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Abstract

This thesis constructs algorithms to compute Fast Fourier Transforms (FFTs) on several
families of finite groups with arithmetic complexity in O(|G| log |G|) operations. First,
the Cyclic Discrete Fourier Transform (Cyclic DFT), which is a Fourier transform often
found in literature for functions from Z/LZ to C is introduced. Then, the representation
theory of finite groups is used to provide a backbone to the Fourier theory used in this
paper. A finite group Fourier transform for functions from G to C—where G is a finite
group—can then be defined, as well as a proof of the subsequent inverse transform, and
some key theorems from Fourier analysis. The Cyclic DFT can then be related to the
finite group Fourier transform, and we discuss two prominent Cyclic FFTs: The Mixed-
Radix FFT and the Prime Factor Algorithm. Ultimately, FFTs for abelian, dihedral,
and direct products of dihedral groups are written using the theory discussed, which
have an arithmetic complexity in O(|G| log |G|) operations.

Title: Algorithms for Computing Fourier Transforms on Finite Groups
Author: Madeleine Gignoux, m.gignoux@student.vu.nl, 2695118
Supervisor: dr. Thomas Rot
Second examiner: dr. Paulo Jorge de Andrade Serra
Date: July 1, 2023

Department of Mathematics
VU University Amsterdam
de Boelelaan 1081, 1081 HV Amsterdam
http://www.math.vu.nl/

2

http://www.math.vu.nl/


Contents

1. Introduction 4

2. The Discrete Fourier Transform 6

3. The Fourier Transform on Finite Groups 7
3.1. Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Fourier Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1. The Convolution Theorem . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2. Plancherel’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Cyclic Groups 14
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1. Introduction

In his 19th-century work on heat flow, Joseph Fourier claimed that any function can be
written as a linear combination of sines and cosines [4]. Although this claim is wrong
without additional conditions, it marks the beginning of Fourier analysis as a field of
research. Nowadays, the specific work of Fourier is known as the Fourier series in which
sufficiently nice periodic functions converge to a linear combination of sines and cosines.
The Fourier series can be calculated for all continuous signals, including sound waves.

In the case of a sound wave, which can be represented by periodic functions of the
signal’s pressure over time, the Fourier series represents the signal as the amplitudes of
its frequencies.
Reconstructing, compressing, and filtering signals is ubiquitous in modern technology,

and as a result the Fourier series is an incredibly application-rich topic. However, when
these signals are analyzed by a computer, the signal is digitized and discretized as the
computer samples the signal. Therefore, instead of continuous signals, which use inte-
gration to find the Fourier series, summations are done. This resulting transformation
is called the Cyclic Discrete Fourier Transform.
The Cyclic Discrete Fourier Transform (Cyclic DFT) is easy to work with because

there are no issues of convergence when we reconstruct the function from its Fourier
coefficients, which will be proven in Theorem 2.2. Thus, regardless of our function, the
Cyclic Inverse Discrete Fourier Transform (Cyclic IDFT) always recovers the original
input. However, to accurately represent the continuous signal, sampling theorems such
as the Shannon-Nyquist sampling theorem set a lower bound for the number of samples
necessary to accurately reconstruct the original signal [16].
Direct computation, which is colloquially referred to as näıve computation, of these

Fourier coefficients is far too slow for modern demand, and faster algorithms called
Cyclic Fast Fourier Transforms (Cyclic FFTs) are necessary. What makes the näıve
implementation of the Cyclic DFT considered slow is that it has an arithmetic complexity
in O(L2) operations where L is the number of samples taken of the signal. In contrast, a
Cyclic FFT invented by James Cooley and John Tukey known as the Mixed-Radix FFT
[6], which is actually a modern rediscovery of work found in a posthumous publication
of Gauss [10, 11], decreases the operational complexity to O(L logL) for certain inputs.
Besides this, the work of Irving Good called the Prime Factorization Algorithm (PFA)
will also be covered [5].
In addition to mathematical methods of computing Cyclic FFTs, more computer sci-

ence specific methods such as parallel computing, hard coding, lower-level programming,
dynamic programming, and GPU computing can be done. While these are outside the
scope of this paper, it would be remiss not to mention the work of Matteo Frigo and
Steven Johnson known as the Fastest Fourier Transform in the West (FFTW) [2] which
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is regarded as one of the fastest Cyclic FFTs [9], and used in MATLAB’s built-in FFTW
function [3].
The Cyclic DFT has theoretical underpinnings, originating from the representations

of cyclic groups. Representation theory, which can be found in literature such as Linear
Representations of Finite Groups by Jean-Pierre Serre [15], Group Representations in
Probability and Statistics by Persi Diaconis [7], and Representation Theory of Finite
Groups by Benjamin Steinberg [17] can be used to write a Fourier transform for functions
from finite groups G to C. Using this theory, we can prove the subsequent Fourier
inversion theorem, as well as central theorems to Fourier analysis such as the Convolution
Theorem and Plancherel’s Theorem.
Finally, using the representation theory of cyclic and dihedral groups discussed in [15],

we will write Fourier transforms for abelian groups, dihedral groups, and direct products
of dihedral groups, along with fast algorithmic implementations of these transformations
using our study of the aforementioned Cyclic FFTs.
In a 1991 paper titled Generalized FFTs - A Survey of Some Recent Results [12], it is

conjectured whether any finite group Fourier transform can be computed inO(|G| log |G|)
arithmetic complexity where |G| is the size of the group. This thesis aims to answer the
question posed in this paper for the aforementioned families of finite groups.
Along with this paper, all algorithms discussed will be implemented in the numeric

computing environment MATLAB Release 2023a with the code repository available at
the clickable link here. To see an overview of the project, as well as necessary packages
(referred to in MATLAB as Toolboxes), please click here.
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2. The Discrete Fourier Transform

The most well-known finite group Fourier transform is the Fourier transform for cyclic
groups. This is known in literature as the Discrete Fourier Transform (DFT) and for
our purposes we will call this specific transform the Cyclic DFT as we also aim to study
non-cyclic DFTs. This transform is defined as follows.

Definition 2.1 (The Cyclic Discrete Fourier Transform). The Cyclic Discrete Fourier
Transform (Cyclic DFT) of a complex valued function f : Z/LZ → C is given by

f̂ : Z/LZ → C where

f̂ [n] =
1

L

L−1∑
k=0

f [k]ω−nk
L ,

and ωL = e
2πi
L .

Accompanying every Fourier transform is its corresponding inverse Fourier transform.
In a non-finite setting, the inverse Fourier transform converges to the original function
under some conditions. However, in a finite setting any function f : Z/LZ → C can be
recovered by the Cyclic Inverse Discrete Fourier Transform.

Theorem 2.2 (The Cyclic Inverse Discrete Fourier Transform). The Cyclic Inverse
Discrete Fourier Transform (Cyclic IDFT) is given by

f [k] =
L−1∑
n=0

f̂ [n]ωnk
L .

Proof. This can be seen by plugging in the formula for f̂ from Definition 2.1.

L−1∑
n=0

f̂ [n]ωnk
L =

L−1∑
n=0

[
1

L

L−1∑
m=0

f [m]ω−nm
L

]
ωnk
L

=
1

L

L−1∑
m=0

f [m]
L−1∑
n=0

ωnk
L ω−nm

L =
L−1∑
m=0

f [m]δkm = f [k]

where δkm is the Kronecker delta function and the proof that

L−1∑
n=0

ωnk
L ω−nm

L =

{
L if k = m,

0 else,

is excluded. This will be generalized in Theorem 3.13 where the orthogonality of repre-
sentations is discussed.

These specific transforms are central to this paper, and will show up in the context of
non-cyclic groups. For now, we turn to defining a general finite group Fourier transform.
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3. The Fourier Transform on Finite
Groups

Our aim is to understand the Fourier transform of a function f : G → C for finite groups
G using representation theory. This uses group theory and linear algebra to provide a
backbone for all finite group Fourier transforms, including the Cyclic DFT from Chapter
2. We will begin by explaining representations of finite groups, and then combine this
with some linear algebra to derive a Fourier transform for finite groups and prove the
subsequent Fourier inversion. Hereinafter, the group G will always denote a finite group.

3.1. Representation Theory

Representations are a way of understanding the structure of a group G as automorphisms
of a vector space V . Thus, a representation is a combination of a vector space V and
a function ϕ : G → GL(V ). As the name implies, they represent the group, meaning
they maintain the structure of the group, i.e. ϕ is a homomorphism. They are defined
as follows.

Definition 3.1 (Representation). A representation of G is a pair (ϕ, V ) where V is a
finite dimensional vector space over the field C, and ϕ is a homomorphism ϕ : G →
GL(V ). The set of all representations of G is denoted Rep(G).

Definition 3.2 (Homomorphism). Let (ϕ, V ), (µ,W ) ∈ Rep(G). A homomorphism
from (ϕ, V ) to (µ,W ) is a linear map T : V → W such that Tϕ(g) = µ(g)T for all g ∈ G.
The set of homomorphisms from (ϕ, V ) to (µ,W ) is denoted HomG(ϕ, µ) where the vector
spaces are left out for readability. If T is an isomorphism, then T, T−1 ∈ HomG(ϕ, µ).

Thinking about representations in such an abstract way is not necessary for our pur-
poses. Using the isomorphism GL(V ) ∼= GLd(C) where d = dim(V ), we define a matrix
representation as follows.

Definition 3.3 (Matrix Representation). A matrix representation (ϕ,Cd) of G is a
homomorphism ϕ : G → GLd(C). The set of all matrix representations of G is denoted
MatRep(G).

As an example, when discussing the Cyclic DFT in Chapter 2, the group Z/LZ had L
one-dimensional matrix representations indexed by n = 0, . . . , L − 1 denoted (ϕn,C) ∈
MatRep(Z/LZ) given by ϕn : Z/LZ → GL1(C) ∼= C∗ where [k] 7→ ωnk

L . To show this is
a matrix representation, it can be checked that ϕn is a homomorphism.
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To relate representations to matrix representations, as well as relate representations to
each other in general, there is the following definition of equivalence of representations.

Definition 3.4. Two representations (ϕ, V ), (µ,W ) ∈ Rep(G) are equivalent if there
exists an isomorphism T from (ϕ, V ) to (µ,W ). Equivalence is denoted ϕ ∼ µ where the
respective vector spaces are again excluded for readability.

