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Abstract

Sub-Riemannian geometry is the study of paths and distances in space where
motion is restricted. Such spaces arise in the study of various physical systems.
The aim of this text is twofold.

First, we provide an introduction at an undergraduate level to this topic and il-
lustrate all related concepts through their immediate application to a toy problem:
a physical model of a unicycle.

Second, we investigate the sub-Riemannian geometries on S3 given by the p,q
Hopf action through working out the Hamiltonian equations that define the sub-
Riemannian geodesics of this geometry. A proof is given that the great circles
on S3 with a horizontal initial velocity are among the geodesics. Using numerical
solutions to the Hamiltonian equations, we geodesic spheres of this geometry.
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1 Introduction

Anyone familiar with the problems of parallel parking already knows what sub-
Riemannian geometry is about. When you are parking a car in a spot that is
parallel to the road, you are really asking the car to do something it is by design
incapable of: moving perpendicular to the forward direction. Perhaps this could
be fixed by making a car with rotatable front and rear wheels but in practice there
is no need for this: By moving forward and backwards while also changing the
steering direction, a car can be zig-zaged into such troublesome parking spots. Of
course this requires a certain skill on the driver and the process is not entirely
intuitive.

This problem can be translated into one of sub-Riemannian geometry. We could
find a manifold that models the location and orientation of the car and, on its
tangent space, we can specify a subset of directions that the car can move in. If
we then also have a suitable way of measuring the length of the permitted tangent
vectors (which corresponds to speed of the car), we arrive at a notion of distance
between points, only considering paths that the car can actually take. It seems
plausible that for the car, the distance to a point perpendicular to the forward
direction is much greater than to one just ahead, which leads to the problems
with parallel parking. For this, we don’t even need to consider 4 wheels, and we
will use a model of a unicycle to demonstrate the precise constructions needed for
sub-Riemannian geometry later on.

Another example of a space with a sub-Riemannian geometry is the Hopf-
fibration. This mathematical construction on the 3 dimensional sphere is an im-
portant example of a fibre bundle, meaning that locally it has the same structure
as a product space. These kinds of spaces have been studied by mathematicians
since the mid 1900s (as for example in [Ste16]), but fibre bundles also are of great
value within physics. The Hopf-fibration specifically has been of use for the study
of magnetic monopoles [Min79], quantum physics [MD01] and several other appli-
cations [Urb03], [Pen05, Sec. 15.1]. Through its nature as a fibre bundle it can be
given a sub-Riemannian structure. The action defining the Hopf-fibration can be
generalized to produce other topological quotient spaces with a sub-Riemannian
structure defined similarly. Their study will be the topic of the second half of this
text.
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2 Sub-Riemannian Geometry

2.1 A short tour of Riemannian geometry

The notion of a manifold can be traced back to the Habilitationsschrift (proba-
tionary essay) by Bernhard Riemann [RW19], a text “on the hypotheses which
lie at the foundations of geometry”. There he describes manifolds as sets that
can be parameterised by a tuple of parameters. In the same text, he describes
how if such a space has a way of measuring lines, one can derive various geomet-
ric properties of these spaces, a study which would later develop into the field
of Riemannian geometry. Sub-Riemannian geometry contains Riemannian geom-
etry as a special case, however developing some of the Riemannian theory first
will help us in understanding the particularities of Sub-Riemannian geometry. In
this text our interest in Riemannian geometry lies mostly within the definition of
geodesics, which are generalizations of straight lines in Euclidean geometry and
their properties regarding distance.

In what follows, we call γ : I → M a curve if it is a smooth map from some
interval I ⊂ R to M . It is simpler to think of I as a closed interval, however, some
proofs require it to be open. It turns out that this is not a hindrance as we can
extend or constrict the domain of a curve slightly as necessary [See Lee06, Page
55].

A geodesic is readily defined for a submanifold of Rn. First, for Rn itself, curves
of constant velocity are most straight when their acceleration is zero, so we define
geodesics of Rn as that. On the sphere as a submanifold of R3 however, no noncon-
stant smooth curve has zero acceleration (as it is to stay on the sphere). To define
geodesics for such a case, we merely require the acceleration to be orthogonal to
the manifold: The acceleration is computed in R3 and we compute an orthogonal
projection to the tangent space of the manifold. A curve where this projection is
equal to zero is then called a geodesic. However, on an arbitrary manifold without
a given embedding into Rn, we have to use a different definition, of which it is the
goal to develop throughout this chapter.

The standard definition of an inner product of Rn states that

• 〈x, x〉 ∈ R and 〈x, x〉 ≥ 0;

• 〈x, x〉 = 0 if and only if x = 0;
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• 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉;

• 〈x, y〉 = 〈y, x〉,

for any x, y and z in Rn and a and b in R [RY00, Definition 3.1]. These can
be summarised by saying that 〈·, ·〉 is a symmetric, positive-definite and bilinear
function.

On Rn, the usual inner product

〈(xi), (yi)〉 =
∑
i

xiyi,

satisfies these properties. As we know from linear algebra on Rn, the number 〈x, y〉
is closely related to the angle of two vectors. We can also define the length of a
vector x as 〈x, x〉 12 and do the usual Euclidian geometry with these definitions,
but there is one thing to be remarked about this common definition. Specifying
the domain of 〈·, ·〉 as Rn × Rn is slightly awkward. Each point in Rn is merely a
point, and how can an angle between two points make sense? Or the length of a
point? Really, the domain of 〈·, ·〉 should be given as TRn so that we see 〈·, ·〉 as
a way of comparing “directions” (represented through tangent vectors) with one
another. That is, if we understand TxRn as equivalence classes of smooth curves
through x, we are only computing angles and lengths of their velocity vectors as
they pass through x. With TRn as its domain, we have a clear geometric idea of
what 〈·, ·〉 does and we can define the notion for arbitrary manifolds.

Definition (Riemannian geometry). The tuple (M, 〈·, ·〉) is called a Riemannian
geometry if 〈·, ·〉 is a symmetric, bilinear and positive-definite smooth 2-form on
M . We also call 〈·, ·〉 the Riemannian metric of M .

The inner product of Rn with domain TRn is also called the standard metric of
Rn. Using it and the following two examples, we can construct metrics on many
other manifolds.

Example 2.1 (Induced Metric). If ι : M → M̃ is a smooth immersion so dι
is injective, and M̃ has a metric 〈·, ·〉M̃ , we can define a metric on M using the
pullback via ι. That is, we define for tangent vectors v, w ∈ TpM ,

〈v, w〉 = 〈dιv, dιw〉M̃ .

As dι is a smooth map from TM to TM̃ , this defines a smooth 2-form that is
clearly symmetric and bilinear. Since dι is injective, it is positive definite.

�
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Figure 2.1: Translation in coordinates depends on the chart.

Example 2.2 (Product metric). If M1 and M2 are two Riemannian manifolds,
Mi with metric 〈·, ·〉Mi

, we can define a metric on their product M1 ×M2. Since
T(p1,p2)(M1×M2) ∼= Tp1M1⊕Tp2M2, we can rewrite an arbitrary tangent vector in
T (M1 ×M2) as the sum wi + vi with wi ∈ TM1 and vi ∈ TM2. Then we define

〈v1 + w1, v2 + w2〉 = 〈v1, v2〉M1 + 〈w1, w2〉M2

to be the metric on the product: it satisfies the required properties. �

We turn back to the problem of defining acceleration of curves on arbitrary
manifolds. The usual identification of TRn with Rn explains why on Rn, we
usually define the inner product on Rn directly; we associate a tangent vector at
a point x with a point in Rn by translating x to the origin and then describing
the endpoint of the tangent vector in Rn. This identification also provides us with
an obvious way of comparing tangent vectors at different points with one another.
On an arbitrary manifold, this does not work. We could try to use coordinates to
work with the structure of Rn but then the translation depends on the choice of
coordinates as Figure 2.1 illustrates. There, S1 is seen with angular coordinates
on the left and under the stereographic projection on the right. The blue tangent
vector is to be translated to the right in coordinates, resulting in the orange vector.
In the case of the stereographic projection, the resulting tangent vector on S1 is
shorter than the original vector, whereas in the angular coordinates, both have the
same length.

This problem becomes relevant to us as to compute acceleration in Rn, we would
form a difference quotient

γ̈(t) = lim
h→0

γ̇(t+ h)− γ̇(t)

h
, (2.1)

however γ̇(t+ h) is in a tangent space at a different point than γ̇(t). To compute
this, again, we use the identification of the various tangent spaces of Rn. On other
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manifolds, we resolve this problem through the concept of a connection. Our
presentation of them will closely follow the exposition by Do Carmo [Do 92]. Let
X(M) be the set of all smooth vector fields on M , that is, the smooth sections of
TM .

Definition (Linear Connection). A linear connection ∇ is a mapping X(M) ×
X(M)→ X(M) that satisfies

• ∇fX+gYZ = f∇XZ + g∇YZ;

• ∇X(Y + Z) = ∇XY +∇XZ;

• ∇X(fY ) = f∇XY +X(f)Y ,

where X, Y, Z ∈ X(M) and f, g are smooth functions on M .

Such maps exist: for example, ∇XY = XY satisfies the required properties. As
the next proposition shows, ∇ is used to define a derivative of vector fields along
curves.

Proposition 2.3. Let M be a manifold with linear connection ∇. There exists a
unique map Dt that maps a vector field V along a curve γ to another vector field
DtV , such that

(a) Dt(V +W ) = DtV +DtW ;

(b) Dt(fV ) = df
dt
V + fDtV ;

(c) If Vt = Yγ(t) with Y ∈ X(M), then DtV = ∇γ̇Y .

The map Dt is called the covariant derivative.

The full proof of this proposition can be found in [Do 92, Proposition 2.2]. Es-
sentially it works by expressing a vector field V along γ as V i∂xi in coordinates xi.
Then, because ∂xi is not just a vector field along γ = (γ1, . . . , γn) but everywhere
within the coordinate chart, we can use (a), (b) and (c) to find the expression

DtV =
dV i

dt
∂xi +

dγj

dt
V i∇∂

xj
∂xi (2.2)

for DtV in terms of ∇. This shows that if such a map exists, it has to be given
by this expression and is therefore unique. On the other hand, if we take (2.2) as
the definition, all of the properties are satisfied. Since Dt is unique if it exists, this
shows that this definition has to be valid on any chart of M .

In coordinates, the vector field ∇∂
xj
∂xi completely determines the covariant

derivative. Its component functions are denoted as Γkij and called the Christoffel
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symbols of the connection. (Actually, the Γkij also completely determine ∇ as
[Lee06, Lemma 4.4] shows.)

Using Dt, we can define the acceleration of a curve γ as Dtγ̇. What’s more, if v
is a tangent vector at γ(t) of some curve on M , there exists a unique vector field V
along γ such that Vt = v and DtV = 0 for all t. [See Do 92, Proposition 2.6.] With
that, we could now go ahead and reinterpret the difference quotient (2.1). Let

V (h) be the unique vector field such that V
(h)
t+h = γ̇(t + h) and DtV

(h) = 0. Then,

V
(h)
t ∈ Tγ(t)M , so Equation (2.1) can be computed (provided the limit exists).

However,

Dtγ̇(t) = lim
h→0

V
(h)
t − γ̇(t)

h
,

so there is no necessity to do this [See Lee06, Exercise 4.12.]. This shows that the
map Dt can be used to compute the acceleration of a curve connecting the tangent
spaces Tγ(t)M and Tγ(t+h)M .

Now, defining a linear connection seems like adding an additional choice to a
Riemannian geometry. However, for such a geometry, there is only one connection
that goes along with the metric in the following way.

