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Abstract

We study the topology of symplectic toric manifolds via properties of their associated
moment map, whose image is a convex polytope, known as the moment polytope. The
edges meeting at each corner of the moment polytope satisfy certain combinatorial prop-
erties, and there is a one-to-one correspondence between the polytopes satisfying these
properties and symplectic toric manifolds up to equivalence. By applying Morse theory
to the moment map, we recover the Betti numbers of the symplectic toric manifold. To
determine the cohomological ring structure, we first compute the equivariant cohomol-
ogy ring of the manifold, which also takes into account the given torus action, and then
relate this to the ordinary cohomology ring. More precisely, we construct a collection
of vector bundles, one for each corner of the polytope, whose equivariant Euler classes
generate the equivariant cohomology, and use the combinatorial data on the edges to
determine the ring structure.
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Popular summary

Dynamical systems have been studied for a long time, and attract a lot of attention, given
their widespread applications. A particularly nice class of dynamical systems is that of
Hamiltonian dynamical systems, and symplectic toric manifolds are special examples of
such Hamiltonian dynamical systems.

A natural example of a Hamiltonian system is a simple harmonic oscillator. Imagine
a mass suspended from a spring; we are interested in the behaviour of the displacement
of the mass from its equilibrium position, given a certain starting position. Hooke’s law
states that the force exerted by the spring is proportional to the displacement (for small
displacements, at least), so by Newton’s second law, the acceleration of the mass will
be proportional to the displacement as well. We ignore friction in this situation, which
is reasonable if the mass does not move too fast. A special property of this dynamical
system is that its behaviour is periodic; if we start with a displacement of x0 below the
equilibrium position, then by the time the distance is x0 above the equilibrium position,
the mass will have come to rest again, and will start moving down again. One can show
that if we consider at each time t the pair (x(t), v(t)) consisting of the displacement
x(t) and the velocity v(t) of the mass, this traces out an ellipse in the plane R2. These
ellipses together form the entirety of R2, which is the state space for this dynamical
system: each pair (x, v) is a suitable state for our dynamical system (although our
physical assumptions do not quite hold up for every state). A particularly interesting
state is the rest state (0, 0), which is the only state of our dynamical system which is
stationary. Furthermore, each ellipse corresponds to a certain energy level (which in this
case is the sum of the potential energy in the spring and the kinetic energy of the mass),
and the rest state has minimal energy, namely 0.

Symplectic toric manifolds share many properties with the previous example: they
are state spaces for multiple Hamiltonian dynamical systems, which are independent
(think of two simple harmonic oscillators that do not interact with eachother), and
also have periodic behaviour. These state spaces are interesting because they turn out
to be completely described by their associated energy functions, also known as their
moment map: the image of this moment map is a convex polytope in Rn, where n is the
number of independent Hamiltonian systems under consideration. These polytopes turn
out to have strong restrictions on the directions of the edges meeting at each corner,
and polytopes satisfying these properties are actually in one-to-one correspondence with
symplectic toric manifolds. A polytope is much easier to understand (and draw!) than a
state space for a dynamical system. In this thesis, we relate properties of the polytope to
properties of the state space. In particular, we compute the cohomology ring of the state
space, which can roughly be considered to be the information determining the number
of holes in the space, as well as the interactions between these holes. Generally, if one
is given just a dynamical system, this cohomology ring is very difficult to compute, so
there is a significant advantage to being able to do so from a concrete representation of
the state space.
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1. Introduction

Hamiltonian dynamical systems have been studied for a long time and arise naturally
in many physical contexts, such as frictionless classical mechanical systems. Of par-
ticular importance is the phase space associated to such a dynamical system, which is
a symplectic manifold. In this thesis, we investigate the topological properties of the
phase spaces associated to completely integrable Hamiltonian systems with periodic or-
bits; that is, a collection of n independent Hamiltonians on a (compact) 2n-dimensional
phase space, whose flows commute and are periodic. These phase spaces are known as
symplectic toric manifolds. Natural examples of completely integrable systems include
(n-dimensional) frictionless harmonic oscillators, but also the two-body problem. More
complicated examples of symplectic toric manifolds are known to arise in the theory of
mirror symmetry [10].

Symplectic toric manifolds are also special from a geometric viewpoint: they are sym-
plectic manifolds with an effective torus action, almost all of whose orbits are Lagrangian
tori, and thus symplectic manifolds with a high degree of homogeneity. Furthermore,
they are classified by special combinatorial polytopes, and certain operations on symplec-
tic manifolds, such as symplectically blowing up a point, correspond to a modification of
the corresponding polytope. Therefore symplectic toric manifolds form a class of sym-
plectic manifolds for which computing invariants is more tractable than for a general
symplectic manifold.

As for prerequisites, we roughly assume knowledge of basic differential geometry and
symplectic geometry, and familiarity with basic notions from algebraic topology, in-
cluding characteristic classes of vector bundles and the Thom isomorphism theorem.
Furthermore, we use Morse theory at various stages, but do explicitly give references
whenever appropriate.

In Chapter 2, we first give a formal definition of symplectic toric manifolds, and
give basic examples. The essential part of the definition concerns the so-called moment
map, which serves as a collection of Hamiltonians for independent commuting dynamical
systems. For a more extensive treatment of symplectic geometry and symplectic toric
manifolds, we refer the reader to [6] and [4]. We then discuss the convexity theorem
for the moment map, proven independently by Atiyah [1] and Guillemin and Sternberg
[8], which states that the image of the moment map is a convex polytope, and is in fact
the convex hull of the images of the fixed points of the torus action. This result was
further strengthened by Delzant [7]: these convex polytopes satisfy certain combinatorial
properties, and are in fact in one-to-one correspondence with symplectic toric manifolds
(up to equivalence).

Given this classification, it is natural to ask whether there exist straightforward meth-
ods of computing topological invariants of the symplectic toric manifolds directly from
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their moment polytope. In Chapter 3, we compute the (co-)Betti numbers, by relating
critical points of the Hamiltonian for a generic direction in the torus to the ranks of the
cohomology groups via a standard Morse-theoretical argument.

In Chapter 4, we study the equivariant cohomology ring (with integer coefficients) of
symplectic toric manifolds. Equivariant cohomology is a version of cohomology adapted
to spaces endowed with a continuous group action. The primary difference between
equivariant and ordinary cohomology is that the equivariant cohomology of a point is
generally highly non-trivial, whereas the ordinary cohomology of a point is Z. On the
other hand, the equivariant cohomology of a single free orbit is trivial. Despite this dif-
ference, one can define characteristic classes for equivariant vector bundles; in particular,
there exist non-trivial equivariant vector bundles over a point. We then proceed to use
Morse theory, as in Chapter 3, to find a basis for the equivariant cohomology ring of
symplectic toric manifolds, and we identify each basis element as the equivariant Euler
class of an equivariant vector bundle over the symplectic toric manifold, with the main
result being the following.

Theorem (4.2.5). Let M be a symplectic toric manifold with moment map µ : M → t∗,
and let F be the set of fixed points of the action. Then for a choice of generic direction
X ∈ t, write Av ⊆ M for the preimage under µ of the flow-up face of v, relative to X.
Then for each v ∈ F there exists an equivariant vector bundle Ev →M such that Ev|Av
is isomorphic to the normal bundle of Av in M . Furthermore, the inclusion-induced
map H∗T (M) → H∗T (F ) is injective, and the equivariant cohomology ring H∗T (M) is a
free H∗T -module on the equivariant Euler classes eT (Ev).

The injectivity of H∗T (M)→ H∗T (F ) was already recognized by Atiyah and Bott [3], as
was the fact that H∗T (M) is a free H∗T -module. However, they do not provide an explicit
basis for H∗T (M), although in [2] they show that in equivariant Morse theory, the Euler
classes of negative normal bundles play a critical role in determining the rank of H∗T (M)
in each degree; the negative normal bundles are in turn the restrictions of the normal
bundles associated to the flow-up faces.

To explicitly construct the Ev, we use Delzant’s construction of symplectic toric man-
ifolds from their moment polytopes. This construction also allows us to compute the
equivariant Euler classes of the bundles when restricted to the fixed point set of the
torus action, as demonstrated by the following theorem.

Theorem (4.3.8). Let v ∈ F be a fixed point and Ev → M be the extension of the
normal bundle of preimage (under µ) of the flow-up face Av ⊆M , as in Theorem 4.2.5.
Then for any fixed point v′ ∈ F , if we take H∗T ({v′}) = Z[xvi : i = 1, . . . , n], we have

eT (Ev)|v′ =

{
0 if v′ 6∈ Av∏l
j=1

∑n
i=1(−ujixvi) if v′ ∈ Av

where −uj ∈ Zn, j = 1, . . . , l are the directions of the edges meeting at µ(v′) that do not
point into Av, and uji is the i-th coordinate.
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We now have generators for H∗T (M) as a H∗T -module, and know their images along
the injection H∗T (M) → H∗T (F ). Moreover, in H∗T (F ) it is easy to compute products,
as it is a direct sum of polynomial rings; therefore we have now deduced the product
structure of the equivariant cohomology ring. This may then be used to compute the
product structure of the ordinary cohomology ring of the manifold, using the following
theorem.

Theorem (4.2.7). Let j : M → M ×T ET denote the inclusion. Then the map j∗ :
H∗T (M)→ H∗(M) is surjective, and H∗(M) is generated as an abelian group by the set
of e(Ev), v ∈ F . Furthermore, for any element r ∈ H∗T of degree at least 2, we have
j∗(reT (Ev)) = 0.

This theorem effectively says that to go from the equivariant product structure to
the product structure on ordinary cohomology, all we need to do is forget its module
structure with respect to the equivariant coefficient ring. We have thus established
that the cohomology ring of any symplectic toric manifold is (additively) generated by
characteristic classes of a collection of vector bundles, one for each fixed point of the torus
action. Although this result is not completely new (see Audin [4, Thm. VII.3.8]), our
advantage is that we have identified an additive basis for H∗(M) whose pairwise products
are easy to compute, rather than providing a description of H∗(M) as a quotient of a
polynomial ring on degree-2 generators. Moreover, the proof given in Audin uses the de
Rham model for equivariant cohomology, along with the Duistermaat–Heckman theorem
[4, Thm. VI.2.3], whereas the proof we give relies more heavily on Morse theory.
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2. Classification of symplectic toric
manifolds

2.1. Introduction and definitions

In this section we give basic definitions related to symplectic toric manifolds, along with
some examples.

Definition 2.1.1. The 1-torus is the Lie group S1 = T 1, consisting of complex numbers
z ∈ C with |z| = 1, and whose multiplication is given by multiplication of complex
numbers. Alternatively we may construct T 1 as the quotient group R/(2πZ), and we
identify R/(2πZ) with S1 by sending the equivalence class of [x] to eix.

If ∂/∂x denotes the canonical basis element of the tangent space T0R of R at 0,
then its pushforward under the projection map R → R/(2πZ) is a nonzero vector in
t = TeT

1, and is also denoted by ∂/∂x. Thus ∂/∂x is chosen such that the exponential
map exp : t→ T 1 satisfies

exp

(
t
∂

∂x

)
= eit.

The dual basis element is then denoted by dx ∈ t∗, satisfying dx(∂/∂x) = 1. Similarly,
for the n-torus Tn = (T 1)n, its Lie algebra t has a canonical basis ∂/∂x1, . . . , ∂/∂xn,
whose dual basis for t∗ is denoted by dx1, . . . , dxn.

Definition 2.1.2. A closed symplectic manifold (M2n, ω), endowed with an action of
the n-torus Tn, is called a symplectic toric manifold if

• the torus action is effective (i.e., faithful), and

• the torus action is Hamiltonian. That is, there exists a Tn-invariant smooth map
µ : M → t∗, satisfying

d〈µ,X〉 = ω(X#, ·)

for every X ∈ t. Here 〈·, ·〉 is the natural pairing t∗ × t→ R, and X# is the vector
field on M defined as

X#(p) =
∂

∂t

∣∣∣∣
t=0

(exp(tX) · p)

for any p ∈ M . The map µ is called a moment map, and serves as a collection of
Hamiltonian functions for the vector fields X#.

We consider Tn and µ to be part of the data, and so denote a symplectic toric manifold
by a quadruple (M,ω, Tn, µ).
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Example 2.1.3. Our prototypical example for a torus action is as follows. We consider
Cn for n > 0 with a Tn-action on it given by

(u1, . . . , un) · (z1, . . . , zn) = (u1z1, . . . , unzn)

with (z1, . . . , zn) ∈ Cn and (u1, . . . , un) ∈ Tn. We endow Cn with its standard symplectic
structure, defined as

ω0 =
i

2

n∑
j=1

dzj ∧ dzj =

n∑
j=1

dxj ∧ dyj

where zj = xj + iyj . With respect to this symplectic form, the torus action is Hamilto-
nian, with a moment map given by

µ : Cn → t∗, µ(z1, . . . , zn) = −1

2
(|z1|2, . . . , |zn|2).

The latter term (|z1|2, . . . , |zn|2) is with respect to our standard basis for the Lie coal-
gebra t∗ of the torus. We check that this is indeed satisfies our definition for a moment
map. It is clearly Tn-invariant. Now let X = (X1, . . . , Xn) ∈ t; then exp(tX) =
(eitX1 , . . . , eitXn) ∈ Tn, so

X#(z1, . . . , zn) =
∂

∂t

∣∣∣∣
t=0

(exp(tX) · (z1, . . . , zn))

=
∂

∂t

∣∣∣∣
t=0

(eitX1z1, . . . , e
itXnzn).

To compute these derivatives, note that

∂

∂t

∣∣∣∣
t=0

eitX1(x1 + iy1)

=
∂

∂t

∣∣∣∣
t=0

((cos(tX1)x1 − sin(tX1)y1) + i(cos(tX1)y1 + sin(tX1)x1))

=

(
∂

∂t

∣∣∣∣
t=0

cos(tX1)x1 − sin(tX1)y1

)
∂

∂x1

+

(
∂

∂t

∣∣∣∣
t=0

cos(tX1)y1 + sin(tX1)x1

)
∂

∂y1

= −X1y1
∂

∂x1
+X1x1

∂

∂y1
.

Therefore

ω(X#, ·) =

n∑
j=1

Xj(−yjdyj − xjdxj).
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On the other hand, we have

d〈µ,X〉 = d

−1

2

n∑
j=1

Xj |zj |2
 = −1

2
d

 n∑
j=1

Xj(x
2
j + y2

j )


= −

n∑
j=1

Xj(xjdxj + yjdyj).