Theorem 3.5. The equivalence given in Definition 3.4 is an equivalence relation.

Proof. To show ∼ is an equivalence relation, we show (1) ϕ ∼ ϕ, (2) ϕ ∼ µ if and only
if µ ∼ ϕ, and (3) if ϕ ∼ µ and µ ∼ ρ then ϕ ∼ ρ.

1. Let (ϕ, V ) ∈ Rep(G). Observe that the identity map I is an invertible linear map
such that Iϕ(g) = ϕ(g)I for all g ∈ G, so ϕ ∼ ϕ.

2. Let (ϕ, V ), (µ,W ) ∈ Rep(G). Moreover, let T be an isomorphism T : V → W such
that Tϕ(g) = µ(g)T . Left and right multiplying by T−1 we have T−1Tϕ(g)T−1 =
T−1µ(g)TT−1 which reduces to ϕ(g)T−1 = T−1µ(g), so µ ∼ ϕ. The other direction
can be proved without loss of generality.

3. Let (ϕ, V ), (µ,W ), (ρ, U) ∈ Rep(G). Moreover, let T be an isomorphism T : V →
W such that Tϕ(g) = µ(g)T and R be an isomorphism R : W → U such that
Rµ(g) = ρ(g)R. Then observe that

RTϕ(g) = Rµ(g)T = ρ(g)RT.

Thus since the composition of two isomorphisms is an isomorphism, P = RT is an
isomorphism such that Pϕ(g) = ρ(g)P , thus ϕ ∼ ρ.

Now, we can relate representations to matrix representations using Theorem 3.5 as
follows.

Theorem 3.6. Every representation (ϕ, V ) ∈ Rep(G) is equivalent to a matrix repre-
sentation (µ,Cd) ∈ MatRep(G) where d = dim(V ).

Proof. Given (ϕ, V ) ∈ Rep(G) and a basis (e1, . . . , ed) of V , any element v ∈ V can
be written v =

∑d
i=1 aiei. Thus the map T : V → Cd where T (v) = (a1, . . . , ad) is an

isomorphism of vector spaces. Now, let µ(g) = Tϕ(g)T−1, then µ is a homomorphism
since

µ(g1g2) = Tϕ(g1g2)T
−1 = Tϕ(g1)ϕ(g2)T

−1 = Tϕ(g1)T
−1Tϕ(g2)T

−1 = µ(g1)µ(g2),

meaning (ϕ,Cd) ∈ MatRep(G) and µ ∼ ϕ by construction.

A group can have many different representations, as well as representations in different
vector spaces. This leads to an idea called reducibility, finding representations that build
all other representations. Defining reducibility requires the definition of G-invariance,
which we define first.
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Definition 3.7 (G-Invariance). Let (ϕ, V ) ∈ Rep(G). A subspaceW of V is G-invariant
if for all g ∈ G and w ∈ W , ϕ(g)w ∈ W .

Definition 3.8 (Reducibility). Let (ϕ, V ) ∈ Rep(G), then (ϕ, V ) is irreducible if the
only G-invariant sub-spaces are V and {0}.

Note that every one-dimensional matrix representation (ϕ,C) where ϕ : G → GL1(C)
is irreducible since there are no nontrivial sub-spaces of C. Thus in the case of the
aforementioned representations (ϕn,C) ∈ MatRep(Z/LZ) where [k] 7→ ωnk

L , each ϕn :
Z/LZ → GL1(C) ∼= C∗ is irreducible.

Theorem 3.9. If (ϕ, V ) ∈ Rep(G) is equivalent to an irreducible representation (µ,W ) ∈
Rep(G), then (ϕ, V ) is irreducible.

Proof. Let (ϕ, V ) ∈ Rep(G) be equivalent to (µ,W ) ∈ Rep(G) which is irreducible.
Thus there exists an isomorphism T : V → W such that

Tϕ(g) = µ(g)T.

Let A be a G-invariant subspace of V , thus for for all a ∈ A, ϕ(g)a ∈ A. We will show
that A = {0} or A = V . By the equivalence relation,

Tϕ(g)a = µ(g)Ta.

Let Z = TA and z = Ta. By the above equation µ(g)z ∈ Z. Since (µ,W ) is irreducible,
Z = {0} or Z = W . Since T is an isomorphism, this means A = {0} or A = V .

Theorem 3.10 (Schur’s Lemma). Let (ϕ, V ), (µ,W ) ∈ Rep(G) be irreducible represen-
tations of G and let T ∈ HomG(ϕ, µ). Then T = 0 or T is an isomorphism. Also:

1. If ϕ ≁ µ, then T = 0.

2. If ϕ = µ and V = W , then T = λI where λ ∈ C.

Proof. The proof of this can be found in an un-numbered theorem entitled Schur’s
Lemma in Chapter 2B of [7].

Recall that to prove the Cyclic IDFT recovered the original function in Theorem 2.2
we claimed that the representations were orthogonal. This is exactly what we are on
track to stating. To begin with, we will define our inner product.

Definition 3.11. The group algebra of G, denoted L(G) = {f |f : G → C} is an inner
product space with an inner product

⟨f, h⟩ = 1

|G|
∑
g∈G

f(g)h(g).

Another property of (ϕn,C) ∈ MatRep(Z/LZ) where ϕn[k] 7→ ωnk
L is that ϕn[k]ϕn[k] =

1. This is also necessary for direct proof of Theorem 2.2. This property is generalized
as a matrix representation being unitary, which is defined as follows.
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Definition 3.12 (Unitary Representation). A unitary representation (ϕ,Cd) ∈ MatRep(G)
is a homomorphism ϕ : G → Ud(C) where Ud(C) is the group of d× d unitary matrices.
Thus ϕ(g)ϕ(g)∗ = ϕ(g)∗ϕ(g) = Id where ϕ(g)∗ is the conjugate transpose of ϕ(g), and Id
is the d× d identity matrix.

From here, all of these concepts can be combined to show that the coefficients of non-
equivalent, irreducible, unitary representations are orthogonal. This is known as The
Schur Orthogonality Relations.

Theorem 3.13 (The Schur Orthogonality Relations). Let (ϕ,Cd), (µ,Cd′) ∈ MatRep(G)
be non-equivalent, irreducible, unitary representations of G. Let ϕij : G → C where
g 7→ ϕ(g)ij (and µkl defined similarly). Then, ϕij and µkl are orthogonal in L(G), that
is

⟨ϕij, µkl⟩ = 0,

and

⟨ϕij, ϕkl⟩ =

{
1
d

i = k, j = l,

0 else.

Proof. The proof of this can be found in Corollary 2 and Corollary 3 of an un-numbered
theorem entitled Schur’s Lemma in Chapter 2B of [7].

Thus the coefficients of all non-equivalent, irreducible, unitary representations are
orthogonal. We will define this set of representations as follows.

Definition 3.14. Let the set of unitary representatives of the equivalence classes of
irreducible representations of G be denoted S(G). We can index the elements of this set
by n as S(G) is finite, thus the elements of S(G) have the form (ϕn,Cdn) ∈ S(G).

Thus by Theorem 3.13, given (ϕn,Cdn) ∈ S(G), we have that
√
dnϕ

n
ij forms an or-

thonormal set on L(G). In fact, this is an orthonormal basis of L(G).

Theorem 3.15. Given all (ϕn,Cdn) ∈ S(G), the summation
∑

n d
2
n = |G| and thus√

dnϕ
n
ij forms an orthonormal basis of L(G).

Proof. The proof of this can be found in Corollary 2(a) of Proposition 5 in Chapter 2C
of [7].

Thus the size of S(G) is finite since the number of coefficients of elements of S(G) is
the group size |G| which is finite. Since there exists an orthonormal basis of L(G), for
any function f in L(G)

f =
∑
n,i,j

〈
f,
√
dnϕ

n
ij

〉√
dnϕ

n
ij,

which we can use to define our Fourier transform.
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Definition 3.16 (Finite Group Fourier Transform). The Fourier transform of a function

f ∈ L(G) is given by f̂ : S(G) →
⊕

nMat(dn) where Mat(dn) is the set of dn × dn
matrices. For each representation (ϕn,Cdn) ∈ S(G), the Fourier transform f̂(ϕn) =

(f̂ij(ϕ
n))dni,j=1 where

f̂ij (ϕ
n) =

1

|G|
∑
g∈G

f(g)ϕn
ij(g).

Again, the vector space is excluded for readability.

Thus the Fourier transform on a finite group takes a function f ∈ L(G) = {f |f :

G → C} and maps it to f̂ ∈ F (G) = {f̂ |f̂ : S(G) →
⊕

nMat(dn)}, where we will call

F (G) the Fourier space of G. The Fourier transform is therefore a map f 7→ f̂ , from
L(G) → F (G).
Now, the following Fourier inversion theorem provides a way to map back to our

original function f from our matrices f̂ .

Theorem 3.17 (Inverse Finite Group Fourier Transform). Given the Fourier coefficients
defined in Theorem 3.16, the Fourier inversion is given by

f(g) =
∑
n,i,j

dnf̂ij (ϕ
n)ϕn

ij(g).

Proof. Observe that

f(g) =
∑
n,i,j

〈
f,
√

dnϕ
n
ij

〉√
dnϕ

n
ij(g)

=
∑
n,i,j

[
1

|G|
∑
g∈G

f(g)
√
dnϕn

ij(g)

]√
dnϕ

n
ij(g)

=
∑
n,i,j

dn

[
1

|G|
∑
g∈G

f(g)ϕn
ij(g)

]
ϕn
ij(g)

=
∑
n,i,j

dnf̂ij (ϕ
n)ϕn

ij(g).

3.2. Fourier Theorems

The Fourier transform turning the convolution into multiplication, being unitary, and
being an isometry are all central theorems to Fourier theory in its discrete and non-
discrete forms. We will prove these now.
First, the Fourier transform is linear, which will be useful in later proofs.

Theorem 3.18 (Linearity). The finite group Fourier transform is a linear transform,

i.e. given f, g ∈ L(G), then ( ̂bf + cg) = bf̂ + cĝ.

Proof. This can easily be checked by applying Definition 3.16.
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3.2.1. The Convolution Theorem

Definition 3.19. The convolution of two functions f, g ∈ L(G) is given by

(f ∗ g)(a) =
∑
b∈G

f(b)g(b−1a).

