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Cohomotopy

Theorem (Pontryagin)

Let Mm be an m-dimensional closed manifold. There is a bijection

[M,Sn] ∼= Ωfr
m−n(M)

Question

What are the proper homotopy classes of proper Fredholm maps

f : M → H?

M be a Hilbert manifold, modeled on an infinite dimensional
seperable real Hilbert space H.

H ∼= S∞.

Fredholm maps makes differential topology available (Smale-Sard)

Proper: difference between maps to Rk or Sk .
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Fredholm mappings

Definition

A map f : M → N is Fredholm if the differentials

dfx : TxM → Tf (x)N

are Fredholm

, i.e. the Fredholm index

dim ker dfx − dim coker dfx = k <∞.

In finite dimensions the index is the difference in dimensions of domain
and codomain.

In infinite dimensions TM ∼= M ×H, so differential can be viewed as a map

df : M → Φk(H)

where Φk(H) is the space of (linear) Fredholm operators of index k .

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 2 / 15



Fredholm mappings

Definition

A map f : M → N is Fredholm if the differentials

dfx : TxM → Tf (x)N

are Fredholm, i.e. the Fredholm index

dim ker dfx − dim coker dfx = k <∞.

In finite dimensions the index is the difference in dimensions of domain
and codomain.

In infinite dimensions TM ∼= M ×H, so differential can be viewed as a map

df : M → Φk(H)

where Φk(H) is the space of (linear) Fredholm operators of index k .

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 2 / 15



Fredholm mappings

Definition

A map f : M → N is Fredholm if the differentials

dfx : TxM → Tf (x)N

are Fredholm, i.e. the Fredholm index

dim ker dfx − dim coker dfx = k <∞.

In finite dimensions the index is the difference in dimensions of domain
and codomain.

In infinite dimensions TM ∼= M ×H, so differential can be viewed as a map

df : M → Φk(H)

where Φk(H) is the space of (linear) Fredholm operators of index k .

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 2 / 15



Fredholm mappings

Definition

A map f : M → N is Fredholm if the differentials

dfx : TxM → Tf (x)N

are Fredholm, i.e. the Fredholm index

dim ker dfx − dim coker dfx = k <∞.

In finite dimensions the index is the difference in dimensions of domain
and codomain.

In infinite dimensions TM ∼= M ×H, so differential can be viewed as a map

df : M → Φk(H)

where Φk(H) is the space of (linear) Fredholm operators of index k .

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 2 / 15



Homotopy of Fredholm maps

A necessary requirement for two Fredholm maps to be Fredholm
homotopic:

f , g : M → N are homotopic as continuous maps

df , dg : M → Φk(H) are homotopic as continuous maps.

Theorem (Elworthy-Tromba)

The map f → ([f ], [df ]) induces a bijection

Fk [M,N] ∼= [M,N]× [M,Φk(H)]
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Proper mappings

Definition

A map f : M → N is proper if f −1(C ) is compact for every C .

Graphs of proper and non-proper maps

Theorem

[Rn,Rm]prop ∼= [Sn−1,Sm−1]
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Invariants of proper Fredholm maps

Given a regular value y of a proper Fredholm map f : M → N we get
a closed manifold X = f −1(y) ⊂ M, the Pontryagin manifold.

Cobordism class does not depend on regular value y (if N connected)

Cobordism class is invariant under proper Fredholm homotopy.

Smale

There is a map
Fprop
k [M,N]→ Nk(M).

Theorem

This is a poor invariant! If M = H and k 6= 0 the image is 0
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Upgrading the Pontryagin manifold: Framings
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A choice of framing of Xm−n ⊂ Mm allows us to construct a map
f : M → Sn with X as a Pontryagin manifold.

The differential dfx : NxX → Tf (x)S
n ∼= Rn is an isomorphism (the

inverse of the framing).

Theorem (Pontryagin)

Let Mm be an m-dimensional closed manifold. There is a bijection

[M,Sn] ∼= Ωfr
m−n(M)
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Infinite dimensional framings contain no information

A(n inverse of a) framing of X ⊂ M is a trivialization of the normal
bundle, i.e. collection of maps

A(x) : NxX → H

that are isomorphisms.

Given framings A1,A2 form the map

φ : X → GL(H), φ(x) = A2(x)(A1(x))−1

The group GL(H) is contractible, this map contains no topological
information.

This notion of framing is not useful in infinite dimensions!

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 8 / 15



Infinite dimensional framings contain no information

A(n inverse of a) framing of X ⊂ M is a trivialization of the normal
bundle, i.e. collection of maps

A(x) : NxX → H

that are isomorphisms.
Given framings A1,A2 form the map

φ : X → GL(H), φ(x) = A2(x)(A1(x))−1

The group GL(H) is contractible, this map contains no topological
information.

This notion of framing is not useful in infinite dimensions!

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 8 / 15



Infinite dimensional framings contain no information

A(n inverse of a) framing of X ⊂ M is a trivialization of the normal
bundle, i.e. collection of maps

A(x) : NxX → H

that are isomorphisms.
Given framings A1,A2 form the map

φ : X → GL(H), φ(x) = A2(x)(A1(x))−1

The group GL(H) is contractible, this map contains no topological
information.

This notion of framing is not useful in infinite dimensions!

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 8 / 15



Infinite dimensional framings contain no information

A(n inverse of a) framing of X ⊂ M is a trivialization of the normal
bundle, i.e. collection of maps

A(x) : NxX → H

that are isomorphisms.
Given framings A1,A2 form the map

φ : X → GL(H), φ(x) = A2(x)(A1(x))−1

The group GL(H) is contractible, this map contains no topological
information.

This notion of framing is not useful in infinite dimensions!

