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1 Introduction

This paper serves as an introduction to Eilenberg-Maclane Spaces – a type of
space that is primarily of interest in the field of algebraic topology. While the
reader is expected to possess knowledge of the fundamentals of point-set topol-
ogy (some basic properties of continuous functions, quotient maps, connected
spaces, compact spaces, etc.), as well as cursory knowledge of algebraic topol-
ogy (homotopy classes, homotopy equivalence, the fundamental group, covering
spaces), further understanding of algebraic topology is not required to read this
paper. Furthermore, in the field of topology, we primarily use functions that are
continuous, so any time this paper invokes a generic map between two spaces,
the unstated assumption will be that it is continuous, unless explicitly stated
otherwise.

To define exactly what an Eilenberg-Maclane space is, we will first have to
define the notion of a Homotopy Group, a generalization of the fundamental
group for higher dimensions.

Definition 1.1 (Homotopy Group). Let X be a topological space, and x0 a
point in X. Then πn(X,x0) consists of equivalence classes of maps from In to
X that send each point in ∂In to x0. Two such functions are equivalent when
there is a homotopy from one to the other that is fixed on ∂In.

On πn(X,x0), we define a group structure (with operation +) in the following
way: if [f ], [g] ∈ πn(X,x0), then

f + g(s) :=

{
f(2s1, s2, s3, . . . , sn) if s1 ∈ [0, 1

2 ]

g(2s1 − 1, s2, s3, . . . , sn) otherwise.

We can define [f ] + [g] := [f + g]. The nth homotopy group of X with
basepoint x0 is then πn(X,x0).

For our purposes, there are certain aspects of this definition we will take for
granted; namely that homotopy groups are well defined and are groups. We will
also take for granted that, if X is path-connected, then πn(X,x0) is independent
(up to isomorphism) of our chosen basepoint, and can thus be written just as
πn(X). As most spaces we will work with are path-connected, we will henceforth
use the latter notation. [2, pp. 340-341]

Furthermore, there is a one-to-one correspondence between maps Sn → X
that send some basepoint of Sn to x0, and maps In → X that send ∂In to x0.
Explicitly, if q : In → Sn is the quotient map that identifies all points in ∂In

and sends them to the basepoint of Sn, then a map Sn → X can be precom-
posed with q to get a map In → X (the fact that this constitutes a one-to-one
correspondance is true by definition). What this entails is that πn(X,x0) can be
equivalently defined as containing equivalence classes of maps with domain Sn

instead of In. This paper shall therefore use these two definitions interchange-
ably, depending on context.

A noteworthy property of homotopy groups is that, even for simple spaces
like Sn, the associated homotopy groups can be rather chaotic, and their compu-
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π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

S1 Z 0 0 0 0 0 0 0 0 0
S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

S4 0 0 0 Z Z2 Z2 Z× Z12 Z2
2 Z2

2 Z24 × Z3

S5 0 0 0 0 Z Z2 Z2 Z24 Z2 Z2

Table 1: The first 10 homotopy groups of spheres of dimension 1, 2, 3, 4, and 5.

tation is usually extremely difficult. This unpredictable behavior is illustrated
in Table 1.[2, p. 339]

Indeed, if one were to intuitively think of the nth homotopy group as a
method of classifying n-dimensional holes in a space, this would seem quite
strange: it would imply the existence of higher-than-n dimensional holes in
Sn, which is visually counter-intuitive. The resolution to this dilemma is that
homotopy groups constitute just one possible algebraic invariant used to classify
holes in a space. In Section 2.4, we will explore a different, but closely related
structure to homotopy groups: homology groups, which give far more intuitive
(and easier to compute) results within this domain.

Looking at the chaotic behavior of homotopy groups on simple spaces, one
might ask the question: are there any spaces whose homotopy groups are “nice”?
An attempt to formally define what we mean by “nice” leads us to the subject
of this paper:

Definition 1.2 (Eilenberg-Maclane space). Let G be a group and let n be a
positive integer. If X is a path-connected space such that πk(X) ∼= 0 whenever
k ̸= n, and πn(X) ∼= G; then X is an Eilenberg-Maclane space. An arbitrary
Eilenberg-Maclane space corresponding to G and n is notated K(G,n).

A question raised by this definition is: for which pairs (G,n) of groups and
(positive) integers does a K(G,n) space exist? Answering this question will be
the main focus of this paper. We can already provide a partial answer using the
following theorem:

Theorem 1.1. Let X be a path-connected topological space, and let n ≥ 2.
Then πn(X) is abelian.

Proof. Take arbitrary maps f, g : In → X such that all points in ∂In map to an
arbitrary basepoint x0. We will construct a homotopy that is fixed on boundary
points from f + g to g + f . First, for an arbitrary map h : In → X which is x0

on boundary points, define 2 homotopies Uh (up) and Dh (down) that depend
on h, and essentially “squash” h in the respective direction. Formally,

Uh(s, t) =

{
h(s1, (1 + t)s2 − t, s3, . . . , sn) if (1 + t)s2 − t ∈ [0, 1],

x0 otherwise.
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Confirming that Uh is continuous is just a matter of applying the gluing
lemma. The same applies to Dh, which is defined

Dh(s, t) =

{
h(s1, (1 + t)s2, s3, . . . , sn) if (1 + t)s2 ∈ [0, 1],

x0 otherwise.

With this, one can give a description of the homotopy from f + g to g + f
(illustrated in Figure 1): First, take f + g and apply the homotopies Df+g

and Uf+g restricted to the left (s1 ≤ 0.5) and right (s1 ≥ 0.5) halves of In

respectively. As f + g is x0 on all points where s1 = 0.5, the gluing lemma
makes this a valid step. The result is a function that is constant on the top-left
and bottom-right quadrants of In, and squashed versions of f and g on the
other 2 quadrants. We can then move f to the right and g to the left. The
exact formula for this transformation is

Hh(s, t) =


h(s1 − 0.5t, s2, . . . , sn) if s1 − 0.5t ∈ [0, 1] ∧ s2 ≤ 0.5

h(s1 + 0.5t, s2, . . . , sn) if s1 + 0.5t ∈ [0, 1] ∧ s2 ≥ 0.5

x0 otherwise.

Here, we reused the dummy variable h to constitute any map that sends the
top-left and bottom-right quadrants (along with boundary points) of In to x0.
This homotopy is then continuous by the gluing lemma.

Finally, we apply inverses of the homotopies (i.e. we do the homotopies in
the opposite direction) Ug+f and Dg+f to the left and right parts of the result,
and we end up with g + f as desired. This completes the proof.

This means that for any case where n > 1 and G is not abelian, a K(G,n)
space cannot exist. What is surprising is that this turns out to be the only
criterion one has to impose upon (G,n): in any other case, we can construct a
K(G,n) space, regardless of how complicated G is. Constructing these spaces,
however, requires some groundwork.

As such, the next section will be focused on building a mathematical frame-
work; on gathering the tools that will be used for the proofs to come later.
Specifically, it will introduce cell complexes, the domain in which we will work
for the rest of the paper. Section 2.1 will present several important definitions,
and discuss the role cell complexes play in homotopy theory. Sections 2.2-2.3
will provide proofs for a multitude of theorems about cell complexes. Of par-
ticular note: the proof for Theorem 2.3 – and the accompanying Lemma 2.4 –
is fully unique to this paper (barring a coincidence unknown to this paper’s au-
thor). Section 2 ends with a brief introduction to homology, along with several
theorems which will be stated without proof, both for the sake of brevity, and
to make the paper more digestible.