Therefore d〈µ,X〉 = ω(X#, ·), and we conclude that the torus action is Hamiltonian.
Note that (Cn, ω0) with this torus action does not form a symplectic toric manifold,
because Cn is not closed.

Example 2.1.4 (Complex projective space). The prototypical example for a symplectic
toric manifold is as follows. Let CP1 be complex projective space, with an S1 = T 1-action
given by

u · [z0 : z1] = [z0 : uz1]

for u ∈ S1 ⊂ C. Clearly T 1 acts effectively on CP1, as every u ∈ S1 acts on [1 : 1] as
[1 : u], which is [1 : 1] if and only if u = 1.

The standard symplectic form on CPn is the Fubini–Study form ωFS , defined as fol-
lows. The Fubini–Study form ω̂FS on Cn+1 \ {0} is given by

ω̂FS =
i

2
∂∂ log(|z|2)

where z = (z0, . . . , zn) ∈ Cn+1 \ {0}. Here the operators ∂ and ∂ refer to the Dolbeault
operators. One can check that if Lλ : Cn+1 \ {0} → Cn+1 \ {0} is defined by z 7→ λz for
λ ∈ C∗, then (Lλ)∗ω̂FS = ω̂FS . This guarantees that ω̂FS descends to a 2-form ωFS on
CPn, which one can check to be a symplectic form.

With respect to the Fubini–Study form, the torus action is also Hamiltonian, with
moment map given by

µ([z0 : z1]) = −1

2
· |z1|2

|z0|2 + |z1|2
.

After identifying CP1 ∼= S2, this action can be viewed as rotating the sphere around
its z-axis. The moment map under this identification becomes (up to scale) the height
function on S2, which is clearly invariant under the circle action.

This example easily generalizes to higher dimensions. Let Tn act on CPn by

(u1, . . . , un) · [z0 : z1 : . . . : zn] = [z0 : u1z1 : . . . : unzn].

This action is again effective, and Hamiltonian (with respect to the Fubini–Study form)
with moment map given by

µ([z0 : z1 : . . . : zn]) = −1

2

(
|z1|2

|z|2
, . . . ,

|zn|2

|z|2

)
.

9



Observe now that the fixed points of this torus action are [1 : 0 : . . . : 0], [0 : 1 : 0 : . . . : 0],
et cetera, and that the images of the fixed points under the moment map are (0, . . . , 0),
(−1/2, 0, . . . , 0), (0, . . . , 0,−1/2) in t∗ ∼= Rn. The image of µ is by inspection seen to
be the convex subset of Rn spanned by the images of the fixed points of the action.
Furthermore, each point in the image of Rn has its preimage consisting of exactly one
orbit of the torus action. This turns out to be a general fact about symplectic toric
manifolds.

Theorem 2.1.5 (Atiyah[1], Guillemin–Sternberg[8] Convexity). Let (M2n, ω) be a sym-
plectic toric manifold with associated moment map µ : M → t∗, and let F denote the
set of fixed points of the Tn-action. Then µ(M) is the convex hull of µ(F ), and each
non-empty fiber µ−1(p) for p ∈ µ(M) is connected.

Definition 2.1.6. The image µ(M) is called the moment polytope of (M,ω, T, µ).

Example 2.1.7. Any product of symplectic toric manifolds is again a symplectic toric
manifold. More precisely, let (M2ni

i , ωi, T
ni
i , µi), i = 1, 2 be symplectic toric manifolds.

Define M = M1 ×M2, ω = p∗1ω1 + p∗2ω2 where pi : M → Mi is the projection, and let
Tn1+n2 = Tn1

1 × T
n2
2 act on M via the product action. The associated moment map is

then µ : M → t∗ defined by µ(p1, p2) = µ1(p1)+µ2(p2), where we identify t∗ with t∗1⊕ t∗2.
The moment polytope of M is then the product of the moment polytopes of M1 and
M2.

2.2. Equivariant Darboux charts and the Delzant
classification

Given the Atiyah–Guillemin–Sternberg convexity theorem, it becomes a natural question
to ask how much information about M and its torus action can be recovered from its
moment polytope. The first step towards answering this is to formulate a notion of
equivalence of symplectic toric manifolds with their moment maps. Since translations
of the moment map are moment maps, and invertible integral linear transformations of
t∗ ∼= Rn correspond to Lie group automorphisms of the associated torus, we make the
following definition of weak equivalence.

Definition 2.2.1. Two symplectic toric manifolds (M2n
i , ωi, T

n
i , µi), i = 1, 2, are called

weakly equivalent if there exists a symplectomorphism f : M1 → M2 and a Lie group
isomorphism g : Tn1 → Tn2 such that

f(up) = g(u)f(p)

for u ∈ Tn1 and p ∈ M1, and (deg)∗ ◦ µ2 ◦ f and µ1 differ by a constant. Here (deg)∗ :
t∗2 → t∗1 is the dual of deg : t1 → t2.

Example 2.2.2. The symplectic toric manifolds (CP1 × CP1, p∗1ω
1
FS + p∗2ω

2
FS , T

1 ×
T 1, µ1 × µ2) and (CP2, ωFS , T

2, µ) are not weakly equivalent, because there is no diffeo-
morphism CP1 × CP1 → CP2.
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p2 p1

p3p4

Figure 2.1.: The moment polytope for the k-th Hirzebruch surface Wk.

Example 2.2.3 (Hirzebruch surface). A more subtle example which incorporates the
moment polytope is the following. Let k > 0 be an integer, and let Wk be the subset
of CP1 × CP2 consisting of all points ([a : b], [x : y : z]) such that aky = bkx. This
is a smooth complex hypersurface, as it is locally defined as a regular level set of a
holomorphic function; for instance, on {a 6= 0, x 6= 0}, it is the zero set of bk

ak
− y

x . Let

j : W → CP1×CP2 be the inclusion map, and set ω = j∗ωFS with ωFS the Fubini–Study
form on CP1 × CP2. Note that ω is closed since dω = j∗(dωFS) = 0. To see that ω is
nondegenerate, let g denote the Hermitian metric on CP1 ×CP2 associated to ωFS , and
let J be the almost complex structure on CP1 ×CP2. As Wk is a complex submanifold,
J restricts to an almost complex structure on Wk. Now for p ∈Wk and u ∈ TpWk,

ω(u, Ju) = ωFS(u, Ju) = g(Ju, Ju) > 0

so ω is nondegenerate on Wk.
Now Wk with its projection onto the first coordinate is a CP1-bundle over CP1, and

is known as a Hirzebruch surface1. Let T 2 act on Wk by defining

(u, v) · ([a : b], [x : y : z]) = ([ua : b], [ukx : y : vz]).

This is a Hamiltonian action with moment map

µk : Wk → t∗ ∼= R2

([a : b], [x : y : z]) 7→ −1

2

(
|a|2

|a|2 + |b|2
+ k

|x|2

|x|2 + |y|2 + |z|2
,

|z|2

|x|2 + |y|2 + |z|2

)
.

The fixed points of the action are v1 = ([0 : 1], [0 : 1 : 0]), v2 = ([1 : 0], [1 : 0 : 0]),
v3 = ([0 : 1], [0 : 0 : 1]) and v4 = ([1 : 0], [0 : 0 : 1]), and their images under the moment
map are p1 = (0, 0), p2 = (−(k + 1)/2, 0), p3 = (0,−1/2) and p4 = (−1/2,−1/2),
respectively. Hence by the convexity theorem, µk(Wk) is the convex hull of p1, . . . , p4,
as depicted in Figure 2.1.

We now show that for k, k′ > 0 distinct integers, Wk and Wk′ are not weakly equivalent
as symplectic toric manifolds. Suppose for contradiction that we have a symplectomor-
phism f : Wk → Wk′ and a Lie group isomorphism g : T 2 → T 2 with f(up) = g(u)f(p)

1There are only two S2-bundles over S2: they correspond to homotopy classes of maps S1 → Diff(S2) by
the clutching construction, and the latter deformation retracts onto O(3) [15]. Therefore S2-bundles
over S2 are in one-to-one correspondence with elements of π1(O(3)) ∼= Z/2Z, where we ignore the
issue of basepoints.
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for all u ∈ T 2, p ∈ Wk, and such that (deg)∗ ◦ µk′ ◦ f − µk is a constant, say a ∈ t∗.
Since f preserves fixed points, (deg)∗ − a sends the corners of µk′(Wk′) to the corners
of µk(Wk), and hence also sends edges to edges. Now assume without loss of generality
that k > k′, and let e1, e2 ∈ (R2)∗ be the standard basis. Then the norm of (deg)∗e1 is
at least one, and hence the edge from p1 = (0, 0) to p2 = (−(k + 1)/2, 0) is mapped to
an edge of length at least (k + 1)/2. However, µk′(Wk′) only has edges of length 1/2,√

(k′/2)2 + (1/2)2 and (k′+1)/2, each of which is less than (k+1)/2, so we have reached
a contradiction.

The previous example shows that we can show that two symplectic toric manifolds
are distinct by looking at “global” information, namely their moment polytope. In the
other direction, it turns out that near fixed points, the symplectic toric manifolds are
indistinguishable, up to a reparameterization of the torus.

Definition 2.2.4. Let u ∈ Zn be an integral vector. Then T 1 is said to act on Cn with
weight vector u if for each z ∈ T 1, we have

z · (z1, . . . , zn) = (zu1z1, . . . , z
unzn),

where ui denotes the i-th coordinate of u. Similarly, if u1, . . . , uk ∈ Zn are integral
vectors, then T k is said to act on Cn with weight vectors u1, . . . , uk if for each j = 1, . . . , k,
the j-th factor of T k acts on Cn with weight uj .

Theorem 2.2.5. Let (M2n, ω, Tn, µ) be a symplectic toric manifold, and let (Cn, ω0) be
linear complex space with its standard symplectic form. Let v ∈M be a fixed point of the
torus action. Then there exist vectors u1, . . . , un ∈ Zn and Tn-invariant neighbourhoods
U of v ∈ M and U0 of 0 ∈ Cn, and a Tn-equivariant symplectomorphism f : (U, ω) →
(U0, ω0), where Tn acts on U0 with weights u1, . . . , un. Under this identification, µ takes
the form

µ(z1, . . . , zn) = µ(v)− 1

2

n∑
i=1

|zi|2ui

where we now view the ui as vectors in (Rn)∗ ∼= t∗.

We do not prove this theorem in detail, although we do provide a sketch of its proof.
A full proof can be found in [9, Section 32].

Sketch of proof. Since Tn is compact, we can take a Tn-invariant Riemannian metric g on
M . The exponential map exp : TvM →M is then Tn-equivariant, where Tn acts on TvM
by differentiating the action on M at v. Then there are Tn-invariant neighbourhoods
U1 3 v and U2 3 0 such that exp : U2 → U1 is a diffeomorphism. The pullback ω2 =
exp∗(ω) is then a symplectic form on U2, and we may define another symplectic form
ωlin on TvM by taking ωlin|0 = ω2|0, and asserting that ωlin is translation-invariant. An
equivariant version of Darboux’s theorem can be proven with Moser’s trick [9, Thm. 22.1],
which then allows one to conclude that there exists a neighbourhood U3 3 0 and a Tn-
equivariant symplectomorphism F : (U3, ωlin)→ (U2, ω2), shrinking U2 if necessary. The
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final step is then to find an identification between (U3, ωlin) and (Cn, ω0) and determining
the vectors u1, . . . , un. Since g is a Tn-invariant metric, gv is a Tn-invariant inner
product on TvM , which together with the symplectic form on TvM defines a complex
structure and a Tn-invariant Hermitian form on TvM , and hence we have a unitary
representation Tn → U(TvM). Since these linear operators commute, they can be
simultaneously diagonalized, i.e., there exists a C-linear basis w1, . . . , wn such that the
image of each element of Tn is a diagonal matrix. The weights u1, . . . , un can then
be recovered from this diagonal form. Since the complex structure is compatible with
the symplectic structure, w1, iw1, . . . , wn, iwn is a symplectic basis for TvM , so we get
a symplectomorphism (TvM,ωlin) → (Cn, ω0), which is Tn-equivariant by definition of
the action on Cn. The local form for the moment map then follows from uniqueness.

The local model is a key ingredient for the following complete classification, due to
Delzant [7].

Theorem 2.2.6 (Delzant classification). Symplectic toric manifolds are classified by
their moment polytopes: let (M2n

i , ωi, T
n, µi), i = 1, 2 be two symplectic toric manifolds,

such that imµ1 = imµ2 ∈ t∗. Then there exists a Tn-equivariant symplectomorphism
ϕ : M1 →M2 such that µ2 = µ1 ◦ ϕ.

Furthermore, given a symplectic toric manifold (M2n, ω, Tn, µ), for each fixed point
v ∈M :

1. there are exactly n edges meeting at µ(v),

2. each edge is of the form µ(v)− tui for t ≥ 0, ui ∈ Zn, and

3. u1, . . . , un form a Z-basis for Zn.

Any convex polytope satisfying the above conditions at each corner is called a Delzant
polytope. Furthermore, for each Delzant polytope, one can construct a symplectic toric
manifold with precisely this polytope as image.

Example 2.2.7. Let T 2 act on CP2 as in Example 2.1.4, and let µ : CP2 → t∗ be the
moment map. The fixed points v0 = [1 : 0 : 0], v1 = [0 : 1 : 0] and v2 = [0 : 0 : 1] are
mapped to p0 = (0, 0), p1 = (−1/2, 0) and p2 = (0,−1/2) respectively, so the moment
polytope is the convex hull of p0, p1 and p2, as depicted in Figure 2.2. At p0, the edges
of the moment polytope are of the form p0 − t(1, 0) and p0 − t(0, 1) for 0 ≤ t ≤ 1/2,
and (1, 0) and (0, 1) form a Z-basis for Zn. Similarly, at p1, the edges of the moment
polytope are of the form p1 − t(−1, 0) and p1 − t(−1, 1), and (−1, 0) and (−1, 1) also
form a Z-basis for Zn.

Example 2.2.8. Let k > 0 be an integer and let Wk be the k-th Hirzebruch surface
as in Example 2.2.3. The moment polytope is the convex hull of the points p1 = (0, 0),
p2 = (−(k + 1)/2, 0), p3 = (0,−1/2) and p4 = (−1/2,−1/2), as depicted in Figure 2.1.
At p2, the edges are of the form p2 − t(−1, 0) and p2 − t(−k, 1), and (−1, 0) and (−k, 1)
form a Z-basis for Z.

