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Abstract. Ambient agents read¢ on humans on the basis of partial information
obtained by sensoring. Appropriate types of readions depend onin how far an
ambient agent is able to interpret the available information (which is often
incomplete, and hence multi-interpretable) in order to crege amore mmplete
internal imageof the environment, including humans. This interpretation process
which often has multiple possble outcomes, can make use of an explicitly
represented model of causal and dyramic relations. Given such a model
representation, the aent neels a reasoning method to interpret the partial
information available by sensoring, by generating ore or more posshle
interpretations. This paper presents a generic model-based default reasoning
method that can be exploited to this end. The method all ows the use of software
tools to determine the different default extensions that form the possble
interpretations. Moreover, by formally spedfyingthe default rulesin an exeaitable
temporal format, simulation d reasoning traces and automated verificaionin a
dedicaed software environment were adieved. A number of such simulation
experiments and their formal analysis are described.

1 Introduction

Ambient Intelligence [1, 2, 21] applications usualy involve sensor information about
the environment, including humans. Asthisinformationis often incomplete, appli caions
that require ahigh level of context awareness (see &so [22, 23, 24]) depend onthe
availability of methods to analyse such information. One way is to is include
computational models abou environmental and human functioning in ambient agents.
However, even when incomplete sensor information is refined on the basis of such
models to cregde amore complete internal image of the environment’s and human’s
state, till this may result in partial information that can be interpreted in dfferent
manners. Readions of ambient agents then depe&d on in how far they are &le to handle
the avail able multi-interpretable information. To dothis, the agent neelds a reasoning
method to generate one or more of the possble interpretations. Tods from the aeaof
nommondaonic logic can provide alequate analysis tods for reasoning processes
concerning partial information. Within normondonic logic goproachesit is possble to
formali se reasoning processes that ded with multi ple possble outcomes, which can be
used to model different posshiliti es of interpretation; see[15] for a similar perspedive
onthe application d nonnonotonic logic todls.

This paper presents a generic model-based default reasoning method that can be
exploited to this end. The method exploits the available causal model and alows the use
of software tods to determine the different default extensions that form the possble
interpretations, given the sensor information and the caisal model. Moreover, by
formally spedfyingthe default rulesin an exeautable temporal format, acwrdingto the



approach pu forward in [12, 14], explicit default reasoning processesan ke generated.
A number of simulation experiments to oltain reasoning traces are described. The
ressoning method povides a solid basis for conceptual and dcetailed design d model-
based ambient agents that need such a capaility.

Sedion 2 describes two case studies used to ill ustrate the goproach. In Sedion 3the
basic concepts used are briefly introduced. Sedion 4presentsthe gproadc to use default
logic in conjunction with causal graphsto refine partial information by defining multiple
interpretations. In Sedion 5it is siown how such interpretations can be generated by
controll ed default reassoning processes. Finaly, Sedion 6 isa discusson.

2 Case Studies

Two case studies are used throughou this paper; they are introduced below.

Wristband for Elderly

As a cae study, the reasoning concerning condtions that occur amongst elderly people
isused. Figure 1 shows a simplified causal model for such conditions. On the left hand
side five condtions are shown: awake, asee, syncope (fainted), myocardial infarction
(heat attadk) and cardiacarrest. The outputof the model consist of symptansthat can
be measured with a wristband, which are pulse, blood pesaire and bodytemperature.
Such a causal model can help in finding ou the arrent condtion d an elderly person
based on sensory informaion from the wristband.
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Fig. 1. Causal model for thecondtion d an elderly pason

Crime Case

In this case study, a system is wsed that canhep the pdicesolve acrime wsing ambient

intelli gence fadliti es. A Dutch company (Sound Intelli gence) developed microphores
that can ddingush aggressve sounds. Consider the stuation in which these
microphores are distributed at crucial pointsin the city, similar to surveillarce caneras.
Furthermore, suppae in this scerario that for some persons ankle bracdets are used asa
form of punishment, which can measure the level of ethanad in the person’s perspiration,
andindicate their position.