Section 3 will use the knowledge attained in the previous section to construct
K(G,n) spaces for arbitrary G and n (assuming G is abelian when n > 1), thus
achieving the paper’s main objective. Finally, there will be a short subsection
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Figure 1: A visual illustration of a homotopy from f + g to g + f , for the case
of 2 dimensions. The colors indicate where a point on the square maps to, with
black points being those that map to the base point.

discussing other miscellaneous properties K(G,n) spaces have, followed by a
conclusion.

2 Cell Complexes

2.1 Motivation and Definition

The act of constructing spaces with desirable homotopy groups is an iterative
process. We usually start with a simple space we understand, but one which
does not have the homotopy groups we are looking for, and then proceed to
manipulate it. Step by step, we attach points to, remove points from, or glue
points together on our topological space, with each step creating a space that
is visually more complicated, but has homotopy groups closer to what we want.
Out of the myriad methods there are to manipulate a space, the most useful for
our purposes will be the notion of attaching cells:

Definition 2.1 (n-cells). Let X be a topological space. We say that X ′ is
attained by attaching n-cells to X when there exists some indexing set I and
an attaching map φi : ∂D

n
i → X for each i ∈ I, such that X ′ is homeomorphic

to the quotient space of X ∪
⋃

i∈I D
n
i (a disjoint union of X and indexed n-

dimensional disks) induced by the attaching maps. Specifically, the equivalence
relation that induces the quotient map makes all x ∈ ∂Dn

i equivalent to φi(x).
The image of the interior of Dn

i is called an n-cell in X ′ and is notated eni (where
i is just there to index this specific n-cell).
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What naturally follows is a type of space that arises by requiring it to consist
entirely of cells.

Definition 2.2 (cell complex). A cell complex, or CW-complex [2, p. 5], is a
topological space X for which the following holds:

There exists a sequence of spaces

X0 ⊂ X1 ⊂ X2 ⊂ . . .

such that X0 is a discrete space (which we say contains 0-cells), and all other
Xk is attained by attaching k-cells (or potentially attaching nothing) to Xk−1.
Xk is called the k-skeleton of X, and X equals the union of all its skeletons.
Furthermore, the topology on X is the induced limit topology: a set U is open
in X if and only if U ∩Xk is open in Xk for all k.

Cell complexes are of great importance to algebraic topology, for several rea-
sons. The first is practical: they generally behave well with respect to homotopy,
as will be seen in Sections 2.2 and 2.3; and their iterative nature allows us to
prove many statements in an inductive manner, something that cannot usually
be done for general topological spaces. The second reason is more philosophical.

One can define a slightly weaker type of equivalence (than homotopy equiv-
alence) on topological spaces called a weak homotopy equivalence. 1

Definition 2.3 (Weak equivalence). Let X and Y be spaces, and let f : X → Y
be a map, such that the induced map between path components f∗ : π0(X) →
π0(Y ) is a bijection, and for all points x0 ∈ X, f∗ : πn(X,x0)→ πn(Y, f(x0)) is
an isomorphism. Then f is called a weak homotopy equivalence (or just weak
equivalence).

Surprisingly, any topological space is weakly homotopy equivalent to a cell
complex, and any weak homotopy equivalence between two cell complexes is a
(non-weak) homotopy equivalence. This latter result in known as Whitehead’s
theorem.[2, pp. 346-347, pp. 352-353]

For those well-versed in category theory, this means that the categoryHotop
(of topological spaces where homotopic maps are considered the same) can be
altered slightly (through a process called localization) to attain a category that
is equivalent to the subcategory of Hotop only containing cell complexes. For
everyone else, this can be translated to “we do not lose much generality by
restricting our attention to cell complexes.”

2.2 Homotopy Extension Property

Often, when constructing a homotopy of a map f : X → Y , we first construct
it on some subspace A ⊂ X, and then extend it to the full space. It would be
useful for our purposes if A was a subspace for which this was always possible,
so examining when that is the case is a natural starting point.

1This technically does not induce an equivalence relation, instead it induces a relation
R that is reflexive, transitive, but not symmetric. However, we can just use the smallest
equivalence relation that contains R.
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Definition 2.4 (Homotopy Extension Property). Let X and A ⊂ X be topo-
logical spaces. The pair (X,A) has the homotopy extension property if and
only if for all topological spaces Y , and all maps f : X → Y , any homotopy
A× [0, 1]→ Y from f |A can be extended to a homotopy X × [0, 1]→ Y from f .

Lemma 2.1. A pair (X,A) has the homotopy extension property if and only if
S = X × {0} ∪A× [0, 1] is a retract of X × [0, 1].

Proof. First, suppose r : X × [0, 1]→ S is a retract. Now suppose f : X → Y is
some map, and let H : A× [0, 1]→ Y be a homotopy of the restriction of f to
A. By the gluing lemma one can construct a continuous function H ′ : S → Y as
being equal to f on X×{0} and being equal to H on A× [0, 1]. The map H ′ can
be precomposed with r to get a map H ′′ : X× [0, 1]→ Y (that is, H ′′ = H ′ ◦r),
which is the homotopy we were looking for.

Now suppose the homotopy extension property holds for (X,A). Take the
homotopy H : A × [0, 1] → S that is just the inclusion map. As the function
H(., 0) can be extended to just the inclusion mapX×{0} → S, by the homotopy
extension property, there exists a homotopy H ′ : X × [0, 1] → S that is the
identity on S. This makes H ′ a retract, as desired.

Using this lemma, we can prove the following important property of cell
complexes:

Theorem 2.2. If X is a cell complex, and Xk is a skeleton of X, then (X,Xk)
has the homotopy extension property.

Proof. We will construct a retract r from X × [0, 1] to X × {0} ∪ Xk × [0, 1],
which will, by the previous lemma, complete the proof.

We will start by defining this retract on Xk+1 × [0, 1]. For each (k + 1)-cell
ek+1
α , there is a disk Dk+1 and an associated map φα : Dk+1 → Xk+1 such
that φα restricted to the boundary of Dk+1 is the attaching map of ek+1

α , and
restricted to the interior of Dk+1, it is just a homeomorphism onto ek+1

α .
Take the space Dk+1 × {0} ∪ ∂Dk+1 × [0, 1], and let φ′

α map from it to
Xk+1 × {0} ∪Xk × [0, 1] via the rule (s, t)→ (φα(s), t).

Using a suitable radial projection, we define π : Dk+1 × [0, 1] → Dk+1 ×
{0} ∪ ∂Dk+1 × [0, 1] to be an arbitrary retract. To elaborate slightly: if one
imagines this as being embedded in Rk+2, then we can take the point s =
(0, 0, 0, . . . , 2) ∈ Rk+2, and let π map via radial projection from the point s
(Figure 2 demonstrates this). Precomposing φ′

α with π gives us a map φ′′
α :

Dk+1 × [0, 1] → Xk+1 × {0} ∪ Xk × [0, 1]. Finally, from this we can define
rk+1 : Xk+1 × [0, 1]→ Xk+1 × {0} ∪Xk × [0, 1] as

rk+1(s, t) :

{
ϕ′′
α(ϕ

−1
α (s), t) if s ∈ ek+1

α

(s, t) if s ∈ Xk.

We know that rk+1 is continuous, as it is continuous on Xk× [0, 1], and on each
Dk+1

α × [0, 1] (where Dk+1
α is an attached disk).
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Figure 2: An illustration of radial projection from D2 × [0, 1] to D2 × {0} ∪
∂D2 × [0, 1]. The points in the former get mapped to points in the latter (the
blue shape) by following radial lines (three of which are represented in the
figure).

Using the same process, we can create retracts rk+j : X
k+j×[0, 1]→ Xk+j×

{0} ∪Xk+j−1 × [0, 1]. Of note to us is the behavior of the composition of two
adjacent retracts of this type: it can be verified that (rk+j ◦rk+j+1)|Xk+j×[0,1] =
rk+j , which of course means rk+j◦rk+j+1 is itself a retract, and it is an extension
of rk+j .