13



p1 = (−1/2, 0) p0 = (0, 0)

p2 = (0,−1/2)

Figure 2.2.: The moment polytope for the complex projective plane CP2.

(0, 0)

(0, 1)

(k, 0)

Figure 2.3.: An example of a polytope in (R2)∗ that is not a Delzant polytope. Here,
k > 1 is an integer. The polytope is not a Delzant polytope because the
directions of the edges at (0, 1) and (k, 0) do not form a Z-basis for Zn.

Example 2.2.9. An example of a non-Delzant polytope is the convex hull of (0, 0),
(0, 1) and (k, 0) for integral k > 1, as shown in Figure 2.3: at (0, 1), the edges will be of
the form (0, 1)− t(−k, 1) and (0, 1)− t(0, 1). However, (−k, 1) and (0, 1) do not form a
Z-basis for Zn.

Example 2.2.10. An example of a polytope in (R3)∗ which is not Delzant is a pyramid
with a square base, that is, the convex hull of (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0) and
(1/2, 1/2, 1/2). Every edge in this polytope has integral direction, but there are 4 edges
meeting at (1/2, 1/2, 1/2).

In Section 4.3, we will use the explicit construction of the symplectic toric manifolds
to build vector bundles with special properties. Note that the Delzant classification the
above classification gives also gives a one-to-one correspondence between 2n-dimensional
symplectic toric manifolds, up to weak equivalence, and Delzant polytopes in (Rn)∗, up
to invertible integral linear transformation and translation.
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3. Morse theory on symplectic toric
manifolds

We recall some of the basic definitions and properties of Morse theory that will be
relevant later on. For proofs and more detailed statements, we refer the reader to [13].
Let Mn be a smooth manifold of dimension n.

Definition 3.1 ([13, §2]). Let f : M → R be a smooth function. A critical point x ∈M
of f is called nondegenerate if in local coordinates x1, . . . , xn around x, the Hessian

Hx(f) =

(
∂2f

∂xi∂xj

)
1≤i,j≤n

is invertible. If x is nondegenerate, its index λ is defined as the number of negative
eigenvalues of Hx(f), which does not depend on the choice of coordinates. If each
critical point of f is nondegenerate, then f is called a Morse function.

Lemma 3.2 (Morse Lemma, [13, §2.2]). Let f : M → R be a smooth function and
x ∈M a nondegenerate critical point of f with index λ. Then there exist local coordinates
x1, . . . , xn centered at x (so (0, . . . , 0) = x) such that

f(x1, . . . , xn) = f(x)− x2
1 − · · · − x2

λ + x2
λ+1 + · · ·+ x2

n.

The following two theorems then allow one to determine the homotopy type of a
(compact) smooth manifold.

Theorem 3.3 ([13, §3.1]). Let f : M → R be a smooth function, and for c ∈ R define the
sublevel set M

c
= f−1((−∞, c]). Assume we have a, b ∈ R, a < b, such that f−1([a, b])

is compact and does not contain any critical points of f . Then the sublevel sets M
a

and

M
b

are diffeomorphic, and M
a

is a deformation retract of M
b
.

Theorem 3.4 ([13, §3.2, §3.4]). Let f : M → R be a smooth function, x ∈ M a
nondegenerate critical point of f with index λ. Set f(p) = c, let ε > 0 and assume
f−1[c − ε, c + ε] is compact and does not contain any other critical points of f . Then
for all ε sufficiently small, M c+ε has the homotopy type of M c−ε with a λ-cell attached.
Furthermore, M c is a deformation retract of M c+ε.

From here onwards, let (M2n, ω, Tn, µ) be a fixed symplectic toric manifold. Let
X ∈ t be a generic direction so that {exp(tX) : t ∈ R} is a dense subgroup of Tn. Define
f : M → R by f(p) = 〈µ(p), X〉, where we recall that 〈·, ·〉 denotes the natural pairing
t∗ × t→ R.
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p2 p1

p3p4

X

Figure 3.1.: The moment polytope corresponding to the k-th Hirzebruch surface Wk.
The red lines indicate the level sets of the pairing 〈·, X〉 : (R2)∗ → R, where
X is the vector as depicted. The blue arrows at each corner pi indicate the
direction of the vectors u ∈ Z2 such that the edges at pi are of the form
pi − tu, with t ≥ 0.

Theorem 3.5. The function f = 〈µ,X〉 is a Morse function, whose critical points are
precisely the fixed points of the torus action. Furthermore, each critical point v ∈M has
even index: if the edges meeting at µ(v) of the form µ(v)− tui for t ≥ 0 and ui ∈ Zn for
i = 1, . . . , n, then the index of v is determined as twice the number of ui with 〈ui, X〉 > 0.

Definition 3.6. Let ui ∈ Zn be as in Theorem 3.5. Then the edge with direction ui is
called a negative edge, relative to X, if 〈ui, X〉 > 0. Similarly, if 〈ui, X〉 < 0, then the
edge with direction ui is referred to as a positive edge, relative to X.

Example 3.7 (Hirzebruch surfaces). Let k > 0 be an integer and let Wk be the k-th
Hirzebruch surface, cf. Example 2.2.3. The moment polytope for Wk is the convex hull
of p1 = (0, 0), p2 = (−(k + 1)/2, 0), p3 = (0,−1/2) and p4 = (−1/2,−1/2), as shown
in Figure 3.1. Let X be a small clockwise rotation of (−1, 0) ∈ R2; then the red lines
indicate the level sets of 〈·, X〉 : (R2)∗ → R. At each corner pi, the blue arrows indicate
(the directions of) the u1, u2 associated to that corner; for instance, at p4, the arrows
point in the direction of (k,−1) and (−1, 0). Theorem 3.5 says that the index at the
critical point corresponding to each pi is twice the number of blue arrows along which
the evaluation with X would increase; so for p1, . . . , p4, the indices are 0, 2, 2 and 4,
respectively.

Proof of Theorem 3.5. First observe that ω(X#, ·) = d〈µ,X〉 = df by the definition of
the moment map. Therefore, for each p ∈M , dfp is zero only when ω(X#(p), ·) is zero,
which is true if and only if X#(p) is zero, by nondegeneracy of the symplectic form.

Now assume v is a critical point of f . We show that v must be a fixed point of the
action. Note that since X#(v) = 0, for each s ∈ R we also have

X#(exp(sX)v) =
∂

∂t
(exp(tX) exp(sX)v) =

∂

∂t
(exp(sX) exp(tX)v)

= dv(exp(sX))X#(v) = 0,

16



where we view exp(sX) as a map M → M by left-multiplication. Therefore the map
R → M , s 7→ exp(sX)v has zero derivative everywhere and must be constant. In
particular, as exp(0X)v = v, exp(tX)v = v for all t ∈ R. By density of the subgroup
generated by X in Tn, we conclude that every g ∈ Tn has gv = v. The other direction is
simpler: if v is a fixed point of the torus action, then exp(tX)v = v is the constant curve,
and so X#(v) = 0. Now it remains to check that each critical point is nondegenerate,
and of even degree. Fix a critical point v ∈ M of f , and let the edges meeting at µ(v)
be of the form µ(v) − tui, t ≥ 0, for u1, . . . , un ∈ Zn. By Theorem 2.2.5, there exist
local coordinates x1, . . . , xn, y1, . . . , yn centered at v (i.e., v corresponds to 0) such that
ω =

∑
i dxi ∧ dyi, with zj = xj + iyj such that

µ(z1, . . . , zn) = µ(v)− 1

2

n∑
j=1

|zj |2uj .

In this local model, we see that

f(z1, . . . , zn) = 〈µ(v), X〉 − 1

2

n∑
j=1

|zj |2〈uj , X〉

Therefore f clearly has even index at 0, determined as twice the number of i with
〈ui, X〉 > 0.

Corollary 3.8. Let H∗(−) = H∗(−;Z) denote the (singular) integral cohomology func-
tor. The cohomology ring H∗(M) is zero in odd degree, and is torsion-free. Furthermore,
Hk(M) is nonzero whenever 0 ≤ k ≤ 2n is even, with rank equal to the number of critical
points of f of index k.

Proof. This is Morse’s lacunary principle: the indices of the critical points of f do not
contain any consecutive integers, and hence the rank of Hk(M) is equal to the number
of critical points of f with index k. To see this, assume we have chosen X such that
f = 〈µ,X〉 has different critical values for each fixed point v of the torus action. Label
the critical values c1 < · · · < cl, and the corresponding indices by λ1, . . . , λl. We now
proceed by induction on the critical values, with ε > 0 small enough: M

c1−ε = ∅, and so
H∗(M

c1−ε) = 0, which is torsion-free and zero in odd degree. Now for each 1 ≤ j ≤ l,

the long exact sequence for the pair (M
cj+ε,M

cj−ε) is

· · · → H∗(M
cj+ε,M

cj−ε)→ H∗(M
cj+ε)→ H∗(M

cj−ε)→ H∗+1(M
cj+ε,M

cj−ε)→ · · ·

By Theorem 3.4, Hk(M
cj+ε,M

cj−ε) is zero if k 6= λj , and otherwise it is Z. Furthermore,

by the induction assumption, Hk(M
cj−ε) is zero for k = λj − 1, λj + 1. Therefore the

long exact sequence splits into short exact sequences, and Hk(M
cj+ε) ∼= Hk(M

cj−ε) if
k 6= λj . On the other hand, if k = λj , then we have a short exact sequence

0 Hλj (M
cj+ε,M

cj−ε) Hλj (M
cj+ε) Hλj (M

cj−ε) 0.
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Since cj is a critical value of index λj , H
λj (M

cj+ε,M
cj−ε) ∼= Z, which is torsion-free. Fur-

thermore, by the induction hypothesis, Hλj (M
cj−ε) is torsion-free, and so Hλj (M

cj+ε)

is torsion-free as well1. Moreover, the rank of Hλj (M
cj+ε) is one plus the rank of

Hλj (M
cj−ε). Theorem 3.3 gives Hk(M

cj+ε) ∼= Hk(M
cj+1−ε). Induction now gives the

claimed result for Hk(M
cl+ε), and M

cl+ε = M .
The fact that Hk(M) is nonzero whenever 0 ≤ k ≤ 2n is even then follows from either

considerations of the structure of the moment polytope of M , or one may appeal to
the fact that M is symplectic; the latter fact gives that the k-th exterior power of the
symplectic form is cohomologically nontrivial for every 0 ≤ k ≤ n (see e.g. [6]).

1Given a short exact sequence 0 → A → B → C → 0 of abelian groups, if A,C are torsion-free, then
B is as well. Indeed, suppose x ∈ B and nx = 0 for n 6= 0; then the image of nx is zero in C, so
the image of x is zero in C (since C is torsion-free). Therefore x is in the image of A, say x is the
image of y ∈ A. Then ny is mapped to 0 ∈ B, but A→ B is injective, so ny must be zero. Since A
is torsion-free, y = 0, and x = 0 as well.
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4. Equivariant cohomology

4.1. Introduction

In the previous chapter, we determined the rank of degree of the cohomology ring of a
given symplectic toric manifold (M2n, ω, Tn, µ). However, determining the ring structure
(i.e., the cup product of any two generators) of H∗(M) is a more delicate matter. In this
chapter, we compute the equivariant cohomology[3][2], a version of cohomology which
remembers the torus action (or more generally any group action), and then we relate
the ring structure on equivariant cohomology to that of the original cohomology ring.

Definition 4.1.1. Let G be a compact Lie group. A locally trivial principal G-bundle
over a paracompact Hausdorff space X consists of a fiber bundle π : P → X with
a continuous right G-action, such that there is an open covering {Uα}α∈A of X and
homeomorphisms φα : Uα ×G→ π−1(Uα) with

1. φα(p, g) = φα(p, e)g for g ∈ Uα, g ∈ G, and

2. πφα = pUα where pUα is the projection Uα ×G→ Uα.

A universal G-bundle is then a principal G-bundle EG → BG with EG (weakly) con-
tractible, that is, all homotopy groups of EG vanish. The space BG is known as a
classifying space for G. Furthermore, any two classifying spaces are (weakly) homotopy
equivalent. For more information, see for instance [11].

Definition 4.1.2. Let M be a topological space endowed with a continuous right G-
action. Then G acts freely on M × EG with the diagonal action, given by

(p, x)g = (pg, xg).

We denote the quotient space (M × EG)/G by M ×G EG, and define the equivariant
cohomology H∗G(M) as H∗(M ×G EG).1 If {p} is a single-point space with the trivial
G-action, then {p} ×G EG ∼= EG/G ∼= BG, and so H∗G({p}) ∼= H∗(BG). Given any
space M with a continuous G-action, the unique map M → {p} is then G-equivariant,
and hence defines a map H∗G({p})→ H∗G(M) (of rings). Therefore H∗G(M) is a module
over H∗G({p}), and we shall abbreviate the latter by H∗G.

Example 4.1.3. Set G = T 1. Let C∞ be the complex vector space of all tuples
(z0, z1, . . . ) where only finitely many zi are nonzero. Then

S∞ = {(z0, z1, . . . ) ∈ C∞ : |z|2 = 1},
1Note that some authors define M ×G EG to be the quotient of EG ×M by the equivalence relation

(eg, x) ∼ (e, g−1x), where M is endowed with a left-action rather than a right-action.
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is contractible2, and admits a T 1-action via

u · (z0, z1, . . . ) = (uz0, uz1, . . . )

where u ∈ T 1. The quotient S∞/T 1 is the complex projective space CP∞ consisting
of lines in C∞, and the quotient map π : S∞ → CP∞ has the structure of a principal
T 1-bundle. Therefore π : S∞ → CP∞ is a universal T 1-bundle, and we will henceforth
write ET 1 = S∞, BT 1 = CP∞. If we let T 1 act trivially on a single point {p}, then

H∗T 1({p}) = H∗({p} ×T 1 ET 1) ∼= H∗(BT 1) = H∗(CP∞) = Z[c1(τ)],

where τ → CP∞ is the tautological vector bundle, and c1(τ) is the first Chern class of
τ .

Remark 4.1.4. For any topological group G, there exists a universal G-bundle EG→
BG [11, Ch. 4]. We will only be interested in ETn → BTn for n ≥ 0, and we have
constructed ET 1 → BT 1 above. For n > 1, we then set ETn = (ET 1)n and BTn =
(BT 1)n.

Example 4.1.5. Let Tn act trivially on a point p. Then, if πi : ETn = (ET 1)n → ET 1

denotes the projection on the i-th coordinate, we obtain a map

πi : {p} ×Tn ETn → {p} ×T 1 ET 1.