In this example scenario, someone is beaen up rearby a microphore. The
microphore picks up the sound d the fight and records this. After an investigation, the
pdice have three suspeds. The first susped is known to have a high level of
testosterone, which dften leadsto aggressve behaviour. The second susped is someone
who is enstive for alcohd (causing aggresson) and weas an ankle bracdet that
measures the level of ethand in his system He has been seen n aneaby cafe. The third
susped is diagnosed with Intermittent Explosive Disorder (IED), whichisadisorder that
can lead to aterrible outburst of rage after anundeasant or stresful medting. Withesses
saw susped 2 in the company of someone dse.

Figure 2 shows a caisal model that is used for this stuation that can help the pdlice
officers to figure out what information is missng and help them to plan their strategy.
For example, did susped 2 have a nflict with the person he was with? Did susped 3
drink alcohd? Aggressve soundsare caised by personsthat are gggressve, acordingto
the model. Threepossble caises for this aggressvenessare cnsidered, as can be seen
in Figure 2: someone can havea high level of testosterone, someone can just havebeen
in asituation of conflict or someone ca have a highlevel of alcohol.
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Fig. 2. Causal model for the crime case

3 Basic Concepts Used
In this sedion the tesic concepts used in the paper are briefly introduced.

Causal models

In this paper, thisdynamic perspedive onreasoningisapplied in combinationwith fads
that are labell ed with temporal information, and models based on causal or tempora
relationships that relate such fads. To expressthe information invalved in an agent’s
internal reasoning processs, the following ortology is used.

leads_to_after(:INFO_EL, J:INFO_EL, D:REAL) state property | leads to state property J after duration D
at(l:INFO_EL, T:TIME) state property | holds at time T

Multiple Inter pretation

Reasoning to oltain an interpretation of partial information can be formalised at an
abstrad generic level asfollows. A particular interpretation for a given set of formulae
considered as inpu information for the reasoning, is formalised as another set of



formulag that in one way or the dher is derivable from theirput information (output of
the reassoning towards an interpretation). In general there ae multiple posshble
outcomes. The mlledion d al possble interpretations derivable from a given set of
formulae & inpu information (i.e.,, the output of the reasoning towards an
interpretation) isformalised asa wlledion d different sets of formulae A formali sation
describing the relation ketween such input and ouput information is described at an
abstrad level by a multi -interpretation operator.

The input information is described by propasitional formulaein alanguage L;. An
interpretationisa set of propasitional formulae based on a languageL..
a) A multi-interpretation operator MI with input language L, and output languagelL, is
afunction MI : P(L;) - P(P(Ly)) that asggns to ead set of input fadsin L, a set of
sets of formulaein L.
b) A multi-interpretation operator M1 is norrinclusive if for all XOL; and
S, TOMI(X),if SOT then S=T.
c) If L;O0 Ly then amulti-interpretation operator M1 isconservativeif for all X 0L,
TOMI(X) it holdsx O T.

The ondtion d norrinclusiveness guarantees a relative maximality of the possble
interpretations. Note that when MI(X) has exadly one dement, this means that the set

X 0 L; hasaunigue interpretaion unde' M1. The nation  multi-interpretation ogerator

is a generali sation of the notion of anormondaonic beli ef set operator, asintroduced in

[10]. The generalisation was introduced and applied to approximate dassficdionin

[15]. A reasoner may explore anumber of passible interpretations, but often, at some
point in time a reasoner will focus on ore (or possbly a small subset) of the
interpretations. This seledion process b formdi sed as follows (see[15]).

a) A scledion operator s isafunctions: P(P(L)) - P(P(L)) that assgnsto eat
norempty set of interpretations a nonempty subset: for all A with @z A OP(L) it holds @
# s(A) O A. A seledion operator sissingle-valued if for al nornrempty A the set s(A)
contains exadly one dement.

b) A seledive interpretation operator for the multi-interpretation operator MI is a
functionC: P(L;) - P(L,) thatassgnsoneinterpretation to ead set of initial fads: for
al X OLqit holds C(X) OMI(X).

Representation in Default Logic

The representation problemfor anommonaonic logic isthe question whether a given set
of possble outcomes of areasoning processcan herepresented by a theory in this logic.
More spedficdly, representation theory indicates what are aiteriafor a set of possible
outcomes, for example, given by a olledion of dedctively closed sets of formulag so
that this colledion can occur as the set of outcomes for a theory in this nonrmondaonic
logic. In [18] the representation problem is lved for default logic, for the finite case.
Given this context, in the aurrent paper Default Logic is chosen to represent
interpretation processs. For the empiricad material analysed, default theories have bee
spedfied such that their extensions are the possble interpretations.