Theorem 2.4 (Levi-Civita connection). For a Riemannian geometry (M, 〈·, ·〉),
there exists a unique linear connection ∇ such that for all X, Y ∈ X(M), [X, Y ] =
∇XY −∇YX and for V and W vector fields along γ, 〈Vt,Wt〉 is constant if DtV =
DtW = 0.

For a proof, see [Do 92, Theorem 3.6]. This is the connection we usually work
with in Riemannian geometry and with which we define the notion of a Riemannian
geodesic.

Definition. Let Dt be the covariant derivative with respect to the Levi-Civita
connection. A curve γ is called a geodesic if Dtγ̇ = 0.

In principle, one can define geodesics using arbitrary connections. However, the
length minimizing properties of Riemannian geodesics are tied to the properties of
the Levi-Civita connection. The condition that [X, Y ] = ∇XY = ∇YX is used in
the necessary proofs.

Riemannian Geodesics are smooth, but they minimize length over curves that
are not allways smooth. We call a map γ : I → M a piecewise curve if it is
smooth on I −A, where A = {t1, t2, . . . , tm} is a finite set of points in R and γ(I)
is connected. Of course, a curve is a piecewise curve with A = ∅. Define the length
of a piecewise curve γ : I →M to be

L(γ) =

∫
I−A
〈γ̇, γ̇〉1/2 dt. (2.3)
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Definition (Minimizing curve). We call a piecwise curve γ a minimizing curve if
for all other piecwise curves c : I →M with the same start and end point as γ,

L(γ) ≤ L(c).

Theorem 2.5 (Minimality of Riemannian geodesics). If γ is a Riemannian geodesic
then any sufficiently short arc of γ is, up to reparametrization, the unique mini-
mizing curve joining its endpoints.

Conversely, if γ is a minimizing piecewise curve between its endpoints and 〈γ̇, γ̇〉
is constant (where it is defined), γ is a geodesic.

This theorem is a reformulation of Corollary 3.9 and Proposition 3.6 in Do
Carmo’s book [Do 92]. However, it goes beyond the scope of this thesis to include
the necessary definitions and arguments to prove it. It might seem mysterious
why only sufficiently short arcs of a geodesic γ are length minimizing. To see that
this restriction is really necessary, consider a curve γ : I → S1 on the circle with
〈γ̇, γ̇〉 constant that starts at p ∈ S1 and is surjective. The arc γ([0, t]) is length
minimizing up until t is such that γ(t) equals the antipodal point of p. For greater
t, there is obviously a shorter curve. How could one specify a neighbourhood of
M such that every geodesic γ contained within it is length minimizing? Such
neighbourhoods are called totally normal neighbourhoods and it turns out that M
is covered by them [Do 92, Theorem 3.7].

In order to do explicit computations of geodesics within a coordinate chart, we
again turn to Equation (2.2). By substituting V with γ̇, we find

0 = γ̈k∂xk + γ̇j γ̇i∇∂
xj
∂xi . (2.4)

Then, using the Christoffel symbols Γki,j, we find that (2.4) is satisfied if and only
if

0 = γ̈k + γ̇j γ̇iΓkij, (2.5)

for all k. Note that this is a second-order differential equation and can be rewritten
to a first-order differential equation by introducing the variables vi = γ̇i. As that
we can view it as a differential equation on TM where vi is the coordinate of
∂xi . Then, because solutions to such differential equations can be proven to exist
uniquely, we conclude that a geodesic is completely specified by providing an initial
point γ(0) ∈ M and initial velocities γ̇(0) ∈ Tγ(0)M [Lee06, Theorem 4.10]. This
property gives rise to a map from TpM to M .

Definition (The exponential map). Given p ∈M and let Bε(0) ⊂ TpM be a ball
of radius ε (with respect to 〈·, ·〉) in the vector space TpM . Define the exponential
map at p

expp : Bε(0)→M
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by taking a tangent vector v to γ(1), where γ is the geodesic with γ(0) = p and
γ̇(0) = v.

From Theorem 2.5 we know that if ε is small enough, expp should be a bijection.
Even stronger, by computing d/dt|t=0 expp(tv) = v, we see that d expp is the
identity map around the origin of TpM , so expp is a local diffeomorphism [See
Do 92, Proposition 2.9]. However, as ε gets too large, the geodesics behind the
exponential map might loose their minimizing property and the exponential map
ceases to be a diffeomorphism.

2.2 The definitions of sub-Riemannian geometry

In the example given in the introduction, we saw how physical problems can involve
motion under constraints. Once the possible configurations of a physical problem
have been modeled as a manifold, we encode the directions admissible as pointwise
subspaces of the tangent bundle. Given such a pointwise restriction, one may ask
if a shortest curve between any two points exists and if it is possible to find it. To
tackle this problem, we first need to define what we mean by restricting the number
of possible directions on a manifold. This is done through a smooth subbundle of
the tangent space.

Definition (smooth subbundle). Let M be a manifold. If E is a smooth vector
bundle πE : E →M , D is an embedded submanifold of E such that it is a vector
bundle πD : D →M with πD = πE|D and D ∩ Ep is a linear subspace of Ep, then
D is called a smooth subbundle of E.

Smooth subbundles of TM are usually called distributions. A set of vector fields
{Xa} defined on some subset U of M is called a frame for H if {Xa|p} spans H at
each p in U .

Definition (Sub-Riemannian geometry). Let M be a smooth manifold. A sub-
Riemannian geometry is a triple (M,H, 〈·, ·〉) where H ⊂ TM , is a smooth sub-
bundle of the tangent space of M and 〈·, ·〉 an inner product on H. We call H the
horizontal distribution, 〈·, ·〉 the sub-Riemannian metric and the dimension of Hp

the rank of H at p.

Remark. Usually, H is allowed to have varying rank at different points of the
manifold. However, we define a subbundle of TM to be a topological subspace of
TM that is also a vector bundle. Since a vector bundle has constant rank on each
connected component of M and we only deal with connected manifolds, the rank
of H will not depend on the point.
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Figure 2.2: Configuration space of a
unicycle.

Figure 2.3: Tangent vectors of the
forward motion.

To make this definition tangible, we look at the following example that will
follow us throughout this chapter.

Example 2.6 (model of a unicyle). If we model the earth as an infinite plane, we
can describe the configurations of a unicycle in space (assuming the driver never
loses balance) using the manifold M = R2×S1. We use the coordinates (x, y, θ) so
that x and y describe the location of the unicycle and θ tells us in which direction
it is currently heading as sketched in Figure 2.2. The angle θ is defined as the angle
from the positive direction of the x axis to the forward direction of the unicycle.
In physics, the manifold M is called the configuration space.

A unicycle can only move in specific directions. If the driver was to paddle
forward for r meters, he would move from (x, y, θ) to (x+ r cos θ, y + r sin θ, θ). If
we consider the infinitesimal generator of that motion, we get

d

dr
(x+ r cos θ, y + r sin θ, θ)

∣∣∣
r=0

= cos θ ∂x + sin θ ∂y = X1.

This is illustrated in Figure 2.3. Similarly if we consider rotation on the spot, we
find the infinitesimal generator X2 = ∂θ for rotating counterclockwise. This gives
us the horizontal distribution

H(x,y,θ) = span{cos θ ∂x + sin θ ∂y, ∂θ}.

In order to obtain a metric on R2 × S1, we use Examples 2.1 and 2.2. With
ι : S1 → R2 being the standard inclusion, we see that there is a metric on S1

with the property that 〈∂θ, ∂θ〉 = 1. As TS1 is one-dimensional, this completely
specifies the metric. If we use the standard metric on R2, the product metric of
the two gives us an inner product on H. This example is also considered in [Jea14,
Example 1.1]. �
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In the example and the other sub-Riemannian geometries we will consider in
this thesis, the sub-Riemannian metric is a Riemannian metric that is restricted
from TM to H. In that case we can decompose TpM into Hp and Vp := H⊥p and
we will refer to V as the vertical distribution. It is indeed a distribution as the
following lemma shows.

Lemma 2.7 (Orthogonal complements of distributions). If V is a distribution on
a Riemannian manifold M , then V⊥ is also a distribution.

Proof. Let n = dimM . As V is a rank k distribution, hence a smooth subbundle,
at each point of M there is a neighbourhood U such that within, X1, . . . Xk form
a frame for V . Then, we can complete this frame by vector fields Xk+1, . . . , Xn

to a local frame of TM by [Lee12, Proposition 8.11]. The Gram-Schmidt process
provides us with an orthogonal frame E1, . . . En, defined inductively by

Ej =
Xj −

∑j−1
i=1 〈Xj, Ei〉Ei

|Xj −
∑j−1

i=1 〈Xj, Ei〉Ei|
,

where if v ∈ TpM , |v| = 〈v, v〉1/2. With that, for each p ∈ U and m ≤ n,
span{E1|p, . . . , Em|p} = span{X1|p, . . . , Xm|p}. By orthogonality, E1|p, . . . , Ek|p
span Vp and Ek+1|p, . . . , En|p span V⊥p . This shows that V⊥ satisfies a local frame
criterion [Lee12, Lemma 10.32] and is therefore a smooth subbundle of TM .

In examples coming from mechanics as the one before, motion between con-
figurations of the system can be described by curves on the configuration space.
To ensure that we only consider paths that are mechanically possible, we have to
make sure they are tangent to the horizontal directions.

Definition (Horizontal curve). A curve γ : I → M is called horizontal if γ̇ ∈ H
for all t.

For horizontal curves, we get a notion of their length. This works just like in
the Riemannian case, so we define the length L(γ) again by Equation (2.3). Using
it, we can define the distance of two points on M to be the infimum of the lengths
of all horizontal curves connecting them.

At this point however, it is not yet clear if any two points on M can be connected
by a horizontal curve. For example, we could define a sub-Riemannian geometry
on R2 with horizontal distribution H(x,y) = span{∂x} and restrict the usual inner
product to it. Clearly no horizontal curve will be able to connect the point (0, 1)
with the origin, as for any horizontal curve dy(γ̇(t)) = 0, so projecting γ to the
y axis yields a constant function. This is because here the horizontal distribution
is so restrictive, it only allows motion along horizontal slices of R2. The situation
is depicted in Figure 2.4. Fortunately, there is a simple criterion as to when a
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Figure 2.4: An example of an integrable distribution.

horizontal distribution has enough freedom to connect all points on a manifold
using horizontal curves.

Definition (bracket generating). We call a distribution H ⊂ TM bracket gener-
ating if the union of any local frame Xi of H around p with its iterated Lie brackets
[Xi, Xj], [Xk, [Xi, Xj]], etc. spans TqM for all q in some neighbourhood of p.

This condition could also be called non-integrability. A distribution D on M is
called integrable if every point is contained in some immersed submanifold N ⊂M
such that TpN ⊂ Dp. By Frobenius’ Theorem, this happens if and only if the Lie
bracket [X, Y ] of any two vector fields X, Y in D is again in D [Lee12, Thm.
19.12]. For bracket generating distributions, we get the following result:

Theorem 2.8 (Chow’s theorem). If H ⊂ TM is bracket-generating, and M a
connected manifold, then any two points of M can be connected with a horizontal
curve.[Mon02, Theorem 2.2]

This theorem tells us that for a bracket generating distribution, distance of
points on a connected manifold will always be finite. In our examples, this turns
out to be the case.