Then H∗Tn({p}) = H∗((CP∞)n), and we identify

H∗((CP∞)n) = Z[x1, . . . , xn]

where xi = π∗i (c1(τ)) = c1(π∗i (τ)) is the pullback of our earlier choice of generator for
H∗(CP∞).

Remark 4.1.6. Many basic properties of cohomology still remain valid for equivariant
cohomology, as long as all the data is compatible with the G-action. Some examples
include:

• If X, Y are spaces with continuous G-actions and f : X → Y is a G-equivariant
continuous map, then we obtain a ring morphism f∗ : H∗G(Y )→ H∗G(X). Further-
more, if f ′ : X → Y is another G-equivariant map and H : X × [0, 1] → Y is a
homotopy between f and f ′ with H(xg, ·) = H(x, ·)g for all g ∈ G, then f∗ = (f ′)∗

as maps H∗G(Y )→ H∗G(X).

• If X is a space with a continuous G-action and A a G-invariant subspace, then one
can define the relative equivariant cohomology H∗G(X,A) = H∗(X ×G EG,A ×G
EG). This gives rise to a long exact sequence in equivariant cohomology.

2Write r : S∞ → S∞ for the right-shift map given by r(z0, z1, . . . ) = (0, z0, z1, . . . ), and let c : S∞ →
S∞ be the constant map c(z) = (1, 0, . . . ). Then the identity on S∞ is homotopic to r, and r
is homotopic to c, with homotopies between these maps given by taking convex combinations and
dividing by their norm.
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• The excision theorem still holds: if X is a space with a continuous G-action, A a
G-invariant subspace and U ⊂ X a G-invariant subspace such that the closure of
U is in the interior of A, then the inclusion map (X \ U,A \ U)→ (X,A) induces
an isomorphism in equivariant cohomology.

We now move on to equivariant (complex) vector bundles and their equivariant Euler
classes.

Definition 4.1.7. Let π : E → X be a rank k complex vector bundle over a (paracom-
pact) Hausdorff space X, such that

• we have a (left) Tn-action on both E and X,

• π is Tn-equivariant, and

• for x ∈ X and u ∈ Tn, the map Ex → Eux given by left-multiplication by u is
linear.

Then π : E → X is called a (Tn-)equivariant (complex) vector bundle over X.
Given such an equivariant vector bundle π : E → X the natural map πT : E×T ET →

X ×T ET gives E ×T ET the structure of a rank k complex vector bundle, by Lemma
A.2. Since X ×T ET is paracompact, there exists a Thom class

u ∈ Hk(E ×T ET,E ×T ET − s0(X)×T ET ) = Hk
T (E,E − s0(X))

where s0 : X → E is the zero section of E [14, Thm. 9.1, Lem. 14.1]. If i : (E, ∅) →
(E,E−s0(X)) denotes the inclusion, the equivariant Euler class eT (E) ∈ Hk

T (X) is then
defined as

eT (E) = s∗0(i∗u).

Definition 4.1.8. Let X be a (paracompact) Hausdorff space with a left Tn-action, and
k ≥ 0 an integer. An equivariant complex vector bundle π : E → X of rank k is called
trivial if there exists an equivariant isomorphism of vector bundles E → X ×Ck, where
the Tn-action on X × Ck is given by acting on the first component.

Lemma 4.1.9. The equivariant Euler class has the following properties:

1. Let X,Y be two spaces with Tn acting on both, and let f : X → Y be an equivariant
continuous map. If E → Y is an equivariant rank k complex vector bundle over
Y , then f∗E is an equivariant complex vector bundle over X, and

f∗eT (E) = eT (f∗E) ∈ Hk
T (X).

2. If j : X → X ×T ET denotes the inclusion of X as the “base fiber” in X ×T ET ,
then j∗(eT (E)) = e(E), where e(E) is the Euler class of E.

Proof. The first part follows from the fact that the pullback of a Thom class is again a
Thom class for the pullback of the original bundle. The second part is then a consequence
of the first part, along with the observation that E ∼= j∗(E ×T ET ) as vector bundles
over X.
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Example 4.1.10. As a first example of a T 1-equivariant vector bundle, we consider the
standard T 1-action on C. Let π : C → {p} be the complex line bundle over a point,
and let T 1 = S1 act linearly on C by multiplication. Note that although this bundle is
trivial as a topological vector bundle, it is not trivial as an equivariant bundle. The map
πT : C×T ET → {p} ×T ET given by

πT [(v, x)] = [(p, x)].

is well-defined, because u · (v, x) = (uv, ux) is sent to (p, ux) under the projection, which
is equivalent to (p, x). The fiber over [(p, x)] admits a canonical vector space structure
because T 1 acts linearly on C. Therefore πT is a vector bundle, and is actually isomorphic
to the dual tautological bundle τ∗ → CP∞. To see this, define a map φ : C×T ET → τ∗

by φ([(v, x)]) = (f, [x]), where f : [x] → C is C-linear such that f(x) = v. Then
f(ux) = uf(x) = uv for all u ∈ T 1, and f is independent of the choice of representative
for [(v, x)], so φ is well-defined. It is easy to check φ is an isomorphism.

Lemma 4.1.11. Let k ∈ Z and define a T 1-action on the vector bundle Ek = C→ {p}
by

u · v = ukv, u ∈ T 1, v ∈ C.

Then the vector bundle Ek ×T ET → {p} ×T ET is isomorphic to the (−k)-th tensor
power of the tautological bundle τ → CP∞. Here we view the (−1)-th tensor power of τ
as the dual tautological bundle τ∗.

Proof. First assume k ≥ 0. Then define φ : Ek ×T ET → (τ∗)⊗k by sending the
equivalence class [(v, x)] to the unique C-linear map f : [x]⊗k → C with f(x⊗· · ·⊗x) = v.
This is well-defined and an isomorphism.

On the other hand, if k < 0, define φ : Ek×T ET → τ⊗(−k) by sending the equivalence
class [(v, x)] ∈ Ek ×T ET to v(x ⊗ · · · ⊗ x) ∈ [x]⊗(−k). This is well-defined: if u ∈ T 1,
then the representative (ukv, ux) of [(v, x)] is sent to

ukv(ux⊗ · · · ⊗ ux) = uku−kv(x⊗ · · · ⊗ x) = v(x⊗ · · · ⊗ x).

Corollary 4.1.12. Let k ∈ Z and let T 1 act on the equivariant vector bundle Ek = C→
{p} by u · v = ukv for u ∈ T 1 and v ∈ C. Then the equivariant Euler class eT (Ek) is

eT (Ek) = −kx ∈ Z[x] = H∗T ({p}).

Proof. Observe that Ek is a line bundle, so that Ek×T ET → {p}×T ET is a line bundle
as well. Then

eT (Ek) = e(Ek ×T ET ) = c1(Ek ×T ET ) = c1((τ)⊗(−k)) = −kc1(τ) = −kx,

noting that we have defined x ∈ H∗T ({p}) to be the first Chern class of the tautological
bundle.
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Corollary 4.1.13. Let λ1, . . . , λn ∈ Z and let Tn act on E = C→ {p} by

(u1, . . . , un) · v =

(
n∏
i=1

uλii

)
v.

Then the equivariant Euler class eT (E) ∈ H∗T ({p}) = Z[x1, . . . , xn] is given by

eT (E) =
n∑
i=1

(−λi)xi.

Proof. Let Ei = C → {p} be as before with T 1-action given by u · v = uλiv, and let
πi : ETn = (ET 1)n → ET 1 be the projection on the i-th coordinate. Then

eTn(E) = e(E ×Tn ETn) = e(⊗ni=1π
∗
i (Ei ×T 1 ET 1))

=
n∑
i=1

π∗i e(Ei ×T 1 ET 1) =
n∑
i=1

π∗i (−λix) =
n∑
i=1

−λixi.

4.2. Equivariant cohomology of toric manifolds

Example 4.2.1. Let (CP1, ωFS , T
1, µ) be complex projective space with its standard

T 1-action and moment map. We write M = CP1, T = T 1, and compute the equivariant
cohomology ring H∗T (M) as follows. Let X ∈ t be nonzero and define f : M → R by
f(p) = 〈µ(p), X〉. Then f is a Morse function by Theorem 3.5, and its critical points are
the fixed points v0 = [1 : 0] and v1 = [0 : 1]. Assume a = f(v0) < f(v1) = b; otherwise
replace X by −X. If J is the canonical almost-complex structure on M = CP1, then
the Riemannian metric g(u, v) = ω(u, Jv) is T -invariant. Recall that for c ∈ R, we
write M

c
= f−1((−∞, c]). Then since g and f are both T -invariant, the gradient ∇f is

T -invariant as well. Therefore a standard Morse-theoretical argument (as for Theorem

3.3) shows that if a < c < d < b, then H∗T (M
c
) ∼= H∗T (M

d
), because M c is an equivariant

deformation retract of Md. Now, for instance by using Theorem 2.2.5, {v0} can be seen
to be an equivariant deformation retract of M

c
for a < c < b with c − a small enough,

so H∗T (M
c
) ∼= H∗T ({v0}) = Z[x0].

We consider the long exact sequence in equivariant cohomology for the pair (M
b
,M

b−ε
),

given by

· · · Hk−1
T (M

b−ε
) Hk

T (M
b
,M

b−ε
) Hk

T (M
b
) Hk

T (M
b−ε

) · · ·

for ε > 0 small enough. Let ν denote the negative normal bundle at v1; then νv1 =
Tv1CP1, and we have a linear T -action on νv1 , by differentiating the action on CP1. By
equivariant excision and an equivariant form of the tubular neighbourhood theorem, we
have an isomorphism

H∗T (M
b
,M

b−ε
) ∼= H∗T (νε, ∂νε),
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where νε denotes the normal vectors of length at most ε (with respect to the metric g).
With equivariant excision and equivariant homotopy invariance we obtain an isomor-
phism

H∗T (νε, ∂νε) ∼= H∗T (ν, ν − {0})

where {0} denotes the zero section of ν. After identifying νv1 with C, the T -action
is given by multiplication with the conjugate. Therefore, its equivariant Euler class
eT (ν) = x1, where H∗T ({v1}) = Z[x1]. We conclude that the image of the natural map

H∗T (M
b
,M

b−ε
)→ H∗T ({v1}) is the free H∗T -submodule generated by x1, and in particular

that this map is an injection.

We now return to the long exact sequence. Above we have determined both H∗T (M
b−ε

)

and H∗T (M
b
,M

b−ε
), and both only live in even degrees (as x0, x1 are both degree 2).

Since we have a T -equivariant inclusion ({v1, v0}, {v0}) → (M
b
,M

b−ε
), we obtain a

morphism on the respective long exact sequences, and hence for each k ≥ 0 a morphism
of short exact sequences

0 Hk
T (M

b
,M

b−ε
) Hk

T (M
b
) Hk

T (M
b−ε

) 0

0 Hk
T ({v1, v0}, {v0}) Hk

T ({v1, v0}) Hk
T ({v0}) 0

Since the left and right vertical maps are injective, the middle vertical map is injective

as well. To determine H∗T (M
b
) (as a ring) it therefore suffices to determine its image

in Hk
T ({v1, v0}). We may identify Hk

T ({v1, v0}, {v0}) with Hk
T ({v1}) via excision, so the

image of the left vertical map is the ideal (x1). Furthermore, the right vertical map is
an isomorphism.

We now have a short exact sequence of H∗T -modules

0 H∗T 〈eT (ν)〉 H∗T (M
b
) H∗T (M

b−ε
) 0

where H∗T 〈eT (ν)〉 ⊂ H∗T ({v1}) and H∗T (M
b−ε

) are both free modules, with generators

eT (ν) and 1, respectively. Therefore, H∗T (M
b
) is a free module, with two generators: the

image α of eT (ν) under the inclusion, and a lift of 1 ∈ H∗T (M
b−ε

) along the surjection.

But 1 ∈ H∗T (M
b
) is already a lift of 1, since the last map is a morphism of rings as well.

Therefore, the image of the injection H∗T (M
b
)→ H∗T ({v1, v0}) is the free H∗T -submodule

generated by 1 = (1, 1) and α|{v1,v0} = x1.
Note that H∗T ({v1, v0}) is the direct sum of the rings Z[x0]⊕Z[x1]. Therefore the image

of 1 ∈ H∗T (M
b
) is the pair (1, 1); in particular, if x ∈ H∗T = Z[x], then x · 1 ∈ H∗T (M

b
)

is sent to (x0, x1) = x0 + x1 ∈ H∗T ({v1, v0}). As a ring, H∗T (M
b
) is isomorphic to the

polynomial ring Z[y0, y1]/(y0y1): define a map Z[y0, y1] → H∗T (M
b
) by sending y1 7→ α

and y0 7→ x · 1− α.
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Example 4.2.2. Consider CP2 with its standard T 2-action, and let v0 = [1 : 0 : 0],
v1 = [0 : 1 : 0], v2 = [0 : 0 : 1] be the fixed points of the action. We write H∗T ({vi}) =
Z[xi, yi] for the canonical choices of generators xi, yi. Choose X ∈ t such that v0 is the
first critical point, v1 is the second, and v2 is the last, and write f(vi) = ci. Let ν be the
negative normal bundle at v1. Then we have a T 2-representation on ν = C→ v1, where
the first factor acts nontrivially by multiplication (with exponent 1) and the second
factor acts trivially. Therefore ν ×T ET has equivariant Euler class x1 in Z[x1, y1]. As
in the previous example, we see

H∗T (M
c1) = H∗T 〈1, x1〉 ⊆ H∗T ({v1, v0}),

with the additional note that H∗T = Z[x, y]. However, the same argument does not give
H∗T (M

c2), as it is not clear what the image under H∗T (M
c2) → H∗T ({v2, v1, v0}) of any

lift of x1 should be. In the computation for CP1, this was not an issue, as we only had
to determine the image of any lift of 1.

Definition 4.2.3. Let X ∈ t be such that {exp(tX) : t ∈ R} is a dense subgroup of Tn,
and set f = 〈µ,X〉. Let v ∈M be a fixed point of the Tn-action, and let u1, . . . , un ∈ Zn
be such that the edges meeting at µ(v) are of the form µ(v) − tui for small t ≥ 0 (see
Theorem 2.2.6). Then flow-up face of v relative to X is defined to be the smallest face
in the polytope containing each edge µ(v)− tui which is positive relative to X, that is,
〈ui, X〉 < 0.