This inductively proves that, for each (k + j)-skeleton Xk+j , there exists a
retract r′k+j : X

k+j × [0, 1]→ Xk+j × {0} ∪Xk × [0, 1], and that these retracts
can be assumed to be extensions of each other. Thus, we can define the retract
r from X × [0, 1] to X × {0} ∪ Xk × [0, 1] as just the unique function such
that for all n > k, r|Xn×[0,1] = r′n. As X has the induced limit topology, this
automatically implies r is continuous.

This completes the proof.

This statement actually holds more generally for any cell complex pair (X,A)
where A is a subcomplex of X, but this version of the statement is harder to
prove, and will not be needed for our purposes.[2, p. 15]

2.3 Cellular Maps

Another property of maps between cell complexes that would be beneficial if we
could just assume to always hold, is that the map in question “respects the cell
structure.” Formally, this can be defined as

Definition 2.5 (Cellular Map). Let X and Y be cell complexes, and let f :
X → Y be a map. Then f is called cellular when f(Xn) ⊂ Y n for all n.

Less formally, this just means f does not increase dimensions. Since we are
only really interested in homotopy classes of maps, what we really want to show
is that each homotopy class contains a cellular map. The proof of this fact will
require considerable setup.
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First, we will define the concept of a simplex:

Definition 2.6 (Simplex). Let n be a natural number. The simplex ∆n is
defined by taking a set of n+1 points v1, v2, . . . , vn+1 (called the vertices of the
simplex) and formally making them the basis of an R-vector space (with the
usual topology assigned). Then ∆n is the subspace consisting of points of the
form t1v1 + t2v2 + . . .+ tn+1vn+1 such that t1 + t2 + . . .+ tn+1 = 1 and each ti
is in [0, 1].

Simplicies will be useful to us for the following reasons (which we omit proofs
of):

1. An n-simplex ∆n is homeomorphic to an n-disk. Therefore, for a cell
complex, an n-cell can be identified with the interior of an n-simplex and the
attaching map can be interpreted as having domain ∂∆n.

2. If a function f from ∆n to some convex subset of a euclidean space is
already defined on the vertices of ∆n, it can be linearly extended to the rest
of ∆n via the rule f(t1v1 + t2v2 + . . . tn+1vn+1) := t1f(v1) + t2f(v2) + . . . +
tn+1f(vn+1). The image of f has dimension at most n. Furthermore, if two
simplicies are attached (in that they share a face in common), then this linear
extension will agree on the shared face.

3. Just as cubes can be subdivided into smaller cubes, simplicies can be sub-
divided into smaller simplicies. The subdivision we will use is called barycentric
subdivision. The specifics of it are not relevant for our purposes, other than the
fact that each simplex in the subdivision has a diameter of length at most n

n+1
times that of the original simplex. [2, pp. 119-120]

All this is sufficient setup to state the following theorem:

Theorem 2.3. Let f : ∆n → X be a map, where X is a cell complex and ∆n is
an n-simplex. Let m > n, and suppose em is a cell in X. Furthermore, assume
the image of ∂∆n does not contain any element of em, and that the image of
∆n is in Xm. Then f is homotopic to some function g, such that the homotopy
is fixed on ∆n − f−1(em) (in particular, on ∂∆n), and the image of g does not
contain every point in em.

Proof. The first step is to identify em with (0, 1)m.2 As otherwise we would
have nothing to prove, assume the image of f touches every point in (0, 1)m.

Now, we will algorithmically subdivide ∆n into smaller n-simplices, and then
those simplicies into even smaller simplicies, in the following fashion (Figure 3
can act as visual aid for the first half of this proof):

Let I1 be the set that just contains ∆n. Each subsequent Ik contains the
simplicies obtained by performing barycentric subdivision on each element of
Ik−1. For any k, partition Ik into two collections. The first, Ak, contains each
simplex S ∈ Ik such that f(S) is entirely contained in (0, 1)m. The second, Bk, is
just the complement of the first. Now, let Bk be the union of each element of Bk
(and Ak can be defined the same way but with Ak). If f(Bk)∩(0, 1)m ̸= (0, 1)m,

2Any convex open subset of Rm which is homeomorphic to em would work. I chose (0, 1)m

purely out of personal preference.
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then we stop the algorithm and define the sets A := Ak and B := Bk as the
“result” of the algorithm, with sets A and B being the unions of elements of
the collections A and B, respectively.

The algorithm has to conclude after a finite amount of steps. This is for
the following reason: if it did not, it would imply for all k that f(Bk) ∩ (0, 1)m

is equal to (0, 1)m. This means, as ∆n is sequentially compact, we can find a
convergent sequence xk, such that xk ∈ Bk, f(xk) = (0.5, 0.5, . . . , 0.5), and the
limit of xk is a point x ∈

⋂∞
k=1 Bk. By continuity, f(x) = (0.5, 0.5, . . . , 0.5);

which is in (0, 1)m. This, however, is not possible: as f maps inside Xm, and
(0, 1)m is open in Xm, if f(x) ∈ (0, 1)m, then for some δ > 0, an open ball of
size δ around x also maps inside (0, 1)m. There exists some integer N , such
that IN only consist of simplicies with diameter less than δ (as the diameter of
every simplex decreases by a factor of n

n+1 after each subdivision). Any one of
those simplicies that contains x is also fully contained in the δ-ball around x,
so maps entirely inside (0, 1)m. Thus, x is not in BN , which is a contradiction.

With that out of the way, take the (finite) collection A. Reusing the dummy-
variable k, construct a sequence of collections Ck, where for each k, the set Ck
is attained by first taking elements of A, successively performing barycentric
subdivision on them k times; and then only taking simplices from that, which
do not contain any boundary points of A (or equivalently, which do not contain
any points of B). If we define Ck as the union of all elements of Ck, it it follows
that

⋃∞
k=1 Ck = int(A).

From this, we define a function g : ∆n → X iteratively: first, take g0 : B →
X to just be equal to f |B . The points in ∆n − B are precisely the points in
int(A). An important observation to make is that f(A) ⊂ (0, 1)m, and (0, 1)m

is convex: we will explicitly use this in the following construction:
For all k > 0, we can define a function gk : B ∪ Ck → X. Restricted to B

this will always just be defined as f , thus we will only examine the other points.
By way of induction, assume gk−1 is already defined, and that gk−1(Ck−1) is in
(0, 1)m. Then we define, for each point x in Ck that is also a vertex of some
simplex in Ck, gk(x) := gk−1(x) if x ∈ Ck−1, and gk(x) := f(x) otherwise. More
generally, the function gk on arbitrary points of C ∈ Ck can be defined as the
linear extension of how it is already defined on the verticies of C.

It can be confirmed (basically by definition) that if j < k, the function gk
agrees with gj on Cj . Thus, as each element of ∆n is either in B or in some set
Ck, to define g : ∆n → X it is enough to require that it restricts to gk for all k.

For a proof confirming g to be continuous, see Lemma 2.4.
The only things left to do are constructing a homotopy from f to g, and

proving that the image of g does not contain every point in (0, 1)m. The latter
can be proven in the following way: for all k, the image of the set Ck under g
is an n dimensional subspace of (0, 1)m, making it a set with empty interior.
Taking the union of all sets Ck (which is just int(A)) shows that, by the Baire
category theorem[1, p. 394] – which states that for locally compact Hausdorff
spaces, a countable union of sets with empty interior itself has empty interior
– the set g(int(A)) has empty interior. By assumption, g(B) does not touch
every point in (0, 1)m. As B is compact, and X is Hausdorff, the image of B is
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Figure 3: A visual representation of the proof for Theorem 2.3. The blue sim-
plicies in this example are elements of B, and the sole other simplex is the one
element of A. Zooming in on A, we can see how the sequence of sets Ck prop-
agates outwards to fill the interior of A. Specifically, C1 in this case is empty,
C2 is the union of all the yellow triangles, and C3 is the union of the yellow and
green triangles.

closed in X, thus g(B) ∩ (0, 1)m is closed in (0, 1)m. By definition, this means
its (nonempty) complement is open. As g(A) has an empty interior, it cannot
touch every point in the aforementioned open set, which means g(∆n)∩(0, 1)m =
g(A) ∪ (g(B) ∩ (0, 1)m) ̸= (0, 1)m, proving that g does not touch every point in
(0, 1)m.

