
Formal Design and Analysis of an Ambient Multi-Agent
System Model for Medicine Usage Management

Mark Hoogendoorn, Michel Klein, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelli gence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{ mhoogen, michel.klein, treur} @cs.vu.nl

Abstract. A formall y specified multi -agent-based model for medicine usage
management is presented and formall y analysed. The model incorporates an
intelli gent ambient agent model that has an expli cit representation of a dynamic
system model to estimate the drug concentration in the patient’s body by simulation,
and is able to analyse whether the patient intends to take the medicine too early or too
late.

1. Introduction

The fast developing area of Ambient Intelli gence (Aarts et al., 2001; Aarts et al., 2003;
Riva et al., 2005) is an interesting application area for agent-based methods. In this paper a
formally analysed ambient multi -agent system model for the domain of medicine usage
management is presented. The main problem addressed in this health domain is to achieve
in a non-intrusive, human-li ke manner that patients for whom it is crucial that they take
medicine regularly, indeed do so. Examples of specific relevant groups include
independently li ving elderly people, psychiatric patients or HIV-infected persons. One of
the earlier solutions reported in the literature provides the sending of automaticall y
generated SMS reminder messages to a patient’s cell phone at the relevant times; e.g.,
(Safren et al., 2003). A disadvantage of this approach is that patients are disturbed often,
even if they do take the medicine at the right times themselves, and that after some time a
number of patients start to ignore the messages. More sophisticated approaches make use of
a recently developed automated medicine box that has a sensor that can detect whether a
medicine is taken from the box, and can communicate this to a server; cf. SIMpill (Green,
2005). This paper explores and analyses possibiliti es to use automated devices such as an
automated medicine box, servers and cell phones as non-human agents, in addition to
human agents such as the patient and a supervising doctor. The aim is to obtain a form of
medicine usage management that on the one hand achieves that the patient maintains the
right amount of medicine, whereas the human factors are also incorporated in an adequate
manner, e.g. that a patient is only disturbed if it is reall y required, thus providing a human-
li ke ambience.

The ambient multi -agent system model for medicine usage management as discussed
was formally specified in an executable manner and formally verified using dedicated tools.
The system hasn’ t been actuall y deployed in a real li fe situation. The model developed can
be used as a blueprint for specific applications in the domain of medicine usage
management. The model incorporates an intelli gent ambient agent model that has an
explicit representation of a dynamic system model to estimate the concentration of the

2

medicine in the patient’s body by s imulation, and is able to analyse whether the patient
intends to take medicine too early or too late. For actual deployment, the model might have
to be extended with other aspects of the patient, e.g. his physical activity and his food
consumption, which all has impacts on the drug doses,

In this paper, Section 2 describes the modelling approach. In Section 3 the Multi-Agent
System is introduced, whereas Section 4 presents the specification at the multi-agent
system level. The specification of the ambient agent is presented in Section 5. Furthermore,
Section 6 presents simulation results, Section 7 formal analysis of these results. Finally,
Section 8 is a discussion.

2. Modelling Approach

This section briefly introduces the modelling approach used to specify the multi-agent
model. Two different aspects are addressed. First of all, the process aspects, and secondly,
the information and functionality aspects. Thereafter, the language used for execution of a
model and the specification and verification of dynamic properties is briefly introduced.

2.1 Process and Information/Functionality Aspects

Processes are modelled as components in the generic model. A component can either be an
active process, namely an agent, or a source that can be consulted, which is a world
component. In order to enable interaction between components, interaction links between
such components can be specified. From the perspective of information, interfaces of
components are specified by ontologies. Using ontologies, the functionalities of
components in order to perform the tasks of the component can be specified as well.