A default theory isa pair D, WO Here W isafinite set of logicd formulae(cdl ed the
badkgroundtheory) that formalise the fads that are known for sure, and D is a set of
default rules. A default rule hasthe form: a: B /y. Herea isthe precondtion, it hasto be
satisfied before considering to believe the cnclusion y, where the B, cdled the
justification, hasto be consistent with the derived information andw. Asaresult y might
be believed and more default rules can be gplied. However, the end result (when no
more default rules can be gplied) still hasto be cmnsistent with the justificaions of all



applied default rules. Normal default theories are based on defaults of the form a: B/ B.
In the gproach supernormal default rules will be used: normal default ruleswhere a is
trivial: true. Such supernormal rules are denoted by / B or : B/ B; they are dso cdled
prerequisite-freenormal defaults. For more detail s on Default Logic, such asthe nation
of extension, see e.g., [17, 20].

Temporal Specification of Reasoning Processes
In this paper a dynamic perspedive on reaoning is taken, following, e.g. [12, 14]. In
pradicd reasoning situations usually different lines of reasoning can ke generated, eat
leading to a distinct set of conclusions. In logic semantics is usually expressed in terms
of models that represent descriptions of conclusions about the world and in terms of
entailment relations based on a spedfic dass of this type of models. In the (sound
classcd case eat line of reasoning leads to a set of conclusions that are true in all of
these models: ead line of reasoning fits to eacy model. However, for non-classcd
ressoning methods the picture is different. For example, in default reasoning a
abductive reasoning methods a variety of mutually contradictory corclusionsets may be
posshble. It depends onthe chosen line of reasoning which one of these setsfits.

The general idea unérlying the approach followed here, and inspired by[12, 14], is
that a particular reasoning line can be formalised by a sequence of information states
Mg, M1, ... . Here any wm; isadescription d the (partial) information that has been

derived up totime point t. From a dynamic perspedive, an inferencestep, performedin
time durationp isviewed asatransition m; - mp Of a arrentinformationstate m; to

anext informationstate m.p. Such atransitionisusually described byapgicdion ofa

deduction rule or proof rule, which in the dynamic perspedive on ressoning ets a
temporal asped. A particular reasoning line is formalised by a sequence (my) (g Of
subsequent information states labelled by elements of a flow of time T, which may be
discrete, based on naural numbers, or continuous based on red numbers.

An information state can be formalised by a set of statements, or as a threevalued
(false, true, undefined) truth assgnment to ground atoms, i.e., a partial model. In the
latter case, which isfollowed here @sin[12, 14]), a sequence of such information states
or reasoningtrace ca be interpreted asa partial temporal mocel. A trarsition relating a
next information state to a aurrent one can be formalised by temporal formulae the
partial temporal modelhas © sdisfy.

Executable Temporal Specification

To spedfy models and to exeaute these models, the language LEADSTO, an exeautable
sublanguage of TTL, is used. The basic building Hocks of this language ae caisa
relations of the format a - , |, B, which means:

if state property a holds for a certain time interval with duration g,

then after some delay (between e and f) state property 8 will hold
for a certain time interval of length h.

where o and 3 are state properties of the form ‘conjunction of literals' (where aliterd is
an atom or the negation of anatom), and e, f, g, h nortnegative red numbers. For the sake
of smplicity, espedally when they are always the same, thesesutscripts may be left out
of the notation and indicated separately. As an example, a modus porens deduction rule
intime duration D can be spedfied intemporal formatas:

derived(l) O derived(implies(l, J)) — p derived(J)
So, inference rules are trandated into temporal rules thus obtaining a temporal theory
describing the reasoning behaviour. Each possble line o reasoning can le described by
alinea time model of thistheory (intemporal partial logic). Thisrepresentation foma
will be used to formali se this and other types of model-based reasoning methods, aswill
be shown more extensively in Sedion 5



4 Representing Model-Based Interpretation in Default Logic

In this ®dion it is discused hov a model-based interpretation operator can be
represented in default Logic.