Finally, the homotopy from f to g is

H(s, t) =

{
f(s) if s ∈ B

(1− t)f(s) + tg(s) otherwise.

This is a valid homotopy by the gluing lemma, and is fixed on all points that
aren’t in f−1((0, 1)m). This completes the proof.

To fill in the gap in the proof, we can prove the following lemma:

Lemma 2.4. The function g constructed in the previous proof is continuous.

Proof. First, on the set B, the function g is equal to f by definition, so g|B is
continuous. By the gluing lemma, we will only need to show that g|A is con-
tinuous. To show that g|int(A) is continuous, we use the fact that {int(Ck)}∞k=1

makes up an open cover of int(A), and restricted to each of these open sets, g
is continuous. This means g|int(A) is continuous.

Consequently, we only need to show continuity on boundary points of A. In
order to achieve this, we will first need the following to hold: for any k > 1,
the boundary of Ck does not intersect the boundary of Ck−1. This immediately
follows from a previously unmentioned property of barycentric subdivision: if a
simplex S has a vertex v, and the face of S that opposes v is labeled F , then
no simplex in the subdivision of S which contains v will intersect F (proving
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from here that the boundary of Ck does not intersect the boundary of Ck−1 is
a matter of induction).

This implies by the definition of g, that for any k, if v is on the boundary
of Ck, and v is a vertex of a simplex in Ck; then g(v) = f(v). It follows that
if we have some sequence xi ∈ A that converges to some x in the boundary of
A, then given that each xi is on the boundary of some Ck, g(xi) converges to
g(x). This is because each of those xi is inside a face of a simplex in some Ck,
and that face can be assumed to be on the boundary of Ck. We will label the
n verticies of that face (vi,1, vi,2, . . . , vi,n). Now, because the diameters of these
faces go to 0 as i goes to infinity, for any fixed j, the sequence vi,j converges to
x. Therefore,

lim
i→∞

g(xi) = lim
i→∞

n∑
j=1

ti,jg(vi,j) = lim
i→∞

n∑
j=1

ti,jf(vi,j) =

= lim
i→∞

n∑
j=1

ti,jf(x) = f(x) = g(x).

We can now extend this proof method for a generic convergent sequence:
Reusing the dummy variables, let xi ∈ A be a sequence that converges to a point
x in the boundary of A. Each of these xi is in some set Ck−Ck−1, and if we then
choose any arbitrary simplex in Ck that contains xi, let (vi,1, vi,2, . . . , vi,n+1) be
the n+ 1 vertices of the simplex we chose. By the same argument as last time,
for each fixed j, the sequence vi,j converges to x. Furthermore, by construction,
each one of these verticies is in the boundary of one of the sets Ck. Therefore,

lim
i→∞

g(xi) = lim
i→∞

n+1∑
j=1

ti,jg(vi,j) = lim
i→∞

n+1∑
j=1

ti,jg(x) = g(x).

This means g is continuous, which completes the proof.

It is quite remarkable that such a technical proof is required for a statement
that is, purely visually, highly intuitive. Fortunately, this is enough foundation
to prove the main theorem of this section.

Theorem 2.5. Let X and Y be cell complexes, and let f : X → Y be a map.
Then f is homotopic to a cellular map. Furthermore, if we assume f restricted
to Xk is a cellular map, the homotopy can be assumed to be fixed on Xk.

Proof. This will be proven inductively on the skeletons of X. First, the fact that
there exists a homotopy from f to some function that maps 0-cells to 0-cells is
an immediate consequence of the homotopy extension theorem. To elaborate:
any path-component of Y must contain at least one 0-cell. Therefore, for any
0-cell x in X, there exists a path from f(x) to a 0-cell in Y . These paths can
be combined into a homotopy from f |X0 to a map from X0 to Y whose image
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is in Y 0. The homotopy extension property of (X,X0) then implies f can be
homotoped to a function that maps 0-cells to 0-cells.

So, by induction, assume that f is already cellular on Xk. Take each (k+1)-
cell ek+1

α , and let φα : ∆k+1 → Xk+1, be a function that maps the inside of the
simplex homeomorphically to ek+1

α , and suppose φα|∂∆k+1 is just the attaching
map.

The first thing to note is that f ◦ φα(∆
k+1) ⊂ Y m for some m (without

loss of generality we can then assume m to be the smallest such number). The
proof of this is the following: By way of contradiction, assume no such m exists.
Take a sequence xi in ∆k+1 such that yi := f ◦ φα(xi) is a sequence where
each term is in a strictly higher-dimensional cell than the previous one. Also,
as ∆k+1 is sequentially compact, without loss of generality we can assume xi

to be convergent, thus yi also converges to some point y. We can also assume
that y is not equal to yi for any i (otherwise we can just remove that point
from the sequence). Now, we want to show that {yi}∞i=1 is closed, as that
would immediately create a contradiction. As Y has the induced limit topology,
this is true whenever Y j ∩ {yi}∞i=1 is closed in Y j for all j. These sets are all
finite, meaning they are closed, which means y is not the limit of yi, which is a
contradiction.

We can employ the exact same proof-method (with minor adjustments) to
show that there are only finitely many m-cells that f ◦ φα meets. Now, if
m = k+1, then we are done with this part of the proof. Otherwise, for each of
those m-cells emi , by Theorem 2.3, we can homotope f ◦ φα in such a way that
the homotopy is fixed on ∆k+1 − (f ◦ φα)

−1(emi ), and such that the result of
this homotopy does not meet every point of emi . As there are only finitely many
m-cells to consider, we can concatenate such homotopies to get one whose end
result misses at least one point in all m-cells of Y . Let’s call this new function
we get h.

To sum up, h is now a map whose image is in Y m, and only meets finitely
many m-cells, in each of which it misses at least one point. We can follow radial
lines coming from those missed points to homotope h to a function that maps
entirely inside Y m−1. We can inductively keep doing this until we get a function
that maps inside Y k+1

All of this implies that there exists a homotopy from f |Xk+1 to some function
g, such that the homotopy is fixed on Xk+1 − ek+1

α , and such that g maps ek+1
α

inside Y k+1. Doing these homotopies for each α simultaneously gets us a cellular
map from Xk+1 to Y . By the homotopy extension theorem, this homotopy can
be extended to one with domain X instead of Xk+1.

The only step left is combining everything together.
Let H0 be a homotopy from f to a function that is cellular on X0. Then we

can inductively define Hk+1 as the homotopy that takes the result of Hk, and
moves it to a function that is cellular on Xk+1, without moving any points in
Xk. The homotopy that combines all of these together will be called H, and
it essentially just does Hk in the interval [1 − 2−k, 1 − 2−k−1]. Of course, the
number 1 is not in any of these intervals, but as for all x ∈ X, there exists a
natural numberN such that for each n ≥ N ,Hn is fixed on x; H(x, 1) can just be
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defined as HN (x, 1). That H is continuous is clear on the domain X× [0, 1). To
prove continuity on other points, note that for any sequence (xi, ti) in X× [0, 1]
that converges to some point (x, 1), there exists some N such that xi ∈ XN for
all i. This means that for ti > 1 − 2−N−1, H(xi, ti) = H(xi, 1) = HN (xi, 1),
which converges to HN (x, 1) = H(x, 1) by the continuity of HN .