Example 2.9 (motions of a unicycle). If we compute the Lie bracket of the global
frame of H of our unicycle example, we find

V := [cos θ ∂x + sin θ ∂y, ∂θ] = ∂θ(cos θ) ∂x + ∂θ(sin θ) ∂y = − sin θ ∂x + cos θ ∂y

and as this vector is linearly independent with the two vectors X1 X2, we see that
the three of them span TM . Therefore, any two configurations of the unicycle
can be reached by driving around. (This isn’t very surprising considering that we
allowed the unicycle to be able to turn on the spot.) �

Now that we have established when exactly horizontal paths between arbitrary
points on a manifold exist, we turn to the problem of finding the shortest such
paths.
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2.3 Singular Sub-Riemannian geodesics

Unlike in Riemannian geometry, where all length minimizing curves come from
the geodesic equations, in sub-Riemannian geometry there are length minimizing
curves that do not come from the differential equations analogous to the geodesic
equaitons. We call such length minimizing curves singular geodesics. It is one of
the open questions of sub-Riemannian geometry whether the signular geodesics are
smooth, so formally we can not call them curves [Mon02, Chapter 10.1]. A proof
of the existence of singular geodesics was only published in 1994 by Montgomery
[Mon94]. (See also [Mon94, Section 3.9] for a review of the subject.)

In other words, in sub-Riemannian geometry, there is no analog to the second
part of Theorem 2.5. However, it turns out that if H is a contact distribution,
there are no singular geodesics and the situation is again like in the Riemannian
case [See Mon02, Theorem 5.3 and 5.8].

Definition (Contact distribution). Let M be a manifold of dimension 2k+ 1. We
call a rank 2k distribution H a contact distribution if in some neighbourhoods
of each p ∈ M , there exists a 1-form ν in T ∗M such that for each q in the
neighbourhood of p,

Hq = ker νq

and
ν ∧ dν ∧ · · · ∧ dν︸ ︷︷ ︸

k times

6= 0

All the examples of sub-Riemannian geometries we will encounter in this thesis
are of this type.

Example 2.10. For the unicyle consider the 1-form

ν = − sin θ dx+ cos θ dy = ιV 〈·, ·〉,

with V = − sin θ∂x+cos θ∂y as before. Then, ν(X1) = − sin θ cos θ+sin θ cos θ = 0
and ν(X2) = 0, so H ⊂ ker ν. As ν(− sin θ ∂x + cos θ ∂y) = 1 at every point of
M , and the three tangent vectors X1, X2 and − sin θ ∂x + cos θ ∂y form a basis of
TpM , we therefore see that ker ν = H.

If we compute the exterior derivative of ν, we find

dν = − cos θ dθ ∧ dx− sin θ dθ ∧ dy,

and

ν∧dν = sin2 θ dx∧dθ∧dy−cos2 θ dy∧dθ∧dx = −(sin2 θ+cos2 θ) dx∧dy∧dθ 6= 0

so H is a contact distribution and there are no singular geodesics on this sub-
Riemannian geometry. �
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2.4 Normal Sub-Riemannian geodesics

Riemannian geodesics are defined using the Levi-Civita connection of the Rieman-
nian metric, however the construction needs the Riemannian metric to be defined
on the entire tangent space. (This can, for example, be seen in [Lee06, Equation
5.4], where an explicit formula for the Christoffel symbols of the Levi-Civita con-
nection is given.) We can avoid this by rewriting the geodesic equations on the
cotangent bundle T ∗M .

Rewriting the geodesic equations is closely tied to two formalisms of classical
mechanics: the Hamiltonian and Lagrangian formulation of mechanics. They are
in some sense equivalent and the description of geodesics given so far followed
the Lagrangian approach. It states that the evolution of a mechanical system is
completely determined by a function L : TM → R (called the Lagrangian) and
the initial positions and velocities in the configuration space. Then, second order
differential equations called the Euler-Lagrange equations determine the evolution
of the system from this point onward. [SH14, Chapter 8]

It can be shown that Equation (2.5) are the Euler-Lagrange equations corre-
sponding to the Lagrangian function L : TM → R given by

L(v) =
1

2
〈v, v〉. (2.6)

However, instead of showing this explicitly, we note that a solution to the Euler-
Lagrange equations minizies the action

∫
L(γ, γ̇) dt =

∫
1
2
〈γ̇, γ̇〉 dt. This is equiv-

alent to minimizing length as shown in [Mon02, Page 6], which short arcs of
geodesics minimize. The principle of least action states that minimizing the ac-
tion is exactly what characterizes the solutions to the Euler-Lagrange equations,
so Riemannian geodesics solve them.

Alternatively, we could have defined Riemannian geodesics using the Hamilto-
nian approach, which consists of a functionH : T ∗M → R (called the Hamiltonian)
and corresponding differential equations. The two aproaches can be shown to yield
the same geodesics. In the sub-Riemannian case, the Lagrangian L above can not
be used, as 〈·, ·〉 is not defined for all tangent vectors. We will therefore first con-
struct a Hamiltonian unique to a sub-Riemannian geometry and then show how
it corresponds to a Lagrangian very similar to L. To do this, we construct the
following map between T ∗M and TM .

Proposition 2.11. For a sub-Riemannian geometry on M with distribution H
and inner product 〈·, ·〉, there exists a unique map β : T ∗M → TM such that

(a) im βp = Hp,

(b) for w ∈ Hp, ν ∈ T ∗pM , ν(w) = 〈βp(ν), w〉.
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Proof. Suppose β′ is another such map satisfying the two conditions. Then, for
each point of M , there exists a neighbourhood U on which Xa, a = 1, . . . , k is a
local frame that locally spans H. By applying the Gram-Schmidt process to the
vectors Xa, we obtain a local frame Ea that is orthonormal and spans H [Lee12,
Lemma 8.13]. Now, if ν is an arbitrary cotangent vector,

〈β(ν), Ea〉 = ν(Ea) = 〈β′(ν), Ea〉 =: ca

for all a and therefore
β(ν) = caEa = β′(ν), (2.7)

so the two maps are equal in every such neighbourhood, so they agree on all of M .
To show that such a map exists, we can construct it on T ∗U using the frame Ea.

We define βU(ν) =
∑k

a ν(Ea)Ea in this neighbourhood, which is clearly a function
with codomain H. Then, we also have 〈βU(ν), Ei〉 = ν(Ei), so the properties
of β are satisfied. As we know that β is unique, this local description defines β
globally.

Definition (cometric). The fiber-bilinear function (·, ·) : T ∗M × T ∗M → R asso-
ciated to the sub-Riemannian geometry M , defined by

(ν, µ) := νβ(µ) = 〈β(µ), β(ν)〉

is called the cometric of M .

Using the expression in (2.7) and given an orthonormal frame, it is easy to
compute the cometric explicitly.

Example 2.12 (cometric of the unicycle). Let X1 = cos θ ∂x+sin θ ∂y and X2 = ∂θ
be the frame spanning H as before. If we use the coordinates x, y and θ for M
as before, we get the coordinates x, y, θ, dx, dy and dθ for T ∗M . The vectors
X1 = cos θ∂x+ sin θ∂y and X2 = ∂θ are orthonormal and a global frame for H. We
can write the map β(x,y,θ) explicitly as

β(x,y,θ)(a dx+ b dy + c dθ) = (a cos θ + b sin θ)X1 + cX2.

�

The function (·, ·) is like an inner product on the cotangent space but is always
degenerate ifH 6= TM . AssumeH is of rank k and we let Ea be a local orthonormal
frame for H. We can complete the frame to a local frame Xi spanning TM , with
X1 = E1, . . . , Xk = Ek. Then, if ξi is the covector field dual to Xi, for i > k, we
have

β(ξi) =
k∑
a

ξi(Ea)Ea =
k∑
a

δiaEa = 0.

As ξi 6= 0, this shows that that (ξi, ν) = ν(0) = 0 for any convector field ν, so (·, ·)
is degenerate.

14



Example 2.13. Let V = cos θ ∂y − sin θ ∂x be a non-horizontal tangent vector of
R2 × S1. We can define an associated covector field ν = cos θ dy − sin θ dx. Now,
for the two vector fields X1 and X2 spanning H(x,y,θ) from before, we have

ν(X1) = cos θ sin θ − sin θ cos θ = 0 and ν(X2) = 0.

Therefore, (ν, ν) = 0. �

The cometric is up to a factor the Hamiltonian function we needed.

Definition (Sub-Riemannian Hamiltonian). The function H : T ∗M → R defined
by H(ν) = 1

2
(ν, ν) is called the Hamiltonian.

Given a Lagrangian L, one can under certain assumptions transform them into
a Hamiltonian system using the Legendre transform [See Mon02, Appendix A.3].
The equation for the transformation of L̃ is given by

T (x, ν) = sup
v
{ν(v)− L̃(x, v)}, (2.8)

where the supremum is taken over all v ∈ TxM . If we now take the Lagrangian

L̃ =

{
1
2
〈v, v〉 v ∈ H
∞ else,

we can show that its Legendre transform yields the sub-Riemannian Hamiltonian.
Note the similarity to the Lagrangian in Equation (2.6) and that if H = TM , the
two coincide.

We can immediately see that in Equation (2.8), the supremum may be taken
only over vectors in H, for otherwise the quantity in question equals −∞. Then,
if Ea is an orthonormal local frame for H, let ξa be the covector corresponding to
Ea. If v = vaEa|p is a horizontal vector at p, the expression to be maximized in
Equation (2.8) is

ν(v)− 1

2
〈v, v〉 = vaν(Ea|p)−

1

2

∑
a

(va)2.

By derivating with respect to each va, we find that this quantity has a critical
point at va = ν(Ea|p). As the Hessian is equal to minus the identity matrix (so
negative definite), this critical point is a maximum. This is the only extreme value
of the function, so the maximum is global. Therefore, T (p, ν) = 1

2

∑
a ν(Ea|p)2,

which using (2.7) equals the expression for H(ν) in the frame Ea. In conclusion,
the Hamiltonian we have constructed is the Legendre transform of the Lagrangian
above.

To finally arrive at the geodesics of a sub-Riemannian geometry, we need one
additional ingredient, which is the Hamiltonian version of the Euler-Lagrange equa-
tions.
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Definition (Hamilton’s Equations). We call the differential equations

ẋi =
∂H

∂yi
, ẏi = −∂H

∂xi
(2.9)

on T ∗M the Hamilton’s equations, where H is the Hamiltonian of M and yi is the
ith coefficient of ν when using the basis dxi of T ∗M .

The projection of solutions to this differential equation on T ∗M are sub-Riemannian
geodesics.

Definition (Sub-Riemannian Geodesics). If (γ, κ) : I → T ∗M is a solution curve
to Hamilton’s equations, then γ(t) : I →M is called a sub-Riemannian geodesic.

Similarly to Riemannian case, these curves are locally minimizing.

Theorem 2.14 (Normal Geodesics). If γ(t) : I → M is a sub-Riemannian
geodesic, then every sufficiently short arc of γ is the unique minimizing curve
joining its endpoints.

For a proof of this theorem, see [Mon02, Section 1.9]. Examining Equation (2.9),
we see that for an n-dimmensional manifold there are 2n equations and the same
number of parameters. However, a geodesic starting at a point p of M may only
have dimHp degrees of freedom for its initial direction. As we shall see later in
the examples, the remaining degrees of freedom determine how “twisted” a curve
becomes after a short time.

However if γ is a geodesic, there is an explicit relation between the initial cotan-
gent vector w ∈ T ∗pM and γ̇(0). That is

βp(w) = γ̇(0).