2.2 Specification Languages

In order to execute and verify multi-agent models, an expressive language is needed. To
this end, the language called TTL is used (Jonker and Treur 2002a; Bosse et al., 2006). This
predicate logical language supports formal specification and analysis of dynamic properties,
covering both qualitative and quantitative aspects. TTL is built on atoms referring to states,
time points and traces. A state of a process for (state) ontology Ont is an assignment of truth
values to the set of ground atoms in the ontology. The set of all possible states for ontology
Ont is denoted by STATES(Ont). To describe sequences of states, a fixed time frame T is
assumed which is linearly ordered. A trace γ over state ontology Ont and time frame T is a
mapping γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in STATES(Ont). The set of
dynamic properties DYNPROP(Ont) is the set of temporal statements that can be formulated
with respect to traces based on the state ontology Ont in the following manner. Given a trace
γ over state ontology Ont, the state in γ at time point t is denoted by state(γ, t). These states
can be related to state properties via the formally defined satisfaction relation |=,
comparable to the Holds-predicate in the Situation Calculus: state(γ, t) |= p denotes that state
property p holds in trace γ at time t. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted first-order predicate logic, using quantifiers over
time and traces and the usual first-order logical connectives such as ¬, ∧, ∨, ⇒ ∀, ∃. A
special software environment has been developed for TTL, featuring both a Property Editor

 3

for building and editing TTL properties and a Checking Tool that enables formal
verification of such properties against a set of (simulated or empirical) traces.

To logicall y specify simulation models and to execute these models in order to get
simulation traces, the language LEADSTO, an executable subset of TTL, is used; cf. (Bosse
et al., 2007). The basic building blocks of this language are temporal (or causal) relations of
the format α →→e, f, g, h β, which means:

 If state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold

for a certain time interval of length h.

with α and β state properties of the form ‘conjunction of literals’ (where a literal is an atom
or the negation of an atom), and e, f, g, h non-negative real numbers.

3. Overview of the Multi-Agent System

Figure 1 presents an overview of the entire system as considered. Two world components
are present in this system: the medicine box, and the patient database; the other components
are agents. The top right corner shows the patient, who interacts with the medicine box, and
communicates with the patient cell phone. The (ambient) Medicine Box Agent monitors
whether medicine is taken from the box, and the position thereof in the box. In case, for
example, the patient intends to take the medicine too soon after the previous dose, it finds
out that the medicine should not be taken at the moment (i.e., the sum of the estimated
current medicine level plus a new dose is too high), and communicates a warning to the
patient by a beep. Furthermore, all i nformation obtained by this agent is passed on to the
(ambient) Usage Support Agent. All i nformation about medicine usage is stored in the
patient database by this agent. If the patient tried to take the medicine too early, a warning
SMS with a short explanation is communicated to the cell phone of the patient, in addition
to the beep sound already communicated by the Medicine Box Agent.

Patient

Doctor

Medicine box

Medicine Box
Agent

Usage
Support
Agent

Patient
Data

Patient Phone

Doctor Phone

Fig. 1. Multi-Agent System: Overview

On the other hand, in case the Usage Support Agent finds out that the medicine is not
taken early enough (i.e., the medicine concentration is estimated too low for the patient and
no medicine was taken yet), it can take measures as well. First of all, it can warn the patient
by communicating an SMS to the patient cell phone. This is done soon after the patient
should have taken the medicine. In case the patient still does not take medicine (for
example after a number of hours), the agent can communicate an SMS to cell phone of the

4

appropriate doctor. The doctor can look into the patient database to see the medicine usage,
and in case the doctor feels it is necessary to discuss the state of affairs with the patient, he
or she can contact the patient via a call using the doctor cell phone to the patient cell phone.

4. Specification of the Multi-Agent Level

In order for the various components shown in Figure 1 to interact in an appropriate manner,
generic temporal rules at the global level are specified that model the interaction between
the various components. First of all, Table 1 shows the ontology needed to express such
rules. Using the ontology, the following generic temporal rules were specified.