This means H is continuous, and thus completes the proof.

2.4 Brief Notes on Homology

As alluded to in Section 1, homology is an algebraic invariant assigned to topo-
logical spaces. Giving a comprehensive overview of homology is beyond the
scope of this paper; rather, this section aims to provide at least a minor amount
of intuition for how they work, and state several theorems about them that will
be used in Section 3.

Broadly, the purpose of homology is classifying holes, so a reasonable first
point of investigation is asking what it means for a space to contain a hole.
Informally, we may come to the following pseudo-definition: If an n-dimensional
object within our space surrounds something, but in way that cannot be filled
in, then there is an n-dimensional hole in our space. Now, this does not really
work as a definition, as its informality invites several questions:

• What do we mean by an n-dimensional object?

• What does it mean to surround something?

• What does filling in an n-dimensional object mean?

The first of these questions has a complicated answer for general topological
spaces, but for our purposes, we only need to answer this question for cell
complexes. So, if X is a cell complex, we can think of n-dimensional objects as
just collections of n-cells. As homology is algebraic in nature, we will turn this
into a group: The group Cn(X) is just the free abelian group generated by each
n-cell in X, and is called the group of n-chains of X.

We can try to use this to answer our other two questions: By “surround
something”, we mean that these n-cells are patched together in a way that
leaves no gaps; or, in other words, our object has no boundary. By “cannot be
filled in”, we mean that our object is not the boundary of an (n+1)-dimensional
object. Figure 4 illustrates this idea.

More formally, if we have some boundary map ∂n that, for each n, sends ele-
ments of Cn(X) to elements of Cn−1(X), the kernel of ∂n : Cn(X)→ Cn−1(X)
constitutes elements in Cn(X) that “surround something” (these are called cy-
cles), while the image of ∂n+1 : Cn+1(X) → Cn(X) constitutes elements in
Cn(X) that can be “filled in” (these are called boundaries). Furthermore, con-
tinuing with our analogy, if an n-dimensional object is a boundary, then it has to
surround something; namely, the (n+1)−dimensional object it is the boundary
of – so each boundary should also be a cycle. This invites the following purely
algebraic definition:
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Figure 4: An illustration of how homology captures holes in a space. In our
case, the red, yellow, and orange lines illustrate three different 1-chains. The
orange one does not surround anything, as it has a boundary. The yellow one
does surround something, as it has no boundary, but it does not surround a
hole, as it is itself a boundary of a 2-dimensional object in our space. The red
one is the only one to surround a hole, as it neither has a boundary, nor is a
boundary of a 2-dimensional object in our space.

Definition 2.7 (Chain Complex). For each natural number n, let Cn be an
abelian group, and let for each n exist a homomorphism ∂n : Cn → Cn−1 (for
n = 0, this is ∂0 : C0 → 0). This system is a chain complex if for all n,
∂n−1∂n = 0.

On this chain complex, we define homology groups as

Definition 2.8 (Homology of a Chain Complex). Given a chain complex C, for
each n we define two subsets of Cn: the first is Bn, which contains boundaries,
and the second is Zn which contains cycles. The set Bn is the image of ∂n+1 :
Cn+1 → Cn, and Zn is the kernel of ∂n : Cn → Cn−1. The n-th homology group
Hn of this chain complex is the quotient group Zn/Bn.

The intuition behind this definition is that cycles represent objects which
might surround a hole, and, out of those objects, boundaries represent the ones
which we know can be filled in – thus do not surround a hole. So, if we want
to capture the behavior of holes in our space, reducing the former by the latter
makes sense.

To define the homology groups of our cell complex X, we just need to define
the boundary maps ∂n : Cn(X)→ Cn−1(X) in a way that creates a chain com-
plex. After that, the homology groups of X can be defined to be the homology
groups of that chain complex.

In order to construct these boundary maps, we will need the following The-
orem:

Theorem 2.6. For all n, πn(S
n) ∼= Z.
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For the sake of brevity, we omit the proof.[5, p. 51] We can use this to define
the following notion:

Definition 2.9 (Degree). Let n ≥ 1, and let f : Sn → Sn be a map. If πn(S
n)

is identified with Z,3 then the degree of f is the number where f∗ : πn(S
n) →

πn(S
n) sends 1. Furthermore, the degree of a map f : S0 → S0 is equal to 0 if

f is constant, equal to 1 if f is the identity, and is equal to −1 if f switches the
two points of S0.

Useful for our purposes will be the subsequent lemma:

Lemma 2.7. For each integer k and natural number n ≥ 1, there exists a
function f : Sn → Sn with degree k. Furthermore, homotopic maps have the
same degree, and the constant map has degree 0 (even in the case of n = 0).

Proof. Without loss of generality, assume [id] ∼= 1 in our identification πn(S
n) ∼=

Z (where id is the identity on Sn). Then any representative f : Sn → Sn of an
element of πn(S

n), such that [f ] ∼= k, has degree k. This is because [id] ∼= 1,
and f∗ sends this element to [f ] ∼= k.

Homotopic maps act the same way on πn(S
n), and the constant map acts

by sending everything to 0; which proves the rest of the statement.

Using the concept of a degree, we can finally define homology on cell com-
plexes.

Definition 2.10 (Cellular Homology). Let X be a cell complex. For each n,
Cn(X) is the free abelian group generated by the set of all n-cells of X. For
each n−cell enα, the associated attaching map is φα : Sn−1 ∼= ∂Dn

α → Xn−1.
For each (n− 1)-cell en−1

β , we construct a quotient map φβ from Xn−1 to Sn−1

by making all points outside of en−1
β equivalent under the relation ∼, and then

applying the standard homeomorphism from Xn−1/ ∼ to Sn−1. Composing φα

and φβ gets us a map φαβ : Sn−1 → Sn−1.
From this we define the boundary map Cn(X)→ Cn−1(X) as sending each

enα to
∑

β d(φαβ)e
n−1
β , where d(φαβ) stands for the degree of the map φαβ . The

homology groups of the resulting chain-complex are the homology groups of X.

To be able to make swift progress, we will take for granted that this is
well defined, that homology is independent of cell structure, and that homo-
topy equivalent cell complexes have the same homology groups.[2, pp. 137-140]
Purely to gain intuition about cellular homology, we will prove the following
lemma:

Lemma 2.8. The n-th homology group of Sn is isomorphic to Z.
3There is a slight complication which arises from how one might choose the basepoint.

Generally, if g, g′ : Sn → Sn are representatives of elements in πn(Sn, x0) and πn(Sn, y0)
respectively, if g and g′ are homotopic, then [g] and [g′] should be identified with the same
number.
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Proof. The standard cellular structure on Sn consists of one n-cell, and one
0-cell. If n > 1, this already is enough to imply that Hn(S

n) ∼= Z, as the
associated chain complex is

. . .→ 0→ Z→ 0→ . . .→ 0→ Z→ 0,

the two non-trivial groups being Cn(S
n) and C0(S

n) respectively. As the
boundary maps here are all forced to be zero, the nth homology group is trivially
isomorphic to Z. For n = 1, the chain complex looks like

. . .→ 0→ Z ∂1−→ Z→ 0,

which means we need to take a closer look at the boundary map ∂1 : C1 →
C0. The attaching map of the 1-cell is a constant, which means by Lemma
2.7, the associated degree is 0, making the boundary map trivial. This makes
H1(S

1) ∼= Z.