To see this, we again use the coordinates xi and a local orthogonal frame Ea for
H around p. Then,

dxiβ(w) = 〈β(w), β(dxi)〉 =

〈∑
a

w(Ea)Ea,
∑
a

dxi(Ea)Ea

〉
=
∑
a

w(Ea)dx
i(Ea),

but also

∂H

∂yi
=

1

2

∂〈β(w), β(w)〉
∂yi

=
1

2

∂
∑

a(yjdx
j(Ea))

2

∂yi

=
∑
a

1

2

∂(yjdx
j(Ea))

2

∂yi
=
∑
a

yjdx
j(Ea)dx

i(Ea),

which evaluated at yjdx
j = w equals the expression for dxiβ(w). Therefore the

two agree.
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Example 2.15 (Hamilton’s equations of the unicycle). Using the explicit formula
for the cometric of this sub-Riemannian geometry, we compute

H(a dx+ b dy + c dθ) =
1

2
〈(a cos θ + b sin θ)X1 + cX2, (a cos θ + b sin θ)X1 + cX1〉

=
1

2
πθ(a, b)

2 +
1

2
c2,

with πθ(a, b) = a cos θ + b sin θ. Then, since we have

∂πθ
∂a

= cos θ and
∂πθ
∂b

= sin θ,

Hamilton’s equations can be computed to be

ẋ = cos θπθ(a, b) ẏ = sin θπθ(a, b) θ̇ = c

ȧ = 0 ḃ = 0 ċ = πθ(a, b)(−a sin θ + b cos θ).

�

In the same way as we defined the exponential map expp for a Riemannian
geometry, we can define it for sub-Riemannian geometry, with the slight alteration
that the domain is now a subset of the cotangent bundle.

Definition (The exponential map). Given p ∈M and let Bε(0) ⊂ T ∗pM be a ball
of radius ε (with respect to 〈·, ·〉) in the vector space TpM . Define the exponential
map at p

expp : Bε(0)→M

by taking a cotangent vector w to γ(1), where (γ, κ) is the solution to Hamilton’s
equations with γ(0) = p and κ(0) = w.

In the Rimannian case, this map was diffeomorphism from Bε(0) to a neigh-
bourhood of M for sufficiently small ε. If Hp 6= TpM then this can not happen in
the sub-Riemannian case as then, the cometric is degenerate. This implies that
there exists a covector w ∈ T ∗pM such that β(w) = 0. Therefore, for all c ∈ R,
the geodesic with inital conditions cw ∈ T ∗pM is constant, so d expp can not be
injective and therefore expp is not a diffeomorphism around the origin in T ∗pM .

2.5 Computing Hamilton’s equations using the

Poisson bracket

There is also an alternative way of computing Hamiltonian’s equations without
needing to compute the cometric explicitly. For it, we need the following alterna-
tive formulation of the cometric.
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Lemma 2.16. Let Xa be a local frame spanning H and gab = 〈Xa, Xb〉. Define
for each Xa the function Pa : T ∗M → R by

Pa(ν) = νXa.

Then, for the sub-Riemannain Hamiltonian we have

H(ν) =
1

2
gabPa(ν)Pb(ν)

(with summation convention over a and b) where gab is the inverse matrix of gab.

Remark. Note that this way of writing the Hamiltonian is especially useful for
when the Xi are orthogonal in the sub-Riemannian metric. Then, the matrix gab is
diagonal so inverting it becomes a matter of taking reciprocals and the Hamiltonian
is given as

H(ν) =
∑
a

1

2gaa
Pa(ν)2. (2.10)

Proof. In this proof, summation per Einstein convention with the indecies a and
b goes up to the rank of H and summation with indices i, j up to dimM . We first
prove that

〈Y, Y 〉 = gab〈Xa, Y 〉〈Xb, Y 〉.
If gab = 〈Xa, Xb〉 and we write the vector field Y = Y iXi in the local frame Xi,
then 〈Y,Xa〉 = Y igia. Therefore,

〈X,X〉 = Y igijY
j = Y igiag

abgbjY
j = 〈Y,Xa〉gab〈Xb, Y 〉 = gab〈Xa, Y 〉〈Xb, Y 〉,

so the claim is proven.
Now if ν ∈ T ∗M , by the properties of β form Proposition 2.11 above, we see

that
(ν, ν) = νβ(ν) = 〈β(ν), β(ν)〉.

On the other hand, again by the property of β,

gabν(Xa)ν(Xb) = gab〈β(ν), Xa〉〈β(ν), Xb〉 = gab〈Xa, β(ν)〉〈Xb, β(ν)〉.

Using the above claim, we have proven that H(ν) = 1
2
(ν, ν) = 1

2
gabPa(ν)Pb(ν).

Let xi be local coordinates of M in a neighbourhood U . If yi are the coefficients
corresponding to the frame dxi of T ∗U , (xi, yi) = (x1, . . . , xn, y1, . . . , yn) form a set
of coordinates of in a neighbourhood of T ∗M . Define the Poisson bracket, denoted
by {·, ·}, taking two smooth functions f and g on T ∗M to the function defined by

{f, g} =
∑
i

∂f

∂xi
∂g

∂yi
− ∂g

∂xi
∂f

∂yi
,
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This operation satisfies the identity

{f, gh} = g{f, h}+ h{f, g}, (2.11)

where h is another function on T ∗M and it can be shown to be coordinate inde-
pendent[Mon02, Section 1.7].

The Poisson bracket is useful to us, since if Φt(x
i, yi) is the flow associated to

Hamilton’s equations and f : T ∗M → R,

ḟ |p =
d

dt
f(Φt(p)) = {f,H}|p,

with p = (xi, yi) any point in the chart. This is because if xi(t) and yi(t) are any
solution to Hamilton’s equations,

d

dt
f(x1(t), . . . , xn(t), y1(t), . . . , yn(t)) =

∂f

∂xi
∂xi

∂t
+
∂f

∂yi

∂yi
∂t

=
∑
i

∂f

∂xi
∂H

∂yi
− ∂f

∂yi

∂H

∂xi

= {f,H}.

By letting f equal the coordinate functions xi, yi, we recover Hamiltons equations
as in (2.9), so we can find them by computing Poisson brackets alone.

Given a frame Xi for TM , if we instead of yi choose to work with the functions
PXi

defined as in Lemma 2.16, we have

ẋi = {xi, H} ṖXi
= {PXi

, H}. (2.12)

Furthermore, if we are in coordinates with an orthogonal frame Xi for H, the first
half of this expression becomes particularly simple. In coordinates, the function
PXi

(xi, yi) amounts to taking an inner product of the vector (yi) with the vector
of component functions of the vector field Xi. In other words, if X = Xj∂xj ,
PX(yjdx

j) = yjX
j. Then, since the components X i

j of the local frame Xj do not

depend on the yi,
∂PXi

∂yj
= Xj

i . Also, gjj does not depend on yi. Thus, using the

expression in (2.10), the first half of Equations (2.12) turns out to be

ẋi =
∑
j

gjjX i
jPXj

. (2.13)

In combination with the rule that

{PX , PY } = −P[X,Y ], (2.14)

19



once we have computed all brackets [Xi, Xj] for our orthogonal frame of choice
spanning TM , we can also easily compute the other half of Equation (2.12). Equa-
tion (2.14) is verified by letting PX = XjPj and PY = Y jPj, with Pj = P∂/∂

xj
.

Then,
∂Pj(yj dx

j)

∂yi
=
∂yj
∂yi

= δji .

so since Xj does not depend on yi,

∂XjPj
∂yi

=
Xj∂yj
∂yi

= Xj.

Similarly,
∂XjPj
∂xi

= Pj
∂Xj

∂xi
.

Therefore,

{PX , PY } =
∑
i

∂(XjPj)

∂xi
∂(Y jPj)

∂yi
− ∂(Y jPj)

∂xi
∂(XjPj)

∂yi

= Y i∂X
j

∂xi
Pj −X i∂Y

j

∂xi
Pj,

If we evaluate this function at the covectorfield dxi, we get(
Y i∂X

j

∂xi
Pj −X i∂Y

j

∂xi
Pj

)
(dxk) = Y i∂X

k

∂xi
−X i∂Y

k

∂xi
,

which equals the coefficient of ∂k in [Y,X] = −[X, Y ], so {PX , PY } = −P[X,Y ].

Example 2.17 (Hamilton’s equations of the unicycle). Let

P1(ν) = ν(X1) P2(ν) = ν(X2) and P3(ν) = ν(X3),

with X3 = −[X1, X2] = sin θ ∂x − cos θ ∂y. Since X1 and X2 are orthonormal, we
can write H(ν) = 1

2
(P1(ν)2 + P2(ν)2). Using the bracket relations

[X1, X2] = −X3, [X2, X3] = −X1, [X1, X3] = 0,

and the relation in Equation 2.11 on the Hamiltonian above we obtain

ẋ = cos θP1 ẏ = sin θP1 θ̇ = P2

Ṗ1 = P3P2 Ṗ2 = −P1P3 Ṗ3 = −P1P2.

This system is equivalent to the differential equations previously computed under
the change of coordinates P1 = a cos θ+ b sin θ, P3 = −a sin θ+ b cos θ and P2 = c.
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Figure 2.5: Solution curves to Hamilton’s equations of the unicycle.

Note that x and y do not appear on the right side of the equations, which tells us
that the system is translation invariant. Computing ẋ2 + ẏ2 and θ̇2, we see that
P1(0) gives us the initial forward velocity and P2(0) the initial angular velocity of
the unicycle. By deriving Ṗ 2

1 + Ṗ 2
2 with respect to the time variable, one can see

that the sum squares of the two velocities is constant.
If we solve this system numerically, it seems like the parameter P3 determines

how much of a “parallel-parking” path the unicycle takes. In Figure 2.5 we have
used initial conditions (x(0), y(0), θ(0)) = (0, 0, 0), the initial speed P1(0) = 1 and
the initial angular velocity θ̇(0) = P2(0) = 0 while varying P3 ∈ [0, 3]. Solutions
are drawn in the (x, y) plane for times in the interval [0, 3]. When looking at the
Figure, note how less distance from start to end point is covered when the PZ value
is increased. Also note that instead of turning on the spot, the solution changes
direction as it drives, even utilizing initial countersteering.

Lastly note that the solution curves overlap quite quickly. This is not in contra-
diction with Theorem 2.5 as at the point of overlap, the solutions have different
values in the θ coordinate. �

2.6 Computing a sub-Riemannian geodesic

sphere

To get an impression of the notion of distance within a certain sub-Riemannian
geometry, we can visualize its geodesic sphere. To draw all solutions to Hamilton’s
equations starting at p, we compute exp(B), where B is some subset of T ∗pM to
be determined. However, exp satisfies the following helpful condition: If (γ, κ) is
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the solution to Hamilton’s equations for the initial covector ν, then,

γ(t) = exp(tν), (2.15)

for all t in the domain of γ [ABB12, Corollary 8.34]. Therefore, if ∂B is the
boundary of the subset of T ∗pM , we only need to draw exp(∂B) to visualize the
points reachable by all solutions.

In order for all solutions starting at p to have equal length, we need to ensure
that their inital speeds 〈γ̇(0), γ̇(0)〉 are all equal to one. Practically, we do this as
follows. Fix a point p ∈ M and choose coordinates xi around it. We will take p
to be the center of our unit distance sphere which gives us initial conditions for
the first n equations. Let Xa be an orthogonal frame for H in this neighbourhood.
Then, using Equation (2.13) we find that the initial tangent vector γ̇(0) equals

γ̇(0) = gjjPXj
(t)Xj.

Therefore, the square of its length is given as

〈γ̇(0), γ̇(0)〉 = 〈gjjPXj
(0)Xj, g

jjPXj
(0)Xj〉

= (gjj)2(PXj
(0))2〈Xj, Xj〉 = gjjPXj

(0)2,
(2.16)

where we used that Xj are orthogonal in the sub-Riemannian metric. If the Xj are
additionally normal vectors, this simplifies to choosing initial conditions such that∑

j PXj
(0)2 = 1. In any case, if the rank of H is k, this equation determines one of

the parameters PXj
(0) and leaves us with k−1 parameters to choose to determine

the initial (horizontal) direction. For the n− k remaining PXj
(0) variables, we are

free to choose any initial conditions, so the set B is in some sense a cylinder. This
is illustrated in the next example.