Action Propagation from Agent to World
∀X:AGENT ∀W:WORLD ∀A:ACTION
output(X)|performing_in(A, W) ∧ can_perform_in(X,A,W)
 →→ input(W)|performing(A)

Observation Focus Propagation: from Agent to World
∀X:AGENT ∀W:WORLD ∀I:INFO_EL
output(X)|observation_focus_in(I, W) ∧ can_observe_in(X,I,W)
 →→ input(W)|observation_focus(I)

Observation Result Propagation from World to Agent
∀X:AGENT ∀W:WORLD ∀I:INFO_EL
output(W)|observation_result_from(I, W) ∧ can_observe_in(X,I,W)

 →→ input(X)|observed_result_from(I, W)
Communication Propagation Between Agents

∀X,Y:AGENT ∀I:INFO_EL
output(X)|communication_from_to(I,X,Y) ∧ can_communicate_with_about(X,Y,I)
 →→ input(Y)|communicated_from_to(I,X,Y)

5. Specification of the Ambient Agents

The Ambient Agent Model used is based on a combination of the Generic Agent Model
GAM described in (Brazier et al., 2000), and the generic process control model in (Jonker
and Treur, 2002b). To express the agent’s internal states and processes, the ontology shown
in Table 2 was specified.

Table 1. Ontology for Interaction at the Global Level

SORT Description
ACTION an action
AGENT an agent

INFO_EL an information element, possibly complex
(e.g., a conjunction of other info elements)

WORLD a world component
 Predicate Description
performing_in(A:ACTION, W:WORLD) action A is performed in W
observation_focus_in(I:INFO_EL,
W:WORLD)

observation focus is I in W

observation_result_from(I:INFO_EL,
W:WORLD)

observation result from W is I

observed_result_from(I:INFO_EL,
W:WORLD)

the observed result from W is I

communication_from_to(I:INFO_EL,
X:AGENT, Y:AGENT)

information I is communicated by X to Y

communicated_from_to(I:INFO_EL,X:AG
ENT,Y:AGENT)

information I was communicated by X to Y

can_observe_in(X:AGENT, I:INFO_EL,
W:WORLD)

agent X can observe I within world component W

 5

W:WORLD)
can_perform_in(X:AGENT, A:ACTION,
W:WORLD)

agent X can perform action A within world component W

can_communicate_with_about(X:AGENT
, Y:AGENT, I:INFO_EL)

agent X can communicate with agent Y about info element I

Table 2. Ontology Used within the Ambient Agent Model

An example of an expression that can be made by combining elements from this
ontology is

 belief(leads_to_after(I:INFO_EL, J:INFO_EL, D:REAL))

which represents that the agent has the knowledge that state property I leads to state
property J with a certain time delay specified by D. Using this ontology, the functionality of
the agent has been specified by generic and domain-specific temporal rules.

5.1 Generic Temporal Rules

The functionality within the Ambient Agent Model has the following generic
specifications.

∀X:AGENT, I:INFO_EL, W:WORLD
input(X)|observed_result_from(I, W) ∧
 internal(X)|belief(is_reliable_for(W, I)) →→ internal(X)|belief(I)
∀X,Y:AGENT, I:INFO_EL
input(X)|communicated_from_ to(I,Y,X) ∧ internal(X)|belief(is_reliable_for(X, I))
 →→ internal(X)|belief(I)
∀X:AGENT ∀I,J:INFO_EL ∀D:REAL ∀T:TIME
internal(X)|belief(at(I,T)) ∧ internal(X)|belief(leads_to_after(I, J, D))
 →→ internal(X)|belief(at(J, T+D))

When the sources are assumed always reliable, the conditions on reliability can be left out.
The last rule specifies how a dynamic model that is represented as part of the agent’s
knowledge can be used by the agent to perform simulation, thus extending its beliefs about
the world at different points in time.

For the world components the following generic formal specifications indicate how
actions get their effects and how observations provide their results:

∀W:WORLD_COMP ∀A:ACTION ∀I:INFO_EL
input(W)|performing_in(A, W) ∧ internal(W)|has_effect(A,I)
 →→ internal(W)|world_fact(I)

∀W:WORLD_COMP ∀I:INFO_EL
input(W)|observation_focus_in(I, W) ∧ internal(W)|world_fact(I)
 →→ output(W)|observation_result_from(I, W)

∀W:WORLD_COMP ∀I:INFO_EL
input(W)|observation_focus_in(I, W) ∧ internal(W)|world_fact(not(I))
 →→ output(W)|observation_result_from(not(I), W)