Using this, the convolution theorem can be proven.

Theorem 3.20 (Convolution Theorem). Given f, g ∈ L(G) and (ϕn,Cdn) ∈ S(G) then,

(̂f ∗ g)(ϕn) = f̂(ϕn)ĝ(ϕn).

Proof. Observe the following

(f̂ ∗ g)ij(ϕn) =
∑
a∈G

[∑
b∈G

f(b)g(b−1a)

]
ϕn
ij(a)

=
∑
ba∈G

∑
b∈G

f(b)g(b−1ba)ϕn
ij(ba)

=
∑
a∈G

∑
b∈G

f(b)g(a)
dn∑
k=0

ϕn
ik(b)ϕ

n
kj(a)

=
dn∑
k=0

[∑
b∈G

f(b)ϕn
ik(b)

][∑
a∈G

g(a)ϕn
kj(a)

]

=
dn∑
k=0

f̂ik(ϕ
n)ĝkj(ϕ

n).

Which is simply ij-th element of the matrix multiplication of f̂(ϕn) and ĝ(ϕn), thus

(̂f ∗ g)(ϕn) = f̂(ϕn)ĝ(ϕn).

3.2.2. Plancherel’s Theorem

Plancherel’s Theorem equates f and f̂ , through the inner products of the function spaces
of f and f̂ . Recall that f ∈ L(G) and f̂ ∈ F (G). The inner product of L(G) has been
covered already in Definition 3.21, but the inner product of F (G) has not been discussed
so far.

Definition 3.21. Let the inner product of F (G) be

⟨f̂ , ĝ⟩ =
∑
n,i,j

f̂ij(ϕ
n)ĝij(ϕn).

It is not hard to verify that this defines a Hermitian inner product. From here, we
prove Parseval’s Theorem, which states that the Fourier transform is a unitary operation,
i.e. the norms of f and f̂ are equal.
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Theorem 3.22 (Parseval’s Theorem). Given the inner products

⟨f, g⟩1 =
1

|G|
∑
a∈G

f(a)g(a) ⟨f̂ , ĝ⟩2 =
∑
n,i,j

dnf̂ij(ϕ
n)ĝij(ϕn).

We have that ||f ||1 = ||f̂ ||2

Proof. Observe the following

||f ||21 =
1

|G|
∑
a∈G

f(a)f(a) =
1

|G|
∑
a∈G

|f(a)|2

=
1

|G|
∑
a∈G

∣∣∣∣∣∑
n,i,j

dnf̂ij(ϕ
n)ϕn

ij(a)

∣∣∣∣∣
2

=
1

|G|
∑
a∈G

[∑
n,i,j

dnf̂ij(ϕ
n)ϕn

ij(a)

][∑
m,k,l

dmf̂kl(ϕm)ϕm
kl(a)

]

=
∑
n,i,j

∑
m,k,l

dndmf̂ij(ϕ
n)f̂kl(ϕm)

[
1

|G|
∑
a∈G

ϕn
ij(a)ϕ

m
kl(a)

]
=
∑
n,i,j

∑
m,k,l

dnf̂ij(ϕ
n)f̂kl(ϕm)δnmδikδjl

=
∑
n,i,j

dnf̂ij(ϕ
n)f̂ij(ϕn) = ||f̂ ||22.

We can now make the following extension.

Theorem 3.23 (Plancherel’s Theorem). Given the inner products defined above, we

have that ⟨f, g⟩1 = ⟨f̂ , ĝ⟩2.

Proof. Since both ⟨·, ·⟩1 and ⟨·, ·⟩2 are Hermitian inner products, for either inner product

⟨f, g⟩k =
1

4
(||f + g||2k − ||f − g||2k + i||f + ig||2k − i||f − ig||2k).

Combining this with Theorem 3.18 and Theorem 3.22 we get ⟨f, g⟩1 = ⟨f̂ , ĝ⟩2.
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4. Cyclic Groups

To connect the Cyclic DFT from Chapter 2 to the finite group Fourier transform from
Chapter 3, recall that the Cyclic DFT and IDFT were defined as

f̂ [n] =
1

L

L−1∑
k=0

f [k]ω−nk
L and f [k] =

L−1∑
n=0

f̂ [n]ωnk
L . (4.1)

Now for any cyclic group of size L which we denote CL =
〈
r|rL = e

〉
, the group will be

isomorphic to Z/LZ by rk 7→ [k], which had a complete set of representations (ϕn,C) ∈
S(CL) for n = 0, . . . , L− 1 where ϕn[k] = ωnk

L [15]. Thus by Definition 3.16

f̂(ϕn) =
1

L

∑
rk∈CL

f(rk)ω−nk
L and f(rk) =

L−1∑
n=0

f̂(ϕn)ωnk
L .

Letting f(rk) be written as f [k] and f̂(ϕn) be written f̂ [n], the Cyclic DFT is the finite
group Fourier transform for cyclic groups, and likewise the Cyclic IDFT is the inverse
finite group Fourier transform for cyclic groups.

4.1. The Näıve Cyclic DFT

We want to count the total number of operations necessary to compute the Cyclic DFT.
First, we must define what an operation is. To do so, we proceed by the definition of
Cooley and Tukey [6].

Definition 4.1 (Arithmetic Complexity). An operation is a complex addition or a
complex multiplication. The arithmetic complexity of an algorithm refers to the total
number of operations it takes to compute.

Moreover, we assume any operations done for indexing or calculating roots of unity do
not incur any arithmetic complexity. In reality, calculating indices, allotting space for
new variables, and computing roots of unity does take variable amounts of time, which
will be analyzed in Section 4.4.
So far, we have discussed Fast Fourier Transforms as being faster than their respective

Discrete Fourier Transform, but now we have the tools to define this clearly.

Definition 4.2 (Fast Fourier Transform). A Fast Fourier Transform (FFT) is any al-
gorithm that reduces the arithmetic complexity of the näıve implementation of the cor-
responding DFT.
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Although this paper focuses on computing the DFT, the Cyclic IDFT is computed the
same way up to a normalization and conjugation of the ω−nk

L terms and thus algorithms
and complexity analysis for Cyclic IDFTs will follow from their corresponding Cyclic
DFT algorithms. Moreover, Cyclic IDFTs will be important in Section 6.2 and Section
7.2. Cyclic IFFTs can be found in GitHub under the folder of the corresponding Cyclic
FFT.
Before discussing the algorithms that reduce the arithmetic complexity of the Cyclic

DFT, we begin with the näıve implementation, which refers to implementing the Cyclic
DFT directly from Equation 4.1.

� The code and documentation is available here.

Proposition 4.1.1. The arithmetic complexity of näıvely computing the Cyclic DFT
for a cyclic group CL is 2L2 ∈ O(|CL|2) operations.

In the computation of each Fourier coefficient f̂ [n], there are L terms summed which
is L− 1 additions, where each term includes one multiplication, resulting in a total of L
multiplications. Including normalization, this results in L− 1 + L+ 1 = 2L operations.
Since we have to compute L coefficients, we have in total 2L2 operations which has an
asymptotic arithmetic complexity in O(|CL|2) operations.
Using the Näıve Cyclic DFT as a point of reference, we can now look at Cyclic FFTs

which reduce this arithmetic complexity.

4.2. The Mixed-Radix FFT

� The code and documentation is available here.

The Mixed-Radix FFT, theorized by James Cooley and John Tukey in 1965 marks
the historical beginning of Cyclic DFTs being considered possible to compute in under
O(|CL|2) operations [6, 11].
The main idea of the Mixed-Radix FFT is to use a factorization of the group size

L = L1 . . . Lm to divide the Cyclic DFT into smaller Cyclic DFTs. To start with, let
L = L1L2, then we reintepret f as a multi-variable function by rewriting the indices n
and k using two variables as follows

k = k1 + k2L1,

n = n2 + n1L2.

The indices n and k now consist of two components, meaning f [k] = f [k1, k2], and

likewise f̂ [n] = f̂ [n1, n2]. Now, to prevent duplicated values but range over all n, k ∈
Z/LZ we have

0 ≤ n1 ≤ L1 − 1, 0 ≤ k1 ≤ L1 − 1,

0 ≤ n2 ≤ L2 − 1, 0 ≤ k2 ≤ L2 − 1.

15

https://github.com/mgignoux/BachelorProject/tree/main/Code/CyclicTransforms/cyclicDFT
https://github.com/mgignoux/BachelorProject/tree/main/Code/CyclicTransforms/mixedRadixFFT


These ranges will help to reinterpret the summation given in Equation 4.1. Observe that
the Cyclic DFT can be split into three steps as follows

f̂ [n1, n2] =
1

L1L2

L1−1∑
k1=0

L2−1∑
k2=0

f [k1, k2]ω
−(n2+n1L2)(k1+k2L1)
L

=
1

L1

L1−1∑
k1=0


[
1

L2

L2−1∑
k2=0

f [k1, k2]ω
−n2k2
L2

]
︸ ︷︷ ︸

Step 1

ω−n2k1
L


︸ ︷︷ ︸

Step 2

ω−n1k1
L1

︸ ︷︷ ︸
Step 3

.

In Step 1 the Cyclic DFT is done over the values of k2 of which there are L2, giving a
new sequence of results dependent on k1 and n2. In Step 2, these results are multiplied
by the twiddle factor ω−n2k1

L , and in Step 3, a Cyclic DFT is done over the values of k1
of which there are L1. This can be written as a three-step algorithm as follows.

Step 1. Compute Cyclic DFTs: t̂[k1, n2] =
1
L2

∑L2−1
k2=0 f [k1, k2]ω

−n2k2
L2

Step 2. Multiply by twiddle factors: t̃[k1, n2] = t̂[k1, n2]ω
−n2k1
L

Step 3. Compute Cyclic DFTs: f̂ [n1, n2] =
1
L1

∑L1−1
k1=0 t̃[k1, n2]ω

−n1k1
L1

There are two hidden steps here. First reinterpreting f [k] as f [k1, k2] and secondly

uninterpreting f̂ [n1, n2] back to f̂ [n]. However, by our assumptions these do not incur
any computational cost.
Using recursion in these algorithms to break the problem into smaller sub-problems,

known as the divide-and-conquer paradigm, we can speed this algorithm up further.
Therefore, the Cyclic DFTs in Step 1 and Step 3 provide an opportunity for recursion.
The base case (i.e. when we can no longer recurse) is hit when we can no longer factorize
the group size (i.e. L is prime). In this case, the näıve implementation given in Section
4.1 is the only algorithm discussed in this paper that can handle this. In practice, an
algorithm known as Rader’s FFT is also often used to handle prime group sizes, but will
not be covered in this thesis [13].