Example 2.18 (The geodesic sphere of the unicycle). To parametrize the ini-
tial conditions necessary to find solutions with γ̇(0) of unit length, we use the
expressions of Example 2.17 in Equation 2.16. Therefore we obtain

P 2
X1

+ P 2
X2

= 1,

so we can use the parametrizations PX = cosλ, PY = sinλ. The variable PZ is
free and we sweep through it linearly over some interval [−k, k].

In Figure 2.6 we draw a numerical approximation of the exponential map of
initial conditions parametrized as above. The variables λ and PZ we chosen to lie
in the cylinder (λ, PZ) ∈ S1, [−18, 18] and the plot is cut open at x = 0.6. The
initial point is the origin (in particular also θ(0) = 0). The obtained shape extends
not very far in y direction. This is essentially the parallel parking problem, that
starting out parallel to the x-axis, it takes more time to move in the y direction
than to move in the x direction. As we have seen in the previous example, a zig-
zag motion provides the shortest way to do so, where our model considers rotation
equally costly as forward motion. �
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Figure 2.6: The unit sphere of the unicycle.
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3 The Sub-Riemannian Geometry
of the Hopf-fibration

3.1 A manifold structure on C2

Since the Hopf-fibration is a construction on the three dimensional sphere, which
can be realized as an embedded submanifold of R4, we will do many of our com-
putations in this vector space. To make this more managable, we can identify
R4 with C2 in the following way. If xi, yi, i = 1, . . . , n are the global standard
coordinates for R2n, we can define a mapping to Cn with coordinates ui by

ψ(x1, x2, . . . , xn, y1, y2, . . . , yn) 7→ (x1 + iy1, . . . , xn + iyn),

with an inverse map given by (u1, . . . , un) 7→ 1
2
(u1 + ū1, u2 + ū2, . . . , un + ūn, u1 −

ū1, u2− ū2, . . . , un− ūn). As both of these are smooth, we find that the association
ψ4 of R4 with C2 is a diffeomorphism.

Since the properties of (sub-)Riemannian geometry are encoded on the tangent
and cotangent bundles of a manifold, we will also need to understand how these
work on C2. On Rn with coordinates xi and yi, ∂xi and ∂yi span the tangent
space at each point and if we use the differential of the diffeomorphism ψ, we find
the tangent vectors dψ∂xi = ∂Reui and dψ∂yi = i∂Imui , which when writing ui as
xi + iyi, in slight abuse of notation, we can see ∂Reu = ∂x1 and i∂Imu = i∂x2 .

With this, we define

∂u =
1

2
(∂x1 − i∂x2) ∂ū =

1

2
(∂x1 + i∂x2),

in order to get the simple identities

∂uu =
1

2
(∂x1 − i∂x2)(x1 + ix2) = 1, ∂uū =

1

2
(∂x1 − i∂x2)(x1 − ix2) = 0,

∂ūū =
1

2
(∂x1 + i∂x2)(x1 − ix2) = 1, ∂ūu =

1

2
(∂x1 + i∂x2)(x

1 + ix2) = 0.

The operation ∂u is complex linear. If h, g : R2n → R are smooth and real valued,

∂ih

∂xj
= i

∂h

∂xj
∂ih

∂yj
= i

∂h

∂yj
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and if f = g + h,

∂uj if =
1

2
(∂xj − i∂yj)(−g + ih) =

1

2
(∂xjg + i∂yjg + ∂xj ih− i∂yj ih)

=
1

2
(∂yjh− ∂xjg + i∂yjg + i∂xjh) = i∂ujf.

Also, the operator ∂ū is complex linear as a similar computation of ∂ūj if shows.
At this point we should note that if the tangent space TCn consists of all linear

combinations of 2n linearly independent vectors, we should end up with a 2n
dimensional vector space. However, for our purposes we only consider vector fields
of the form f j ∂uj + f̄ ∂ūj , with the f j being complex valued functions on Cn. This
is because if f j = gj + ihj (with the gj and hj real valued and smooth), then

f j ∂uj + f̄ j ∂ūj = (gj + ihj)
1

2
(∂xj − i∂yj) + (gj − ihj)1

2
(∂xj + i∂xj)) = gj ∂xj +hj ∂xj ,

so in writing the tangent vector f j ∂uj + f̄ j ∂ūj = 2 Re f ∂uj , we obtain a real valued
derivative and we have a convenient description of the real vector field gj ∂xj +h

j ∂xj
on R2n. Using this, we can also associate a real vector field on R4 with one on C2

by writing
Xj ∂xj + Y j ∂yj ↔ 2 Re((Xj + iY j)∂uj). (3.1)

It has to be noted that we do not require the component functions of a vector
field on C to be holomorphic. For example, u 7→ ū on C gives us the vector
field 2 Re(ū∂u) = ū ∂u + u∂ū which corresponds to the smooth, real vector field
x1 ∂x1 − y1 ∂y1 .

The covectors on C can be defined analogously as du = dx1 + idx2 and dū =
dx1 − idx2 in order to obtain the familiar relations

du∂u = 1 du∂ū = 0

dū∂u = 0 dū∂ū = 1.

Therefore, given a real covector field ν1dx
1 +ν2dx

2 on R2, we obtain the associated
complex covector field z̄ du + z dū by letting z = 1

2
(ν1 + iν2), as can be seen by

computing

(z̄ du+ z dū) =
1

2
(ν1− iν2)(dx1 + idx2) +

1

2
(ν1 + iν2)(dx1− idx2) = ν1dx

1 + ν2dx
2.

Therefore, between R4 and C2 we have the association

νi dx
i ↔ 1

2
[(ν1 − iν2) du+ (ν1 + iν2) dū + (ν3 − iν4) dv + (ν3 + iν4) dv̄] . (3.2)
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The standard inner product of R4 can also be carried over to C2. If ϕ is the
invers map of φ form Cn to R2n given by

ϕ(ui) = (Reui, Imui),

we can compute its differential to be the fiber linear map determined by

dϕ∂uj =
1

2
(∂xj − ∂yj), dϕ∂ūj =

1

2
(∂xj + ∂yj), (3.3)

The map ϕ is a diffeomorphism, so an immersion, so we can define a metric on
C2 as the pullback of the standard metric on R4. That is, if X and Y are vector
fields on C2, we define

〈X, Y 〉C = 〈dϕX, dϕȲ 〉.

For vectorfields of the form as in Equation (3.1), we have a particularly easy
expression for their inner product.

Lemma 3.1 (An inner product formula on C2). We have that

〈2 Re(f l∂ul), 2 Re(gj∂uj)〉C =
∑
j

Re(f j ḡj)

Proof. We write

2 Re(f l∂ul) = f l∂ul + f̄ l∂ūl and 2 Re(gj∂uj) = gj∂uj + ḡj∂ūj .

Next, note that 〈∂ul , ∂ūj〉 = δlj/2 = 〈∂ūl , ∂uj〉 and 〈∂uj , ∂ul〉 = 0 = 〈∂ūj , ∂ūl〉 for
all j and l, which can be seen by computing with the identities in Equation 3.3.
Therefore, if we expand the inner product,

〈f l∂ul + f̄ l∂ūl , g
j∂uj + ḡj∂ūj〉 = f j ḡj

1

2
+ f̄ jgj

1

2
=

1

2
(f j ḡj + f j ḡj) =

∑
j

Re f j ḡj.

This shows the claimed equality.

3.2 The Hopf-fibration

Let (u, v) be global coordinates on C2. We construct the Hopf fibration as follows:
If we identify S1 with the unit circle in C and S3 with the subset of points (u, v)
of C2 such that uū+ vv̄ = 1, we can define an action S1 × C2 → C2 by

(eit, (u, v)) 7→ (eitu, eitv).
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If we compute 〈(eitu, eitv), (eitu, eitv)〉 = eite−it(uū + vv̄) = 1, we see that the
action maps points in C2 with norm one to themselves, so we will consider it as
an action S1 × S3 → S3. This action is smooth, for if it is the restriction of the
smooth map C× C2 → C2 mapping (z, (u, v)) 7→ (zu, zv).

It is easy to see that this action is free, for otherwise u = eitu for a nonzero t,
which would imply that eit = 1, so t is a multiple of 2π. To verify that it is a proper
action, we use that a continuous action by a compact Lie group on a manifold is
proper [See Lee12, Corollary 21.6], and as S1 is compact, this shows that the action
above is free, proper and smooth. This in turn tells us that the quotient space
S3/S1 has a unique smooth structure such that the projection π : S3 → S3/S1 is
a smooth submersion [See Lee12, Theorem 21.10]. We denote the space S3/S1 as
CP1.

Looking back to the start of the chapter, we still have to argue how this con-
struction constitutes a fibration. In this light, we first give the precise definition
in the context of manifolds.

Definition (smooth fiber bundle). If M and F are smooth manifolds, a fiber
bundle over M with model fiber F is a manifold E with a smooth surjective map
p : E →M with the property that for each x ∈M , there exists a neighborhood U
of x in M and a diffeomorphism φ : p−1(U)→ U × F , called a local trivialization
of E over U , such that the following diagram commutes:

p−1(U) U × F

U.

φ

p π1

[See Lee12, p. 268]

Now, as we have seen that the map π is a smooth submersion that is clearly
surjective onto CP1, by the Ehresmann Lemma [Ehr50], S3 is a fibre bundle over
CP1 with model fiber S1.

It turns out that the space CP1 is diffeomorphic to S2: Define a map p : (u, v) 7→
(2uv̄, uū− vv̄) mapping S3 → C× R. The computation

〈(2uv̄, uū− vv̄), (2uv̄, uū− vv̄)〉 = 4uūvv̄ + (uū− vv̄)2

= 4uūvv̄ + (uū)2 + (vv̄)2 − 2uūvv̄

= (uū+ vv̄)2 = 1

using the product metric shows that the range of p is actually a subset of S2 =
{(u, r) ∈ C2 × R | uū + r2 = 1}. To see that it is surjective, we need to solve
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2uv̄ = z and uū− vv̄ = s for a given z in C and s in R. To do so, write z = rze
itz

and u = rue
itu , v = rve

itv . Then, the first equation becomes

rze
iθ = 2rurve

i(tu−tv),

and we can clearly find tu and tv such that tu − tv = tz. For the variables ru and
rv, we will need to satisfy

2rurv = rz, r2
u − r2

v = s and r2
u + r2

v = 1,

as we are trying to find a solution in S3. By subtracting and adding the last two
equations, we find ru =

√
(1 + s)/2 and rv =

√
(1− s)/2. This also satisfies the

first equation by using that s2 + r2
z = 1. Therefore (rue

itu , rve
itv) maps to (z, r)

under p and therefore p is surjective. Computing the dp, we see that

dp =

[
2v̄ 0 0 2u
ū u v̄ v

]
as written in the basis ∂u, ∂ū, ∂v and ∂v̄ is of full rank. Therefore p is a surjec-
tive submersion. Clearly, for λ ∈ S1, p(u, v) = p(λu, λv). If p(rue

itu , rve
itv) =

p(rae
ita , rbe

itb), we know that r2
a − r2

b = r2
u − r2

v which when added and subtracted
from the equation r2

a + r2
b = r2

u + r2
v shows that ra = ru and rb = rv. We also

know that ta − tb = tu − tv, so (a, b) = (λa, λb) for λ ∈ S1. Therefore p and π are
surjective smooth submersions such that they are constant on each others fibers,
so CP1 and S2 are diffeomorphic (see [Lee12, Thm. 4.31]). With this we might
also view the Hopf-fibration as a fiber bundle of S3 over S2 with model fiber S1.

This fibration locally “splits” the tangent space of S3 in two parts: ker dπ,
which, as dπ is surjective, is a 1-dimensional subspace of the tangent space, and a
remaining perpendicular part which we will make precise later on.

