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Abstract. Ambient agents react on humans on the basis of partial information 
obtained by sensoring. Appropriate types of reactions depend on in how far an 
ambient agent is able to interpret the available information (which is often 
incomplete, and hence multi -interpretable) in order to create a more complete 
internal image of the environment, including humans. This interpretation process, 
which often has multiple possible outcomes, can make use of an expli citl y 
represented model of causal and dynamic relations. Given such a model 
representation, the agent needs a reasoning method to interpret the partial 
information available by sensoring, by generating one or more possible 
interpretations. This paper presents a generic model-based default reasoning 
method that can be exploited to this end. The method allows the use of software 
tools to determine the different default extensions that form the possible 
interpretations. Moreover, by formall y specifying the default rules in an executable 
temporal format, simulation of reasoning traces and automated verification in a 
dedicated software environment were achieved. A number of such simulation 
experiments and their formal analysis are described. 

1   Introduction 

Ambient Intelli gence [1, 2, 21] applications usually involve sensor information about  
the environment, including humans. As this information is often incomplete, applications 
that require a high level of context awareness (see also [22, 23, 24]) depend on the 
availabilit y of methods to analyse such information. One way is to is include 
computational models about environmental and human functioning in ambient agents. 
However, even when incomplete sensor information is refined on the basis of such 
models to create a more complete internal image of the environment’s and human’s 
state, still t his may result in partial information that can be interpreted in different 
manners. Reactions of ambient agents then depend on in how far they are able to handle 
the available multi -interpretable information. To do this, the agent needs a reasoning 
method to generate one or more of the possible interpretations. Tools from the area of 
nonmonotonic logic can provide adequate analysis tools for reasoning processes 
concerning partial information. Within nonmonotonic logic approaches it is possible to 
formalise reasoning processes that deal with multiple possible outcomes, which can be 
used to model different possibiliti es of interpretation; see [15] for a similar perspective 
on the application of nonmonotonic logic tools.  

This paper presents a generic model-based default reasoning method that can be 
exploited to this end. The method exploits the available causal model and allows the use 
of software tools to determine the different default extensions that form the possible 
interpretations, given the sensor information and the causal model. Moreover, by 
formally specifying the default rules in an executable temporal format, according to the 
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approach put forward in [12, 14], expli cit default reasoning processes can be generated. 
A number of simulation experiments to obtain reasoning traces are described. The 
reasoning method provides a solid basis for conceptual and detailed design of model-
based ambient agents that need such a capability.  

Section 2 describes two case studies used to ill ustrate the approach. In Section 3 the 
basic concepts used are briefly introduced. Section 4 presents the approach to use default 
logic in conjunction with causal graphs to refine partial information by defining multiple 
interpretations. In Section 5 it is shown how such interpretations can be generated by 
controlled default reasoning processes. Finall y, Section 6 is a discussion. 

2  Case Studies 

Two case studies are used throughout this paper; they are introduced below. 
 
Wristband for Elderly 
As a case study, the reasoning concerning conditions that occur amongst elderly people 
is used. Figure 1 shows a simpli fied causal model for such conditions. On the left hand 
side five conditions are shown: awake, asleep, syncope (fainted), myocardial infarction 
(heart attack) and cardiac arrest. The output of the model consists of symptoms that can 
be measured with a wristband, which are pulse, blood pressure and body temperature. 
Such a causal model can help in finding out the current condition of an elderly person 
based on sensory information from the wristband. 
 

 

Fig. 1. Causal model for the condition of an elderly person 

Crime Case 
In this case study, a system is used that can help the police solve a crime using ambient 
intelli gence faciliti es. A Dutch company (Sound Intelli gence) developed microphones 
that can distinguish aggressive sounds. Consider the situation in which these 
microphones are distributed at crucial points in the city, similar to surveillance cameras. 
Furthermore, suppose in this scenario that for some persons ankle bracelets are used as a 
form of punishment, which can measure the level of ethanol in the person’s perspiration, 
and indicate their position. 
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In this example scenario, someone is beaten up nearby a microphone. The 
microphone picks up the sound of the fight and records this. After an investigation, the 
poli ce have three suspects. The first suspect is known to have a high level of 
testosterone, which often leads to aggressive behaviour. The second suspect is someone 
who is sensiti ve for alcohol (causing aggression) and wears an ankle bracelet that 
measures the level of ethanol in his system. He has been seen in a nearby cafe. The third 
suspect is diagnosed with Intermittent Explosive Disorder (IED), which is a disorder that 
can lead to a terrible outburst of rage after an unpleasant or stressful meeting. Witnesses 
saw suspect 2 in the company of someone else.  