Predicate Description
belief(I:INFO_EL) information I is believed
world_fact(I:INFO_EL) I is a world fact
has_effect(A:ACTION, I:INFO_EL) action A has effect I
Function to INFO_EL Description
leads_to_after(I:INFO_EL, J:INFO_EL,
D:REAL)

state property I leads to state property J after duration D

at(I:INFO_EL, T:TIME) state property I holds at time T
critical_situation(I:INFO_EL) the situation concerning I is critical

6

5.2 Domain-Specific Temporal Rules

Domain-specific rules are both shown for the Medicine Box Agent and the Usage Support
Agent.

Medicine Box Agent. The Medicine Box Agent has functionality concerning
communication to both the patient and the Usage Support Agent. First of all, the observed
usage of medicine is communicated to the Usage Support Agent in case the medicine is not
taken too early, as specified in MBA1.

MBA1: Medicine usage communication
If the Medicine Box Agent has a belief that the patient has taken medicine from a certain position in the
box, and that the particular position contains a certain type of medicine M, and taking the medicine does not
result in a too high medicine concentration of medicine M within the patient, then the usage of this type of
medicine is communicated to the Usage Support Agent. Formally:

internal(medicine_box_agent)|belief(medicine_taken_from_position(x_y_coordinate(X,Y))) ∧
internal(medicine_box_agent)|belief(medicine_at_location(x_y_coordinate(X, Y), M)) ∧
internal(medicine_box_agent)|belief(medicine_level(M, C)) ∧
max_medicine_level(maxB) ∧ dose(P) ∧ C + P ≤ maxB
→→0,0,1,1 output(medicine_box_agent)|communication_from_to(
 medicine_used(M), medicine_box_agent, usage_support_agent)

In case medicine is taken out of the box too early, a warning is communicated by a beep
and the information is forwarded to the Usage Support Agent (MBA2 and MBA3).

MBA2: Too early medicine usage prevention
If the Medicine Box Agent has the belief that the patient has taken medicine from a certain position in the
box, that this position contains a certain type of medicine M, and taking the medicine results in a too high
medicine concentration of medicine M within the patient, then a warning beep is communicated to the
patient.

internal(medicine_box_agent)|belief(medicine_taken_from_position(x_y_coordinate(X,Y))) ∧
internal(medicine_box_agent)|belief(medicine_at_location(x_y_coordinate(X, Y), M)) ∧
internal(medicine_box_agent)|belief(medicine_level(M, C)) ∧
max_medicine_level(maxB) ∧ dose(P) ∧ C + P > maxB
→→0,0,1,1 output(medicine_box_agent)|communication_from_to(
 sound_beep, medicine_box_agent, patient)

MBA3: Early medicine usage communication
If the Medicine Box Agent has a belief that the patient was taking medicine from a certain position in the
box, and that the particular position contains a certain type of medicine M, and taking the medicine would
result in a too high concentration of medicine M within the patient, then this is communicated to the Usage
Support Agent.

internal(medicine_box_agent)|belief(medicine_taken_from_position(x_y_coordinate(X,Y))) ∧
internal(medicine_box_agent)|belief(medicine_at_location(x_y_coordinate(X, Y), M)) ∧
internal(medicine_box_agent)|belief(medicine_level(M, C)) ∧
max_medicine_level(maxB) ∧ dose(P) ∧ C + P > maxB
→→0,0,1,1 output(medicine_box_agent)|communication_from_to(

too_early_intake_intention, medicine_box_agent, usage_support_agent)

Usage Support Agent. The Usage Support Agent’s functionality is described by three sets
of temporal rules. First, the agent maintains a dynamic model for the concentration of
medicine in the patient over time in the form of a belief about a leads to relation.

USA1: Maintain dynamic model
The Usage Support Agent believes that if the medicine level for medicine M is C, and the usage effect of
the medicine is E, then after duration D the medicine level of medicine M is C+E minus G*(C+E)*D with
G the decay value.

internal(usage_support_agent)|belief(leadsto_to_after(
medicine_level(M, C) ∧ usage_effect(M, E) ∧ decay(M, G),

 medicine_level(M, (C+E) - G*(C+E)*D), D)

 7

In order to reason about the usage information, this information is interpreted (USA2), and
stored in the database (USA3).