Going by intuition, n-dimensional spheres contain a single n-dimensional
hole, and no other holes. The homology groups of Sn reflect this: for k ≥ 1,
Hk(S

n) ∼= 0 whenever k ̸= n, indicating that there is no k-dimensional hole
in Sn; while Hn(S

n) ∼= Z, implying that there is an n-dimensional hole in
Sn. Comparing this to Table 1, we notice an interesting contrast in complexity
between higher homotopy groups and homology groups of spheres.

In spite of this contrast, these concepts are not unrelated. The relationship
between homotopy groups and homology groups is described by the Hurewicz
theorem[2, pp. 366-367], which (partly) states the following:

Theorem 2.9. Let n ≥ 2 and let X be an (n− 1)−connected space (that is, a
space whose first n− 1 homotopy groups are trivial). Then Hn(X) ∼= πn(X).

This theorem gives us the final tool we need for constructing K(G,n) spaces,
so we shall begin construction now.

3 Construction of Eilenberg-Maclane Spaces

The previous section has been rather technical, and involved several lengthy
proofs. In this section, we get to utilise the fruits of our labor, and prove the
statement we posited in the beginning of this paper: a K(G,n) space exists if
and only if G is abelian or n = 1. As higher homotopy groups behave differently
than the fundamental group, it makes sense to treat n = 1 as a special case.

3.1 Constructing K(G, 1) Spaces

Theorem 3.1. Let G be a group. Then a K(G, 1) space exists.

Proof. The general proof method will be the following: if we know that a space
X has a contractible covering space, then we know that all higher homotopy
groups of X are trivial. In short, this is because any map f : Sn → X can be
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lifted to that covering space[2, p. 61], and then applying a null-homotopy on the
lift gives us a null-homotopy on the original map, f . Furthermore, we also know
that the group of deck-transformations on that covering space is isomorphic to
π1(X).

Therefore, our approach will be to construct a contractible space E on which
the group G will act, and from that construct aK(G, 1) spaceX via the covering
map π : E → X, where the aforementioned group action on E will be just the
group of deck-transformations. For this purpose it will be sufficient to require
G to act freely of E: that is, aside from the identity element, no element of G
will fix a single point in E.

The way we will construct E is by first constructing a suitable 0-skeleton of
E that G acts freely on, and then inductively constructing (and extending the
group action G to) all n-skeletons of E. Our starting space E0 will just be the
group G equipped with the discrete topology, where the group action is obvious.
From this space we construct E1 by, for any pair of distinct elements a, b ∈ G,
attaching a 1-cell (or path) going from a to b, and a 1-cell going from b to a.
The way an element g of G acts of this new space E1 is by sending the 1-cell
connecting a to b (in that order) to the 1-cell connecting ga to gb. This group
action is free on E1.

All higher skeletons we construct by induction: assume that Ek has already
been constructed with the free group action G extended (freely) to it. We then
take the set of homotopy classes of maps [Sk, Ek]. If this only consists of one
element – the class of null homotopic maps – then Ek+1 := Ek. Otherwise,
we attain Ek+1 by, for each homotopy class that is not null homotopic, taking
some representative f : Sk → Ek, and for each element of g ∈ G, attaching an
(n+1)-cell to Ek via the attaching map gf . That is, the map f composed with
the group action. The method of extending the group action from Ek to Ek+1

is thus obvious: g ∈ G sends an (n+ 1)−cell with attaching map f to one with
attaching map gf .

Note that this may be excessive: that is, it is possible that we attach more
cells than necessary at each step. For practical purposes, as long as πk(E

k+1)
becomes trivial, and our group action can be extended to Ek+1, it does not
matter how many cells are attached (the argument detailing why this is the
case is laid out in the next paragraph). In this proof we intentionally attach
more cells than necessary, so it works on any choice of G.

We define E as the union of the sets Ek, with the standard induced limit
topology (as is the case for all infinite dimensional cell complexes). To see that
E is contractible, we will first show that all homotopy groups of E are zero: let
f : Sn → E be a map, and without loss of generality, assume the basepoint of
Sn maps to a 0-cell. By cellular approximation, f is homotopic to a cellular
map, and we can assume said homotopy does not move the basepoint, so again
without loss of generality, assume f is a cellular map. That means its image
is entirely contained in En, or, more importantly for our purposes, En+1. By
construction f is null-homotopic in En+1 , so πn(E) ∼= 0.

This makes E weakly homotopy equivalent to a point. As E is a cell complex,
Whitehead’s Theorem implies E is therefore contractible.
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Figure 5: The first three skeletons of the covering space E in the construction
of a K(Z2, 1) space. The blue arrows indicate how Z2 acts on these skeletons
by swapping antipodal points.

With all this setup, we can finally construct X: Let the map π : E → X be
the quotient map that makes two points x and y in E equivalent if there exists
some g ∈ G such that gx = y. The function π is a covering map (the short reason
why: around any point in E, one can take a sufficiently small neighborhood U ,
such that for any non-identity element g, gU is disjoint from U . This implies
that π−1(π(U)) ∼= G×U where G is equipped with the discrete topology, which
proves π is a covering map), and the group of deck-transformations on E is
isomorphic to G, so X is a K(G, 1) space.

For most groups, this construction cannot really be practically followed in
any way that produces a visually interpretable result. As an example, following
step one of this proof (i.e. the construction of E1) for a group like Q immediately
yields a non-drawable confluence of lines. However, for a finite group, one
may actually be able to manually follow the proof and give a tangible cell
decomposition of a K(G, 1) space.

As an example, for Z2, our proof gives us the following construction: E0 is
just a two-point discrete space on which Z2 acts by switching the points. By
attaching two 1-cells to these two points, we get E1, which is a circle; the group
action on it sending each point x to −x. Then, we get E2 by attaching two
disks to E1, thus getting the space S2; with the group action again sending x
to −x.

In general, we see that Ek = Sk, meaning E = S∞, and the group action
on E swaps antipodal points. The space we get by making antipodal points on
Sk equivalent is called a real projective space (and is notated RPk), so RP∞ is
a K(Z2, 1) space. Figure 5 visually illustrates this construction.

The fact that S∞ is contractible is an interesting result in and of itself, and
a whole class of K(G, 1) spaces can be constructed by letting G act on S∞ by
“rotating” it, and then reducing the space by the group action (these are called
infinite-dimensional lens spaces). To describe the process in more detail:
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The (2n − 1)-dimensional sphere is usually defined as a subspace of R2n.
However, R2n can be identified with Cn, and if S2n−1 is treated as a subspace
of Cn, then

S2n−1 = {(z1, z2, . . . , zn) ∈ Cn :

n∑
k=1

|zk|2 = 1}.

This means that, since

S1 ⊂ S3 ⊂ S5 ⊂ . . . ⊂ S∞,

and because S∞ has the induced limit topology, S∞ can be written as a subspace
of C∞. Namely, it is the space of all sequences that are eventually 0 (as each
point in S∞ is also in some S2n−1), and for which

∑∞
k=1 |zk|2 = 1.

Given a positive integer p, and a sequence of integers (q1, q2, . . .) which are
all coprime to p, we can define a map S∞ → S∞ with the rule

(z1, z2, z3, . . .)→ (e
2q1πi

p z1, e
2q2πi

p z2, e
2q3πi

p z3, . . .).

This map is continuous (as it is just a set-theoretical product of continuous
maps), and it generates a free group action on S∞. These are essentially rota-
tions of S∞, and reducing by this group action gives us a K(G, 1) space. By
way of example, setting p to any number greater than 1 and setting each qk
equal to 1 gives us a K(Zp, 1) space.

3.2 Moore Spaces

The construction for n > 1 is more involved than the one for n = 1. We begin
by constructing the homology analogue of a K(G,n) space: a Moore space.