Figure 2 shows a causal model that is used for this situation that can help the poli ce 
off icers to figure out what information is missing and help them to plan their strategy. 
For example, did suspect 2 have a confli ct with the person he was with? Did suspect 3 
drink alcohol? Aggressive sounds are caused by persons that are aggressive, according to 
the model. Three possible causes for this aggressiveness are considered, as can be seen 
in Figure 2: someone can have a high level of testosterone, someone can just have been 
in a situation of conflict or someone can have a high level of alcohol.  

 

 
 

Fig. 2. Causal model for the crime case 

3 Basic Concepts Used 

In this section the basic concepts used in the paper are briefly introduced. 
 

Causal models 
In this paper, this dynamic perspective on reasoning is applied in combination with facts 
that are labelled with temporal information, and models based on causal or temporal 
relationships that relate such facts. To express the information involved in an agent’s 
internal reasoning processes, the following ontology is used. 

 
leads_to_after(I:INFO_EL, J:INFO_EL, D:REAL) state property I leads to state property J after duration D  
at(I:INFO_EL, T:TIME) state property I holds at time T  

 
 

Multiple Interpretation  
Reasoning to obtain an interpretation of partial information can be formalised at an 
abstract generic level as follows. A particular interpretation for a given set of formulae 
considered as input information for the reasoning, is formalised as another set of 
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formulae, that in one way or the other is derivable from the input information (output of 
the reasoning towards an interpretation). In general there are multiple possible 
outcomes. The collection of all possible interpretations derivable from a given set of 
formulae as input information (i.e., the output of the reasoning towards an 
interpretation) is formalised as a collection of different sets of formulae. A formalisation 
describing the relation between such input and output information is described at an 
abstract level by a multi -interpretation operator.  

The input information is described by propositional formulae in a language L1. An 
interpretation is a set of propositional formulae, based on a language  L2.  
a)  A multi -interpretation operator MI with input language L1 and output language L2 is 
a function MI : 

�
(L1) → 

�
(

�
(L2))  that assigns to each set of input facts in L1 a set of 

sets of formulae in L2. 
b) A multi -interpretation operator MI is non-inclusive  if for all X ⊆ L1 and  
S, T ∈ MI(X), if S ⊆ T  then  S = T.  
c)  If L1 ⊆ L2, then a multi-interpretation operator  MI  is conservative if for all X ⊆ L1, 
T ∈ MI(X) it holds X ⊆ T.  
 

The condition of non-inclusiveness guarantees a relative maximalit y of the possible 
interpretations. Note that when MI(X) has exactly one element, this means that the set 
X ⊆ L1 has a unique interpretation under MI. The notion of multi-interpretation operator 
is a generali sation of the notion of a nonmonotonic belief set operator, as introduced in 
[10]. The generali sation was introduced and applied to approximate classification in 
[15]. A reasoner may explore a number of possible interpretations, but often, at some 
point in time a reasoner will focus on one (or possibly a small subset) of the 
interpretations. This selection process is formali sed as follows (see [15]). 
a)  A selection  operator  s  is a function s : 

�
(

�
(L)) → 

�
(

�
(L))  that assigns to each 

nonempty set of interpretations a nonempty subset: for all A with φ ≠ A ⊆ 
�

(L) it holds φ 
≠ s(A) ⊆ A. A selection operator s is single-valued if for all non-empty  A  the set  s(A) 
contains exactly one element. 
b) A selective interpretation operator for the multi -interpretation operator  MI  is a 
function C : 

�
(L1) → 

�
(L2)  that assigns one interpretation to each set of initial facts: for 

all X ⊆ L1 it holds  C(X) ∈ MI(X). 
 

Representation in Default Logic 
The representation problem for a nonmonotonic logic is the question whether a given set 
of possible outcomes of a reasoning process can be represented by a theory in this logic. 
More specificall y, representation theory indicates what are criteria for a set of possible 
outcomes, for example, given by a collection of deductively closed sets of formulae, so 
that this collection can occur as the set of outcomes for a theory in this nonmonotonic 
logic. In [18] the representation problem is solved for default logic, for the finite case. 
Given this context, in the current paper Default Logic is chosen to represent 
interpretation processes. For the empirical material analysed, default theories have been 
specified such that their extensions are the possible interpretations. 