Proposition 4.2.1. The arithmetic complexity of computing the Mixed-Radix FFT for
a cyclic group CL is given by the recurrence relation

T (L) =

{
2L2 if L is prime,

L1T (L2) + L+ L2T (L1) where L1L2 = L.

To understand the arithmetic complexity of this algorithm, consider when L = L1L2.
Then, Step 1 computes L1 Cyclic DFTs of size L2, Step 2 multiplies these results by
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L1L2 = L twiddle factors, and Step 3 computes L2 Cyclic DFTs of size L1. Now, if
recursion occurs, the algorithm is computed again by factorizing L1 and L2, giving a
recurrence of L1T (L2) + L+ L2T (L1) as long as L is not prime. However, if L is prime
we resort to computing the Cyclic DFT näıvely, which has an arithmetic complexity of
2L2 per Proposition 6.1.1.
As a side note, if L is a power of 2, letting L1 = L/2 and L2 = 2 we get T (L) =

2T (L/2)+L+(L/2)T (2) = 2T (L/2)+5L which can be solved to get T (L) ∈ O(L logL).
This particular case has been heavily studied due to its O(L logL) complexity and is
known as the Radix-2 FFT [6].

4.3. The Prime Factor Algorithm

� The code and documentation is available here.

The Prime Factor Algorithm (PFA) improves upon the Mixed-Radix FFT for group
sizes with co-prime factors. Developed by Thomas Good in 1963, prior to the Cooley
Tukey algorithm, but only wide-spread later, the two algorithms were initially consid-
ered the same [5]. However, the PFA offers slight improvements in arithmetic complexity
over the Mixed-Radix FFT for co-prime factorizations of groups sizes.
When looking at the Mixed-Radix FFT algorithm, Step 2, i.e. the twiddle factor

step, requires L multiplications by roots of unity. This can not be done recursively, and
incurs L operations every time the Mixed-Radix FFT is used. The PFA removes this
step by using a different rewriting of f as a multi-variable function. Thus, we start
by reinterpretting f as a multi-variable function, this time using Bézout’s identity to
rewrite the index k as

k = k1L2 + k2L1.

Similarly, let the index n be rewritten using n1 and n2, which are given by the Chinese
Remainder Theorem

n1 ≡ n mod L2,

n2 ≡ n mod L1.

Thus the ranges are the same as before, which are

0 ≤ n1 ≤ L1 − 1, 0 ≤ k1 ≤ L1 − 1,

0 ≤ n2 ≤ L2 − 1, 0 ≤ k2 ≤ L2 − 1,

and n is the solution to the Chinese Remainder Theorem, so

n ≡ L1an2 + L2bn1 mod L,

where

L1a ≡ 1 mod L2,

L2b ≡ 1 mod L1.
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This gives the following rewrite of Equation 4.1.

f̂ [n1, n2] =
1

L1L2

L1−1∑
k1=0

L2−1∑
k2=0

f [k1, k2]ω
−(L1an2+L2bn1)(L2k1+L1k2)
L

=
1

L1

L1−1∑
k1=0

[
1

L2

L2−1∑
k2=0

f [k1, k2]ω
−n2k2
L2

]
︸ ︷︷ ︸

Step 1

ω−n1k1
L1

︸ ︷︷ ︸
Step 2

.

Note that the twiddle factors are now gone! So the PFA is given by the following two-step
algorithm.

Step 1. Compute Cyclic DFTs: t̂[k1, n2] =
1
L2

∑L2−1
k2=0 f [k1, k2]ω

−n2k2
L2

Step 2. Compute Cyclic DFTs: f̂ [n1, n2] =
1
L1

∑L1−1
k1=0 t̂[k1, n2]ω

−n1k1
L1

Of course, we must again reinterpret f [k] as f [k1, k2] before Step 1 and uninterpret

f̂ [n1, n2] as f̂ [n] after Step 2 which by our assumptions incurs no arithmetic complexity.

Proposition 4.3.1. The arithmetic complexity of computing the PFA for a cyclic group
CL is given by the recurrence relation

T (L) =

{
2L2 if no co-prime factors,

L1T (L2) + L2T (L1) where L1L2 = L and L1, L2 co-prime.

The arithmetic complexity of the PFA is simply that of the Mixed-Radix FFT except
without the twiddle factor step, which incurred a computational cost of Lmultiplications
by twiddles. Therefore, the PFA has L fewer operations than the Mixed-Radix FFT in
each recurrence.

4.4. Analysis

� The driver used to produce the following results is available here.

As mentioned, all results about arithmetic complexity are theoretic as among other
things the processor must compute or locate roots of unity in memory, store data,
reinterpret f as a multi-variable function, and uninterpret f̂ back to a single-variable
function. We can use MATLAB’s built-in timeit function [3] to compute how long our
encodings of these algorithms actually take to compute. To test the run time of the dis-
cussed algorithms for computing the Cyclic DFTs, we can create functions f : CL → C
for L = 1 to 2000 consisting of pseudo-random uniformly distributed complex numbers
generated by MATLAB’s rand function [3].
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(a) Time Analysis (b) Time Analysis with Moving Mean

Figure 4.1.: Time Analysis of Cyclic DFT Algorithms

In Figure 4.1(a) we can see that the näıve implementation of the Cyclic DFT has a
steadily increasing run time as the group size increases. However, what we find with both
the Mixed-Radix FFT and the PFA is that the run time varies depending on the group
size. This is exactly what we expect to find based on Proposition 4.2.1 and Proposition
4.3.1, from which we see that when the group size L is prime, we have to run the Näıve
Cyclic DFT for both algorithms. To make the results clearer, we take the 100-point
running average of the run time data resulting in Figure 4.1(b).
From this, we can see that on average the Mixed-Radix FFT runs slightly faster than

the PFA despite the recurrence relations in Proposition 4.2.1 and Proposition 4.3.1,
pointing to the PFA having a better arithmetic complexity. This is to be expected as
prime factorizations are far more common than prime factorizations where each factor
is co-prime. To analyze this we compare the Mixed-Radix FFT and PFA for highly
composite group sizes and for co-prime group sizes separately.

(a) Highly Composite Group Sizes (b) Co-prime Group Sizes

Figure 4.2.: Comparisons of Mixed-Radix FFT and PFA Algorithms

19



From Figure 4.2(a) we can see that the Mixed-Radix FFT handles highly composite
group sizes better than the PFA. A major disadvantage of the PFA is that it runs group
sizes such as L = 2n for n ∈ Z näıvely in O(L2) operations whereas the Mixed-Radix
FFT can run this in O(L logL) operations. However, the PFA handles products of non-
equal primes marginally better than the Mixed-Radix FFT as seen in Figure 4.2(b).
This makes sense as the complexity is reduced by a factor of the group size L in each
recurrence when comparing Proposition 4.2.1 and Proposition 4.3.1.
To improve these results, modern FFTs combine these algorithms with many others to

create an algorithm that begins by analyzing the group size, and then applies a sequence
of different smaller Cyclic FFTs to efficiently compute the Cyclic FFT. For instance, one
popular Cyclic FFT algorithm known as the FFTW claims a O(L logL) complexity for
inputs of all lengths–including primes [1].
Going into this project, my goal was to write a Cyclic FFT that I could show was

in O(L logL) operations. However looking at the sheer quantity of research on the
topic, I realized that without learning more FFT algorithms, and studying how they
are combined using number theory, I would not create anything remotely new. As an
example, the FFTW website states “In one way or another, [the] FFTW uses the Cooley-
Tukey algorithm, the prime factor algorithm, Rader’s algorithm for prime sizes, and a
split-radix algorithm... [The] FFTW’s code generator also produces new algorithms that
we do not completely understand” [1]. Moreover, many commercial FFT algorithms
such as the FFTW use computer science specific ideas such as parallel computing, hard
coding, lower-level programming, dynamic programming, and GPU computing making
their algorithms run incomparably faster that my own.
However, studying the Mixed-Radix FFT and the PFA were extremely helpful for this

paper. As we will see, splitting a DFT into smaller DFTs using methods learned from
studying the Mixed-Radix FFT and PFA will come back when studying Abelian FFTs
and Dihedral Product FFTs.
Lastly, although we will explore FFTs for other finite groups, Cyclic DFTs and IDFTs

will show up in these contexts. Based on our analysis of Figure 4.2(a) and Figure 4.2(b),
the Mixed-Radix FFT ultimately ran faster in general and had drastic improvements
for highly composite group sizes. Thus, moving forward, whenever we compute a Cyclic
DFT we shall use our implementation of the Mixed-Radix FFT.
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5. Abelian Groups

So far, we have only worked with the complete set of representations of cyclic groups.
Combining the complete set of representations of cyclic groups with the Fundamental
Theorem of Abelian Groups gives us a passage towards writing Abelian DFTs.

Theorem 5.1. Every finite abelian group is a direct product of cyclic groups.

Proof. The proof of this can be found in Theorem 3 in Chapter 5.2 of [8].

Thus, given a finite abelian group G, there exist cyclic groups CLi
for 1 ≤ i ≤ s such

that G = CL1 ×· · ·×CLs . From here, a complete set of representations of abelian groups
can be constructed using the complete set of representations of these cyclic groups.

Theorem 5.2. Given the complete set of representations of CLi
with elements (ϕni

i ,C) ∈
S(CLi

) for 1 ≤ i ≤ s, then (ϕn1,...,ns ,C) where

ϕn1,...,ns : CL1 × · · · × CLs → C∗

(g1, . . . , gs) 7→
s∏

i=1

ϕni
i (gi)

forms a complete set of representations of CL1 × · · · × CLs.

Proof. To prove this, we must show the following. We follow a similar method to Propo-
sition 4.5.1 in Chapter 4 of [17].