Example 4.2.4 (Hirzebruch surfaces). Let k > 0 and let Wk be the k-th Hirzebruch
surface (Example 2.2.3), with its standard T 2-action and moment map µ. The moment
polytope is the convex hull of the points p1 = (0, 0), p2 = (−(k+1)/2, 0), p3 = (0,−1/2)
and p4 = (−1/2,−1/2) in (R2)∗, as shown in Figure 4.1. Let X ∈ t be a small clockwise
rotation of the vector (0,−1) as in Example 3.7, so that {exp(tX) : t ∈ R} is a dense
subgroup of T 2. Then the edges meeting at (0, 0) are of the form (0, 0) − tu1 and
(0, 0)− tu2, with u1 = (1, 0) and u2 = (0, 1). For these edges, we have

〈u1, X〉 < 0, 〈u2, X〉 < 0.

Therefore both edges at (0, 0) are positive relative to X, and the flow-up face of (0, 0)
relative to X is the entire polytope. On the other hand, the edges meeting at (0,−1/2)
are of the form (0,−1/2)− tu′i with

u′1 = (1, 0) 〈u′1, X〉 < 0

u′2 = (0,−1) 〈u′2, X〉 > 0

and hence only u′1 is positive relative to X. Therefore, the flow-up face of (0,−1/2)
consists only of the edge from (0,−1/2) to (−1/2,−1/2).

Theorem 4.2.5. Let (M2n, ω, Tn, µ) be a symplectic toric manifold, and let F be the
set of fixed points of the action. Let X ∈ t be such that {exp(tX) : t ∈ R} is a dense
subgroup of T = Tn. For each v ∈ F , if Av is the flow-up face of v relative to X,
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p2 p1

p3p4

X

Figure 4.1.: The moment polytope of the k-th Hirzebruch surface Wk. The flow-up face
for p1 relative to X is the entire polytope, the flow-up face for pi, i = 2, 3,
is the edge from pi to p4, and the flow-up face for p4 consists only of p4.
The blue arrows at each corner indicate the directions of the edges which
are positive relative to X.

we write νv for the normal bundle of µ−1(Av) in M . Then the inclusion-induced map
H∗T (M) → H∗T (F ) is injective, and its image is the free H∗T -submodule of H∗T (F ) with
generators

{eT (νv)|F∩Av : v ∈ F}.

As stated in the introduction, the freeness of H∗T (M) and injectivity of H∗T (M) →
H∗T (F ) is already shown in [3] (for the case of cohomology with real coefficients), but
their proof depends on a general localization theorem. Our proof is based on the following
theorem, which we prove in the next section.

Theorem (4.3.8). Let N be the preimage of a face of µ(M), and let ν be its normal
bundle. Then there exists a T -equivariant complex vector bundle E → M such that
E|N ∼= ν (as equivariant vector bundles), and such that eT (E)|v = 0 whenever v ∈ F is
not in N .

The significance of the theorem is that it solves the problem we encounter in Example
4.2.2 when trying to build up M inductively with Morse theory: it provides lifts of the
equivariant Euler classes of the negative normal bundles at each critical point.

Proof of Theorem 4.2.5. Let X ∈ t be such that {exp(tX) : t ∈ R} is a dense subgroup
of T , and let f : M → R be given by f(p) = 〈µ(p), X〉. We may assume without loss
of generality that each v ∈ F has distinct image under f , by slightly perturbing X. By
Theorem 3.5, f is a Morse function, whose set of critical points is F . Label the fixed
points v1, . . . , vr, ordered such that the critical values f(vi) = ci form an increasing
sequence. Recall that the sublevel sets of f are defined as M

c
= f−1((−∞, c]), which

are T -invariant, since f is T -invariant. We write F = {v1, . . . , vr} for the set of fixed
points, set F c = M

c ∩ F for c ∈ R, and let js : F c → M
c

be the inclusion map for
s = 1, . . . , r. We now prove by induction, for each s = 1, . . . , r, and for ε > 0 small
enough (with cs+1 − cs > 2ε for s = 1, . . . , r − 1):

1. for odd k, Hk
T (M

cs+ε
) is zero,
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2. the inclusion-induced map j∗s : H∗T (M
cs+ε

)→ H∗T (F cs) is injective, and

3. the image of j∗s is generated, as H∗T -module, by

{eT (Ev)|F cs : v ∈ F cs}

where Ev →M is the extension of the normal bundle of µ−1(Av), the preimage of
the flow-up face of v, obtained from Theorem 4.3.8.

Note that the choice of ε guarantees that each interval [cs − ε, cs + ε] contains only one
critical value of f , and they are pairwise disjoint, so that F cs+ε = F cs . Furthermore, for
s = r, the above three statements give the statement of the theorem.

The base case is s = 1. Since v1 is a fixed point, by Theorem 2.2.5, there exists a local
chart (z1, . . . , zn) centered at v1 such that

f(z1, . . . , zn) = c1 −
1

2

n∑
i=1

〈ui, X〉|zi|2

where the ui ∈ Zn are the edges meeting at µ(v1). Since M
c1 = {v1} (c1 is the

unique minimum of f), we may assume ε is small enough such that the chart con-

tains all of M
c1+ε

. From the local description, scaling to the origin gives an equivariant
deformation retraction of M

c1+ε
to {v1}. Therefore the inclusion of v1 in M

c1+ε
in-

duces an isomorphism H∗T (M
c1+ε

) ∼= H∗T ({v1}), and Hk
T (M

c1+ε
) is zero for k odd, and

j∗1 : H∗T (M
c1+ε

) → H∗T (F c1) is an isomorphism, hence injective. For the last part, it
suffices to check that the unit 1 ∈ H∗T ({v1}) is the equivariant Euler class of the normal
bundle of the flow-up face of v1. But the flow-up face of v1 is µ(M), since there are only
“positive edges” at v1; therefore the normal bundle has rank 0, and eT (0) = 1 ∈ H∗T ({v1})
is the equivariant Euler class of the trivial bundle.

Now assume that the above three statements hold for s. First, since f is T -invariant
and [cs + ε, cs+1 − ε] does not contain any critical values of f , the inclusion M

cs+ε →
M

cs+1−ε induces an isomorphism in equivariant cohomology. The equivariant long exact
sequence for the pair (M

cs+1+ε
,M

cs+1−ε) is

· · · Hk−1
T (M

cs+1−ε)

Hk
T (M

cs+1+ε
,M

cs+1−ε) Hk
T (M

cs+1+ε
) Hk

T (M
cs+1−ε) · · ·

and by assumption, Hk
T (M

cs+1−ε) ∼= Hk
T (M

cs+ε
) is zero whenever k is odd. Therefore,

determining H∗T (M
cs+1+ε

,M
cs+1−ε) is now the key to the induction step.

Lemma 4.2.6. Hk
T (M

cs+1+ε
,M

cs+1−ε) is zero whenever k is odd. Moreover, if

i : (F cs+1 , F cs)→ (M
cs+1+ε

,M
cs+1−ε)
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denotes the inclusion, and ν is a maximal negative-definite subspace of the Hessian of f
at vs+1, then the composition

H∗T ({vs+1}) H∗T (F cs+1 , F cs) H∗T (M
cs+1+ε

,M
cs+1−ε)∼= i∗

of i∗ and the excision isomorphism is injective, and has image the free H∗T -module on
eT (ν) 6= 0.

Proof. Recall that we have a T -invariant metric g on M . Let ε′ > 0 be small enough
such that on νε′ = {w ∈ ν : ‖w‖g ≤ ε′}, the exponential map exp : νε′ →M is injective.

Then for ε > 0 sufficiently small, exp(∂νε′) ⊂M
cs+1−ε. Consider the diagram

H∗T (ν, ν − s0({vs+1})) H∗T (νε, ∂νε) H∗T (M
cs+1+ε

,M
cs+1−ε)

H∗T (ν)

H∗T ({vs+1}) H∗T (F cs+1 , F cs)

∼=

j∗
(exp)∗

s∗0

∼=

where s0 : {vs+1} → ν denotes the zero section, jε : νε → (νε, ∂νε) the inclusion. The
map (exp)∗ is an isomorphism; this is a direct consequence of the standard argument
for Theorem 3.4, along with the equivariant local model from Theorem 2.2.5 to ensure
that all the deformation retractions are equivariant. Since ν is an equivariant complex
vector bundle, ν×T ET is a complex vector bundle over {vs+1}×T ET , and hence has a
Thom class t ∈ H2λ

T (ν, ν− s0({vs+1})), with λ the rank of ν as a complex vector bundle.
Then if π : ν → {vs+1} denotes the projection, by the Thom isomorphism theorem [14,
Thm. 9.1], the map ψ : H∗T ({vs+1})→ H∗+2λ

T (ν, ν − s0({vs+1})) given by

ψ(y) = π∗(y) ∪ t

is a bijection. But since {vs+1} is a single-point space, H∗T ({vs+1}) ∼= H∗T , and the Thom
isomorphism theorem gives that H∗T (ν, ν − s0({vs+1})) is a free H∗T -module on a single
generator t, that is,

H∗T (ν, ν − s0({vs+1})) ∼= H∗T 〈t〉.

As s∗0(j∗(t)) = eT (ν) (by definition), the image of s∗0 ◦ j∗ is therefore the submodule of
H∗T ({vs+1}) generated by eT (ν), and s∗0 ◦ j∗ is also injective, since eT (ν) is nonzero and
H∗T has no zero divisors. Note that since vs+1 has even index, ν has even real dimension;

hence Hk
T (M

cs+1+ε
,M

cs+1−ε) is zero whenever k is odd. Since the diagram of topological
maps inducing the above diagram commutes, the above diagram commutes as well, and
the result follows.

From the long exact sequence we now obtain that Hk
T (M

cs+1+ε
) is zero whenever k is

odd. For even k, the inclusion J : (F cs+1 , F cs) → (M
cs+1 ,M

cs
) induces a morphism of

28



short exact sequences

0 Hk
T (M

cs+1+ε
,M

cs+1−ε) Hk
T (M

cs+1+ε
) Hk

T (M
cs+1−ε) 0

0 Hk
T (F cs+1 , F cs) Hk

T (F cs+1) Hk
T (F cs) 0

J∗ j∗s+1 j∗s

The previous lemma shows that J∗ is injective, and j∗s is injective by the induction
hypothesis; therefore by the Five Lemma, j∗s+1 is injective as well.

The previous diagram may also be considered for all k at the same time to obtain a
short exact sequence

0 H∗T (M
cs+1+ε

,M
cs+1−ε) H∗T (M

cs+1+ε
) H∗T (M

cs+1−ε) 0

ofH∗T -modules, with bothH∗T (M
cs+1+ε

,M
cs+1−ε) andH∗T (M

cs+1−ε) free modules. There-

fore H∗T (M
cs+1+ε

) is a free H∗T -module as well, with generators determined by the images

of the generator of H∗T (M
cs+1+ε

,M
cs+1−ε), and lifts of the generators of H∗T (M

cs
). The

generator for H∗T (M
cs+1+ε

,M
cs+1−ε), when restricted to H∗T (F cs+1 , F cs) ∼= H∗T ({vs+1}),

gives the equivariant Euler class eT (ν), where ν is a negative eigenspace of the Hessian
of f at vs+1. Recall that Avs+1 is the flow-up face of vs+1; then the normal bundle of
µ−1(Avs+1) at vs+1 is (isomorphic to) ν. Note that µ−1(Avs+1) ∩ F cs+1 = {vs+1}, since
Avs+1 is the flow-up face of vs+1. Therefore, if Evs+1 is the extension of the normal

bundle of µ−1(Avs+1) , then eT (E)|
M
cs+1+ε defines an element of H∗T (M

cs+1+ε
). This is

also the image of the generator of H∗T (M
cs+1+ε

,M
cs+1−ε): we have

eT (Evs+1)|F cs+1 = eT (ν) ∈ H∗T (F cs+1).

To see this, note that µ−1(Avs+1) ∩ F cs+1 = {vs+1}, that the fiber of Evs+1 at v ∈ F
with v 6∈ Avs+1 has trivial equivariant Euler class, and that the fiber of Evs+1 at vs+1

is that of the normal bundle of µ−1(Avs+1), which is precisely ν. This together with

the fact that the generator of H∗T (M
cs+1+ε

,M
cs+1−ε) is sent to eT (ν) in H∗T (F cs+1), and

the injectivity of j∗s+1 : H∗T (M
cs+1) → H∗T (F cs+1), give that the image of the gener-

ator of H∗T (M
cs+1+ε

,M
cs+1−ε) restricts to eT (ν). On the other hand, by the induc-

tion hypothesis, we already have generators for H∗T (M
cs+1−ε) in terms of restrictions of

equivariant Euler classes of vector bundles over M ; and these directly lift to classes in
H∗T (M

cs+1+ε
).

We have now completed the proof of Theorem 4.2.5. Note that we also have the
following result, relating the equivariant cohomology to the ordinary cohomology of M .

Theorem 4.2.7. Let j : M → M ×T ET denote the inclusion. Then the map j∗ :
H∗T (M)→ H∗(M) is surjective, and H∗(M) is generated as an abelian group by the set
of e(Ev), v ∈ F . Furthermore, for any element r ∈ H∗T of degree at least 2, we have
j∗(reT (Ev)) = 0.
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Proof. We proceed as in the proof of Theorem 4.2.5: we choose a generic direction X ∈ t,
and use induction on the fixed point set F , which are the critical points of f = 〈µ,X〉. For

each critical value cs the map j∗ : H∗T (M
cs+ε

,M
cs−ε

)→ H∗(M
cs+ε

,M
cs−ε

) is surjective.
To see this, note that if ν is the maximal negative-definite subspace of the Hessian of f
at vs, then pulling back the Thom class for ν ×T ET along j gives a Thom class for ν.
However, any product of the Thom class for ν ×T ET with an element of H∗T is sent to

0, because H∗(M
cs+ε

,M
cs−ε

) lives only in a single degree (namely the rank of ν).
As before, the long exact sequences in both equivariant and ordinary cohomology for

each pair (M
cs+ε

,M
cs−ε

) contains only zero terms in odd degrees, so that by induction on
the critical points and the Five Lemma, we obtain surjectivity of j∗ : H∗T (M)→ H∗(M),
and the claim on products with elements of H∗T also follows.

Therefore we now have both a surjectionH∗T (M)→ H∗(M), and an injectionH∗T (M)→
H∗T (F ). To compute a product of two elements in H∗(M), it therefore suffices to lift
these elements to H∗T (M) (which we can do by having canonical lifts of the additive gen-
erators of H∗(M)), compute their product in H∗T (F ), and with that deduce the product
in H∗(M). The only obstruction to this procedure is now the fact that we do not yet
know what the image of each generator eT (Ev) of H∗T (M) in H∗T (F ) is, and this is a
problem we solve in the next section (see Theorem 4.3.8).