USA2: Interpret usage
If the agent has a belief concerning usage of medicine M and the current time is T, then a belief is generated
that this is the last usage of medicine M, and the intention is generated to store this in the patient database.

internal(usage_support_agent)|belief(medicine_used(M)) ∧
internal(usage_support_agent)|belief(current_time(T))

→→0,0,1,1
internal(usage_support_agent)|belief(last_recorded_usage(M, T) ∧
internal(usage_support_agent)|intention(store_usage(M, T))

USA3: Store usage in database
If the agent has the intention to store the medicine usage in the patient database, then the agent performs
this action.

internal(usage_support_agent)|intention(store_usage(M, T))

→→0,0,1,1 output(usage_support_agent)|performing_in(store_usage(M, T), patient_database)

Finally, temporal rules were specified for taking the appropriate measures. Three types of
measures are possible. First, in case of early intake, a warning SMS is communicated
(USA4). Second, in case the patient is too late with taking medicine, a different SMS is
communicated, suggesting to take the medicine (USA5). Finally, when the patient does not
respond to such SMSs, the doctor is informed by SMS (USA6).

USA4: Send early warning SMS
If the agent has the belief that an intention was shown by the patient to take medicine too early, then an
SMS is communicated to the patient cell phone that the medicine should be put back in the box, and the
patient should wait for a new SMS before taking more medicine.

internal(usage_support_agent)|belief(too_early_intake_intention)

→→0,0,1,1
output(usage_support_agent)|communication_from_to(put_medicine_back_and_wait_for_signal,

 usage_support_agent, patient_cell_phone)

USA5: SMS to patient when medicine not taken on time
If the agent has the belief that the level of medicine M is C at the current time point, and the level is
considered to be too low, and the last message has been communicated before the last usage, and at the
current time point no more medicine will be absorbed by the patient due to previous intake, then an SMS is
sent to the patient cell phone to take the medicine M.

internal(usage_support_agent)|belief(current_time(T3)) ∧
internal(usage_support_agent)|belief(at(medicine_level(M, C), T3)) ∧
min_medicine_level(minB) ∧ C < minB ∧
internal(usage_support_agent)|belief(last_recorded_usage(M, T)) ∧
internal(usage_support_agent)|belief(last_recorded_patient_message_sent(M, T2)) ∧
T2 < T ∧ usage_effect_duration(UED) ∧ T3 > T + UED

→→0,0,1,1 output(usage_support_agent)|communication_from_to(
 sms_take_medicine(M), usage_support_agent, patient_cell_phone)

USA6: SMS to doctor when no patient response to SMS
If the agent has the belief that the last SMS to the patient has been communicated at time T, and the last
SMS to the doctor has been communicated before this time point, and furthermore, the last recorded usage
is before the time point at which the SMS has been sent to the patient, and finally, the current time is later
than time T plus a certain delay parameter for informing the doctor, then an SMS is communicated to the
cell phone of the doctor that the patient has not taken medicine M.

internal(usage_support_agent)|belief(last_recorded_patient_message_sent(M, T)) ∧
internal(usage_support_agent)|belief(last_recorded_doctor_message_sent(M, T0)) ∧
internal(usage_support_agent)|belief(last_recorded_usage(M, T2)) ∧
internal(usage_support_agent)|belief(current_time(T3)) ∧
T0 < T ∧ T2 < T ∧ max_delay_after_warning(DAW) ∧ T3 > T + DAW

→→0,0,1,1
output(usage_support_agent)|communication_from_to(sms_not_taken_medicine(M),
 usage_support_agent, doctor_cell_phone)

8

6. Simulation Results

In order to show how the above presented system functions, the system has been
implemented in a dedicated software environment that can execute such specifications
(Bosse et al., 2007)]. This section presents some of the simulation results. First, the
stochastic model to generate patient scenarios is introduced; thereafter an example
simulation trace of the system is shown and explained.