1. each (ϕn1,...,ns ,C) is a representation

2. each (ϕn1,...,ns ,C) is irreducible

3. each ϕn1,...,ns(g1, . . . , gs) is unitary for all gi ∈ CLi

4. each (ϕn1,...,ns ,C) is distinct

To the first point, we show that ϕn1,...,ns is a homomorphism. To see this, observe that

ϕn1,...,ns(g1g̃1, . . . , gsg̃s) =
s∏

i=1

ϕni
i (gig̃i)

=
s∏

i=1

ϕni
i (gi)ϕ

ni
i (g̃i)

=
s∏

i=1

ϕni
i (gi)

s∏
i=1

ϕni
i (g̃i)

= ϕn1,...,ns(g1, . . . , gs)ϕ
n1,...,ns(g̃1, . . . , g̃s).
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To the second point, each (ϕn1,...,ns ,C) is irreducible since there are no non-trivial
sub-spaces of C.
Now, to the third point, these representation are unitary since conjugation is distribu-

tive over multiplication. Thus,

ϕn1,...,ns(g1, . . . , gs)ϕ
n1,...,ns(g1, . . . , gs)

∗ =

[
s∏

i=1

ϕni
i (gi)

][
s∏

i=1

ϕni
i (gi)

]∗

=
s∏

i=1

ϕni
i (gi)ϕ

ni
i (gi) = 1,

and ϕn1,...,ns(g1, . . . , gs)
∗ϕn1,...,ns(g1, . . . , gs) = 1 can be shown without loss of generality.

Finally, to the fourth point, it is important to show that these representations are
distinct, since a complete set of representations only contains non-equivalent represen-
tations. In a one-dimensional setting this equates to checking if the representations are
not equal. To state this clearly, if ϕn1,...,ns = ϕn′

1,...,n
′
s , then ni = n′

i for 1 ≤ i ≤ s.
To prove this, observe that

ϕni
i (gi) = ϕn1,...,ns(e, . . . , e, gi, e, . . . , e) = ϕn′

1,...,n
′
s(e, . . . , e,gi, e, . . . , e) = ϕ

n′
i

i (gi)

for all 1 ≤ i ≤ s. Thus ϕni
i = ϕ

n′
i

i , which is only true if ni = n′
i since ϕni

i and ϕ
n′
i

i are not
equivalent.
Therefore, (ϕn1,...,ns ,C) for ni = 0, . . . , Li − 1 forms a complete set of representations

of CL1 × · · · × CLs . This is a complete set of representations by Theorem 3.15 since∑
n1,...,ns

dn1 . . . dns =
∑

n1,...,ns

1 = L1 . . . Ls = |CL1| . . . |CLs| = |CL1 × · · · × CLs|.

Thus, since (ϕni
i ,C) ∈ S(CLi

) where ϕni
i (rki) = ωniki

Li
for ni = 0, . . . , Li − 1 forms a

complete set of representations of CLi
, by Theorem 5.2 we now have that CL1 ×· · ·×CLs

has a complete set of representations with elements (ϕn1,...,ns ,C) where

ϕn1,...,ns(rk1 , . . . , rks) = ωn1k1
L1

. . . ωnsks
Ls

.

Now, let f(rk1 , . . . , rks) be denoted f [k1, . . . , ks] and f̂(ϕn1,...,ns) be denoted f̂ [n1, . . . , ns],
then by Definition 3.16 the Abelian DFT is

f̂ [n1, . . . , ns] =
1

L1 . . . Ls

L1−1∑
k1=0

· · ·
Ls−1∑
ks=0

f [k1, . . . , ks]ω
n1k1
L1

. . . ωnsks
Ls

. (5.1)

5.1. The Näıve Abelian Fourier Transform

� The code and documentation is available here.
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Proposition 5.1.1. The arithmetic complexity of näıvely computing the Abelian DFT
for an abelian group G = CL1 × · · · × CLs is |G|2(s+ 1) operations.

Using Equation 5.1 to compute one Fourier coefficient of the Abelian DFT we see there
are a total of L1 . . . Ls = |G| terms summed, and in each term there is an additional
multiplication by s roots of unity, which with normalization amounts to a total of s|G|+
|G| operations per Fourier coefficient. Thus, to compute all |G| Fourier coefficients, there
are a total of |G|2(s+ 1) operations.
As a side note, observe that when s = 1, i.e. G = CL1 , this is simply the arithmetic

complexity of the Näıve Cyclic DFT stated in Proposition 4.1.1.

5.2. A Fast Abelian Fourier Transform

� The code and documentation is available here.

Using the methods of the Mixed-Radix FFT in Section 4.2 and the Prime Factor Algo-
rithm in Section 4.3 which split Cyclic DFTs into smaller Cyclic DFTs, we can rewrite
the Abelian DFT such that it consists of smaller Cyclic DFTs by rewriting Equation 4.1
as follows

f̂ [n1, . . . , ns] =
1

Ls

Ls−1∑
ks=0

. . .

 1

Ls

L2−1∑
k2=0

[
1

L1

L1−1∑
k1=0

f [k1, . . . , ks]ω
−n1k1
L1

]
︸ ︷︷ ︸

Step 1

ω−n2k2
L2


︸ ︷︷ ︸

Step 2

. . . ω−nsks
Ls

︸ ︷︷ ︸
Step s

.

Since this has been broken down into Cyclic DFTs, any Cyclic FFT applies now to
improve the arithmetic complexity of computing the Abelian DFT. This can be written
as an s step algorithm as follows.

Step 1. Compute Cyclic DFTs:

t̂1[n1, k2, . . . , ks] =
1

L1

L1−1∑
k1=0

f [k1, . . . , ks]ω
−n1k1
L1

Step 2. Compute Cyclic DFTs:

t̂2[n1, n2, k3, . . . , ks] =
1

L2

L2−1∑
k2=0

t̂1[n1, k2, . . . , ks]ω
−n2k2
L2

...
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Step i. Compute Cyclic DFTs:

t̂i[n1, . . . , ni, ki+1, . . . , ks] =
1

Li

Li−1∑
ki=0

t̂i−1[n1, . . . , ni−1, ki, . . . , ks]ω
−niki
Li

...

Step s. Compute Cyclic DFTs:

f̂ [n1, . . . , ns] = t̂s[n1, . . . , ns] =
1

Ls

Ls−1∑
ks=0

t̂s−1[n1, . . . , ns−1, ks]ω
−nsks
Ls

Proposition 5.2.1. Using a Cyclic FFT with arithmetic complexity in O(Li logLi) for
a cyclic group CLi

, the Abelian FFT for a group G = CL1 × · · · ×CLs has an arithmetic
complexity in O(|G| log |G|).

Let A(|G|) denote the complexity of computing an Abelian DFT of group size |G| and
C(Li) denote the complexity of computing a Cyclic DFT of group size Li.
Consider the cost in Step i. In Step i, a Cyclic FFT of size Li is computed |G|/Li

times. Over a total of s steps this is

A(|G|) = (|G|/L1)C(L1) + · · ·+ (|G|/Ls)C(Ls).

Using a Cyclic FFT with complexity C(Li) ∈ O(Li logLi) this means C(Li) ≤ cLi logLi

for some c ∈ R as Li → ∞. Thus this results in A(|G|) ≤ c|G|(logL1 + · · · + logLs) =
c|G| log |G| ∈ O(L logL) since |G| = L1 . . . Ls.

5.3. Analysis

� The driver used to produce the following results is available here.

We can test the run time of this algorithm using similar methods to Section 4.4. How-
ever, this time the group G = CL1×· · ·×CLs is dependent on the number s of composing
groups, and the size Li of these composing groups. To test both of these factors, we can
fix Li = L for all 1 ≤ i ≤ s such that G = CL × · · · ×CL. Letting L and s range from 2
to 6 and measuring the run time of the Abelian DFT algorithms computed on randomly
generated functions on G, we get run time data dependent on two factors, L and s, that
we plot on a pseudo-color plot using MATLAB’s pcolor function [3].
Although these may seem like small test cases, this scales quickly as the direct product

of 6 cyclic groups of size 6 has 66 = 46, 556 elements. To make the results more visible,
the logarithm of the run time data was taken since the pseudo-color plot assigns colors
linearly. While the Abelian FFT could handle all these inputs in a matter of seconds, the
Näıve Abelian DFT did not finish computing all of these Abelian DFTs after running
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for more than 48 hours, and had to be terminated. The dark blue vertex indicates the
test case where L = 6 and s = 6 which could not be computed.

(a) Log Time Analysis of Näıve Abelian DFT (b) Log Time Analysis of Abelian FFT

Figure 5.1.: Log Time Analysis of Abelian DFT Algorithms

Comparing Figure 5.1(a) and Figure 5.1(b), we see that the Abelian FFT runs far
faster than the Näıve Abelian DFT in every test case. In short, the Abelian FFT
algorithm was able to compute each Abelian DFT in under 2 seconds, whereas the
Näıve Abelian DFT took over 50 minutes to run for the group where s = 6 and L = 5,
and could not compute the Abelian DFT for the group where s = 6 and L = 6.
We can also analyze the dependence on s in the Näıve Abelian DFTs arithmetic

complexity of |G|2(s + 1) operations given by Proposition 5.1.1. To do so, we compare
the Näıve Abelian DFTs run time at s = 3 and L = 4 to the run time at s = 6 and
L = 2. Although both of these cases compute an Abelian DFT for groups of size 64, the
case where s = 6 took 1.19 times longer to compute than the case where s = 3. On the
other hand, using the Abelian FFT, this transform was computed 1.11 times faster.
This makes sense as comparing Proposition 5.1.1 to Proposition 5.2.1, we see that

our Abelian FFT has removed this dependence upon s, and moreover, the more our
Abelian DFT is split up, the more Cyclic FFTs we can apply. Although Proposition
5.2.1 only holds for Cyclic FFTs in O(L logL) operations, we can see that using our
implementation of the Mixed-Radix FFT in our Abelian FFT already improves upon
the run time of näıvely computing the Abelian DFT.
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6. The Dihedral Group

The dihedral group D2L is an interesting group for doing Fourier transforms as it has an
easy to understand structure, but is not abelian for L > 2. As we will see, the complete
set of representations of D2L has one-dimensional and two-dimensional representations
and different representations when L is even or odd. This paper will cover the even case,
but the arithmetic complexity will asymptotically be the same for L odd. Recall that

D2L =
〈
s, r|rL = s2 = e, srs−1 = r−1

〉
.