4.1 Default logic for model-based refinement of partial information

The causal theory CT of the agent consists of a number of statements a — b for eat
causal relation from ato b, with a and batoms. Sometimesincluded in this set are some
fads to indicate that some aoms exclude eat aher (for example, - (has_value(temperature,
high) O has_value(temperature, low)), OF that at least one of a set of atomsistrue, (for example:
has_value(pulse, high) O has_value(pulse, normal) O has_value(pulse, Iow)). A set of literals S is
coherent with CT if SO CT isconsistent. The set Siscdled a maximal coherent set for
CT if it iscoherent, and for all sets T coherent with CT withSO T it holdsS=T. Let X
be a %t of formulae The multi -interpretation operator Ml _,(X) is defined by

MI(X)={Cn(X OCT OS) | Smaxmal coherent with CT }

This operator defines for the partial information the ayent may have & some point in
time (indicated by set of literals X) the set of al complete refinements of X which are
coherent with the caisal model. This operator has been defined abowve in an abstrad
manner, and only indicates the possble outcomes of a reasoning process not the stepsof
the reasoning processitself. A next step isto obtain a represntation of this operator in a
well-known formalism such as default logic. Based onthis default logic representation,
ressoning proceses can be defined that can be performed to oltain ore or more of the
interpretations.

The following Default Theory A_(X) = W, DOcan be used to represent the multi -
interpretation operator M, (notice that thisis a supernormal default theory); see &so
[18], Theorem 5.1:

W
D

CTOX
{ (true: a/ @) |alitera for an @om occurringin CT }

Here aliteral is an atom or a negation d an atom. That this default theory represents
Ml means that for any set X indicating pertial information the set of interpretations
defined by MI_(X) can be ohtained as the set of all extensions of the default theory
A(X). This representation allows to determine the interpretations by using knawn
methods and todls to determine the extensions of a default theory. One of these methods
isworked ou inatod cdled Smodels, based on answer set programming; cf. [19]. The
use of thisfor the two case studieswill be discussd in the next two Subsedions4.2 and
4.3. Anather methodto determine the extensions of a default theory is by controlled or
prioriti sed default reasoning. This methodwill beill ustrated in Sedion 5.

4.2 A Default Theory for the Wristband for Elderly Case

In order to represent the knowledge introduced in Sedion 21, the following default
theory has been spedfied. First, the caisal badground theory (W = CT) is defined,
based on the caisal graph shown in Figure 1. Furthermore, inconsistent values are
defined for the various facets (i.e. pulse, temperature, blood presaire, and condition):
inconsistent_values(pulse, normal, low)

inconsistent_values(condition, healthy_awake, healthy_asleep)
etc.



If an attribute has a certain value and this value is inconsistent with another value, then
this other valueis not the case.

has_value(y, x1) Oinconsistent_values(y, x1, xX2) — = has_value(y, x2)

Besides the badkgroundtheory, also the default theory A, has been generated from this
causal theory CT. The default rulesfor the atoms are simply as follows:

has_value(condition, healthy_awake) / has_value(condition, healthy _awake)
has_value(condition, healthy_asleep) / has_value(condition, healthy_asleep)
has_value(condition, syncope) / has_value(condition, syncope)
has_value(condition, myocardial_infarction) / has_value(condition, myocardial_infarction)
has_value(condition, cardiac_arrest) / has_value(condition, cardiac_arrest)
has_value(pulse, normal) / has_value(pulse, normal)

has_value(pulse, low) / has_value(pulse, low)

has_value(pulse, very_low) / has_value(pulse, very_low)

has_value(pulse, irregular) / has_value(pulse, irregular)

has_value(pulse, none) / has_value(pulse, none)
has_value(blood_pressure, normal) / has_value(blood_pressure, normal)
has_value(blood_pressure, low) / has_value(blood_pressure, low)
has_value(blood_pressure, very_low) / has_value(blood_pressure, very_low)
has_value(temperature, normal) / has_value(temperature, normal)
has_value(temperature, low) / has_value(temperature, low)

Besides these default rules, similar defaults for the negations of these aoms are
included. Using a system cdled Smodels [19], the extensions for the default theory
spedfied can be cdculated. Using the theory abowve, 30 extensionsresult. Hereby, in 19
out of 30 cases neither of the 5 condtionshalds(i.e. awake, asleep, syncope, myocardial
infarction and cardiacarrest). However, by adding strict ruleswhich expressthatat least
one of the wndtions hdds, only 11 extensions are found The extensions that foll ow
after adding these strict rules are shown in Table 1.

