Problem III

Consider the differential equation \(u'' = u^3 - u - u' \).

1. (i) Show that the set of all bounded solutions of the above equation is a compact invariant set \(S_{\text{bdd}} \).
(ii) Prove that the system is gradient-like, i.e. there exists a Lyapunov function \(V \) such that \(V \circ \varphi \) is strictly decreasing outside the set of equilibrium points \(E \).
(iii) Prove that \(E \) yields a Morse decomposition of \(S_{\text{bdd}} \).
(iv) Use Conley Theory to prove that the above differential equation has heteroclinic connections between the equilibrium points \(-1\) and \(0\) and between \(0\) and \(1\).
(v) Do the results change under small perturbations of the right hand side?

Consider the fourth order equation \(u''' = u - u^3 - \epsilon u' \), \(0 < \epsilon \ll 1 \).

2. Show that the results in 1 remain unchanged for this fourth order equation.