4.3. Delzant’s construction and vector bundles

In this section, we describe Delzant’s explicit construction of a symplectic toric manifold
from its moment polytope, and use it to construct the bundles that are required for the
proof of Theorem 4.2.5. For more information, we refer the reader to [7]. Let C ⊂ (Rn)∗

be a closed convex polytope, satisfying Delzant’s conditions in Theorem 2.2.6. Let
F1, . . . , Fk be the codimension 1 faces of C; then Delzant’s conditions imply that there
exist vectors v1, . . . , vk ∈ Zn and real numbers λ1, . . . , λk such that

1. The entries of each vi have greatest common divisor 1,

2. Fi = C ∩ {x ∈ (Rn)∗ : 〈x, vi〉 = λi}, where 〈·, ·〉 : (Rn)∗ × Rn → R is the dual
pairing,

3. and

C =
k⋂
i=1

{x ∈ (Rn)∗ : 〈x, vi〉 ≤ λi}.

For each i, the second condition determines vi and λi up to a scalar; the first and
third conditions then uniquely define vi and λi by determining the correct multiple.
Therefore it suffices to establish existence of vi and λi satisfying the above conditions.
Let c ∈ Fi be a corner, and let u1, . . . , un ∈ Zn ⊂ (Rn)∗ be such that the edges at c
are of the form c − tuj , t ≥ 0, where u1, . . . , un form a Z-basis for Zn (see Theorem
2.2.6). Assume without loss of generality that c − tuj ∈ Fi for j = 2, . . . , n, and let
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w1, . . . , wn ∈ Zn be the dual basis to u1, . . . , un. Note that this dual basis is in Zn by
virtue of u1, . . . , un forming a Z-basis for Zn ⊂ (Rn)∗. Then we claim that vi = w1 and
λi = 〈c, w1〉 satisfy the above conditions. The first condition follows directly from the
fact that w1, . . . , wn ∈ Zn form a Z-basis. For the second condition, note that for x ∈ C,
we have x ∈ Fi if and only if x− c is in the span of u2, . . . , un, which holds if and only
if 〈x− c, w1〉 = 0, i.e., 〈x,w1〉 = 〈c, w1〉. The last condition determines the sign of vi; by
assumption, c− tu1 ∈ C for small t ≥ 0, and hence 〈c− tu1, w1〉 = λi − t ≤ λi.

Note that we use a different sign convention for the inequality from Delzant, as we
use different sign conventions for the definition of a moment map. We now proceed with
the actual construction of the corresponding symplectic toric manifold. π : T k → Tn by
viewing T 1 as R/(2πZ), and setting

π([ei]) = [vi],

where e1, . . . , ek denotes the standard basis for Rk. This does in fact define a map
T k → Tn since each vi is a vector with integral entries. Note that dπ : tk → tn is now
given by the matrix with columns v1, . . . , vn, i.e., (dπ)(ei) = vi. We let T k act on Ck in
the standard way, that is, for u = (u1, . . . , uk) ∈ T k and z = (z1, . . . , zk), we set

(u1, . . . , uk)(z1, . . . , zk) = (u1z1, . . . , ukzk).

This action is Hamiltonian with moment map µTk : Ck → (Rk)∗ given by

µTk(z1, . . . , zk) = (λ1, . . . , λk)−
1

2

(
|z1|2, . . . , |zk|2

)
,

where we have represented vectors in (Rk)∗ with respect to the standard basis e∗1, . . . , e
∗
k.

The image of µTk is the cone

imµTk = {(w1, . . . , wk) ∈ (Rk)∗ : wj ≤ λj for all j}.

Now let N denote the kernel of π, let n be its Lie algebra, and let ϕ : n → Rk be the
inclusion map. Its dual ϕ∗ is a map (Rk)∗ → n∗, and the action ofN on Ck is Hamiltonian
with moment map µN = ϕ∗ ◦ µTk . Furthermore, the kernel of ϕ∗ is precisely the image
of (dπ)∗, and we have

kerϕ∗ ∩ imµTk = im(dπ)∗ ∩ imµTk = (dπ)∗(C).

Lemma 4.3.1. Let w = (w1, . . . , wk) = (dπ)∗(w′) for w′ ∈ C. Then wj = λj if and
only if w′ ∈ Fj.

Proof. Note that w′ ∈ Fj if and only if

〈w′, vj〉 = λj ,

and
〈w′, vj〉 = 〈w′, (dπ)(ej)〉 = 〈(dπ)∗(w′), ej〉 = 〈w, ej〉

and the latter is the j-th coordinate of w.
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Lemma 4.3.2. The point 0 ∈ n∗ is a regular value of µN , so M = µ−1
N (0) = µ−1

Tk
((dπ)∗(C))

is a submanifold of Ck.

Proof. For p ∈M , we know µTk(p) is in the kernel of ϕ∗ by definition of µN . Denote the
coordinates on Ck are by zj = xj+iyj , and denote the coordinates on Rk by (w1, . . . , wk),
so that

(dµTk)p =
k∑
j=1

(−xj dxj − yj dyj)
∂

∂wj

which we view as a map TpCk → Tµ
Tk

(p)Rk. Therefore the image of (dµTk)p is the span
of those ∂/∂wj for which zj 6= 0, as it suffices to have at least one of xj and yj non-zero.
We must now show that (dµN )p is surjective.

Recall that dim n = k− n, since it is the kernel of dπ : Rk → Rn (which is surjective),
and hence it suffices to show that the rank of (dµN )p is k−n. Since (dµN )p = (dϕ∗)µ

Tk
(p)◦

(dµTk)p, by the rank-nullity theorem,

dim im(dµN )p = dim im
(

(dϕ∗)µ
Tk

(p)|im(dµ
Tk

)p

)
= dim im(dµTk)p − dim(im(dµTk)p ∩ ker(dϕ∗)µ

Tk
(p)).

Since µTk(p) ∈ (dπ)∗(C), we have µTk(p) = (dπ)∗(w′) for some w′ ∈ C, and hence

ker(dϕ∗)µ
Tk

(p) = im d((dπ)∗)w′

as ϕ : n → Rk is the inclusion of the kernel of dπ : Rk → Rn. Since (dπ)∗ is a linear
map, we identify d((dπ)∗) with (dπ)∗.

Note that for the point p = (z1, . . . , zk) ∈M , zj 6= 0 if and only if the j-th coordinate
of µTk(p) is λj (by the definition of µTk), and by definition of π, this is equivalent to w′

being in the j-th face Fj of C. Now let j1, . . . , jl be the coordinates j for which zj = 0,
and choose js for s = l + 1, . . . , n such that {vjs : s = 1, . . . , n} forms a basis for Rn.
Denote by v∗j1 , . . . , v

∗
jn

the corresponding dual basis for (Rn)∗; we now claim that

V = {(dπ)∗w′v
∗
js : s = l + 1, . . . , n}

is a basis for im(dµTk)p ∩ im(dπ)∗w′ . Since (dπ)∗w′ is injective it suffices to check that the
intersection is the span of V . Observe that for any standard basis vector ejs ∈ Rk and
s′ = 1, . . . , n, we have

〈(dπ)∗w′v
∗
js′
, ejs〉 = 〈v∗js′ , vjs〉 = δss′

so the js’th coordinate of (dπ)∗w′v
∗
js′

is δss′ . As the image of (dµTk)p consists of all vectors
whose j1, . . . , jl’th coordinates are zero, V is contained in im(dµTk)p. Conversely, for
any vector w ∈ im(dµTk)p ∩ im(dπ)∗w′ , say w = (dπ)∗w′(w̄) and s = 1, . . . , l, we have

0 = 〈w, ejs〉 = 〈w̄, vjs〉

so w̄ must be in the span of {v∗js : s = l + 1, . . . , n}.
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Thus we have determined that if l is the number of coordinates of p that is zero, then

dim im(dµTk)p = k − l
dim(im(dµTk)p ∩ ker(dϕ∗)µ

Tk
(p)) = n− l

and hence dim im(dµN )p = k − n, so (dµN )p is surjective.

Lemma 4.3.3. Let M be as in Lemma 4.3.2. Then N acts freely on M , so that
M = M/N is a symplectic manifold of dimension 2n. Furthermore, the remaining
(T k/N)-action on M is Hamiltonian with moment map µ : M → (Rn)∗ defined by
µ([z1, . . . , zk]) = w, where w ∈ (Rn)∗ is the unique w ∈ C such that (dπ)∗(w) =
µTk(z1, . . . , zk). The quotient T k/N is identified with Tn via π, and hence M is a
symplectic toric manifold, with moment polytope C.

Proof. The fact that M is symplectic is an application of symplectic reduction, also
known as the Marsden–Weinstein–Meyer theorem [6, Ch. 23]. The freeness of the N -
action on M is established in [7, 3.2].

We now construct a Tn-equivariant vector bundle over M which restricts to the normal
bundle of a face Fj , and compute the Tn-action of the fiber over each fixed point.

Proposition 4.3.4. Let F1, . . . , Fk be the faces of the polytope as before, and fix i ∈
{1, . . . , n}. Then there exists a Tn-equivariant rank one complex vector bundle E →M
such that

1. E|µ−1(Fi)
∼= νµ−1(Fi), where νµ−1(Fi) denotes the normal bundle of µ−1(Fi) in M ,

and

2. if v ∈ F is a fixed point of the Tn-action, and v 6∈ µ−1(Fi), then Tn acts trivially
on E|v.

3. If v ∈ F is a fixed point with v ∈ µ−1(Fi1 ∩Fi2 ∩· · ·∩Fin), where i1 < i2 < · · · < in
and i = is, then if d1, . . . , dn denotes the standard basis of Rn and we write

dj =
n∑
l=1

bjlvil ,

the weight vector of the Tn-action on E|v = C is (b1s, b2s, . . . , bns).

Before we prove the above proposition, we first prove a small result concerning Delzant’s
construction of M , which is essentially an extension of Lemma 4.3.1.

Lemma 4.3.5. Let p ∈M be a point in M , and suppose p = [z1, . . . , zk]. Then µ(p) ∈ Fi
if and only if zi = 0, and this is independent of choice of representative of p.
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Proof. Note that µ(p) ∈ Fi if and only if µTk(z1, . . . , zk) ∈ (dπ)∗(Fi). Now suppose
x = (x1, . . . , xk) ∈ (dπ)∗(C) is in (dπ)∗(Fi). Then x = (dπ)∗(y) for some y ∈ Fi, and
hence

〈x, ei〉 = 〈(dπ)∗(y), ei〉 = 〈y, (dπ)∗(ei)〉 = 〈y, vi〉 = λi

since y ∈ Fi. Therefore if µTk(z1, . . . , zk) ∈ (dπ)∗(Fi), its i-th coordinate is λi, and hence

λi −
1

2
|zi|2 = λi

by definition of µTk , showing zi = 0.
Conversely, assume zi = 0. Then the i-th coordinate of µTk(z1, . . . , zk) is λi. Since

µTk(z1, . . . , zk) = (dπ)∗(µ(p)), we see that

〈µ(p), vi〉 = 〈µTk(z1, . . . , zk), ei〉 = λi,

and since we assume that

Fi = C ∩ {x ∈ (Rn)∗ : 〈x, vi〉 = λi},

it immediately follows that µ(p) ∈ Fi.

Now we proceed to the proof of Proposition 4.3.4. We will explicitly construct E as a
quotient of a vector bundle over µ−1

N (0) (recall that M = µ−1
N (0)/N), and then use the

previous lemma and an explicit description of N to compute the Tn-action on the fiber
over each fixed point.

Proof of Proposition 4.3.4. Assume without loss of generality (by reordering the faces)

that i = 1. Let Ē = C × µ−1
N (0)

p2→ µ−1
N (0) be the trivial vector bundle with p2 the

projection on the second coordinate, and let T k act on Ē by

(u1, . . . , uk) · (w, (z1, . . . , zk)) = (u1w, (u1z1, . . . , ukzk)).

Then Ē is a T k-equivariant complex vector bundle of rank 1. Then define E = Ē/N ; by
Lemma A.2, this is a vector bundle over M = µ−1

N (0)/N .
First we show that E restricted to µ−1(F1) is isomorphic to the normal bundle of

µ−1(F1) in M . Since µ−1
N (0) is a submanifold of Ck, its tangent bundle is a subbundle

of TCk = Ck × Ck. Let φ : Tµ−1
N (0) → Ē then be defined as the restriction of the map

p1 × idCk : TCk = Ck × Ck → C × Ck, given by projecting onto the first coordinate
in the first factor, and the identity in the second factor. Then φ is T k-equivariant,
since the action on TCk = Ck × Ck is just the diagonal action. Therefore φ descends
to a map ψ : (Tµ−1

N (0))/N → E. Since (Tµ−1
N (0))/N ∼= T (µ−1

N (0)/N) = TM , it now
suffices to show that for p ∈ µ−1(F1), ψp : TpM → Ep is surjective and has kernel
Tpµ

−1(F1). The kernel of ψp certainly contains Tpµ
−1(F1), since µ−1(F1) consists of

those q = [z1, . . . , zk] ∈M with z1 = 0.
On the other hand, φ is surjective at p̂, where p = [p̂]. To show this, we wish to find

a w ∈ ker(dµN )p̂ ⊂ Ck such that w1 6= 0, since φ was given by projecting on the first
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coordinate. To do this, first observe that Tp̂µ
−1
N (0) = ker(dµN )p̂. Since µN = ϕ∗ ◦ µTk ,

we have
ker(dµN )p̂ = ker d(ϕ∗ ◦ µTk)p̂ = (dµTk)−1

p̂ (ker d(ϕ∗)µ
Tk

(p̂)).

If p̂ = (z1, . . . , zk), zj = xj + iyj , and w = a + ib ∈ Ck is a tangent vector to p̂ in Ck,
then

(dµTk)p̂w = −
k∑
j=1

(xjaj + yjbj)e
∗
j

But now recall that p ∈ µ−1(F1), and so z1 = 0, and hence a1, b1 = 0. Therefore taking
w = (1, 0, . . . , 0) ∈ Ck gives

(dµTk)p̂w = 0 ∈ ker d(φ∗)µ
Tk

(p̂)

and hence w ∈ ker(dµN )p̂ with w1 6= 0. Therefore ψp is surjective as well, and we obtain
fiberwise isomorphisms TpM/Tpµ

−1(F1)→ Ep, i.e., an isomorphism between the normal
bundle of µ−1(F1) and E.