Table 1. All extensions of the default theory

Condition Values

hedthy_awake has_value(pulse, normal)
has_value(blood_pessire, normal)
has_value(temperature, normal)

2 hedthy_adeep has_value(pulse, low)
has_value(blood_pesaire, low)
has_value(temperature, low)

3 syncope has_value(pulse, very_low)
has_value(blood_pesaire, very_low)
has_value(temperature, low)

4 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, normal)
has_value(temperature, normal)

5 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, low)
has_value(temperature, normal)

6 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, very_low)
has_value(temperature, normal)

7 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, normal)
has_value(temperature, low)

8 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, low)
has_value(temperature, low)

9 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, very_low)
has_value(temperature, low)

10 cadiac arrest has_value(pulse, none)
has_value(blood_pesaire, very_low)
has_value(temperature, normal)

11 cadiac arrest has_value(pulse, none)
has_value(blood_pesaire, very_low)
has_value(temperature, low)

[l B:3




Partial information X may be given that includes the information that the person has a
normal temperature. Such a set X can be added to the background theory W. Table 2
shows the extensions resulting when the foll owing facts are added to W:

X ={ has_value(temperature, normal), has_value(pulse, irregular) }

Table 2. All extensions given the changed badground heory

# Condition Values

1 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, normal)
has_value(temperature, normal)

2 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, low)
has_value(temperature, normal)

3 myocardial_infarction has_value(pulse, irregular)
has_value(blood_pesaire, very_low)
has_value(temperature, normal)

Finally, Table 3 showsthe extensions when the following set X isadded to W:

X ={ has_value(temperature, normal) , has_value(pulse, normal) , has_value(blood_pressure, normal) }

Table 3. All extensions of the default theory

# Condition Values

1 hedthy_awake has_value(pulse, normal)
has_value(blood_presaire, normal)
has_value(temperature, normal)

4.3 Crime Case Default Theory

Similar to the Elderly Wristband, the default theory Acr for the aime @se has been
generated from the causal modd:

has_value(situation, conflict) / has_value(situation, conflict)

has_value(situation, drinks_alcohol) / has_value(situation, drinks_alcohol)
has_value(testosterone, high) / has_value(testosterone, high)

has_value(sounds, aggressive) / has_value(sounds, aggressive)
has_value(ankle_ethanol_level, high) / has_value(ankle_ethanol_level, high)
has_value(aggressiveness, high) / has_value(aggressiveness, high)
has_value(alcohol_level, high) / has_value(alcohol_level, high)
not(has_value(situation, conflict) / not(has_value(situation, conflict))
not(has_value(situation, drinks_alcohol) / not(has_value(situation, drinks_alcohol))
not(has_value(testosterone, high) / not(has_value(testosterone, high))
not(has_value(sounds, aggressive) / not(has_value(sounds, aggressive))
not(has_value(ankle_ethanol_level, high) / not(has_value(ankle_ethanol_level, high))
not(has_value(aggressiveness, high) / not(has_value(aggressiveness, high))
not(has_value(alcohol_level, high) / not(has_value(alcohol_level, high))

Furthermore, aggressve sound has been observed, therefore the foll owing fact is added
toW:

X = {has_value(sound, aggressive)}

The resulting number of extensions is 18. Hereby however, the reasoning has not been
performed using a closed world assumption, whereby values can only ocaur in case they
result from a known causal relation or in casethey areinput variables (i.e. the situation).
In order to perform reasoning with such a closed world assumption, the following rules
have been added. First, aruleexpressng that in case there isonly one sourcefromwhich



avalue @n be derived, then this source should have the appropriate value (in this case,
thisholdsfor all variables except for aggressveness.

has_value(X1, Y1) Oleads_to(has_value(X2, Y2), has_value(X1, Y1)) OX1 # aggressiveness —
has_value(X2, Y2)

For the aggressveness a different set of rules is used, since only one out of three
conditi ons neals to hold. An example of oneinstance of such aruleisthe foll owing:

has_value(aggressivness, high) Onot(has_value(testosterone, high) O not(has_value(situation, conflict) —
has_value(alcohol_level, high)

Given that these rules are added, 7 extensionsresult using Smodels as shown in Table 4.
Note that the sound is not shown since that is fixed in advance already. The last column
shows to which susped this extension is applicable. Hereby the susped with high
testosterone is marked with 1, the oversensitive alcohol susped with 2, and the IED
susped with 3.