For our purposes, we will only consider L > 2. Using [15] and writing the elements of
D2L in the form slrk for l = 0, 1 and r = 0, . . . , L − 1, the complete set of irreducible
representations of D2L for L even is given by the following one-dimensional representa-
tions

ϕ−3(slrk) = 1, ϕ−2(slrk) = (−1)l, ϕ−1(slrk) = (−1)k, ϕ0(slrk) = (−1)l+k.

Next, splitting this up and writing rotations as rk and reflections of rotations as srk, we
have two-dimensional representations where

ϕn(rk) =

(
ωnk
L 0
0 ω−nk

L

)
and ϕn(srk) =

(
0 ω−nk

L

ωnk
L 0

)
,

for n = 1, . . . , L/2− 1. If we instead want to consider the odd case, then ϕ−1 and ϕ0 are
not included and n = 1, . . . , (L− 1)/2− 1.
Since there are two different types of representations, one-dimensional and two-dimensional,

and two different types of elements of D2L, one for rotations, and one for reflections of
rotations, the Fourier transform given in Definition 3.16 can be split up as follows

f̂ij (ϕ
n) =


1
2L

∑
slrk∈D2L

f
(
slrk

)
ϕn(slrk) for − 3 ≤ n ≤ 0,

1
2L

[ ∑
rk∈D2L

f
(
rk
) ( ωnk

L 0

0 ω−nk
L

)
ij
+

∑
srk∈D2L

f
(
srk
) ( 0 ω−nk

L

ωnk
L 0

)
ij

]
for 0 < n < L/2.

6.1. The Näıve Dihedral Fourier Transform

Similar to our assumptions in Section 4.1, since the coefficients of representations of
Dihedral groups consist of roots of unity, 1, 0, and powers of −1, we will assume the
computer can calculate these coefficients without incurring any computational cost.

� The code and documentation is available here.
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Proposition 6.1.1. The arithmetic complexity of näıvely computing the Dihedral DFT
for a dihedral group D2L is 8L2 ∈ O(|D2L|2) operations. If L is even, then computing
the Fourier coefficients indexed by representations −3 ≤ n ≤ 0 takes 16L operations
and computing the coefficients indexed by representations 0 < n < L/2 takes 8L2 − 16L
operations.

Consider the calculation of the Fourier coefficients for −3 ≤ n ≤ 0 and 0 < n < L/2
separately. For −3 ≤ n ≤ 0, there is one summation of size 2L containing one multipli-
cation, resulting in 4L operations with normalization per calculation of one coefficient,
of which there are 4. In total this amounts to 16L operations.
For 0 < n < L/2, there are two summations of size L each containing one multipli-

cation, which is used to compute L/2 − 1 transforms which each contain 4 coefficients
resulting in 16L(L/2−1) operations with normalization. Combining this with the above
result ultimately gives an arithmetic complexity of

16L+ 8L2 − 16L = 8L2 ∈ O(|D2L|2).

Viewing this transform as two separate pieces, it becomes clear that the algorithm for
−3 ≤ n ≤ 0 does not affect the asymptotic arithmetic complexity of the algorithm and
is in fact linear, i.e. in O(L) operations. Thus to improve the arithmetic complexity
of the algorithm, we focus on improving the arithmetic complexity of computing the
Dihedral DFT for the coefficients of the representations indexed by 0 < n < L/2.

6.2. A Fast Dihedral Fourier Transform

� The code and documentation is available here.

Since the Dihedral DFT uses roots of unity, the Dihedral FFT can be related to the
Cyclic FFT through rewriting. Recall that for the two-dimensional representations, the
Dihedral DFT is given by

f̂ij (ϕ
n) =

1

2L

 ∑
rk∈D2L

f
(
rk
)(ω−nk

L 0
0 ωnk

L

)
ij

+
∑

srk∈D2L

f
(
srk
)( 0 ωnk

L

ω−nk
L 0

)
ij

 (6.1)

for 0 < n < L/2 − 1. From the definition of D2L, rotations (including the identity)
rk ∈ D2L are uniquely e, r, . . . , rL−1. Now, the index rk ∈ D2L can be written rk for
k = 0, . . . , L−1. Likewise, the rotations of reflections (including the reflection s) can be
rewritten srk for k = 0, . . . , L−1. Thus the summation in Equation 6.1 can be rewritten
as

f̂ij (ϕ
n) =

1

2L

[
L−1∑
k=0

f
(
rk
)(ω−nk

L 0
0 ωnk

L

)
ij

+
L−1∑
k=0

f
(
srk
)( 0 ωnk

L

ω−nk
L 0

)
ij

]
.
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Which in a few steps can be rewritten as

f̂ij (ϕ
n) =

1

2L


 L−1∑

k=0
f(rk)ω−nk

L 0

0
L−1∑
k=0

f(rk)ωnk
L


ij

+

 0
L−1∑
k=0

f(srk)ωnk
L

L−1∑
k=0

f(srk)ω−nk
L 0


ij



=
1

2


1
L

L−1∑
k=0

f
(
rk
)
ω−nk
L

1
L

L−1∑
k=0

f
(
srk
)
ωnk
L

1
L

L−1∑
k=0

f
(
srk
)
ω−nk
L

1
L

L−1∑
k=0

f
(
rk
)
ωnk
L


ij

. (6.2)

Therefore every matrix entry with a ω−nk
L term is a Cyclic DFT and every matrix entry

with a ωnk
L term is a normalized Cyclic IDFT. However, we do not use the full range of

results causing a trade-off, since for our purposes 1 < n < L/2 but the Cyclic DFT and
IDFT give results for 0 ≤ n ≤ L− 1.
Thus, any Cyclic FFT and IFFT can be applied to speed up the calculation of the

Dihedral DFT resulting in a Dihedral FFT!

Proposition 6.2.1. Using a Cyclic FFT with arithmetic complexity in O(L logL) for
a cyclic group CL, the Dihedral FFT for a dihedral group D2L has arithmetic complexity
in O(|D2L| log |D2L|).

Let D(2L) denote the arithmetic complexity of computing a Dihedral DFT of group
size 2L and C(L) denote the arithmetic complexity of computing a Cyclic DFT of group
size L. By Proposition 6.1.1 the cost of computing the coefficients of representations
indexed by −3 ≤ n ≤ 0 is 16L. Now, using the methods discussed above, to compute
the coefficients of the representations indexed by 0 < n < L/2 amounts to two Cyclic
DFTs and two Cyclic IDFTs of group size L. Recall that we can compute Cyclic IDFTs
with the same methods as Cyclic DFTs as they are the same up to normalization and
conjugation by the roots of unity.
Using a Cyclic FFT and IFFT inO(L logL), this results inD(2L) ≤ 16L+2c1L logL+

2c2 logL operations for some c1, c2 ∈ R as L → ∞. Thus D(2L) ∈ O(L logL) which is
equivalent to saying D(2L) ∈ O(|D2L| log |D2L|).

6.3. Analysis

� The driver used to produce the following results is available here.

To compare the näıve implementation of the Dihedral DFT with our Dihedral FFT,
we follow the methods of Section 4.4 and randomly generate functions f : D2L → C
from L = 3 to L = 1000 which allow us to test our algorithms for group sizes up to 2000.
Recall from our analysis in Section 4.4 that our Mixed-Radix FFT was the fastest way
of computing the Cyclic DFT, and therefore is the Cyclic FFT algorithm that we will
use for computations of the Dihedral FFT. Computing the run times and a 100-point
running average over these run times gives the following two plots.
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(a) Time Analysis (b) Time Analysis with Moving Mean

Figure 6.1.: Time Analysis of Dihedral DFT Algorithms

In Figure 6.1(a) we can see that the Dihedral FFT is consistently faster than the
Dihedral DFT even at prime values of L. To understand why, we can compare the equa-
tion of coefficients 0 < n < L/2 given in Equation 6.1 and our rewrite of this equation
given in Equation 6.2. Looking at these, we see that Equation 6.1 had added arithmetic
complexity in each step by multiplying the function by 0 within the summation, which
added 4 unnecessary multiplications that we were ultimately able to remove using our
rewriting in Equation 6.2. Moreover, on a non-theoretical note, implementing Equation
6.1 requires initializing two 2× 2 matrices instead of one 2× 2 matrix, which also makes
our Dihedral FFT faster.
Taking the running average in Figure 6.1(b) helps us see how much faster our Dihedral

FFT runs in general. From Section 4.4, we know that the Mixed-Radix FFT is not in
O(L logL) for all cyclic groups CL, meaning this specific implementation of the Dihedral
FFT using the Mixed-Radix FFT is not in O(|D2L| log |D2L|) for all L. However, as
discussed in Proposition 6.2.1, given a Cyclic FFT in O(L logL), this is theoretically
possible, and the Mixed-Radix FFT already makes large improvements in computing
the Dihedral DFT as seen in both figures.
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7. Direct Products of Dihedral
Groups

Finally, we want to write FFTs for direct products of dihedral groups by combining the
FFTs we have explored so far. To begin with, we introduce some representation theory
for direct products of groups.

Theorem 7.1. If (ϕ1,Cdn) and (ϕ2,Cdm) are irreducible matrix representations of G1

and G2 respectively, then (ϕ1 ⊗ ϕ2,Cdndm) is an irreducible matrix representation of
G1 ×G2.

Proof. The proof of this can be found in Theorem 10 of Chapter 3.2 of [15].

We can now find the complete set of representations of a direct product of groups.

Theorem 7.2. Given the complete set of representations of Gi with elements (ϕni
i ,Cdni ) ∈

S(Gi) for 1 ≤ i ≤ s, then (ϕn1,...,ns ,Cdn1 ...dns ) where

ϕn1,...,ns : G1 × · · · ×Gs → GLdn1 ...dns
(C)

(g1, . . . , gs) 7→
s⊗

i=1

ϕni
i (gi)

forms a complete set of representations of G1 × · · · ×Gs

Proof. Similar to Theorem 5.2, we must show the following.