A default theory is a pair 〈D, W〉. Here W is a finite set of logical formulae (called the 
background theory) that formalise the facts that are known for sure, and D is a set of 
default rules. A default rule has the form: α: β / γ. Here α is the precondition, it has to be 
satisfied before considering to believe the conclusion γ, where the β, called the 
justification, has to be consistent with the derived information and W. As a result γ might 
be believed and more default rules can be applied. However, the end result (when no 
more default rules can be applied) still has to be consistent with the justifications of all 
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applied default rules. Normal default theories are based on defaults of the form α: β / β. 
In the approach supernormal default rules will be used: normal default rules where α is 
trivial: true. Such supernormal rules are denoted by β / β or : β / β; they are also called 
prerequisite-free normal defaults. For more detail s on Default Logic, such as the notion 
of extension, see, e.g., [17, 20].  
 

Temporal Specification of Reasoning Processes 
In this paper a dynamic perspective on reasoning is taken, following, e.g. [12, 14]. In 
practical reasoning situations usually different lines of reasoning can be generated, each 
leading to a distinct set of conclusions. In logic semantics is usually expressed in terms 
of models that represent descriptions of conclusions about the world and in terms of 
entailment relations based on a specific class of this type of models. In the (sound) 
classical case each line of reasoning leads to a set of conclusions that are true in all of 
these models: each line of reasoning fits to each model. However, for non-classical 
reasoning methods the picture is different. For example, in default reasoning or 
abductive reasoning methods a variety of mutually contradictory conclusion sets may be 
possible. It depends on the chosen line of reasoning which one of these sets fits.  

The general idea underlying the approach followed here, and inspired by [12, 14], is 
that a particular reasoning line can be formalised by a sequence of information states  
M0, M1,  ...... . Here any  Mt  is a description of the (partial) information that has been 
derived up to time point  t. From a dynamic perspective, an inference step, performed in 
time duration D is viewed as a transition  Mt  →→→→  Mt+D  of a current information state  Mt  to 
a next information state  Mt+D. Such a transition is usually described by application of a 
deduction rule or proof rule, which in the dynamic perspective on reasoning gets a 
temporal aspect. A particular reasoning line is formalised by a sequence  (Mt) t∈∈∈∈T of 
subsequent information states labelled by elements of a flow of time T, which may be 
discrete, based on natural numbers, or continuous, based on real numbers.  

An information state can be formalised by a set of statements, or as a three-valued 
(false, true, undefined) truth assignment to ground atoms, i.e., a partial model. In the 
latter case, which is followed here (as in [12, 14]), a sequence of such information states 
or reasoning trace can be interpreted as a partial temporal model. A transition relating a 
next information state to a current one can be formalised by temporal formulae the 
partial temporal model has to satisfy.  
 

Executable Temporal Specification   
To specify models and to execute these models, the language LEADSTO, an executable 
sublanguage of TTL, is used. The basic building blocks of this language are causal 
relations of the format α →→e, f, g, h β, which means: 

 

        if  state property α holds for a certain time interval with duration g, 
        then  after some delay (between e and f) state property β will hold 

for a certain time interval of length h. 

where α and β are state properties of the form ‘conjunction of literals’ (where a literal is 
an atom or the negation of an atom), and e, f, g, h non-negative real numbers. For the sake 
of simplicity, especiall y when they are always the same, these subscripts may be left out 
of the notation and indicated separately. As an example, a modus ponens deduction rule 
in time duration D can be specif ied in temporal format as: 

derived(I) ∧ derived(implies(I, J))  →→D  derived(J) 

So, inference rules are translated into temporal rules thus obtaining a temporal theory 
describing the reasoning behaviour. Each possible line of reasoning can be described by 
a linear time model of this theory (in temporal partial logic). This representation format 
will be used to formalise this and other types of model-based reasoning methods, as will 
be shown more extensively in Section 5.  
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4 Representing Model-Based Interpretation in Default Logic 

In this section it is discussed how a model-based interpretation operator can be 
represented in default Logic.  
 
