M)_{\mathrm{no}}$

where

$$\Omega^{\mathrm{fr}}_{0}(M)_{\mathrm{or}} \cong [M, \Phi_{0}(\mathbb{H})]_{\mathrm{or}} \times \mathbb{N}$$

and

$$\Omega^{\mathrm{fr}}_{0}(M)_{\mathrm{no}} \cong [M, \Phi_{0}(\mathbb{H})]_{\mathrm{no}} \times \mathbb{Z}/2\mathbb{Z}$$

The isomorphisms are given by the degrees.

Thank you for your attention.

- A. Abbonandolo and T. O. Rot, "On the homotopy classification of proper Fredholm maps into a Hilbert space," J. Reine und Angewandte Mathematik, Ahead of print 2018.
- K. D. Elworthy and A. J. Tromba, "Differential structures and Fredholm maps on Banach manifolds," in *Global Analysis* (S. S. Chern and S. Smale, eds.), vol. 15 of *Proc. Sympos. Pure Math.*, pp. 45–94, 1970.
- K. Geba, "Fredholm σ-proper maps of Banach spaces," Fund. Math., vol. 64, pp. 341–373, 1969.

Explicit representatives of

$\mathcal{F}_0^{\mathrm{prop}}[\mathbb{H},\mathbb{H}]\cong [\mathbb{H},\Phi_0(\mathbb{H})]_{\mathrm{or}}\times\mathbb{N}\cong\mathbb{N}$

Explicit representatives of

 $\mathcal{F}_0^{\mathrm{prop}}[\mathbb{H},\mathbb{H}]\cong [\mathbb{H},\Phi_0(\mathbb{H})]_{\mathrm{or}}\times\mathbb{N}\cong\mathbb{N}$

Write $\mathbb{H} \cong \mathbb{C} \times \mathbb{H}$. Then we have

$$f_n(z,x) = \begin{cases} (|z|^2,x) & n = 0\\ (z^n,x) & n > 1 \end{cases}$$

Explicit representatives of

 $\mathcal{F}_0^{\mathrm{prop}}[\mathbb{H},\mathbb{H}]\cong [\mathbb{H},\Phi_0(\mathbb{H})]_{\mathrm{or}}\times\mathbb{N}\cong\mathbb{N}$

Write $\mathbb{H} \cong \mathbb{C} \times \mathbb{H}$. Then we have

$$f_n(z,x) = \begin{cases} (|z|^2,x) & n=0\\ (z^n,x) & n>1 \end{cases}$$

The theorem implies that f_n and $\overline{f_n}$ are proper Fredholm homotopic! This does not hold in finite dimensions!

Explicit representative of degree 1 non-orientable map

Consider the tautological line $\gamma \rightarrow \mathbb{RP}^1$. Define the map: $f : \gamma \times \mathbb{H} \rightarrow \mathbb{R}^2 \times \mathbb{H}$ by

$$f(l,p,x)=(p,x).$$