1. each ϕn1,...,ns is a representation

2. each ϕn1,...,ns is irreducible

3. each ϕn1,...,ns(g1, . . . , gs) is unitary for all (g1, . . . , gs) ∈ G1 × · · · ×Gs

4. each ϕn1,...,ns is distinct

We will prove this explicitly for s = 2. The rest follows inductively since the direct
product of groups is a group. The first and the second point are then covered by
Theorem 7.1.
To the third point we must show that given ϕn1

1 (g1) ∈ U(dn1) and ϕn2
2 (g2) ∈ U(dn2)

we have that ϕn1,n2(g1, g2) ∈ U(dn1dn2). To see this, observe that

[ϕn1,n2(g1, g2)] [ϕ
n1,n2(g1, g2)]

∗ = [ϕn1
1 (g1)⊗ ϕn2

2 (g2)] [ϕ
n1
1 (g1)⊗ ϕn2

2 (g2)]
∗

= [ϕn1
1 (g1)⊗ ϕn2

2 (g2)] [ϕ
n1
1 (g1)

∗ ⊗ ϕn2
2 (g2)

∗]

= [ϕn1
1 (g1)ϕ

n1
1 (g1)

∗]⊗ [ϕn2
2 (g2)ϕ

n2
2 (g2)

∗]

= Idn1
⊗ Idn2

= Idn1dn2
,
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where the second step uses that the conjugate transpose is distributive over the Kro-
necker product and the third step uses the mixed-product property of Kronecker prod-
ucts. Proving [ϕn1,n2(g1, g2)]

∗ [ϕn1,n2(g1, g2)] = Idn1 ...dns
can likewise be done without loss

of generality.
Now, to the fourth point we must show that each ϕn1,n2 is distinct. This means

showing that if there is an isomorphism T : Cdn1dn2 → Cdn′
1
dn′

2 such that

Tϕn1,n2(g1, g2) = ϕn′
1,n

′
2(g1, g2)T,

then n1 = n′
1 and n2 = n′

2. Considering when g1 = e and rewriting both sides of the
equation we have the following.

T [ϕn1
1 (e)⊗ ϕn2

2 (g2)] = [ϕ
n′
1

1 (e)⊗ ϕ
n′
2

2 (g2)]T

T [Idn1
⊗ ϕn2

2 (g2)] = [Idn′
1
⊗ ϕ

n′
2

2 (g2)]T

Which can be written as a diagonal block matrix as follows.

T

ϕn2
2 (g2) 0

. . .

0 ϕn2
2 (g2)

 =

ϕ
n′
2

2 (g2) 0
. . .

0 ϕ
n′
2

2 (g2)

T

From the top left term of the multiplication we can find T2 : Cdn2 → Cdn′
2 such

that T2ϕ
n2
2 (g2) = ϕ

n′
2

2 (g2)T2. However, since each ϕn2
2 is distinct, this means n2 = n′

2.
Similarly, setting g2 = e and using the canonical isomorphism (A ⊗ B) ∼= (B ⊗ A)
(Proposition 20 in Section 10.4 of [8]) we get

T [Idn2
⊗ ϕn1

1 (g1)] = [Idn′
2
⊗ ϕ

n′
1

1 (g1)]T.

From this we can similarly find T1 : Cdn1 → Cdn′
1 such that T1ϕ

n1
1 (g1) = ϕ

n′
1

1 (g1)T1 which
is only true if n1 = n′

1. Therefore if ϕn1,n2 ∼ ϕn′
1n

′
2 then n1 = n′

1 and n2 = n′
2, and

therefore each representation (ϕn1,n2 ,Cdn1dn2 ) is distinct.
Since each representation (ϕn1,n2 ,Cdn1dn2 ) is a non-equivalent, irreducible, unitary rep-

resentation of G1 × G2, by Theorem 3.15 we have a complete set of representations of
G1 ×G2 since ∑

n1,n2

dn1dn2 =
∑
n1

dn1

∑
n2

dn2 = |G1||G2| = |G1 ×G2|.

Because we know the complete set of representations of dihedral groups, we can now
use Theorem 7.2 to write the complete set of representations for direct products of
dihedral groups, which we can then use to write a Fourier transform for this group
which we will call the Dihedral Product DFT.
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Let G = D2L1 × · · · × D2Ls . Using Definition 3.16 and Theorem 7.2 the Dihedral
Product DFT has Fourier coefficients

f̂kl(ϕ
n1,...,ns) =

1

2sL1 . . . Ls

∑
(g1,...,gs)∈D2L1

×···×D2Ls

f(g1, . . . , gs)

(
s⊗

i=1

ϕni
i (gi)

)
kl

, (7.1)

where (ϕni
i ,Cdni ) ∈ S(D2Li

) for 1 ≤ i ≤ s.

7.1. The Näıve Dihedral Product Transform

� The code and documentation is available here.

Proposition 7.1.1. The arithmetic complexity of näıvely computing the Dihedral DFT
for a dihedral group G = D2L1 × · · · ×D2Ls is |G|2(s+ 1) operations.

To compute one Fourier coefficient using Equation 7.1 we sum over the elements of
G = D2L1 × · · · × D2Ls which amounts to |G| − 1 additions. In each of these addi-
tions we multiply f(g1, . . . , gs) by a coefficient of the Kronecker products of s matrices.
Calculating the Kronecker product coefficient takes s − 1 multiplications so in total
this results in s multiplications within one term of the summation and s|G| multiplica-
tions in total. Thus, including normalization, computing one Fourier coefficients takes
|G| − 1 + s|G| + 1 = |G|(s + 1) operations, since there are |G| Fourier coefficients by
Theorem 3.15, this amounts to |G|2(s+ 1) operations.
As a side note, when s = 1, i.e. G = D2L1 , then the arithmetic complexity is 2|D2L1 |2 =

8L2
1 which is exactly the arithmetic complexity of the Näıve Dihedral DFT given in

Proposition 6.1.1.

7.2. A Fast Dihedral Product Transform

� The code and documentation is available here.

To improve computation of the Dihedral Product DFT we aim to rewrite our Dihe-
dral Product DFT as a combination of Dihedral DFTs similar to how we rewrote the
Abelian DFT as a combination of Cyclic DFTs. This is not as straight forward since in-
stead of taking a product of the cyclic representations as in the case of the abelian group,
we have to take the tensor product of the representations since the dihedral group has
two-dimensional representations. However, we can rewrite the elements of the Kronecker
product term in Equation 7.1 as a product using the following theorem.

Theorem 7.3. For a c × d matrix B, the ij-th coefficient of the Kronecker product
(A⊗B) is equal to Ap1q1Bp2q2 where

p1 =

⌈
i

c

⌉
, q1 =

⌈
j

d

⌉
, p2 = (i− 1) % c+ 1, q2 = (j − 1) % d+ 1,

and a % b denotes the remainder of a/b.
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Proof. See Theorem A.1 in Appendix A.1.

Now, if we repeatedly do this, we can find ai and bi such that(
s⊗

i=1

ϕni
i (gi)

)
kl

=
s∏

i=1

(ϕni
i )aibi(gi).

Applying this to Equation 7.1 we have

f̂kl(ϕ
n1,...,ns) =

1

2sL1 . . . Ls

∑
(g1,...,gs)∈D2L1

×···×D2Ls

f(g1, . . . , gs)(ϕ
n1
1 )a1b1(g1) . . . (ϕ

ns
s )asbs(gs)

=
1

2Ls

∑
gs∈D2Ls

. . .

 1

2L1

∑
g1∈D2L1

f(g1, . . . , gs)(ϕ
n1
1 )a1b1(g1)


︸ ︷︷ ︸

Step 1

. . . (ϕns
s )asbs(gs)

︸ ︷︷ ︸
Step s

.

Thus using the same method of splitting up the DFT that we used to write our Abelian
FFT, we can split up the Dihedral Product FFT into smaller Dihedral FFTs, which in
turn use Cyclic FFTs and IFFTs! This can be written as an s-step algorithm as follows.

Step 1. Compute Dihedral DFTs:

t̂a1b1(ϕ
n1
1 , g2, . . . , gs) =

1

2L1

∑
g1∈D2L1

f(g1, . . . , gs)(ϕ
n1
1 )a1b1(g1)

...

Step i. Compute Dihedral DFTs

t̂aibi(ϕ
n1
1 , . . . , ϕni

i , gi+1, . . . , gs) =
1

2Li

∑
gi∈D2Li

t̂ai−1bi−1
(ϕn1 , . . . , ϕni−1 , gi, . . . , gs)(ϕ

ni
i )aibi(gi)

...

Step s. Compute Dihedral DFTs

f̂kl(ϕ
n1,...,ns) = t̂asbs(ϕ

n1
1 , . . . , ϕns

s ) =
1

2Ls

∑
gs∈D2Ls

t̂as−1bs−1(ϕ
n1 , . . . , ϕns−1 , gs)(ϕns

s )asbs(gs)

Proposition 7.2.1. Using a Cyclic FFT with arithmetic complexity in O(Li logLi)
operations for a cyclic group CLi

, the Dihedral Product FFT for a group G = D2L1 ×
· · · ×D2Ls has arithmetic complexity in O(|G| log |G|) operations.
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Let P (|G|) denote the arithmetic complexity of computing the Dihedral Product DFT
of G = D2L1 × · · · × D2Ls and D(2Li) denote the arithmetic complexity of comput-
ing a Dihedral DFT of group size 2Li. To find the arithmetic complexity, consider the
arithmetic complexity of computing a given step i. In this step, we compute a Dihe-
dral FFT of size 2Li for the coefficients of each representation ϕn1

1 , . . . , ϕ
ni−1

i−1 and each
element of Gi+1, . . . , Gs. By Theorem 3.15 there are 2L1 . . . 2Li−1 such coefficients of
representations and there are 2Li+1 . . . 2Ls elements. Thus Step i can be computed in
2L1 . . . 2Li−12Li+1 . . . 2LsD(2Li) operations.
Now, by Proposition 5.2.1, given a Cyclic DFT in O(Li logLi) operations for a cyclic

group CLi
, the Dihedral FFT for a group of size 2Li can be computed in O(2Li log 2Li)

operations. Thus for some c ∈ R and Li → ∞, we can compute Step i in under
2L1 . . . 2Li−12Li+1 . . . 2Ls(c2Li log 2Li) = c|G| log 2Li operations since |G| = 2sL1 . . . Ls.
Doing this over s steps results in

P (|G|) ≤
s∑

i=1

c|G| log 2Li = c|G| log 2sL1 . . . Ls ∈ O(|G| log |G|) operations.

7.3. Analysis

� The driver used to produce the following results is available here.