4.1  Default logic for model-based refinement of partial information 
 
The causal theory CT of the agent consists of a number of statements a → b for each 
causal relation from a to b, with a and b atoms. Sometimes included in this set are some 
facts to indicate that some atoms exclude each other (for example, ¬(has_value(temperature, 

high) ∧ has_value(temperature, low)), or that at least one of a set of atoms is true, (for example: 
has_value(pulse, high) ∨ has_value(pulse, normal)  ∨ has_value(pulse, low)). A set of literals S is 
coherent with CT if S ∪ CT is consistent. The set S is called a maximal coherent set for 
CT if it is coherent, and for all sets T coherent  with CT with S ⊆ T it holds S = T. Let X 
be a set of formulae. The multi -interpretation operator MICT(X) is defined by  
 
 MICT(X) = { Cn(X ∪ CT ∪ S)  |  S maximal coherent with CT }  
 
This operator defines for the partial information the agent may have at some point in 
time (indicated by set of literals X) the set of all complete refinements of X which are 
coherent with the causal model. This operator has been defined above in an abstract 
manner, and only indicates the possible outcomes of a reasoning process, not the steps of 
the reasoning process itself. A next step is to obtain a representation of this operator in a 
well -known formalism such as default logic. Based on this default logic representation, 
reasoning processes can be defined that can be performed to obtain one or more of the 
interpretations. 

The following Default Theory ∆CT(X) = 〈W, D〉 can be used to represent the multi -
interpretation operator MICT (notice that this is a supernormal default theory); see also 
[18], Theorem 5.1: 
 

W   =   CT ∪ X  
 D    =   { (true: a / a)   | a literal for an atom occurring in CT }  
 

Here a literal is an atom or a negation of an atom. That this default theory represents  
MICT means that for any set X indicating partial information the set of interpretations 
defined by MICT(X) can be obtained as the set of all extensions of the default theory 
∆CT(X). This representation allows to determine the interpretations by using known 
methods and tools to determine the extensions of a default theory. One of these methods 
is worked out in a tool called Smodels, based on answer set programming; cf. [ 19]. The 
use of this for the two case studies will be discussed in the next two Subsections 4.2 and 
4.3. Another method to determine the extensions of a default theory is by controlled or 
prioriti sed default reasoning. This method will be ill ustrated in Section 5. 

4.2 A Default Theory for the Wristband for Elderly Case 

In order to represent the knowledge introduced in Section 2.1, the following default 
theory has been specified. First, the causal background theory (W = CT) is defined, 
based on the causal graph shown in Figure 1. Furthermore, inconsistent values are 
defined for the various facets (i.e. pulse, temperature, blood pressure, and condition):  
 
 

inconsistent_values(pulse, normal, low) 
inconsistent_values(condition, healthy_awake, healthy_asleep) 
etc. 
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If an attribute has a certain value and this value is inconsistent with another value, then 
this other value is not the case. 
 

has_value(y, x1) ∧ inconsistent_values(y, x1, x2) → ¬ has_value(y, x2) 
 

Besides the background theory, also the default theory ∆CT has been generated from this 
causal theory CT.  The default rules for the atoms are simply as follows: 
 

has_value(condition, healthy_awake) / has_value(condition, healthy_awake) 
has_value(condition, healthy_asleep) / has_value(condition, healthy_asleep) 
has_value(condition, syncope) / has_value(condition, syncope) 
has_value(condition, myocardial_infarction) / has_value(condition, myocardial_infarction) 
has_value(condition, cardiac_arrest) / has_value(condition, cardiac_arrest) 
has_value(pulse, normal) / has_value(pulse, normal) 
has_value(pulse, low) / has_value(pulse, low) 
has_value(pulse, very_low) / has_value(pulse, very_low) 
has_value(pulse, irregular) / has_value(pulse, irregular) 
has_value(pulse, none) / has_value(pulse, none) 
has_value(blood_pressure, normal) / has_value(blood_pressure, normal) 
has_value(blood_pressure, low) / has_value(blood_pressure, low) 
has_value(blood_pressure, very_low) / has_value(blood_pressure, very_low) 
has_value(temperature, normal) / has_value(temperature, normal) 
has_value(temperature, low) / has_value(temperature, low) 

 

Besides these default rules, similar defaults for the negations of these atoms are 
included. Using a system called Smodels [19], the extensions for the default theory 
specified can be calculated. Using the theory above, 30 extensions result. Hereby, in 19 
out of 30 cases neither of the 5 conditions holds (i.e. awake, asleep, syncope, myocardial 
infarction and cardiac arrest). However, by adding strict rules which express that at least 
one of the conditions holds, only 11 extensions are found. The extensions that follow 
after adding these strict rules are shown in Table 1. 