6.1. Stochastic Patient Model

To enable creation of simulations, a patient model is used that simulates the behaviour of
the patient in a stochastic manner. The model specifies four possible behaviours of the
patient, each with its own probability: (1) too early intake, (2) correct intake (on time), (3)
responding to an SMS warning that medicine should be taken, and (4) responding to a
doctor request by phone. Based upon such probabilities, the entire behaviour of the patient
regarding medicine usage can be simulated. In the following simulations, values of
respectively 0.1, 0.8, 0.9 and 1.0 have been used.

6.2. Example Trace

Figure 2 shows the medicine level over time in an example of a simulation trace as
estimated by the agent based on its dynamic model. Here the x-axis represents time whereas
the y-axis represents the medicine level. Note that in this case, the minimum level of
medicine within the patient is set to 0.35 whereas the maximum level is 1.5. These numbers
are based on the medicine half-life value, that can vary per type of medicine. In the trace in
Figure 2, it can be seen that the patient initially takes medicine at the appropriate time, this
is done by performing an action:

Fig. 2. Medicine level over time

output(patient)|performing_in(take_medicine_from_position(x_y_coordination(1,1)), medicine_box)

This information is stored in the patient database:
input(patient_database)|performing_in(store_usage(recorded_usage(hiv_slowers, 8)), patient_database)

Resulting from this medicine usage, the medicine level increases, as can be seen in Figure
3. In this simulation, the medicine takes 60 minutes to be fully absorbed by the patient. Just
240 minutes after taking this medicine, the patient again takes a pill from the medicine box.
This is however too early, and as a result, the Medicine Box Agent communicates a
warning beep, which is received by the patient:

input(patient)|communicated_from_to(sound_beep, medicine_box_agent, patient)

 9

The patient does not take the medicine, and waits for an SMS, as the patient is instructed to
do. The SMS is received a littl e while later, stating that the patient should wait with taking
the medicine until a new message is sent.

 input(patient)|communicated_from_to(put_medicine_back_and_wait_for_signal,
 patient_cell_phone, patient)

The patient awaits this message, which is sent after the medicine level is considered to be
low enough such that medicine can be taken. The Usage Support Agent therefore
communicates an SMS to the patient cell phone:

output(usage_support_agent)|communication_from_to(sms_take_medicine(hiv_slowers),
 usage_support_agent, patient_cell_phone)

This message is received by the patient:
input(patient)|communicated_from_to(sms_take_medicine(hiv_slowers), patient_cell_phone, patient)

The patient does however not respond to the SMS, and does not take its medicine. The
usage support agent responds after 60 minutes, and sends an SMS to the doctor of the
patient:

input(doctor)|communicated_from_to(sms_not_taken_medicine(hiv_slowers), usage_support_agent, doctor)
The doctor immediately call s the patient, and makes sure the patient understands that it is
essential to take the medicine immediately. As a result, the patient takes the medicine:

output(patient)|performing_in(take_medicine_from_position(x_y_coordination(1,1)), medicine_box)

As can be seen in Figure 3, during the entire simulation the patient medicine level never
exceeds the maximum level (1.6), and never goes below the minimum required level (0.35).

An example graph of the medicine level of a patient not using the support system
presented in this section is shown in Figure 3. Note that this is a simulation over a longer
time period (3000 minutes). As can be seen, the intake interval fluctuates a lot and the
medicine level does not always stay above the desired level of 0.35.

Fig. 3. Medicine level without support system

7. Verification of the System

Requirements that should hold for all simulation traces of the type of system as designed
can be specified as dynamic properties. The language TTL (Jonker and Treur 2002a; Bosse
et al., 2006)) is used to specify such properties. The dedicated software environment for
TTL allows automated verification of these properties against generated traces. To perform
such validation, first the aim of the system is to be defined. A human-li ke ambience system
has as goal to support a human’s wellbeing and functioning. Here ‘supporting’ is a broad
term which can take many different forms. However, in practice often one of the following
types of properties are at issue.
(a) The system tries to keep the value of some state property or variable within a preferred or

required range. For example, the medicine level in the blood of a patient should be high enough to
be effective, but not too high to cause undesired side effects.