Table 4. Extensions given that aggressve sound has been dbserved

# | Situation Testosterone Aggressiveness Alcohol Ankle Suspect
level Ethanol level

1] Sconflict high high ~high - high 1
= drinks_acohd

2 | corflict high high -high -high 1
- drinks acohd

3 | corflict -high high -high -high 3
- drinks_acohd

4 | conflict high high high high 1
drinks_acohd

5 | corflict -high high high high 2,3
drinks_acohd

6 | Scorflict - high high high high 2
drinks_acohd

7| ~corflict high high high high 1
drinks_acohd

Based upon thes extensions, dedsions can be made what valuesto investigate, such that
one susped can be sdeded.

5 Analysisof the Case Studies by Controlled Default Reasoning

In this sdion, a generic smulation model for default reasoning is pedfied (based on
the exeautable temporal LEADSTO language [5], adopted from [3]. This smulationis
conducted next to using the Smodels as it makes the reasoning processtowardssuch an
interpretation more insightful and explainable. Using Smodels basicdly means that the
model isinputed into the softwaretodl, andthetod deliversasan ouput the extensions,
it does nat provide any detail whatreasoningwas foll owed to cometo such an extenson.

5.1 Controlled Default Reasoning
As discussd in the Sedion 3 to formalise one reasoning trace in a multiple

interpretation situation, a cetain seledion hasto be made, based oncontrol knowledge
which serves as a parameter for the interpretation to be adieved. Variants of Default



Logic in which this can be expressed are Constructive Default Logic [25] and Prioriti zed
Default Logic [8, 9]. A Prioritized Default Theory isatriple (D,W, <J where [D,wlisa
Default Theory and <isasdtrict partial order on D. Constructive Default Logic, see[25],
isaDefault Logic in whichseledion functions are used to control the reasoning process
Selection functions take the set of consequents of passbly applicable defaults and seled
one or a subset of them. A seledion function can represent one of the diff erent waysto
resson from the same set of defaults, and thus srves as a parameter for different
ressoning traces (achieving dfferent interpretations). This knowledge determines a
seledion operator (seeSedion 3)

The generic simulation model for default reasoning described below is an exeautable
tempora logicd formalisation o Congructive Default Logic, based on the tempora
perspedive on default and normonaonic reasoning as developed in [13]. The input of
the model is (1) aset of normal default rules, (2) initial information, and (3) knowledge
abou the seledion d conclusions of passbly applicable rules. The output is a trace
which describes the dynamics of the reasoning processover time. Globally, the model
can be cexribed bya generate-seled mechanism: first al possble (default) assumptions
(i.e., candidate mnclusions) are generated, then ore cnclusion is sleded, based on
seledion knowvledge. Such seledion knavledge wuld, e.g., also refled the probabili ty of
particular occurrences. After seledion, the reassoning process is repeaed. In the
LEADSTO languege, the generic default reasoning model can be described by the
followinglocd dynamic properties (L Ps):

L P1 Candidate Generation using Supernormal Rules
If the agent has a supernormal default rule that alows it to assume X, and it does nat have any information about the truth of x
yet, then x will be considered aposshble assumption.
Ox:info_element
default_rule(x, X) O not belief(x) Onot belief(not(x)) - possible_belief(x)
If the agent has a supernormal defauilt rule that dlows it to assume not(x), and it does nat have any information abou the truth
of X yet, then x will be considered apossble assumption.
Ox:info_element
default_rule(not(x), not(x)) O not belief(x) Onot belief(not(x)) - possible_belief(not(x))