3.3 Sub-Riemannian structures on S3 from the

Hopf p, q action

As we have seen in the previous section, the Hopf-fibration is described by the
smooth action S1 × S3 → S3,

eit.(u, v) = (eitu, eitv).

Then, we also saw that p : S3 → CP1 ∼= S2 is a fibre bundle of S3 over S2.
Therefore, we have the local trivialisations φ : p−1(U)→ U ×F such that π1 ◦φ =
p, where π1 : U × S1 → U is the projection onto the first component. This
implies that ker dp = ker dπ1 ◦ ker dφ, so as φ is a diffeomorphism, we see that
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Figure 3.1: The plane field of the distribution H1,1.

ker dp ∼= ker dπ1 = 0× TS1 ⊂ TU × TS1 . On the other hand, since p is constant
on the fibers of the action,

0 = lim
t→0

p(eitu, eitv)− p(u, v)

t
= dp|(u,v) ◦

(
d

dt

∣∣∣∣
t=0

eit.(u, v)

)
,

by the chain rule. From this we conclude that the infinitesimal generator of the
group action is a basis for ker p.

When using the induced metric of ι : S3 → R4 on S3, this allows us to decompose
the tangent space of S3 into ker dp ⊕ (ker dp)⊥. To obtain a sub-Riemannian
geometry on S3, we will define H as (ker dp)⊥ and restrict the induced metric to
it.

More generally, on the p, q Hopf-fibration with the smooth action S1×S3 → S3

eit.(u, v) = (epitu, eqitv),

we do not have the structure of a fiber bundle. However, we can still define a
sub-Riemannian geometry on S3 as before: we take Hp,q to be the orthogonal
complement to the sub bundle spanned by Z = d/dt|t=0e

it.(u, v). The horizontal
distribution of the p = q = 1 action is illustrated in Figure 3.1.

The vector field Z is smooth as it can be constructed in the following way. If
F : S1 × S3 → S3 denotes the smooth action from above,

dF |(t,(u,v)) : TtS
1 × T(u,v)S

3 → TF (t,(u,v))S
3

is a smooth map. The infinitesimal generator of the action can now be given as
the restriction

F̃ (u, v) = dF(0,(u,v))(∂t, 0),
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so it is the restriction of a smooth map. In the ambient space C2, the Z is given
by the formula

Z =
d

dt

∣∣∣∣
t=0

eit.(u, v) =
d

dt

∣∣∣∣
t=0

(eiptu, eiqtv) = (ipu, iqv). (3.4)

As the vector field is nonvanishing, this shows that V = span{Z} is a smooth
subbundle of TM . Lemma 2.7 then tells us that Hp,q = V⊥ is a distribution.

This distribution is a contact distribution. If we write the vector in Equa-
tion (3.4) in standard coordinates x1, . . . , x4 of R4 and take ω = ιZ〈·, ·〉, we get

ω = −px2 dx1 + px1 dx2 − qx4 dx3 + qx3 dx4.

To turn this into a one-form on S3, we use the smooth embedding ι : S3 → R4, and
define ω̃ = ι∗ω as the pullback of ω. Then, by the properties of the pullback [Lee12,
Lemma 14.16] and by the naturality of the exterior derivative [Lee12, Proposition
14.26],

ω̃ ∧ dω̃ = ι∗ω ∧ dι∗ω = ι∗ω ∧ ι∗dω = ι∗(ω ∧ dω).

This in combination with the fact that dι is injective, it suffices to show that ω∧dω
is nonzero. The computations show that

dω = 2p dx1 ∧ dx2 + 2q dx3 ∧ dx4,

and therefore

ω ∧ dω = 2pq(x1 dx2 ∧ dx3 ∧ dx4 − x2 dx1 ∧ dx3 ∧ dx4

+ x3 dx1 ∧ dx2 ∧ dx4 − x4 dx1 ∧ dx2 ∧ dx3) 6= 0.

Clearly, Hp,q = ι∗ kerω as the round metric on S3 is equal to the induced metric of
the immersion ι. Thus, S3 with the horizontal distribution Hp,q admits no singular
geodesics.

In the case p = q = 1, the fact that the hopf-Fibration is a fiber bundle gives us
additional structure for computing sub-Riemannian geodesics. In Montgomery’s
book, the notion of a constant bi-invariant metric is defined on principle bun-
dles where the metric is the restriction of a Riemannian metric. Essentially, the
requirement is that the differential of the action of any group element is an isom-
etry, that is, it leaves the value of the metric unchanged when applied to both
arguments of 〈·, ·〉. In a sub-Riemannian geometry on a principal bundle of con-
stant bi-invariant type, the sub-Riemannian geodesics can be obtained from the
Riemannian geodesics [Mon02, Theorem 1.26]. However, for the general p, q ac-
tion, we neither have that the space is a fiber bundle, nor does the action satisfy
the constant bi-invariant condition.
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With this result, the sub-Riemannian geometry of the case p = q = 1 has been
thoroughly studied [CMV11], [MM12]. However, as far as we know, all of our
results for the general p, q action are original.

In order to do any explicit computations on this sub-Riemannian geometry, we
will need to find a frame spanning the horizontal distribution. We could do this in
local coordinates, however the generator of the action Z is best described in the
ambient coordinates. Of course, in doing so we have to ensure that the vectors we
work with are orthogonal to N = x1∂x1 + . . . x4∂x4 , the outwards pointing normal
vector. We find a basis for the horizontal distribution by finding vector fields X1

and X2 such that the equations

〈X,N〉 = 0 and 〈X,Z〉, (3.5)

are satisfied for all points in p ∈ R4 with ‖p‖ = 1. As there are four component
functions of each, X1 and X2 to be determined, this system is underdetermined.
In working these out, I have come across two pairs of solutions that are still
manageable to work with explicitly.

The first one is given by the vectors
−x1x4p+ x2x3q
−x2x4p− x1x3q

0
((x1)2 + (x2)2) p

 and


−x1x3p− x2x4q
−x2x3p+ x1x4q
((x1)2 + (x2)2) p

0


using the standard basis ∂x1 . . . ∂x4 for TR4. These vectors have a number of
disadvantages . First, they are not orthogonal, so computing the Hamiltonian
with them would include additional terms. They vanish when x1 = x2 = 0, so
they cannot be used to describe the distribution on all of S3. Lastly, I was not
able to find a simple expression for corresponding vectors in C2, which would help
us when computing the Lie bracket of the two vectors. For that reason we will not
show that they satisfy Equation (3.5) and only include them for completeness.

The other solution is given in R4 by the vectors
−x1((x3)2 + (x4)2)
−x2((x3)2 + (x4)2)
x3((x1)2 + (x2)2)
x4((x1)2 + (x2)2)

 and


qx2((x3)2 + (x4)2)
−qx1((x3)2 + (x4)2)
−px4((x1)2 + (x2)2)
px3((x1)2 + (x2)2)


which can be conveniently rewritten on C2 as

X = 2 Re(−uvv̄∂u + vuū∂v) Y = 2 Re(−iquvv̄∂u + ipvuū∂v).

To see that these satisfy (3.5), we rewrite N and Z on C2 as N = 2 Re(u∂u+v∂v)
and Z = 2 Re(ipu∂u + iqv∂v). Since we defined the metric on S3 as the induced
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metric from its ambient space, we use the regular inner product on C2. Then,
using Lemma 3.1, we compute

〈X,N〉 = Re(−uvv̄ ū+ vuū v̄) = 0

〈X,Z〉 = Re(−uvv̄ (−i)pū+ vuū (−i)qv̄) = Re(i(p− q)uūvv̄)) = 0

〈Y,N〉 = Re(−iquvv̄ ū+ ipvuū v̄) = Re(i(p− q)uūvv̄) = 0

〈X,Z〉 = Re(−iquvv̄ (−i)pū+ ipvuū (−i)qv̄) = pquūvv̄ − pquūvv̄ = 0.

Lastly, we check that X and Y are orthogonal:

〈X, Y 〉 = Re(−uvv̄ iqūv̄v + vuū (−i)pv̄ūu) = Re((−i)uūvv̄(q + p)) = 0

3.4 The Hamiltonian and Hamilton’s equations

We will use

X = 2 Re(−uvv̄∂u + vuū∂v) Y = 2 Re(−iquvv̄∂u + ipvuū∂v).

spanning Hp,q to compute the Hamiltonian for S3 ∩ {u 6= 0} ∩ {v 6= 0}. Since the
vectors are orthogonal to each other in the sub-Riemannian metric, we may use
the simplified formula of Equation 2.10 for the Hamiltonian. To do so, we compute
first compute the inner products 〈X,X〉 and 〈Y, Y 〉 using Lemma 3.1. That is,

g11 = 〈X,X〉 = Re(uvv̄uvv̄ + uvūuvū) = uūvv̄(vv̄ + uū) = uūvv̄,

(since on S3, uū+ vv̄ = 1) and

g22 = 〈Y, Y 〉 = q2uvv̄uvv̄ + p2vuūvuū = uūvv̄(q2vv̄ + p2uū).

Then, the Hamiltonian is given as

H =
g1

2
P 2
X +

g2

2
P 2
Y ,

with the functions PX , PY : T ∗M → R defined like before as PX(ν) = ν(X)
and gi = 1/gii. If we use (u, v, w, z) as coordinates for T ∗C2, working with the
association of T ∗C2 and T ∗R4 as in Equation 3.2, the functions PX and PY can be
expressed as follows:

PX(w̄ du+ w dū+ z̄ dv + z dv̄) = (w̄ du+ w dū+ z̄ dv + z dv̄)(X)

= −w̄uvv̄ − wūvv̄ + z̄vuū+ zv̄uū

= −vv̄(w̄u+ wū) + uū(z̄u+ zū)
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and similarly we find

PY (w̄ du+ w dū+ z̄ dv + z dv̄) = vv̄qi(wū− w̄u) + uūpi(z̄v − zv̄).

With this, one can write down an explicit formulation of H in these coordinates.
We could normalize the vectors X and Y to X̃ and Ỹ which would simplify

our expressions even further. However, the result of the Lie bracket [X̃, Ỹ ] is a
very large expression and less manageable than [X, Y ]. We are going to use the
relation in Equation (2.14) to compute Hamilton’s equations, so having manage-
able expressions for [X, Y ] will be of great importance. The necessary brackets for
Hamilton’s equations are

[X, Y ] = −2vv̄uū

(
iqu
ipv

)
[X,Z] = 0 [Y, Z] = 0.

Since computations of these are quite long, we defer them to Appendix A.1.
Using these brackets, we compute the second half of Hamilton’s equations. To

do so, we will make repeated use of the linearity of PX in the subscript, that is

PαY+βZ(ν) = αν(Y ) + βν(Z) = (αPY + βPZ)(ν).

Let si =
√
gi If F is a function on the contangent bundle, we have that

{F,H} =
1

2
{F, g1P 2

X}+
1

2
{F, g2P 2

Y }

=
1

2
{F, P 2

s1X}+
1

2
{F, P 2

s2Y }

= s1PX{F, s1PX}+ s2PY {F, s2PY },

by using the identity in 2.11. If F = PY , we can now use the identity of Equa-
tion 2.14 and the standard formula [X, fY ] = f [X, Y ]−X(f)Y [See Lee12, Propo-
sition 8.28d)] to see that

{PY , s1PX} = −P[Y,s1X] = −s1P[Y,X] − Y (s1)PX .

If F = PX , this bracket yields

{PX , s1PX} = −P[X,s1X] = −s1P[X,X] −X(s1)PX = −X(s1)PX .