10

(b) The system tries to prevent a undesired situation to happen. For example, a system tries to prevent
that a potential criminal performs a criminal act.

The validation of the usefulness of a human ambience-like system is related to its aims.
In general, its validation consists of comparing a scenario where a human ambience system
is present with a similar scenario without such a system. The generic hypothesis is that with
a human-like ambience system the situation is more often within the preferred range,
respectively that undesired situations less frequently happen. This hypothesis can be refined
in questions about the scenarios. For the first task the following questions can be asked:
1. Occurrence of violation: Is the value of the property in always within the safe boundaries?
2. Number of violations: What is the average number of violations of the safe boundaries per

scenario?
3. Duration of violation: For how long is the property on average not within the safe boundaries?

If a distinction is made between preferred values of a property and required values, these
questions can be asked for both types of boundaries. For the second type of task the
duration is not relevant, so the only two relevant questions are:
1. Occurrence of violation: Does the undesired situation occur?
2. Number of violations: How often does the undesired situation occur on average per scenario?

In the formalization of these questions the first three questions are considered a special
case of the last two: i.e., the violations of the safe boundaries are seen as a specification of
an undesired situation. The consequence of this is that all dynamic properties can be
formulated at a general level and the only domain specific knowledge is the specification of
the undesired situation. In the formalization P stands for the property of interest, M for the
traces for a specific scenario, has_value(P,V) means that V is the value of P, TU stands for the
upper boundary of the property, TL for its lower boundary, and S for the undesired situation.
Note that for the duration and number of violations, we have to specify a minimum number
that should hold. Here ∑ case(p, 1, 0) is a special construct in the language that calculates the
sum of timepoints for which a state holds. The generic rules are:
1. Occurrence of violation:

∀M:TRACE ∀T:TIMEPOINT: state(M, T) |= ¬S
2. Number of violations:

∀M:TRACE: ∀T1, T2:TIMEPOINT: ∑ case(T1
����������������	�
 �

 ��� ��������� ����� ∧ state(M, T+1) |= S, 1, 0) >

MIN_OCCURANCES
3. Duration of violation:

∀M:TRACE ∀T1, T2:TIMEPOINT: ∑ case(T1 �����������! ���"�# $
%�& '�(���)�* +�,-(�.�(�/
)10�'32 465�7-8�9;:;�12 <34
In case of a value that should be within a specific range, the undesired situation S is

specified as follows:
 ∃V:VALUE: has_value(P,V) ∧ (V > TU ∨ V < TL)
This has been applied to the medicine box case, where the value of the property

‘medicine_level’ was checked. The values 0.3 and 1.5 were used for the minimal and
maximal required level. The system was validated on 10 traces with the length of one week.
Five traces simulated a scenario with support of the system and five a scenario without. In
the scenario with support, there were less violations of the required medicine level: on
average 1.8 violations, versus 4.2 in the unsupported scenarios. In addition, those violations
were significantly shorter: the average time that a patient has a wrong medicine level in his
blood is 1.9 hours per week in the supported case, versus 16.3 hours per week in the
unsupported case. This clearly ill ustrates the improvement of the situation of the patient
that the system provides.

 11

8. Discussion

In this paper, a multi-agent system model was presented that supports the users of medicine
in taking their medicine at the appropriate time. The system has been specified using a
formal modelling approach which enables the specification of both quantitative as well as
qualitative aspects (Jonker and Treur 2002a; Bosse et al., 2006). To specify the model, both
generic and domain specific temporal rules have been used, enabling reuse of the presented
model. Evaluation of the model has been conducted by means of simulation runs using a
stochastic model for patients. The simulation results have been evaluated using formal
verification techniques, whereby it was shown that usage of the system indeed results in
better medicine intake adherence.