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 8 / 15



Rethinking finite dimensional framings.

NxX

NyX
Rn

TxX

TyX

X

A

A (finite dimensional) framing is a section of Iso(NX ,Rn)

this defines a
section of Hom(TM,Rn) by mapping the tangent space to X to zero. We
see the framing as a map A : X → Hom (TM

∣∣
X
,Rn) such that

0→ TxX → TxM
A(x)−−−→ Rn → 0.

In finite dimensions this map always extends to the whole of M, i.e. a map

A : M → Hom (TM,Rn)
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Framings infinite dimensions

In infinite dimensions a map

A : X → Φk(H)

with kerX (x) = TxX does not always extend to M. Or might extend in
many ways.

Definition

Let X ⊂ M by a finite dimensional submanifold of a Hilbert manifold M.
A framing is a map A : M → Φk(H) such that

0→ TxX → TxM
A(x)−−−→ H→ 0 for all x ∈ X .

There is a similar notion of framed cobordism. This gives rise to framed
cobordism sets Ωfr

k (M).
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The main theorem

Theorem (Abbondandolo-R.)

A proper Fredholm map f : M → N gives rise to a framed cobordism class
via the map f 7→ [(f −1(y), df )].

The above map induces a bijection

Fprop
k [M,H] ∼= Ωfr

k (M)

Note that N = H.

Proof.

Can’t collapse as in finite dimensions. Proper Fredholm extention
theorem.

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 11 / 15



The main theorem

Theorem (Abbondandolo-R.)

A proper Fredholm map f : M → N gives rise to a framed cobordism class
via the map f 7→ [(f −1(y), df )].The above map induces a bijection

Fprop
k [M,H] ∼= Ωfr

k (M)

Note that N = H.

Proof.

Can’t collapse as in finite dimensions. Proper Fredholm extention
theorem.

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 11 / 15



The main theorem

Theorem (Abbondandolo-R.)

A proper Fredholm map f : M → N gives rise to a framed cobordism class
via the map f 7→ [(f −1(y), df )].The above map induces a bijection

Fprop
k [M,H] ∼= Ωfr

k (M)

Note that N = H.

Proof.

Can’t collapse as in finite dimensions. Proper Fredholm extention
theorem.

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 11 / 15



The main theorem

Theorem (Abbondandolo-R.)

A proper Fredholm map f : M → N gives rise to a framed cobordism class
via the map f 7→ [(f −1(y), df )].The above map induces a bijection

Fprop
k [M,H] ∼= Ωfr

k (M)

Note that N = H.

Proof.

Can’t collapse as in finite dimensions. Proper Fredholm extention
theorem.

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 11 / 15



Computation of Ωfr
k (M) when k < 0

Proposition

For k < 0 there is a bijection

Ωfr
k (M) ∼= [M,Φk(H)]

Remark (Atiyah-Jänich)

If the topology of M is mild (e.g. when M deformation retracts to a finite
dimensional closed manifold) we have

[M,Φk(H)] ∼= K̃ (M)

as Φk(H) ' BO.
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The case of index 0: Orientable framings.

Definition

A map A : M → Φ0(H) is called orientable if

A∗ : π1(M)→ π1(Φ0(H))

is trivial. Otherwise it is non-orientable.

The set [M,Φ0(H)] decomposes as

[M,Φ0(H)] = [M,Φ0(H)]or ∪ [M,Φ0(H)]no
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Degree theory
Given an oriented framed submanifold (X ,A) we define an equivalence
relation on elements of X .

x ∼ y ⇔ [A ◦ γ] = 0 ∈ π1(Φ0(H),GL(H)) ∼= Z/2Z

where γ is a path in M from x to y .

M

γ1

γ2

x

y

There are two equivalence classes X = X− ∪ X+. We define the absolute
degree by

| deg |(X ,A) = |#X− −#X+|.
If (X ,A) is not orientable we define the Cacciopoli-Smale mod 2 degree by

deg2(X ,A) = #X (mod 2).
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Theorem (Abbondandolo-R.)

We have a bijection

Ωfr
0 (M) = Ωfr

0 (M)or ⊕ Ωfr
0 (M)no

where
Ωfr
0 (M)or ∼= [M,Φ0(H)]or × N

and
Ωfr
0 (M)no ∼= [M,Φ0(H)]no × Z/2Z

The isomorphisms are given by the degrees.
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Explicit representatives of

Fprop
0 [H,H] ∼= [H,Φ0(H)]or × N ∼= N

Write H ∼= C×H. Then we have

fn(z , x) =

{
(|z |2, x) n = 0

(zn, x) n > 1

The theorem implies that fn and fn are proper Fredholm homotopic! This
does not hold in finite dimensions!

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 15 / 15



Explicit representatives of

Fprop
0 [H,H] ∼= [H,Φ0(H)]or × N ∼= N

Write H ∼= C×H. Then we have

fn(z , x) =

{
(|z |2, x) n = 0

(zn, x) n > 1

The theorem implies that fn and fn are proper Fredholm homotopic! This
does not hold in finite dimensions!

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 15 / 15



Explicit representatives of

Fprop
0 [H,H] ∼= [H,Φ0(H)]or × N ∼= N

Write H ∼= C×H. Then we have

fn(z , x) =

{
(|z |2, x) n = 0

(zn, x) n > 1

The theorem implies that fn and fn are proper Fredholm homotopic! This
does not hold in finite dimensions!

Thomas Rot (VU Amsterdam) Proper Fredholm homotopy 15 / 15



Explicit representative of degree 1 non-orientable map

Consider the tautological line γ →
RP1. Define the map: f : γ ×H→
R2 ×H by

f (l , p, x) = (p, x).

l

p
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