With this and similar computations for the bracket {·, s2PY }, we see that the
second half of Hamiltonian’s equations are given as

ṖX = −g2PY P[X,Y ] − s2X(s2)P 2
Y − s1X(s1)P 2

X

ṖY = −g1PXP[Y,X] − s1Y (s1)P 2
X − s2Y (s2)P 2

Y

ṖZ = −s1Z(s1)P 2
X − s2Z(s2)P 2

Y
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To simplify this, we need to express [X, Y ] in terms of the other vector fields, that
is we need to find the real coefficients α and β depending on u and v such that

αY + βZ =

(
iqu
ipv

)
.

This system is easily solvable using the fact that uū + vv̄ = 1 and gives the
coefficients

α =
p2 − q2

p2uū+ q2vv̄
β =

pq

p2uū+ q2vv̄
.

We combine this with the fact that that PX is linear in the subscript to get that
P[X,Y ] = −2vv̄uū(αPY + βPZ).

Combining this with the computation in Equation 2.13 gives the system

u̇ = −uvv̄g1PX +−iquvv̄g2PY ;

v̇ = vuūg1PX + ipvuūg2PY ;

ṖX = 2
p2uū+q2vv̄

PY (αPY + βPZ)− s2X(s2)P 2
Y − s1X(s1)P 2

X

ṖY = −2PX(αPY + βPZ)− s1Y (s1)P 2
X − s2Y (s2)P 2

Y

ṖZ = −s1Z(s1)P 2
X − s2Z(s2)P 2

Y .

(3.6)

It is immediate that the vector field u̇∂u + ¯̇u∂ū + v̇∂v + ¯̇v∂v̄ = g1PXX + g2PY Y
is orthogonal to the outwards pointing normal 2 Re(u∂u + v∂v) as it is a linear
combination of the vectors X and Y which are both tangent to S3. We may
simplify this system by using the expressions for 〈X,X〉 and 〈Y, Y 〉 to

u̇ = − u
uū
PX + −iqu

uū(p2uū+q2vv̄)
PY ;

v̇ = v
vv̄
PX + ipv

vv̄(p2uū+q2vv̄)
PY ;

ṖX = 2
p2uū+q2vv̄

PY (αPY + βPZ)− s2X(s2)P 2
Y − s1X(s1)P 2

X

ṖY = −2PX(αPY + βPZ)− s1Y (s1)P 2
X − s2Y (s2)P 2

Y

ṖZ = −s1Z(s1)P 2
X − s2Z(s2)P 2

Y .

(3.7)

The system in Equation (3.7) has two parts: the equations for u̇ and v̇ which
determine the motion on the manifold and the equations for PX , PY and PZ . In
Figure 3.2 we provide a vector plot of the second half in the PX , PY plane. To
do so, we fixed PZ = 3 and we are using p = 3, q = 1. The u and v coordinates
are u = v = 1/2 + 1/2i. As you can see, the vectors indicate a rotational motion
around the the point PX = PY = 0. When linearizing the corresponding equations
in (3.7) around PX = PY = 0, we find{

ṖX = 2
p2uū+q2vv̄

PY βPZ

ṖY = −2PXβPZ ,

34



Figure 3.2: The vector field of ṖX and ṖY . Color indicates the vector length from
blue smallest to red largest.

so as long as PZ is nonzero, we will find our solution circling alternating along the
X and Y direction.

The figure on the cover page shows geodesics obtained from numerically solv-
ing (3.7) alongside the planes spanning H5,1. They appear parallel. This is not
surprising as the derivatives u̇ and v̇ in Hamilton’s equations are given by linear
combinations of vectors in the horizontal distribution. We see how for small initial
values of PZ the solutions stay relatively straight and spiral for larger values.

3.5 Geodesic spheres of the Hopf-fibration

The Hamiltonian we derived is only valid on S3∩{u 6= 0}∩{v 6= 0}. As a solution
approaches u = 0 or v = 0, we can read off from Equation 3.7 that u̇ or v̇ will
grow very large and numerical solution methods fail. Therefore we can only draw
geodesic spheres with initial conditions such that γ(1) is still within this region.
For the starting point u = v = 1/2 + 1/2i, we found that this is satisfied for γ̇(0)
has length 〈γ̇(0), γ̇(0)〉 ≤ 0.16. This corresponds to using γ̇(0) with unit length
and only integrating the system from t = 0 until t = 0.4, by Equation (2.15).

To satisfy this condition on the initial conditions, we use the expression in
Equation (2.16) on our Hamiltonian function to arrive at the equation

1

uūvv̄
P 2
X +

1

uūvv̄(p2uū+ q2vv̄)
P 2
Y = 1 (3.8)
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Figure 3.3: Unit sphere of the case p = q = 1.

when requiring γ̇(0) to be of unit length. This is solved by taking the initial
conditions {

PX(0) = cos θ
√
uūvv̄

PY (0) = sin θ
√
uūvv̄(p2uū+ q2vv̄),

with the variable θ sweeping out the interval [0, 2π). As we found through exper-
imentation, the constant value of PZ is best swept out in a nonlinear way. In our
images, we have used the initial values 100r3, with r linearly sweeping out values
in [−1, 1].

With these parametrizations and starting at the initial point u = v = 1/2+1/2i,
we have created the plots of the case p = q = 1 and of the cases where or one of
p and q is 1 while the other is equal to 5. The viewpoint has been kept constant
throughout to illustrate how the spheres rotate as p and q change. The case p = 1
q = 5 in Figure 3.4 is very curved and the sphere in the case p = 5, q = 1 in
Figure 3.5 is very flat. The sphere of p = q = 1 in Figure 3.3 certainly has the
roundest shape. When drawing the spheres for additional in-between values, the
shape seems to be changing continuously, the cases for one of p or q equal to 2 can
be seen in Figures 3.6 and 3.7.

To assess the quality of the numerical solutions, we have computed the sum of
squares of the components to see if they remain on the sphere, so if it is close to
1. Furthermore, we checked that the solutions move with unit speed, i.e. that the
sum of squares of the derivative of the solution is close to one. For a number of
different solutions of the p = 1, q = 5 case, the deviation of these two quantities
from one can be seen in Figure 3.8. The deviation is quite small, so we can assume
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Figure 3.4: Unit sphere of the case p = 1, q = 5.

Figure 3.5: Unit sphere of the case p = 5, q = 1.
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Figure 3.6: The case p = 1, q =
2.

Figure 3.7: The case p = 2, q =
1.

(a) Squared norm of several solutions.
(b) Squared norm of the derivative of several

solution.

Figure 3.8: Properties of the numerical solutions in the case p = 1 and q = 5.

that the numerical solution method is close to the true geodesics. Moreover, this
is evidence that we have the correct expression for Hamilton’s equations for this
geometry.

The Mathematica [Wol] code necesseray to reproduce all images of this chapter
is included in Appendix A.2.

3.6 Sub-Riemannian geodesics

Previously, we have seen that Riemannian geometry is a special case of its subrie-
mannian cousin. With this in mind, since the Hopf-fibration is a subriemannian
geometry of the Riemannian geometry S3, we have a natural first candidate for
the subriemannian geodesics of the Hopf-fibration; the geodesics of S3. These are
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the great circles, that is the intersections of S3 with planes in R4 that pass through
the origin [Lee06, Proposition 5.13]. It turns out that if a Riemannian geodesic
starts out in a horizontal direction, it remains horizontal throughout.

Lemma 3.2. All geodesics γ of S3 with an initial velocity γ̇(0) ∈ Hp,q are hori-
zontal curves.

Proof. Let γ(t) = cos t (r, s) + sin t (x, y) be a great circle of S3, which means that
‖(r, s)‖ = ‖(x, y)‖ = 1 and that (r, s) and (x, y) are orthogonal in C2. Then, if we
assume that γ̇(0) = (x, y) ∈ Hp,q

(r,s), we know that (x, y) ⊥ (ipr, iqs). Therefore, as

a vector tangent to S3 is in Hp,q
γ(t) if and only if it is orthogonal to(

ipu
iqv

)∣∣∣∣
(u,v)=γ(t)

= cos t

(
ipr
iqs

)
+ sin t

(
ipx
ipy

)
,

it suffices to compute
〈γ̇(t), (ipu, iqv)|γ(t)〉 = 0.

This follows from distributing the inner product over the terms and noting that

〈(r, s), (ipx, iqy)〉 = Re−iprx̄− iqsȳ = Re ipxr̄ + iqys̄ = −〈(x, y), (ipr, iqs)〉 = 0,

and that for any (u, v),

〈(u, v), (ipu, iqv)〉 = Re i(puū+ qvv̄) = 0.

Therefore, as γ̇ is allways tangent to S3 and orthogonal to vertical distribution, it
must be horizontal.

This principle is illustrated in Figure 3.9 where we have drawn several great cir-
cles on S3 that have a horizontal initial velocity. Starting points vary so the circles
appear interlinked under the stereographic projection. The plane field indicates
the horizontal distribution.

Theorem 3.3. All Riemannian geodesics γ of S3 with initial velocity γ̇(0) ∈ Hp,q
γ(0)

are geodesics of the (p, q) Hopf-fibration.

Proof. The curve γ is locally length minimizing: On any sufficiently short arc
γ : [a, b] → M of γ, suppose that a horizontal curve γ′ has γ′(0) = γ(a) and
γ′(1) = γ(b). Furthermore, suppose that γ′ is shorter, so∫ 1

0

〈γ̇′, γ̇′〉 dt ≤
∫ b

a

〈γ̇, γ̇〉 dt. (3.9)
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Figure 3.9: Several great circles with horizontal initial velocity.

Then, γ′ can be seen as a curve on the Riemannian geometry S3 and Equation (3.9)
also holds as the inner product of the p, q hopf-fibration is merely the restriction
of the usual inner product. By Theorem 2.5 we have to conclude that γ′([0, 1]) =
γ([a, b]), as γ is a Riemannian geodesic. Therefore, γ is locally length minimizing.

As the distribution Hp,q is a contact distribution, its sub-Riemannian geometry
does not admit singular geodesics, so γ is a sub-Riemannian geodesic of the p, q
hopf-fibration.
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4 Conclusion

In this project, we have laid out the basic theory of sub-Riemannian geometry.
Readers interested at studying this field further could turn to Montgomery’s book
[Mon02] for a panoramic overview, however its prerequisites are quite high. In the
text by Agrachev, Barilari, and Boscain, more foundational material is provided
but overall it is slightly more technical [ABB12]. I can nevertheless recommend it,
especially since this thesis should have provided the necessary initial overview of
the topic.

On a similar note, the introduction to Riemannian geometry given in Chapter 2
is a vast understatement of what the field has to offer. The two books by Do Carmo
[Do 92] and Lee [Lee06] complement each other well and provide an excellent way
of learning more about the topic.

We have also worked towards understanding the sub-Riemannian geometry of
the p, q Hopf actions. In particular we provided a Hamiltonian valid on most of
S3 and computed Hamilton’s equations from it. Perhaps this could be numerically
approximated or extended analytically to all of S3 so that an implicit description of
the geodesics is available for the entire space. Also, we have provided the necessary
code to plot geodesic spheres of this sub-Riemannian geometry alongside several
examples. Here, an obvious next goal would be to work out for which initial
conditions and time period geodesics stay length minimizing to arrive at a sub-
Riemannian distance sphere.