LP2 Candidate Comparison
If a possble belief x has a artan priority pl, and a possble belief y has a priority p2, and p1> p2 then y is an exceeded
paossble belief.
0x, y:info_element, p1, p2:real
possible_belief(x) O possible_belief(y) Ohas_priority(x, p1) Ohas_priority(y, p2) Opl > p2
- exceeded_belief(y)
If a posdble belief not(x) has a ertain priority p1, and a possble belief y has a priority p2, and p1> p2, theny is an exceeded
paosshble belief.
0x, y:info_element, p1, p2:real
possible_belief(not(x)) O possible_belief(y) O has_priority(not(x), p1) Ohas_priority(y, p2) Opl > p2
- exceeded_belief(y)
If a posshle belief x has a artain priority pl, and a possble belief not(y) has a priority p2, and p1> p2 then nat(y) is an
exceeaded possble kelief.
0x, y:info_element, p1, p2:real
possible_belief(x) O possible_belief(y) Ohas_priority(x, p1) Ohas_priority(not(y), p2) Opl > p2
- exceeded_belief(not(y))
If aposdble belief not(x) has a ertain priority p1, and a possble belief nat(y) has a priority p2, and p1> p2, then nd(y) is an
exceeaded possble kelief.
0x, y:info_element, p1, p2:real
possible_belief(not(x)) O possible_belief(not(y)) O has_priority(not(x), p1) Ohas_priority(not(y), p2) Opl > p2
- exceeded_belief(not(y))

L P3 Candidate Selection
If X isapossble belief, andit nat exceeded by any other belief, then it will be derived
Ox:info_element
possible_belief(x) O -exceeded_belief(x) - belief(x)
If nat(x) isapossble belief, andit not exceeded by any other belief, then it will be derived
Ox:info_element
possible_belief(not(x)) 0 - exceeded_belief(not(x)) - belief(not(x))
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LP4 Persistence
If x is derived, then thiswill remain derived.
Ox:info_element
belief(x) - belief(x)
If nat(x) is derived, then thiswill remain derived.
Ox:info_element
belief(not(x)) - belief(not(x))

By these temporal rulesthe foll owing global reasoning pattern is modell ed:

whilethereisa default d that is applicableto T
gererate the congquence posshle belief of d
whil ethereisa possble beli ef
find the kest belief b based on the prioriti es
add the kest belifbto T
addall negations of valuesinconsistent with belief b to T

A default rule isapplicable if the negation of the justification and te justificationitself
do nat exist within the information state cerived. After al possble teliefs are gererated
the best belief is leded based on piority. The belief with the highest priority is
derived, and reasoning rules from the badkground knavliedge can be applied. Next all
negations of valuesinconsistent with the new beli ef are derived. This also hasthe dfed
that no inconsistent beliefs will be derived because those default rulesto gereratethem
do nd apply anymore. All extensions of the default theory can be found byvarying
diff erent settings of priority numbers.

5.2 Default Reasoning for the Wristband Case Study

For the wristband case the relevant extensions include only situations in which at least
one of the mndtions is true. If no condtions are true, no conclusions can be drawn
abou the symptoms, thus these extensions will consist of al possble combinations of
symptoms.

default_rule{has_value(condition, myocardial_infarction), has_value(condition, myocardial_infarction)) -
possible_belief(has_value{condition, myocardial_infarction))
belief(has_value(condition, myocardial_infarction)) 4
possible_belief(not(has_value(condition, myocardial_infarction))) 4
possible_helief(has_value(condition, healthy_asleep))
belief(has_value(pulse, irregular))4
belief(not(has_value(condition, healthy_awake)))
belief(not(has_value(condition, healthy_asleep)))
belief(not(has_value(condition, syncope)))-| /
belief(not(has_value(condition, cardiac_arrest)))- /

)

)

)

belief(not(has_value(pulse, normal))) -

belief(not(has_value(pulse, low)))-|

belief(not(has_value(pulse, very_low)))-

belief(not(has_value(pulse, none)))+
default_rule{has_value(blood_pressure, very_low), has_value(blood_pressure, very_low))-
exceeded_belief(has_value(blood_pressure, very_low))
possible_belief(has_value(blood_pressure, very_low))-
belief(has_value(blood_pressure, very_low))-|
belief(not(has_value(blood_pressure, normal))) -
belief(not(has_value(blood_pressure, low)))4
default_rulethas_value(temperature, low), has_value(temperature, low))
exceeded_belief(has_value(temperature, low)) 4
possible_belief(has_value(temperature, low))4
belief(has_value(temperature, low))4