The presented multi-agent system model fits well in the recent developments in Ambient
Intelligence (Aarts et al., 2001, 2003; Riva et al., 2005). Furthermore, it also shows that
multi-agent system technology can be of great benefit in health care applications, as also
acknowledged in (Moreno and Nealon, 2004). More approaches to support medicine usage
of patients have been developed. Both in (Greene, 2005) as well as (Floerkemeier and
Siegemund, 2003) models are presented that do not simply always send an SMS that
medicine should be taken such as proposed by (Safren et al., 2003). Both approaches only
send SMS messages in case the patient does not adhere to the prescribed usage. The model
presented in this paper however adds an additional dimension to such a support system,
namely the explicit representation and simulation of the estimated medicine level inside the
patient. Having such an explicit model enables the support agent to optimally support the
patient.

References

Aarts, E.; Collier, R.; van Loenen, E.; Ruyter, B. de (eds.) (2003). Ambient Intelli gence. Proc. EUSAI
2003. Lecture Notes in Computer Science, vol. 2875. Springer Verlag, 2003, pp. 432.

Aarts, E., Harwig, R. , and Schuurmans, M. (2001), Ambient Intelligence. In: P. Denning (ed.), The
Invisible Future, McGraw Hill, pp. 235-250.

Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A, and Treur, J. (2006). Specification and
Verification of Dynamics in Cognitive Agent Models. In: Nishida, T. et al. (eds.), Proceedings of
the Sixth International Conference on Intelli gent Agent Technology, IAT'06. IEEE Computer
Society Press, 2006, pp. 247-254.

Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J. (2007). A Language and Environment for
Analysis of Dynamics by Simulation. International Journal of Artifi cial Intelli gence Tools. To
appear, 2007. Shorter, preliminary version in: Eymann, T., et al. (eds.), Proc. of MATES'05.
Lecture Notes in Artificial Intelligence, vol. 3550. Springer Verlag, 2005, pp. 165-178.

Bosse, T., Memon, Z.A., and Treur, J. (2007). A Two-level BDI-Agent Model for Theory of Mind
and its Use in Social Manipulation. In: P. Olivier, C. Kray (eds.), Proceedings of the Artifi cial and
Ambient Intelli gence Conference, AISB'07. AISB Publications, 2007, pp. 335-342.

Brazier, F.M.T., Jonker, C.M., and Treur, J. (2000). Compositional Design and Reuse of a Generic
Agent Model. Applied Artifi cial Intelli gence Journal, vol. 14, 2000, pp. 491-538.

Brazier, F.M.T., Jonker, C.M., and Treur, J. (2002). Principles of Component-Based Design of
Intelligent Agents. Data and Knowledge Engineering, vol. 41, 2002, pp. 1-28.

Floerkemeier, C., Siegemund, F. (2003). Improving the Effectiveness of Medical Treatment with
Pervasive Computing Technologies. Workshop on Ubiquitous Computing for Pervasive
Healthcare Appli cations at Ubicomp 2003, Seattle, October 2003

12

Green D.J. (2005). Realtime Compliance Management Using a Wireless Realtime Pill bottle – A
Report on the Pilot Study of SIMPILL. In: Proc. of the International Conference for eHealth,
Telemedicine and Health, Med-e-Tel’05, 2005, Luxemburg.

Jonker, C.M., and Treur, J. (2002a). Compositional Verification of Multi -Agent Systems: a Formal
Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative Information
Systems, vol. 11, 2002, pp. 51-92.

Jonker, C.M., and Treur, J. (2002b). A Compositional Process Control Model and its Appli cation to
Biochemical Processes. Applied Artifi cial Intelli gence Journal, vol. 16, 2002, pp. 51-71.

Moreno, A., Nealon, J.L. (eds.), Appli cations of Software Agent Technology in Health Care Domain.
Birkhäuser Basel, 2004.

Riva, G., F. Vatalaro, F. Davide, M. Alcañiz (eds). (2005). Ambient Intelli gence. IOS Press, 2001.
Safren, S.A., Hendriksen, E.S., Desousa, N., Boswell , S.L., Mayer, K.H., (2003). Use of an on-line

pager system to increase adherence to antiretroviral medications. In: AIDS CARE, vol. 15, pp. 787
– 793