Definition 3.1 (Moore Space). Let G be an abelian group, and n ≥ 1. A
Moore space M(G,n) is a path-connected space whose n-th homology group is
isomorphic to G, such that for any other k ≥ 1, Hk(M(G,n)) is trivial.

Before we begin creating such a space, the following short algebraic prelim-
inary is required:

Theorem 3.2. Every abelian group is isomorphic to a quotient group of a free
abelian group.

Proof. We take an abelian group G, we take the abelian free group Z(G), and
map each generator eg to g via a surjective homomorphism h. The group G is
then isomorphic to Z(G)/ kerh by the first isomorphism theorem.

This gives us enough ammunition to prove the existence of Moore spaces.

Theorem 3.3. Let G be an abelian group and n ≥ 2. Then M(G, 2) exists.
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Proof. Take a single-point space, and attach to it one n-cell eng for each g ∈ G.

Call this space Xn. Let N be a subgroup of Z(G) such that G ∼= Z(G)/N (this
can be done by the previous theorem). As N is a subgroup of an abelian free
group, it is itself is an abelian free group.[3, p. 9-16] Let S ⊂ Z(G) be a set of
independent generators for N . Our next step is to attach one (n+ 1)-cell en+1

s

to our space for each element s of S such that the attaching map fs : S
n → Xn

has the following property:
For each eng , the degree of the map qg ◦ fs : Sn → Xn/(Xn − eng )

∼= Sn,
where qg : Xn → Xn/(Xn − eng ) is a quotient map; is equal to the coefficient
of g in s. That is, if s =

∑
h∈G chh, where ch ∈ Z (and only finitely many are

non-zero), then the degree of qg ◦ fs should be cg.
Thus, we will construct these functions: For each integer d, we define hd :

Sn → Sn to be some fixed map of degree d. By Lemma 2.7, such a map exists
for all d. Now, for some s ∈ S, let s = c1g1 + c2g2 + . . . + ckgk, where ci are
integers and gi are elements of G. Let x0 stand for some basepoint of Sn, let
U ∈ Sn be some open set that does not contain x0, and let f : Sn → Sn be an
arbitrary map. Then f can be homotoped into a function f ′ that is supported
on U : that is, f ′|Sn−U is just the constant function x0.

The easiest way to show this is by assuming f already maps x0 to x0, in which
case f can be pulled back to a function from In to Sn where the the boundary
points of In all map to x0. Let us call this new function p. Take a small closed
n-cube V in In that is contained in U (or, more accurately, maps inside U via
the quotient map identifying all boundary points of In). Suppose the image of
the projection of V onto the ith coordinate is the interval [xi − ϵ, xi + ϵ]. From
this we can write up the homotopy

Hi : I
n × [0, 1]→ Sn

Hi(y, t) :


p(y1, y2, . . . , xi + (1 + t( 1ϵ − 1))(yi − xi), . . . , yn) if xi + (1 + t( 1ϵ − 1))

(yi − xi) ∈ [0, 1],

x0 otherwise.

Informally, this makes p supported on Ii−1 × [xi − ϵ, xi + ϵ] × In−i. A
simple application of the gluing lemma tells us Hi is continuous. Doing these
homotopies for each i consecutively (though, obviously in such a way that the
p within the definition of Hi changes to whichever function we are applying
the homotopy to) gives us a function supported on V . Applying the naturally
induced homotopy to f gives us a function supported on U , as desired.

Now, consider that for each n-cell eng in X, there is a natural embedding
φg : Sn → X that maps x0 to the one 0-cell, and the rest of Sn to eng . We
are ready to construct our attaching map fs: Take k disjoint open subsets
U1, U2, . . . , Uk of Sn, such that none of them contain x0. For each function hci ,
we can take a homotopic function that is supported on Ui, and by Lemma 2.7,
homotopic functions have the same degree, so without loss of generality we can
just assume hci is supported on Ui. This means we can construct fs : S

n → Xn

as:
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fs(x) :

{
φgi ◦ hci(x) if x ∈ Ui

The 0-cell if x ̸∈ Ui for all i

We can confirm fs to be continuous by the gluing lemma. Attaching each
en+1
s via fs gives us the space X = Xn+1. The chain complex attached to X is

. . .→ 0→ Z(S) ∂n+1−−−→ Z(G) → 0→ . . .→ 0→ Z→ 0.

The potentially non-trivial homology groups (other than H0) are Hn and
Hn+1. We know thatHn+1 is trivial, as by construction ∂n+1 is just the inclusion
map N → Z(G), meaning it is injective, and thus Hn+1(X) ∼= ker ∂ = 0.

The nth homology group on the other hand is Hn(X) ∼= Z(G)/N ∼= G. This
makes X an M(G,n) space.

Important to us is the following corollary:

Corollary 3.3.1. For all abelian groups G and integers n ≥ 2, an (n − 1)-
connected space whose n-th homotopy group is G exists.

Proof. Take the M(G,n) space constructed in the previous proof. As for all
k < n, the k-skeleton of that space is is just a point, by cellular approximation,
any map Sk → X is null-homotopic. Thus M(G,n) (or at least the version
of it in the previous proof) is (n − 1)-connected. The Hurewicz Theorem then
implies that G ∼= Hn(X) ∼= πn(X).

3.3 Killing Higher Homotopy Groups

By the previous corollary, the only homotopy groups we still need to worry about
are the ones higher than n. Hence, what we need is some way to kill higher
homotopy groups of the construction we already have, without affecting lower
ones. This will be done by attaching higher and higher dimensional cells until
each homotopy group above n is trivial. The next theorem ensures that this
process will not affect lower homotopy groups. Note that we have used a similar
statement for the construction of K(G, 1) spaces: there, in different words,
we used the fact that the inclusion map ι : Xk+1 → X induces a surjection
ι∗ : πk(X

k+1) → πk(X). What we have not yet shown is that this is also an
injection.

Theorem 3.4. If ι : Xn+1 → X is the inclusion map, then ι∗ : πk(X
n+1) →

πk(X) is an isomorphism for all k ≤ n, and a surjection for k = n+ 1.

Proof. Let k ≤ n + 1, and let ι∗ : πk(X
n+1) → πk(X) be the homomorphism

induced by the inclusion map. By cellular approximation, if we assume f :
Sk → X maps the basepoint of f to a 0-cell, the map f can be homotoped to
one whose image is contained inXn+1 without moving the basepoint. Therefore,
ι∗ is surjective.
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To prove it is also injective when k ≤ n, suppose f : Sk → X and g : Sk → X
have a basepoint-preserving homotopy H between them. Also, without loss of
generality assume f and g to be cellular.

The domain of H, Sk × I, can be given a cell structure as follows: take
two points as the 0-cells, and attach them together with a 1-cell. Attach a
k-cell to both 0-cells to get the spheres at each end of Sk × I. Finally, to
attach a single k + 1-cell: Imagine our cell ek+1 as the interior of Ik+1. Let
π : Ik+1 → I be the projection onto the first coordinate. We define the attaching
map φ : ∂Ik+1 → (Sk × I)k (the final k denotes that it is the k-skeleton) in
the following way: restricted to {1} × Ik and {0} × Ik, the maps are just the
natural quotient maps to the spheres on the two sides of the cylinder we are
constructing (that is, in our case, it maps the boundary of {0} × Ik to the first
0-cell and the interior of {0} × Ik to the attached k-cell, while the set {1} × Ik

maps similarly to the other 0-cell–k-cell pair). For all other points in ∂Ik+1, the
attaching map is just the map π followed by the natural homeomorphism from
there to the 1-cell.

This construction gives an (n + 1)-dimensional cell structure on Sk × I. If
we assume H maps the two 0-cells (and thus the 1-cell as well) to the basepoint,
then H restricted to the k-skeleton of Sk × I is cellular. By the cellular map
theorem, this means that H can be homotoped into a basepoint-preserving
homotopy from f to g contained entirely in Xk+1, and as k + 1 ≤ n + 1, this
makes ι∗ injective. Therefore, ι∗ is an isomorphism on the first n homotopy
groups, completing the proof.