We now move to the computation of the action of Tn on E. Let v ∈M be a fixed point
of the Tn-action. Then there exist indices i1 < · · · < in such that v ∈ µ−1(Fi1∩· · ·∩Fin).
Fix some representative v = [z1, . . . , zk], and take [w, (z1, . . . , zk)] ∈ E|v. We first
compute the action of T k/N . Since v ∈ µ−1(Fil) for l = 1, . . . , n, we know that zil = 0.
Now write, for j 6= i1, . . . , in,

vj =
n∑
l=1

ajlvil .

For x = (x1, . . . , xk) ∈ Rk, we have

(dπ)(x) =
n∑
i=1

xivi =
∑

j 6=i1,...,in

xj

n∑
l=1

ajlvil +

n∑
l=1

xilvil =

n∑
l=1

xil +
∑

j 6=i1,...,in

xjajl

 vil .

Therefore if x ∈ ker(dπ) = n, we have for each l = 1, . . . , n,

xil +
∑

j 6=i1,...,in

xjajl = 0.

This implies that N consists of those elements (u1, . . . , uk) ∈ Tn such that

uil
∏

j 6=i1,...,in

u
ajl
j = 1

for l = 1, . . . , n. Thus, if [u1, . . . , uk] ∈ T k/N , then η = (η1, . . . , ηk) defined by ηj = uj
for j 6= i1, . . . , in and

ηil =

 ∏
j 6=i1,...,in

u
ajl
j

−1
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lies in N . Therefore

[u1, . . . , uk] · [w, (z1, . . . , zk)] = [u1w, (u1z1, . . . , ukzk)] = [u1w, η · (z1, . . . , zk)]

= [w′, (z1, . . . , zk)]

where

w′ =

{
w if i1, . . . , in 6= 1

u1w
∏
j 6=i1,...,in u

aj1
j otherwise.

Recall here that we assumed i1 < · · · < in, and so it suffices to check whether i1 is 1 or
not, i.e., whether v is in µ−1(F1) or not. Thus we have finished part 2 of the lemma: if
v 6∈ µ−1(F1), then T k/N ∼= Tn acts trivially on E|v.

We now turn to the third part. From this point onwards we assume that i1 = 1, so
v ∈ µ−1(F1). Let d1, . . . , dn be the standard basis of Rn, and write

dj =

n∑
l=1

bjlvil .

Define a map s : Tn → T k by ds(vil) = eil for l = 1, . . . , n; this gives rise to a well-defined
map since the vi1 , . . . , vin form a Z-basis for Zn. Then composing s with the quotient
map T k → T k/N gives a map S : Tn → T k/N . We show that S = π−1, where we view
π as a map T k/N → Tn. First let [u1, . . . , uk] ∈ T k/N ; then

S(π[u1, . . . , uk]) = S(α1, . . . , αn)

where

αi =
k∏
j=1

u
(vj)i
j

with (vj)i the i-th coordinate of vj ∈ Zn. Therefore α = (α1, . . . , αn) is the product

α =
k∏
j=1

u
vj
j

where u
vj
j = (u

(vj)1
j , . . . , u

(vj)n
j ), and hence

S(α) =
k∏
j=1

S(u
vj
j ) =

n∏
l=1

S(u
vil
il

) ·
∏

j 6=i1,...,in

n∏
l=1

S(u
ajlvil
j ).

For θ ∈ T 1 and l = 1, . . . , n, we have S(θvil ) = [1, . . . , 1, θ, 1, . . . , 1] with θ in the il-th
position, and hence S(α) = η = [η1, . . . , ηk] defined by

ηj = 1 j 6= i1, . . . , in,

ηil = uil
∏

j 6=i1,...,in

u
ajl
j l = 1, . . . , n
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From the earlier description of N , we see that ξ = (ξ1, . . . , ξk) with

ξj = uj , j 6= i1, . . . , in, ξil
∏

j 6=i1,...,in

u
ajl
j = 1

is such that ξ ∈ N , and hence η = [u1, . . . , uk]. Thus we have shown that S ◦π = idTk/N .
Next, we show that π ◦S = idTn . Let α = (α1, . . . , αn) ∈ Tn, and recall that we wrote

di =

n∑
l=1

bjlvil

for d1, . . . , dn the standard basis of Rn. Then S(α) = [u1, . . . , uk] with uj = 1 for

j 6= i1, . . . , in, and uil =
∏n
i=1 α

bil
i . Therefore

π(S(α)) =

n∏
l=1

u
vil
il

=

n∏
l=1

 n∏
j=1

α
bjl
j

vil

=

n∏
j=1

n∏
l=1

α
bjlvil
j =

n∏
j=1

α
dj
j = α,

and we conclude that S = π−1.
Now we return to the action of Tn on E|v. If α = (α1, . . . , αn) ∈ Tn, then S(α) =

[u1, . . . , uk], with uj = 1 for j 6= i1, . . . , in, and

uil =

n∏
j=1

α
bjl
j .

Then α acts on E|v as

α · [w, (z1, . . . , zk)] =

u1w
∏

j 6=i1,...,in

u
aj1
j , (z1, . . . , zk)


but all these uj are 1, so this is equal to

[u1w, (z1, . . . , zk)] =

 n∏
j=1

α
bj1
j w, (z1, . . . , zk)

 .
Therefore the weights of the Tn-action on E|v are b11, . . . , bn1.

Having finished the proof of Proposition 4.3.4, we can now return to computing equiv-
ariant Euler classes.

Lemma 4.3.6. Choose i ∈ {1, . . . , n} and let E → M be the equivariant vector bundle
constructed in Proposition 4.3.4. Let v ∈ F be a fixed point with v ∈ µ−1(Fi1 ∩ · · · ∩Fin)
where i = is. Furthermore, let u1, . . . , un ∈ Zn be such that the edges at µ(v) are of
the form µ(v) − tul, t ≥ 0, ordered such that µ(v) − tul 6∈ Fil for each t > 0, and the
greatest common divisor of the coordinates of each uj is 1. Then the weight vector of
the Tn-action on E|v is us.
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Proof. It suffices to show that for each uj , we have

〈uj , vil〉 = δjl

so that u1, . . . , un is the dual basis to vi1 , . . . , vin , for then it follows that

〈uj , dr〉 = 〈uj ,
n∑
l=1

brlvil〉 = brj

and hence uj = (b1j , b2j , . . . , bnj), as d1, . . . , dn was the standard basis of Rn. But the vil
are constructed as the dual basis to ul (see the discussion at the start of this section),
so we are done.

Lemma 4.3.7. We write H∗T ({v}) = Z[xvj : j = 1, . . . , n] for v ∈ F (as in Example
4.1.5), and identify H∗T (F ) = ⊕v∈FH∗T ({v}) as rings. The equivariant Euler class of the
bundle E constructed in Proposition 4.3.4, restricted to the fixed point set F ⊂ M , is
given by

eT (E)|F =
∑

v∈F∩µ−1(Fi)

n∑
j=1

−(uvi)jxvj

where uvi is the direction of the edge at µ(v) not pointing into the face Fi, and (uvi)j is
its j-th component.

The above lemma gives us the last result we need to prove the following theorem.

Theorem 4.3.8. Let A = µ−1(Fj1 ∩ · · · ∩ Fjm) be the intersection of the m faces
Fj1 , . . . , Fjm, and assume A is non-empty. Then there exists a Tn-equivariant vector
bundle E →M such that E|A is equivariantly isomorphic to the normal bundle ν of A.
Furthermore, for v ∈ F a fixed point, we have

eT (E)|v =

{
0 if v 6∈ A∏m
l=1 (

∑n
i=1−(uvl)ixvi) if v ∈ A

where −uvl ∈ Zn is the direction of the edge at µ(v) not pointing into Fjl (recall that our
edges are of the form µ(v)− tuvl with t ≥ 0).

Proof. For l = 1, . . . ,m, let El be the bundle constructed in Proposition 4.3.4. Now

A =

m⋂
l=1

µ−1(Fjl),

and these intersections are pairwise transversal; hence the normal bundle ν of A is
the direct sum of normal bundles of each of the µ−1(Fjl) (restricted to A). Setting
E =

∑m
l=1El, we obtain

E|A =

(
m∑
l=1

El

)∣∣∣∣∣
A

∼=
m∑
l=1

(νµ−1(Fjl )
)|A = ν
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as Tn-equivariant vector bundles.
To compute the equivariant Euler class of E restricted to a fixed point v, note that

the Euler class of a sum of complex line bundles is the product of Euler classes. In
particular, if v ∈ F is a fixed point not in at least one of the Fjl , then eT (El)|v = 0, and
hence eT (E)|v = 0. Otherwise, the above formula for eT (E)|v follows directly from the
previous lemma.

Example 4.3.9 (CP1). We again compute the equivariant cohomology of CP1, now
using Theorem 4.2.5 and Theorem 4.3.8. Let T 1 act on CP1 as before, with moment
map µ defined by

µ([z0 : z1]) = −1

2

|z1|2

|z0|2 + |z1|2
.

We identify H∗T ({v0, v1}) = Z[x0] ⊕ Z[x1]. Let X = −1 ∈ t ∼= R, then f = 〈µ,X〉 is a
Morse function, and Theorem 4.2.5 applies. The polytope µ(M) is [−1/2, 0] ⊂ (R)∗, so
if v0 = [1 : 0], v1 = [0 : 1] are the fixed points of the T 1-action, the flow-up faces for v0

and v1 relative to X are A0 = [−1/2, 0] and A1 = {−1/2}, respectively. The equivariant
Euler class, for the normal bundle to µ−1(A0), restricted to {v0, v1}, is therefore clearly
the identity (1, 1) ∈ H∗T ({v0, v1}) . By Theorem 4.3.8, if νv1 is the normal bundle to
{v1} (which is the preimage of the flow-up face for {v1} under µ), then

eT (νv1) = x1

(compare with Example 4.2.1). Therefore the equivariant cohomology ring H∗T (CP1) has
image generated by {(1, 1), x1} ∈ H∗T ({v0, v1}) as H∗T -module, and we have succeeded in
computing the ring structure.

Example 4.3.10 (CP2). We now finish Example 4.2.2. Let M = CP2 be the projective
plane, with v0 = [1 : 0 : 0], v1 = [0 : 1 : 0], v2 = [0 : 0 : 1] as before, and choose
X ∈ t such that {exp(tX) : t ∈ R} is dense in T 2, and such that for f = 〈µ,X〉 has
f(v0) < f(v1) < f(v2) (it suffices to perturb (0,−1) ∈ t slightly in a clockwise fashion).
The polytope is the triangle with corners (0, 0), (−1/2, 0) and (0,−1/2), which are the
images of v0, v1, v2 respectively. For each i = 0, 1, 2, let Ai be the flow-up face for vi
relative to X, νi the normal bundle to µ−1(Ai), and Ei its extension as a bundle to
M (from Theorem 4.3.8). Explicitly, A0 is the entire moment polytope, A1 is the edge
from (−1/2, 0) to (0,−1/2), and A2 consists of just the point (0,−1/2). By Theorem
4.2.5, H∗T (M) is a free H∗T -module on eT (Ei), i = 0, 1, 2, and the inclusion-induced map
H∗T (M)→ H∗T (F ) is injective, with F = {v0, v1, v2} the set of fixed points. By Theorem
4.3.8 we have equivariant Euler classes eT (Ei)|F ∈ H∗T (F ) = ⊕2

i=0Z[xi1, xi2] (with the
obvious H∗T = Z[x1, x2]-module structure), given by

eT (E0)|F = (1, 1, 1), eT (E1)|F = x11 + x22, eT (E2)|F = (x22)(x22 − x21).

To see that these are the equivariant Euler classes, note that if pi = µ(vi), the blue
arrows in Figure 4.2 indicate the directions of the vectors ui. For p1, for instance,
the only negative edge (with respect to our choice of X) corresponds to the direction

39



p1 p0

p2

X

Figure 4.2.: The moment polytope for the complex projective plane CP2. The blue
arrows at each corner pi indicate the direction of the vectors u ∈ Z2 such
that the edges are of the form pi − tu, t ≥ 0. The flow-up faces relative to
the direction X

(−1, 0), as the flow-up face of p1 is the edge from p1 to p2. Therefore, the equivariant
Euler class eT (E1) restricted to v1 must be −(−1)x11 − (0)x12 = x11. Similarly, eT (E1)
restricted to v2 must be −(0)x12− (−1)x22, as the only negative edge at v2 corresponds
to the direction (0,−1). When restricting eT (E2) to v0 and v1 we obtain 0, as neither
of these fixed points is in the flow-up face of v2; but eT (E2) restricted to v2 is equal to
(−(−x22))(−(x21)− (−x22)), as the vectors at v2 are (0,−1) and (1,−1). Thus we have
now determined the image of H∗T (M) → H∗T (F ), and can explicitly compute products
of the generators of H∗T (M). As an example, we take

(eT (E1)|F )2 = x2
11 + x2

22 = eT (E2)|F + x22x21 + x2
11 = eT (E2)|F + x1(eT (E1)|F ).

Therefore in H∗T (M), we have

(eT (E1))2 = eT (E2) + x1(eT (E1)).

By Theorem 4.2.7, the Euler classes e(Ei) form an additive basis for H∗(M). Note that
e(E0) = 1, and the above computation shows that

(e(E1))2 = e(E2)

since the product x1(eT (E1)) vanishes when passing to cohomology. Now

eT (E1)eT (E2) = (x11 + x22)(x22)(x22 − x21) = x2eT (E2)

since x11x22 = 0 = x11x21, and hence e(E1)e(E2) = 0 in H∗(M). We have thus recovered
the well-known isomorphism

H∗(CP2) ∼= Z[y]/(y3)

by sending e(E1) to y and e(E2) to y2, where we consider y to be of degree 2.

Example 4.3.11 (Hirzebruch surfaces). Let Wk be the k-th Hirzebruch surface, corre-
sponding to the polytope with vertices (0, 0), (−(k + 1)/2, 0), (0,−1/2), (−1/2,−1/2),
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p2 p1

p3p4

X

Figure 4.3.: The moment polytope for the k-th Hirzebruch surface Wk. The blue arrows
indicate the directions of the edges whose coefficients we use for computing
the equivariant Euler classes of the normal bundles of the flow-up faces,
relative to X.

with corresponding fixed points labelled v1 up to v4, respectively, and let pi = µ(vi) for
i = 1, . . . , 4. Let X ∈ t be a small clockwise perturbation of (0,−1). Then the basis
elements for the image of H∗T (Wk)→ H∗T (F ) = ⊕4

i=1Z[xi1, xi2] are

a1 = (1, 1, 1, 1), a2 = x21 + x41, a3 = x32 − kx41 + x42, a4 = (−kx41 + x42)(x41),

that is, H∗T (Wk) is isomorphic to the free H∗T -submodule of H∗T (F ) given by

H∗T (Wk) ∼= H∗T 〈a1, a2, a3, a4〉 ⊆ H∗T (F ).