To compare these algorithms, we use the pseudo-color plot method described in Sec-
tion 5.3 for G = D2L × · · · × D2L giving the results shown in Figure 7.1. The Näıve
Dihedral Product DFT also failed to compute some of the test cases in 48 hours, which
are the cases with dark blue vertices in Figure 7.1(a).

(a) Log Time Analysis of Näıve Dihedral Product
DFT

(b) Log Time Analysis of Dihedral Product FFT

Figure 7.1.: Log Time Analysis of Dihedral Product DFT Algorithms

Similar to the analysis of the Abelian FFT in Section 5.3, the Dihedral Product FFT
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tested faster than the näıve implementation of the Dihedral Product DFT in every case.
Moreover, we can see the influence of the s term in the |G|2(s + 1) complexity for the
Näıve Dihedral Product DFT given in Proposition 7.1.1. Take group size 4, 096. The
Näıve Dihedral Product DFT took 6.5 times longer to compute the test case when s = 4
and L = 4 than when s = 6 and L = 2. Both of these test cases have the same group
size since (2× 4)4 = (2× 2)6 = 4, 096. In contrast, the Dihedral Product FFT took only
1.3 times longer to compute the case when s = 6 compared to the case when s = 4,
which could arise from the Mixed Radix Cyclic FFT not being in O(L logL) operations.
Therefore, given a fixed group size, the Dihedral Product DFT is heavily impacted by

the number of composing groups. This can also be seen in the fact that when s = 6, the
test cases with L = 4, 5, 6 failed to compute. On the contrary, the Dihedral Product FFT
was able to run the case when s = 6 and L = 6, which has group size (2×6)6 = 2, 985, 984
in 285 seconds.

35



8. Conclusion

This project combined theory about Cyclic FFTs and representation theory of finite
groups to efficiently compute Fourier transforms for finite abelian and non-abelian groups.
To begin with, we introduced the Cyclic DFT as well as representation theory, and found
a general Fourier transform for any finite group as well as its subsequent Fourier inver-
sion. Using this, we were able to prove the Convolution Theorem, Parseval’s Theorem,
and Plancherel’s Theorem for finite groups, theorems that are central to Fourier theory
in discrete and non-discrete settings.
Then, using our finite group Fourier transform and referring to [15] for theory about

representations of cyclic and dihedral groups, we were able to write Fourier transforms
for abelian, dihedral, and direct products of dihedral groups. From here, we analyzed
that näıvely computing these Fourier transforms takes 2|G|2 operations for dihedral
groups and |G|2(s + 1) operations for abelian and direct products of dihedral groups,
where s was the number of groups used in the direct product. However, using our study
of Cyclic FFTs, we could write our own algorithms that could be combined with a Cyclic
FFT in O(L logL) for a cyclic group CL to write these FFTs in O(|G| log |G|).
In terms of application, Cyclic DFTs and Abelian DFTs are extremely important in

modern times, especially in the field of signal-processing. Specifically, the Cyclic DFT is
used to reinterpret signals as their frequency domain. Moreover, Abelian DFTs do the
same for signals of more dimensions, and as a result, Abelian DFTs are often referred to
as multi-dimensional DFTs within this field. For instance, a photo composed of pixels
dependent on an x and y coordinate can be analyzed using a DFT on a direct product
of two cyclic groups, and a video composed of x and y values as well as a frame number
z is a DFT on a direct product of three cyclic groups. Lastly, Fourier transforms on
dihedral groups are less common, but have been explored in the field of optics in [18],
however a different formulation of the Dihedral DFT is used.
Fourier transforms on direct products of dihedral groups do not appear application-

rich. However, if a DFT for direct products of finite non-abelian groups was ever of
interest, the method of splitting up the transform into smaller group transforms using
coefficients of the Kronecker products could similarly be used to improve the efficiency
of the transform.
In terms of further research, we can try to generalize these results further such that

they apply to larger classes of groups, or instead look into other group Fourier transforms
for specific groups of interest. To the first point, proving an upper bound on the number
of operations necessary to compute a FFT for finite groups has been studied [12], as
well as theoretical ways of computing FFTs for wreath products of groups [14]. To the
second point, Fourier theory for finite groups is adaptable to compact groups by way of
the Peter-Weyl Theorem and a Haar measure for the group [19].

36



Bibliography

[1] FFTW documentation. Accessed on May 24, 2023. URL: https://www.fftw.org/
fftw3_doc/Introduction.html#Introduction/.

[2] FFTW homepage. Accessed on May 24, 2023. URL: https://www.fftw.org/.

[3] MATLAB documentation. Accessed on May 24, 2023. URL: https://nl.

mathworks.com/help/.

[4] F. Alexander. The Analytical Theory of Heat by Joseph Fourier Translated, With
Notes by Alexander Freeman. St. Johns College, Cambridge, 1878.

[5] J.W. Cooley, P.A.W. Lewis, and P.D. Welch. Historical notes on the fast fourier
transform. Proceedings of the IEEE, 55(10):1675–1677, 1967. doi:10.1109/PROC.
1967.5959.

[6] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19:297–301, 1965.

[7] P. Diaconis. Group Representations in Probability and Statistics. Institute of Math-
ematical Statistics, 1st edition, 1988.

[8] D.S. Dummit and R.M. Foote. Abstract Algebra. John Wiley & Sons, 3rd edition,
1991.

[9] M. Frigo and S.G. Johnson. The design and implementation of fftw3. Proceedings
of the IEEE, 93(2):216–231, 2005. doi:10.1109/JPROC.2004.840301.

[10] C.F. Gauss. Theoria Interpolationis Methodo Nova Tractata. Göttingen: Königliche
Gesellschaft der Wissenschaften, 3rd edition, 1876.

[11] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the fast fourier
transform. IEEE ASSP Magazine, 1(4):14–21, 1984. doi:10.1109/MASSP.1984.

1162257.

[12] D.K. Maslen and D.N. Rockmore. Generalized FFTs - a survey of some recent
results. Max Planck Institut für Mathematik, 1991.

[13] C.M. Rader. Discrete fourier transforms when the number of data samples is prime.
Proceedings of the IEEE, 56(6):1107–1108, 1968. doi:10.1109/PROC.1968.6477.

37

https://www.fftw.org/fftw3_doc/Introduction.html#Introduction/
https://www.fftw.org/fftw3_doc/Introduction.html#Introduction/
https://www.fftw.org/
https://nl.mathworks.com/help/
https://nl.mathworks.com/help/
https://doi.org/10.1109/PROC.1967.5959
https://doi.org/10.1109/PROC.1967.5959
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/MASSP.1984.1162257
https://doi.org/10.1109/MASSP.1984.1162257
https://doi.org/10.1109/PROC.1968.6477


[14] D.N. Rockmore. Fast Fourier Transforms for Wreath Products. Department of
Mathematics and Computer Science, Dartmouth College, 1994.

[15] J.P. Serre. Linear Representations of Finite Groups. Collection Méthodes
Mathématiques. Springer-Verlag, 1st edition, 1977.

[16] C.E. Shannon. Communication in the presence of noise. Proceedings of the IRE,
37(1):10–21, 1949. doi:10.1109/JRPROC.1949.232969.

[17] B. Steinberg. Representation Theory of Finite Groups: An Introductory Approach.
Universitext. Springer New York, 2011.

[18] M.A.G. Viana and V. Lakshminarayanan. Dihedral Fourier Analysis: Data-analytic
Aspects and Applications. Lecture Notes in Statistics. Springer New York, 2012.

[19] A. Vollrath. The Nonequispaced Fast SO(3) Fourier Transform, Generalisations and
Applications. Aus dem Institut für Mathematik der Universität zu Lübeck, 2010.
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A. Appendix

A.1. Kronecker Products

Given a m× n matrix A and a c× d matrix B, the Kronecker product is defined as the
mc× nd block matrix

(A⊗B) =

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB


which written out is

(A⊗B) =



A11B11 · · · A11B1d
...

. . .
...

A11Bc1 · · · A11Bcd

 · · ·

A1nB11 · · · A1nB1d
...

. . .
...

A1nBc1 · · · A1nBcd


...

. . .
...Am1B11 · · · Am1B1d

...
. . .

...
Am1Bc1 · · · Am1Bcd

 · · ·

AmnB11 · · · AmnB1d
...

. . .
...

AmnBc1 · · · AmnBcd




. (A.1)

We can now prove Theorem 7.3 for any size matrix B.

Theorem A.1. For a c × d matrix B, the ij-th coefficient of the Kronecker product
(A⊗B) is equal to Ap1q1Bp2q2 where

p1 =

⌈
i

c

⌉
, q1 =

⌈
j

d

⌉
, p2 = (i− 1) % c+ 1, q2 = (j − 1) % d+ 1,

and a % b denotes the remainder of a/b.

Proof. Let T = (A⊗B). Looking at Equation A.1, observe that the j-th element of the
x-th row of T is

Txj =
((
Ay1Bz1 · · · Ay1Bzd

)
· · ·

(
AynBz1 · · · AynBzd

))
j
,

for some y and z. In the above equation, the elements of the y-th row of A and the z-th
row of B are being multiplied. Specifically the z-th row of B is fixed and multiplied
by Ay1 through Ayn. Thus the j-th element of this vector then consists of the ⌈ j

d
⌉-th
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entry of the y-th row of A, as the entries of A are fixed for every d elements and A is
1-indexed. Moreover, the j-th element of this vector consists of the (j − 1) % d + 1
entry of the z-th row of B, as the elements of B repeat every d elements. Since these
matrices use indices starting at 1, we can not have remainders of zero, which we avoid
by subtracting one from j and adding one to the result. Thus,

Txj = Ay,⌈ j
d
⌉Bz,(j−1) % d+1.

Without loss of generality, the i-th element of the x-th column of T is

Tix = A⌈ i
c
⌉,yB(i−1) % c+1,z,

for some y and z. Since the indices of the rows and columns of T are independent, we
have

Tij = A⌈ i
c
⌉,⌈ i

d
⌉B(i−1) % c+1,(j−1) % d+1.

Thus (A⊗B)ij = Ap1q1Bp2q2 where

p1 =

⌈
i

c

⌉
, q1 =

⌈
j

d

⌉
, p2 = (i− 1) % c+ 1, q2 = (j − 1) % d+ 1.
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