Table 1. All extensions of the default theory 

# Condition Values 
1 healthy_awake has_value(pulse, normal) 

has_value(blood_pressure, normal) 
has_value(temperature, normal) 

2 healthy_asleep has_value(pulse, low) 
has_value(blood_pressure, low) 
has_value(temperature, low) 

3 syncope has_value(pulse, very_low) 
has_value(blood_pressure, very_low) 
has_value(temperature, low) 

4 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, normal) 
has_value(temperature, normal) 

5 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, low) 
has_value(temperature, normal) 

6 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, very_low) 
has_value(temperature, normal) 

7 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, normal) 
has_value(temperature, low) 

8 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, low) 
has_value(temperature, low) 

9 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, very_low) 
has_value(temperature, low) 

10 cardiac_arrest has_value(pulse, none) 
has_value(blood_pressure, very_low) 
has_value(temperature, normal) 

11 cardiac_arrest has_value(pulse, none) 
has_value(blood_pressure, very_low) 
has_value(temperature, low) 
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Partial information X may be given that includes the information that the person has a 
normal temperature. Such a set X can be added to the background theory W. Table 2 
shows the extensions resulting when the following facts are added to W: 

X = { has_value(temperature, normal),  has_value(pulse, irregular) } 

Table 2. All extensions given the changed background theory 

# Condition Values 
1 myocardial_infarction has_value(pulse, irregular) 

has_value(blood_pressure, normal) 
has_value(temperature, normal) 

2 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, low) 
has_value(temperature, normal) 

3 myocardial_infarction has_value(pulse, irregular) 
has_value(blood_pressure, very_low) 
has_value(temperature, normal) 

 

Finall y, Table 3 shows the extensions when the following set X is added to W:  
  X = { has_value(temperature, normal) , has_value(pulse, normal) , has_value(blood_pressure, normal) } 

Table 3. All extensions of the default theory 

# Condition Values 
1 healthy_awake has_value(pulse, normal) 

has_value(blood_pressure, normal) 
has_value(temperature, normal) 

4.3 Crime Case Default Theory 

Similar to the Elderly Wristband, the default theory ∆CT for the crime case has been 
generated from the causal model: 
 

has_value(situation, conflict) / has_value(situation, conflict) 
has_value(situation, drinks_alcohol) / has_value(situation, drinks_alcohol) 
has_value(testosterone, high) / has_value(testosterone, high) 
has_value(sounds, aggressive) / has_value(sounds, aggressive) 
has_value(ankle_ethanol_level, high) / has_value(ankle_ethanol_level, high) 
has_value(aggressiveness, high) / has_value(aggressiveness, high) 
has_value(alcohol_level, high) / has_value(alcohol_level, high) 
not(has_value(situation, conflict) / not(has_value(situation, conflict)) 
not(has_value(situation, drinks_alcohol) / not(has_value(situation, drinks_alcohol)) 
not(has_value(testosterone, high) / not(has_value(testosterone, high)) 
not(has_value(sounds, aggressive) / not(has_value(sounds, aggressive)) 
not(has_value(ankle_ethanol_level, high) / not(has_value(ankle_ethanol_level, high)) 
not(has_value(aggressiveness, high) / not(has_value(aggressiveness, high)) 
not(has_value(alcohol_level, high) / not(has_value(alcohol_level, high)) 

 

Furthermore, aggressive sound has been observed, therefore the following fact is added 
to W: 
 

X = {has_value(sound, aggressive)} 
 

The resulting number of extensions is 18. Hereby however, the reasoning has not been 
performed using a closed world assumption, whereby values can only occur in case they 
result from a known causal relation or in case they are input variables (i.e. the situation). 
In order to perform reasoning with such a closed world assumption, the following rules 
have been added. First, a rule expressing that in case there is only one source from which 



 9 

a value can be derived, then this source should have the appropriate value (in this case, 
this holds for all variables except for aggressiveness). 
 