To see this, recall from Example 4.2.4 that the flow-up face for p1 is the entire polytope,
the flow-up face for p2 is the edge from p2 to p4, the flow-up face for p3 is the edge from
p3 to p4, and the flow-up face for p4 consists just of p4 itself. In Figure 4.3, the directions
of the negative edges at each point pi are shown. The generator a3, for instance, is the
equivariant Euler class corresponding to p3: at p3, the vector determining the edge not
pointing into the flow-up face of p3 is (0,−1), and hence a3 restricted to v3 is given by
−(0x31 − 1x32) = x32. Similarly, at p4, the vector determining the edge not pointing
into the flow-up face of p3 is (k,−1), and hence a3 restricted to v4 is −(kx41 − 1x42).
The rank of H∗(M) is now 1, 2 and 1 in degrees 0, 2 and 4, respectively. To compute
the ring structure, note for instance that

a2
3 = (x32 − kx41 + x42)2 = x2

32 + (−kx41 + x42)(−kx41 + x42)

= x2
32 + x42(−kx41 + x42) + (−kx41)(−kx41 + x42)

= x2(x32 − kx41 + x42)− k(x41)(−kx41 + x42)

= x2a3 − ka4

The first term disappears when passing to ordinary cohomology; hence the image of a3

in H2(Wk) squares to −k times the image of a4 in H4(Wk). We also have the relations

a1ai = ai a2a3 = a4, a2
2 = 0,

a2
3 = −ka4 + x2a3, a2a4 = x1a4, and a3a4 = −(kx1 − x2)a4.
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Hence the cohomology ring of Wk is given by

H∗(Wk) ∼= Z[b1, b2]/(b21, b
2
2 + kb1b2).

by sending (the restriction to H∗(Wk) of) a2 to b1 and a3 to b2, where b1 and b2 are
considered to be of degree 2. Note that in the latter ring, we also have b32 = 0, since

b32 = b2(−kb1b2) = −kb1(−kb1b2) = 0.

While the cohomology ring may appear to be distinct for each k, this is actually not
the case; whenever k ≡ k′ mod 2, H∗(Wk) and H∗(Wk′) are isomorphic. If k′ = k + 2l
with l ∈ Z, an explicit isomorphism is given by

H∗(Wk) ∼= Z[b1, b2]/(b21, b
2
2 + kb1b2)→ Z[c1, c2]/(c2

1, c
2
2 + k′c1c2) ∼= H∗(Wk′)

b1 7→ c1

b2 7→ c2 + lc1.

To see this is actually well-defined, note that b22 + kb1b2 is sent to c2
2 + 2lc1c2 + kc1c2 =

c2
2 + k′c1c2 = 0. More is actually true: Wk and Wk′ are known to be diffeomorphic

whenever k ≡ k′ mod 2, with W2
∼= CP1 × CP1 and W1

∼= CP2#CP2
, and W1 and W2

are not homeomorphic [5, Ch. II]. Thus W1 and W2 are the two distinct CP1-bundles
over CP1.

It is worth noting that there is a more geometric interpretation of b2 squaring to
−kb1b2 ∈ H4(Wk). If A3 denotes the preimage of the flow-up face of v3 under the
moment map, then its fundamental class [A3] ∈ H2(Wk) is the Poincare dual to b2. The
intersection product [A3] ∩ [A3] is then Poincare dual to b22, and so [A3] ∩ [A3] = −k[v]
where v ∈W2 is any point, and [v] represents the generator of H0(Wk). Therefore, if two
embeddings φ, ψ : A3 →W2 intersect transversally, and both are isotopic to the standard
inclusion A3 → W2, then the fundamental class of the intersection [φ(A3) t ψ(A3)] is
homologous to −k times a point. We now use the moment polytope description of Wk to
actually produce such φ, ψ for which φ(A3) t ψ(A3) consists of precisely k points (and
we ignore the matter of orientations). Denote µ(Wk) = ∆, and let s : ∆ → Wk be a
section of the moment map, that is, a continuous map such that µ ◦ s = id∆.

The existence of such a map follows from the Delzant construction of a symplectic
toric manifold: with the notation as in the construction, one may define s : π∗(C) ⊂
(Rk)∗ →M = M/N by

s(w1, . . . , wk) = [
√

2λ1 − 2w1, . . . ,
√

2λk − 2wk].

The moment map in the Delzant construction is

µ(z1, . . . , zk) = (λ1, . . . , λk)−
1

2
(|z1|2, . . . , |zk|2),

so we certainly have µ ◦ s = id. Note that s cannot be “smooth” on the boundary of ∆,
as then the chain rule would apply, but dµ is not surjective at points with non-trivial
stabilizer.
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p2 p1

p3p4

µ ◦ φt
µ ◦ ψt

Figure 4.4.: The moment polytope of the k-th Hirzebruch surface Wk, along with line
segments indicating the images of µ ◦ φt and µ ◦ ψt.

Returning to Wk, Define subtori

T1 = {(1, u) : u ∈ T 1}, T2 = {(uk, u) : u ∈ T 1}

of T 2; then both T1 and T2 act transitively on each fiber µ−1(c), with c in the interior of
the flow-up face of v3. Furthermore, T1 and T2 are distinct subtori because k > 0. We
then define the families of smooth maps

φt : A3 →Wk

(1, u) · s(r,−1/2) 7→ (1, u) · s(r,−1/2 + (1/2 + r)t)

and

ψt : A3 →Wk

(uk, u) · s(r,−1/2) 7→ (uk, u) · s(r − kt/2,−1/2− tr)

for 0 ≤ t ≤ 1 and −1/2 ≤ r ≤ 0. These families correspond to “sliding the edge from
(−1/2,−1/2) to (−1/2, 0)” along the edge from (−1/2, 0) to (0, 0) for φt, and along the
edge from (−1/2,−1/2) to (−(k+ 1)/2, 0) for ψt: the image of µ ◦φt is the line segment
Lt from (−1/2,−1/2) to (0,−1/2 + t/2), whereas the image of µ ◦ψt is the line segment
L′t from (−1/2 − kt/2,−1/2 + t/2) to (0,−1/2), as shown in Figure 4.4. The image of
φt is the set of all u · s(p) with p ∈ Lt and u ∈ T1, whereas the image of ψt is the set
of all u · s(p) with p ∈ L′t and u ∈ T2. The well-definedness of ψt (and similarly for φt)
depends on the choice of the subtori that act, in the following sense: if u, u′ ∈ T1 are
distinct elements such that u · s(r,−1/2) = u′ · s(r,−1/2), so u(u′)−1 is in the stabilizer
of s(r,−1/2), then we must have

u · s(r,−1/2 + (1/2 + r)t) = u′ · s(r,−1/2 + (1/2 + r)t),

that is, u(u′)−1 must be in the stabilizer of s(r,−1/2 + (1/2 + r)t). The only points in
A3 that have non-trivial stabilizer (with respect to the T1-action) are the fixed points
v3 = s(p3) = s(0,−1/2) and v4 = s(p4) = s(−1/2,−1/2). However, s(−1/2,−1/2 +
(1/2− 1/2)t) is constant (as a function of t), and s(0,−1/2 + t/2) has stabilizer T1 with
respect to the T 2-action for all 0 < t < 1, and so φt(v3) is well-defined.
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Checking (and smoothness) of φt and ψt is left as an exercise for the reader, and can be
done explicitly in local coordinates on Wk and A3. The point is now that for 0 < t < 1,
φt(A3) and ψt(A3) intersect transversally, in exactly k points: if the line segments Lt
and L′t intersect in an interior point p ∈ ∆, φt(A3) and ψt(A

3) intersect in (T1∩T2) ·s(p),
and T1 ∩ T2 consists of exactly k points.
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A. Vector bundles and quotients

In this appendix, we prove the following theorem, which allows us to take quotients of
equivariant vector bundles.

Theorem A.1. Let G,H be Lie groups, π : P →M a principal G-bundle. Suppose H is
compact, with a free left-action on P and M , such that π is H-equivariant. Then P/H
and M/H admit smooth structures such that the projection maps qP : P → P/H and
qM : M → M/H are submersions, and π descends to a smooth map π̄ : P/H → M/H.
If the actions of G and H on P commute, that is, for every g ∈ G, h ∈ H, x ∈ P ,

(hx)g = h(xg),

then π̄ gives P/H the structure of a principal G-bundle over M/H.

The argument we give for the theorem is an adaptation of the standard argument
for the quotient of a manifold by a free proper Lie group admitting a unique smooth
structure such that the quotient map is a surjection; see [12, Thm. 21.10].

Proof. Let x0 ∈ P , and define α : G→ P and β : H → P by

α(g) = x0g, and β(h) = hx0.

Furthermore, we denote by g and h the Lie algebras of G and H respectively. Since π
is G-invariant, (dα)eG(g) ⊆ kerπ. On the other hand, as the action of H is free on M ,
d(π ◦β)eH is injective; hence im(dβ)eH ∩kerπ = {0}. Therefore (dα)eG(g)∩ (dβ)eH (h) =
{0}. Now choose a submanifold S of P , containing x0, such that

(dα)eG(g)⊕ (dβ)eH (h)⊕ Tx0S = Tx0P.

Define f : H × S ×G→ P by f(h, x, g) = hxg (here we use commutativity for this to
be well-defined). Then

df(eH ,x0,eG)(u, v, w) = (dβ)eH (u) + v + (dα)eG(v),

and so df(eH ,x0,eG) is an isomorphism. We now prove that we may shrink S enough so
that f becomes injective. Indeed, suppose not; then there exist sequences (hk, xk, gk) 6=
(h′k, x

′
k, g
′
k) such that

hkxkgk = h′kx
′
kg
′
k, and xk, x

′
k → x0.

Applying π and using its G-invariance and H-equivariance, we obtain

hkπ(xk) = h′kπ(x′k)
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for each k. Since H is compact, the sequence dk = (hk)
−1h′k contains a convergent

subsequence dkn , with limit d ∈ H. Then π(xkn) = dπ(x′kn), with the left-hand side
converging to π(x0) and the right-hand side converging to dπ(x0). By freeness of the
H-action on M , we obtain d = eH . Now

xkn = dknx
′
kng
′
kn(gkn)−1

converges to x0, and dknx
′
kn

converges to eHx0 = x0. Since the G-action on P is proper
(as π : P → M is a smooth principal bundle), lkn = g′kn(gkn)−1 has a convergent
subsequence lknm , with limit l. This limit must be eG due to freeness of the G-action on
P .

Therefore, we now have dknm converging to eH , lknm converging to eG, and xknm =
dknmx

′
knm

lknm converging to x0. Thus ym = (dknm , x
′
knm

, lknm ) converges to (eH , x0, xG),
but the derivative of f at (eH , x0, eG) is invertible, so f is injective on a neighbourhood
of (eH , x0, eG). Therefore ym must eventually be (eH , x0, eG); but reversing the roles
of xk, x

′
k we see that (d−1

knm
, xknm , l

−1
knm

) must eventually be (eH , x0, eG) as well. This

contradicts the assumption that the sequences (hk, xk, gk) and (h′k, x
′
k, g
′
k) were distinct.

Thus we have found, for any point x0 ∈ P , a submanifold S containing x0 such that
f : H × S × G → P defined by f(h, x, g) = hxg is an embedding. The quotient map
P → M/H then provides a submanifold isomorphic to S, containing the image of x0,
and whose preimage in P/H is S ×G; since x0 was arbitrary, we have now found local
trivializations of P/H →M/H as a principal G-bundle.

Note that the G-action on P/H is still free: for x ∈ P , Hx ∈ P/H and g ∈ G, the
G-action is defined as (Hx)g = H(xg). Suppose now that (Hx)g = Hx for x ∈ P . Then
there exists an h ∈ H such that hx = xg. Applying π gives hπ(x) = π(x), and since
H acts freely on M , we conclude that h = eH . Now x = xg, and from freeness of the
G-action on P we see that g = eG, so the G-action on P/H is free.

We now translate the theorem from a statement on principal bundles into one on
equivariant vector bundles.

Lemma A.2. Let G be a compact Lie group, M a manifold and π : E →M a complex
vector bundle of rank k. Assume that G acts freely on M and E, such that π is G-
equivariant, and such that for every x ∈ M , g ∈ G, left-multiplication by g induces a
linear isomorphism Ex → Egx. Then the principal GLk(C)-bundle π : P →M associated
to E admits a free G-action which commutes with the GLk(C)-action, and such that π is
G-equivariant. Furthermore, the vector bundle associated with the quotient π̄ : P/G →
M/G is the “quotient vector bundle” E/G → M/G, in the sense that (E/G)Gx ∼= Ex
for x ∈M .

Proof. We define P as follows: for x ∈M , the fiber π−1(x) consists of all linear isomor-
phisms Ck → Ex. A local trivialization of E around x gives rise to a local trivialization
of P as a GLk(C)-bundle, and therefore serves to define the topology and smooth struc-
ture of P . The bundle P is also known as the frame bundle of E, and A ∈ GLk(C) acts
on an isomorphism Ck → Ex by precomposition. Now, for g ∈ G and x ∈M , we obtain
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a linear isomorphism L : Ex → Egx by left-multiplication. Therefore g acts on L′ ∈ Px
by g ·L′ = L ◦L′. If A ∈ GLk(C), then L′ ·A = L′ ◦A. Since composition is associative,
(gL′)A = g(L′A), and the G-action on P → M commutes with the GLk(C)-action. We
conclude that the quotient π̄ : P/G→M/G is a principal GLk(C)-bundle.

To now recover from P/G a vector bundle over M/G, let GLk(C) act on P/G×Ck by
(Gx, v)A = ((Gx)A,A−1v), where A ∈ GLk(C), v ∈ Ck and x ∈ P . Then the quotient
space (P/G× Ck)/GLk(C) admits a map p : (P/G× Ck)/GLk(C)→M/G given by

[(Gx, v)] 7→ Gπ̄(x).

This is well-defined since π̄ is GLk(C)-invariant. Furthermore, each fiber p−1(Gy) for
y ∈M is isomorphic to Ey.
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