Problem II

In the following \(\varphi : \mathbb{R} \times X \to X \) is a flow and \(X \) a compact metric space.

1. Prove that the following statements are equivalent:
 (i) \(S \) is invariant;
 (ii) \(S = \bigcap_{t \in \mathbb{R}} \varphi(t, S) \) and \(\varphi|_S \) is surjective;
 (iii) for all \(x \in S \) there exists a complete orbit \(\gamma_x \subset S \);
 (iv) \(\varphi(t, S) = S \) for all \(t \in (0, \tau] \), for some \(\tau > 0 \).

2. Let \(S \subset X \) be an invariant set for \(\varphi \). Show that both \(W^s(S) \) and \(W^u(S) \) are invariant.

3. Given the equations \(x' = x(x-1) \), \(y' = y(y-1) \) and \(z' = z(z-1) \). Let \(X \) be given by \(X = [0,1]^3 \) and \(\varphi \) is the flow on \(X \) generated by the uncoupled system of differential equations.
 (i) Find the finest Morse decomposition.
 (ii) Describe the lattice of all attractors of the system.

4. Show that \(\text{sub}_{0,1}\text{Att}^F(X) \) is a lattice with \(\wedge \) set intersection and \(\vee \) defined by
 \[
 A \vee A' = \bigcap \{ A'' \in \text{sub}_{0,1}\text{Att}^F(X) \mid A \cup A' \subset A'' \}.
 \]
 Here \(\text{sub}_{0,1}\text{Att}^F(X) \) is the set of all \((0,1)\) sublattices of \(\text{Att}(X) \) (see also notes, pp. 112).

5. Let \(f : T^2 \to \mathbb{R} \) be a smooth function on the 2-torus \(T^2 \).
 (i) Prove that if \(f \) is a Morse function (\(f \) only has non-degenerate critical points), then the number of critical points of \(f \) is bounded from below by 4.
 (ii) Prove that in general that the number of critical points of \(f \) is bounded from below by 3.