belief(not(has_value(temperature, normal)))- /

time w2 e 18 e 2

Figure 1 Simulation trace of extension 9.
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In Table 1, showingall 11 extensionsin the last column, theinformationelementsare
shown that are given a high griority in order to oltain the extension. Note that only the
positive literals (atoms) are shown. The example simulation tracein Figure 1 shows how
extension 9 is found with high griorities for information elements myocardial_infarction,
has_value(blood_pressure, very_ low) and has_value(temperature, low). The oondtion myocardial is
introduced as a possble belief by a default rule shown in the first line of the Figure.
Because this condtion hes the highest priority, the belief belief(has_value(condition,
myocardial_infarction)) 1S derived. At the next time point, beliefs on aher values that are
implied by the rew belief ale derived: the other condtionscan beruled outbecaise they
are inconsistent with the current belief aboutthe condition myocarial infarction. In this
exampletraceonly the possble beli efsof not myocardial infarctionand hedthy seep are
shown. Then, at time point 5, the model reasors that the pul se must beirregular. Since
the pulse must be irregular, the other values for pulse ae ruled ou at time paint 6. A
default rule introduces the possble belief that the blood pesarreis very low. Sinceits
priority level is not excealed by another possble belief, belief(has_value(blood_pressure,
very_low)), iS derived. Next, the other values for blood pesaure can be ruled ou (time
point 8). At time point 10 he telief with thehighest priority —the belief’ s priority isno
longer excealed - is derived (belief(has_value(temperature, low)) and the inconsistent val ues of
that belief are ruled out (belief(has_value(temperature, low)).

5.3 Default Reasoning for the Crime Case Study

The simulation tracefor the second case study in Figure 2 shows how extension 7is

found with high miorities for information elements has_value(situation, drinks_alcohol) and
has_value(sound, aggressive).

possible_belief(has_value(sound, aggressive))

possible_belief(not(has_value(sound, aggressive))) —
possible_belief(has_value(situation, drinks_alcohol)){ [
possible_belief(not(has_value(situation, drinks_alcohol))){ [—
possible_belief(has_value(alcohol_level, high)) | —
| ———

possible_belief(not(has_value(alcohol_level, high)))

possible_belief(has_value(ankle_ethanol_level, high))
possible_belief(not(has_value(ankle_ethanol_level, high)))
possible_belief(has_value(aggressiveness, high))

possible_belief(not(has_value(aggressiveness, high)))

possible_belief(has_value(testosterone, high))

possible_belief(not(has_value(testosterone, high)))

possible_belief(has_value(situation, conflict))

possible_belief(not(has_value(situation, conflict)))

belief(has_value(sound, aggressive))

belief(has_value(situation, drinks_alcohol))

belief(has_value(alcohol_level, high))

belief(has_value(aggressiveness, high)) ]
belief(has_value(ankle_ethanol_level, high)) ]
belief(not(has_value(testosterone, high)))

belief(not(has_value(situation, conflict))) 1

time ° 2 4 8 B 10 12 14 16 B 2

Figure 2 Simulation trace of the derivation of extension 7.

The @ndtion belief(has_value(sound, aggressive)) has the highest priority, because this
informationisgiven in the cae. Because it has thehighest priority, this conditionis the
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first to be derived (at time paint 4). The ndtion with the second highest priority is
derived at time point 7 (belief(has_value(situation, drinks_alcohol). This belief leads to the
following keli efs: belief(has_value(alcohol_level,  high)) at time  point 8,
belief(has_value(aggressiveness, high)) @nd belief(has_value(ankle_ethanol_level, high) at time point 9. At
time point 12 the beli ef pelief(not(has_value(testosterone, high))) becomes true and at time point
15the beli ef belief(not(has_value(situation, conflict))) becomes true.

6 Discussion

This paper shows how a number of known techniques and tod's developed within the
area of normonaonic reasoning and Al can be gplied to analyse model-based
interpretation. The formal techniques exploited in the gproad, are causal graphs and
causal reasoning in conjunction with techniques from the normonaonic reasoning area
such as. multi-interpretation operators as an abstrad formalisation multiple
interpretation, a default theory to represent this multi-interpretation operator, and a
temporalised default logic to spedfy reasoning traces involved. Model-based default
refinement can be useful to obtain (ontop of sensor information) a high level of context
awareness seeaso [22, 23, 24]. The properties and default rules presented in this paper
have dl been spedfied in a generic fashion, such that they can easily be reused for
studying other case.
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