We can use this to construct the K(G,n) spaces we are looking for:

Theorem 3.5. If n ≥ 2 and G is an abelian group, a K(G,n) space exists.

Proof. Take the spaceXn+1 = M(G,n) attained by our method of construction.
As seen in Corollary 3.3.1, the first n homotopy groups are already as they
should be. So, we will take the group πn+1(X

n+1) and kill it. Specifically, by
way of induction, suppose that for some k > 0, all homotopy groups below n+k
of the space Xn+k are as they should be: trivial, except for πn(X

n+k) ∼= G.
Then construct Xn+k+1 by attaching (n + k + 1)-cells whose attaching maps
are representatives of non-zero elements of πn+k(X

n+k) (if there are any). The
group πn+k(X

n+k+1) will then be trivial, and by the previous theorem, the
homotopy groups below n+ k are unaffected.

Repeating this process forever results in a (likely infinite-dimensional) space
X, which is a K(G,n) space.

The main question posited in the introduction has thus been answered in
the affirmative. That is to say, we have proven the following:

Theorem 3.6. A K(G,n) space exists if and only if n = 1 or G is abelian.
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3.4 Uniqueness and Other Miscellaneous Properties

While the primary focus of this paper is proving the existence of K(G,n) spaces,
it would be amiss not to at least mention other notable characteristics they
possess. A decision made in writing this paper was to – up until this point –
never refer to any space as being “the K(G,n) space”, electing to instead refer
to them as “a K(G,n) space”; because the former would imply some level of
uniqueness, which we had no reason to assume. Therefore, it may be surprising
that the following holds:

Theorem 3.7. Let X and Y both be K(G,n) spaces. Then X and Y are weakly
homotopy equivalent.

Proof. It is sufficient to show that any arbitrary K(G,n) space Y is weakly
equivalent to the K(G,n) space we explicitly constructed, which we will label
X.

We will construct a weak equivalence f : X → Y . First, as f∗ : πk(X) →
πk(Y ) is trivially an isomorphism for k ̸= n for any map, the only thing we need
to ensure is that f acts as an isomorphism between the nth homotopy groups
of X and Y .

Since our construction of X was different for n = 1 than for n > 1, one
might expect the proof to be different for those two cases. However, this is not
the case: regardless of the value of n, Xn consists of only one 0-cell, and no
k-cells with 0 < k < n, so it is just a wedge-sum of n-spheres. For each of
those spheres, there is a homeomorphism ci from Sn to that sphere sending the
basepoint to the 0-cell. By cellular approximation, the collection [ci] generates
πn(X).

This is enough information to create a map fn : Xn → Y . Specifically, take
an arbitrary isomorphism ϱ : πn(X) → πn(Y ). Suppose for each i, that gi is a
representative of ϱ([ci]). Then let fn be the unique map such that fn ◦ ci = gi
for all i.

Now, by construction, if fn can be extended toX, the resulting map f will be
a weak equivalence; so the only step left of this proof is the construction of such
an extension. This will be done inductively: for k ≥ n, assume fk : Xk → Y is
already defined, and is an extension of fn. For any (k + 1)-cell ek+1

i in Xk+1,
let φi : S

k → Xk be the attaching map. If k = n, then fk ◦φi is null-homotopic
by construction; otherwise, it is null-homotopic because πk(Y ) is trivial.

Let H : Sk × [0, 1] → Y be a homotopy from fk ◦ φi to some constant
function. This induces a map H ′ from the quotient space Sk × [0, 1]/Sk × {1}
to Y such that if q : Sk × [0, 1] → Sk × [0, 1]/Sk × {1} is the quotient map,
then H ′ ◦ q = H. Furthermore, Dk+1 is homeomorphic to Sk × [0, 1]/Sk × {1},
meaning there exists an induced map Dk+1 → Y that is equal to fk ◦φi on the
boundary. Identifying the interior of Dk+1 with ek+1

i then induces a map from
Xk ∪ ek+1

i to Y . Doing this process for all (k + 1)-cells of Xk+1 gives us the
map fk+1 : Xk+1 → Y , which is an extension of fk by construction.

The only thing left is to define f : X → Y as the unique map that restricts
to fk for each k ≥ n. The map f is continuous, as X is equipped with the
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induced limit topology; and f is a weak homotopy equivalence, completing the
proof.

In cell complexes weak equivalences and homotopy equivalences are one and
the same, so within the domain of cell complexes, K(G,n) spaces are unique up
to homotopy equivalence.

A second major result is that K(G,n) spaces can act as “building blocks”
for all connected cell complexes (up to homotopy equivalence). The statement,
in its raw form, is:

Theorem 3.8. For any connected cell complex X, there exists a sequence of
spaces (called a Postnikov tower)

{∗} = X0 ← X1 ← X2 ← X3 ← . . . ,

where each Xk has only trivial homotopy groups above k, and each map
Xk → Xk−1 is a fibration (which can be thought of as a generalisation of a
projection map), whose fiber is K(πk(X), k). Furthermore, there exists maps
fk : X → Xk which induce isomorphisms for all homotopy groups below k + 1,
and which commute with the other maps in the tower.

There is a simple way to interpret this statement. If one thinks of this
as “building X from the ground up”, then {∗} is the ground, and a fibration
Xk → Xk−1 is a valid way to build on top of that. Going from Xk to Xk+1 is
just going from a space that agrees with X on the first k homotopy groups (and
is trivial on all others) to one that agrees with X on the first k + 1 homotopy
groups (and is trivial on all others). In a way X then becomes the limit of
the sequence (X0, X1, X2, . . .). In fact, the space X is the category theoretical
limit of the Postnikov tower, so the word “limit” is less of an analogy than the
previous sentence may have implied. The ability to decompose a space in this
manner has many applications. As an example, it can be used to compute the
homotopy group πn+1(S

n) for any value of n.[4, p. 63]

4 Conclusion

In conclusion, we have shown the existence of K(G,n) spaces given certain
regularity conditions of G and n; namely, that G has to be abelian whenever
n > 1. We have also shown that Eilenberg-Maclane spaces are unique up to
weak equivalence.

Furthermore, as incremental steps to achieving the aforementioned main
results, this paper also contains proofs for several important theorems relating
to cell-complexes and homotopy groups. These are, in order: the nonexistence of
higher non-abelian groups, the homotopy extension property of cell-complexes,
and the cellular map theorem.

There are several questions one could ask about K(G,n) spaces which were
beyond the scope of this paper, and are subject to future research. First, for
which (G,n) does a finite-dimensional K(G,n) space exist? The method of
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construction included in this paper makes no attempt to keep the dimension of
the resultingK(G,n) space finite, so searching for an alternate construction that
– perhaps for a more restricted class of (G,n)-pairs – produces finite dimensional
K(G,n) spaces is a suitable area to investigate next. In a similar vein, another
question one might ask is: which K(G,n) spaces have a cell decomposition that
contains finitely many k-cells for each k? Or, a more uniform version of this
question: which K(G,n) spaces have a cell decomposition, such that for some
natural number m, it holds that for any k, the amount of k-cells in the cell
decomposition is at most m?

The previous three questions were about limitations imposed upon the size
of K(G,n) spaces. Questions that are more algebraic in nature are also worthy
of investigation. These include questions about homology groups (or any other
algebraic invariant) of K(G,n) spaces; or questions about how group-theoretic
properties of G correspond to topological properties of a K(G,n) space. Further
investigation into the role of Eilenberg-Maclane spaces within topology and
algebra is therefore warranted.
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