I found working on this project sincerely interesting. Manifolds are my favourite
mathematical structure and I generally find the results of differential geometry
quite amazing. Sub-Riemannian geometry is especially fascinating for how appli-
cable the subject is to real world problems and how exciting it is to learn something
about recent mathematics. However, I found that the project was quite demand-
ing. Riemannian geometry is a very large field usually placed at a graduate level
and the texts on sub-Riemannian geometry I have encountered usually assume
thorough knowledge of it. It took quite a bit of work to gather all necessary ingre-
dients to understand and present the topic at an undergraduate level. The project
has probably prepared me well for studying Riemannian geometry further, but I
also hope to revisit sub-Riemannian geometry in the future. Until then, happy
parallel parking.
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A.1 Computation of the Lie bracket of the basis

vectors for Hp,q and the vertical vector field

Definition. On C2 we may denote a vector field as(
f1

f2

)
:= f1 ∂u + f̄1 ∂ū + f1 ∂v + f̄2 ∂v̄ = 2 Re(f1∂u + f2∂v),

As we have seen in Section 3.1, this notation is really a short hand for the vector
field

Re f1 ∂x1 + Im f1 ∂x2 + Re f2 ∂x3 + Im f2 ∂x4 ,

so we may also write

X1∂x1 +X2∂x2 +X3∂x3 +X4∂x4 =

(
X1 + iX2

X3 + iX4

)
(A.1)

Now if we start with two vector fields on R4 that are given in coordinates as
X i∂xi and Y i∂xi , we can define the corresponding complex valued functions f1 =
X1 + iX2, f2 = X3 + iX4, g1 = Y 1 + iY 2 and g2 = Y 3 + iY 4. To compute the Lie
bracket of X and Y , we can now use Equation (A.1) twice to get

[X, Y ] = (XY i − Y X i)∂xi

=

(
XY 1 − Y X1 + iXY 2 − iY X2

XY 3 − Y X3 + iXY 4 − iY X4

)
=

(
X(Y 1 + iY 2)− Y (X1 − iX2)
X(Y 3 + iY 4)− Y (X3 + iX4)

)

=


(
f1

f2

)
g1 −

(
g1

g2

)
f1(

f1

f2

)
g2 −

(
g1

g2

)
f2

 ,

an expression using the notation defined at the start of the Section.
We have the vectors

X =

(
−uvv̄
vuū

)
and Y =

(
−iquvv̄
ipvuū

)
C =

(
ipu
iqv,

)
of which we wish to compute the Lie brackets. Then,

[X, Y ] =


(
−uvv̄
vuū

)
(−iuqvv̄)−

(
−iquvv̄
ipvuū

)
(−uvv̄)(

−uvv̄
vuū

)
(ipvuū)−

(
−iquvv̄
ipvuū

)
(vuū)


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and (
−uvv̄
vuū

)
(−iuqvv̄) = uvv̄iqvv̄ − iuqv̄vuū− v̄ūuiuqv

= iqu vv̄vv̄ − iqu vv̄uū− iqu vv̄uū,

(
−iquvv̄
ipvuū

)
(−uvv̄) = iquvv̄vv̄ − ipvuūuv̄ + ipv̄ūuuv

= iqu vv̄vv̄ − ipu uūvv̄ + ipu vv̄uū,

(
−uvv̄
vuū

)
(ipvuū) = −uvv̄ivpū− ūv̄vivpu+ vuūipuū

= −ipv vv̄uū− ipv uūvv̄ + ipv uūuū,

and (
−iquvv̄
ipvuū

)
(vuū) = −iquvv̄vū+ iqūvv̄vu+ ipvuūuū

= −iqv vv̄uū+ iqv uūvv̄ + ipv uūuū.

By carefully studying the terms in the above expressions, we can see that the
difference of the first two equals −2iqv v̄uūu and the difference between the second
two equals −2ipu ūvv̄v. Therefore,

[X, Y ] = −2ivv̄uū

(
qu
pv.

)
For the other brackets, we compute

[Y,C] ==

[(
−iquvv̄
ipvuū

)
,

(
ipu
iqv

)]
.

Here,(
−iquvv̄
ipvuū

)
ipu−

(
piu
qiv

)
(−iquvv̄) = pquvv̄ − (−i2pquvv̄ − i2q2uvv̄ + q2i2uvv̄) = 0

and(
−iquvv̄
ipvuū

)
iqv−

(
piu
qiv

)
ipvuū = i2qpvuū− (p2i2vuū+ p2(−i)ivuū+ i2qpvuū) = 0,
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so [Y,C] = 0. Also,(
−uvv̄
vuū

)
ipu−

(
ipu
iqv

)
(−uvv̄) = −ipuvv̄ − (pipuvv̄ + iquvv̄ − iquvv̄) = 0

and finally(
−uvv̄
vuū

)
iqv −

(
ipu
iqv

)
(vuū) = iqvuū− (ipvuū− ipvuū+ iqvuū) = 0,

so also [X,C] = 0.

A.2 Mathematica code

First we define the stereographic projection and its differentials as well as corre-
sponding coordinate transforms.

sigma[{a_, b_, c_, d_}] = {a, b, d}/(1 - c);

dsigma = D[sigma[{a, b, c, d}], {{a, b, c, d}}]

isigma[{x_, y_, z_}] = {2 x, 2 y, x^2 + y^2 + z^2 - 1,

2 z}/(x^2 + y ^2 + z^2 + 1);

disigma = Simplify[D[isigma[{x, y, z}], {{x, y, z}}]]

cc = {a → isigma[{x, y, z}] [[1]], b → isigma[{x, y, z}] [[2]],

c → isigma[{x, y, z}] [[3]], d → isigma[{x, y, z}] [[4]]};

ccc = {x → sigma[{a, b, c, d}] [[1]],

y → sigma[{a, b, c, d}] [[2]], z → sigma[{a, b, c, d}] [[3]]};

Next we define the necessary vectors as well as convert them into the format nec-
essary for NDSolve. We also define the Jacobian matrices of the inner products in
order to compute the action of the vector fields on them later on.

Clear[p, q];

ve = {-a (c^2 + d^2), -b (c^2 + d^2), c (a^2 + b^2), d (a^2 + b^2)};

we = {b q (c^2 + d^2), - a q (c^2 + d^2), - d p (a^2 + b^2) ,

c p (a^2 + b^2)};

xe = {-b p, a p, -d q, c q};

changefun = {a → x1[t], b → x2[t], c → x3[t], d → x4[t]};

vx = ve /. changefun;

vy = we /. changefun;

vz = xe /. changefun;

xx = Sqrt[1/((a^2 + b^2) (c^2 + d^2))]

yy = Simplify[Sqrt[1/(we . we)], a^2 + b^2 + c^2 + d^2 == 1]

Jxx = Simplify[D[xx, {{a, b, c, d}}], a^2 + b^2 + c^2 + d^2 == 1] /. changefun

Jyy = Simplify[D[yy, {{a, b, c, d}}], a^2 + b^2 + c^2 + d^2 == 1] /. changefun

xx = xx /. changefun

yy = yy /. changefun

alpha = (p^2 - q^2)/((x1[t]^2 + x2[t]^2) p^2 +

q^2 (x3[t]^2 + x4[t]^2));

beta = (p q)/((x1[t]^2 + x2[t]^2) p^2 + q^2 (x3[t]^2 + x4[t]^2));

Up next are the differential equations. They have parameters for specifying the
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initial parameters on the cotangent bundle.

Clear[p, q];

eqns[s_, u_,

v_] = {{x1'[t], x2'[t], x3'[t], x4'[t]} ==

xx^2*vx*px[t] + yy^2*vy*py[t],

px'[t] == 2 /(p^2 (x1[t]^2 + x2[t]^2) + q^2 (x3[t]^2 + x4[t]^2))*

py[t] (alpha*py[t] + beta*pc[t]) - yy vx.Jyy py[t]^2 - xx vx.Jxx px[t]^2,

py'[t] == -2*

px[t] (alpha*py[t] + beta*pc[t]) - xx vy.Jxx px[t]^2 - yy vy.Jyy py[t]^2,

pc'[t] == -xx vz.Jxx px[t]^2 - yy vz.Jyy py[t]^2,

{x1[0], x2[0], x3[0], x4[0]} == {1/Sqrt[4], 1/Sqrt[4], 1/Sqrt[4],

1/Sqrt[4]},

px[0] == s,

py[0] == u,

pc[0] == v};

norm = x1[t]^2 + x2[t]^2 + x3[t]^2 + x4[t]^2;

speed = px[t]^2 *xx + py[t]^2*yy;

tend = 0.4;

And we define the function that returns the endpoint of a geodesic. The two
parameters give us an initial horizontal direction and the remaining parameter
corresponding to PZ .

Clear[p, q]

fun2[u_, v_] :=

sigma[{x1[t], x2[t], x3[t], x4[t]}] /. (NDSolve[eqns[Cos[u]/2, Sqrt[(p^2 + q^2)/2] Sin[u]/2 , 100*v^3], {x1, x2,

x3, x4, px, py, pc}, {t, tend}, Method → {"Projection", Method → "ExplicitRungeKutta", "Invariants" → {norm} ⩵ 1},

InterpolationOrder → All, MaxStepSize -> 0.02]) /. {t → tend}

After defining some viewing angles, this code creates the geodesic spheres seen in
the thesis.
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p = 5; q = 1;

veee1 = {1.7459078177618, -0.959751459295, 0.1751657165625};

veee2 = {-1.7943045198771543`, -0.7362242956614813`, 0.48830838250605224`};

p51 = ParametricPlot3D[fun2[u, v], {u, 0, 2 Pi}, {v, -1, 1}, PlotRange → All, PlotStyle → Opacity[0.5],

AxesLabel → {x, y, z}, ViewPoint → veee1 ]

Show[p51, ViewPoint → veee2]

p = 1; q = 1;

p11 = ParametricPlot3D[fun2[u, v], {u, 0, 2 Pi}, {v, -1, 1}, PlotRange → All, PlotStyle → Opacity[0.5],

AxesLabel → {x, y, z}, ViewPoint → veee1 ]

Show[p11, ViewPoint → veee2]

p = 1; q = 5;

p15 = ParametricPlot3D[fun2[u, v], {u, 0, 2 Pi}, {v, -1, 1}, PlotRange → All, PlotStyle → Opacity[0.5],

AxesLabel → {x, y, z}, ViewPoint → veee1 ]

Show[p15, ViewPoint → veee2]

p = 2; q = 1;

p21 = ParametricPlot3D[fun2[u, v], {u, 0, 2 Pi}, {v, -1, 1}, PlotRange → All, PlotStyle → Opacity[0.5],

AxesLabel → {x, y, z}, ViewPoint → veee1 ]

Show[p21, ViewPoint → veee2]

p = 1; q = 2;

p12 = ParametricPlot3D[fun2[u, v], {u, 0, 2 Pi}, {v, -1, 1}, PlotRange → All, PlotStyle → Opacity[0.5],

AxesLabel → {x, y, z}, ViewPoint → veee1 ]

Show[p12, ViewPoint → veee2]

We create some additional solutions and we evaluate how well the solutions be-
haved.

p = 1; q = 5;

tend = 0.4;

k1 = 6;

k2 = 9;

points = Tuples[{Range[0, 2 Pi - Pi/(2 k1) , 2 Pi/k1], 100*# ^3 & /@ Range[-1, 1, 2/k2]}];

sol = (NDSolve[eqns[Cos[#[[1]]]/2, Sqrt[(p^2 + q^2)/2] Sin[#[[1]]]/2 , #[[2]]], {x1, x2,

x3, x4, px, py, pc}, {t, tend}, Method → {"Projection", Method → "ExplicitRungeKutta", "Invariants" → {norm} ⩵ 1},

InterpolationOrder → All, WorkingPrecision → MachinePrecision, MaxStepSize -> 0.02]) & /@ points;

Plot[Evaluate[x1[t]^2 + x2[t]^2 + x3[t]^2 + x4[t]^2 - 1 /. sol], {t,

0, tend}, PlotRange → All]

Plot[Evaluate[(x1'[t]^2 + x2'[t]^2 + x3'[t]^2 + x4'[t]^2 - 1) /. sol], {t, 0, tend}, PlotRange → All]
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