has_value(X1, Y1) ∧ leads_to(has_value(X2, Y2), has_value(X1, Y1)) ∧ X1 ≠ aggressiveness →   
has_value(X2, Y2) 

 

For the aggressiveness a different set of rules is used, since only one out of three 
conditions needs to hold. An example of one instance of such a rule is the following: 
 

has_value(aggressivness, high) ∧ not(has_value(testosterone, high) ∧ not(has_value(situation, conflict) →  
has_value(alcohol_level, high) 

 

Given that these rules are added, 7 extensions result using Smodels as shown in Table 4. 
Note that the sound is not shown since that is fixed in advance already. The last column 
shows to which suspect this extension is applicable. Hereby the suspect with high 
testosterone is marked with 1, the oversensiti ve alcohol suspect with 2, and the IED 
suspect with 3. 
 

Table 4. Extensions given that aggressive sound has been observed 
# Situation Testosterone Aggressiveness Alcohol 

level 
Ankle 
Ethanol level 

Suspect 

1 ¬conflict 

¬drinks_alcohol 

high high ¬high ¬high 1 

2 conflict 

¬drinks_alcohol 

high high ¬high ¬high 1 

3 conflict 

¬drinks_alcohol 

¬high high ¬high ¬high 3 

4 conflict 

drinks_alcohol 

high high high high 1 

5 conflict 

drinks_alcohol 
¬high high high high 2, 3 

6 ¬conflict 

drinks_alcohol 

¬high high high high 2 

7 ¬conflict 

drinks_alcohol 

high high high high 1 

 
Based upon these extensions, decisions can be made what values to investigate, such that 
one suspect can be selected. 

5  Analysis of the Case Studies by Controlled Default Reasoning 

 
In this section, a generic simulation model for default reasoning is specified (based on 
the executable temporal LEADSTO language [5], adopted from [3]. This simulation is 
conducted next to using the Smodels as it makes the reasoning process towards such an 
interpretation more insightful and explainable. Using Smodels basicall y means that the 
model is inputted into the software tool, and the tool deli vers as an output the extensions, 
it does not provide any detail what reasoning was followed to come to such an extension.  

5.1  Controlled Default Reasoning 

As discussed in the Section 3, to formalise one reasoning trace in a multiple 
interpretation situation, a certain selection has to be made, based on control knowledge 
which serves as a parameter for the interpretation to be achieved. Variants of Default 
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Logic in which this can be expressed are Constructive Default Logic [25] and Prioriti zed 
Default Logic [8, 9]. A Prioriti zed Default Theory is a triple 〈D,W, <〉, where 〈D,W〉 is a 
Default Theory and < is a strict partial order on D. Constructive Default Logic, see [25], 
is a Default Logic in which selection functions are used to control the reasoning process. 
Selection functions take the set of consequents of possibly applicable defaults and select 
one or a subset of them. A selection function can represent one of the different ways to 
reason from the same set of defaults, and thus serves as a parameter for different 
reasoning traces (achieving different interpretations). This knowledge determines a 
selection operator (see Section 3). 

The generic simulation model for default reasoning described below is an executable 
temporal logical formalisation of Constructive Default Logic, based on the temporal 
perspective on default and nonmonotonic reasoning as developed in [13].  The input of 
the model is (1) a set of normal defaul t rules, (2) initial information, and (3) knowledge 
about the selection of conclusions of possibly applicable rules. The output is a trace 
which describes the dynamics of the reasoning process over time. Globally, the model 
can be described by a generate-select mechanism: first all possible (default) assumptions 
(i.e., candidate conclusions) are generated, then one conclusion is selected, based on 
selection knowledge. Such selection knowledge could, e.g., also reflect the probabili ty of 
particular occurrences. After selection, the reasoning process is repeated. In the 
LEADSTO language, the generic default reasoning model can be described by the 
following local dynamic properties (LPs): 
 

 

LP1 Candidate Generation using Supernormal Rules 
If the agent has a supernormal default rule that allows it to assume x, and it does not have any information about the truth of x 
yet, then x will be considered a possible assumption. 

∀x:info_element 
   default_rule(x, x)  ∧  not belief(x)  ∧ not belief(not(x)) →→  possible_belief(x)  

If the agent has a supernormal default rule that allows it to assume not(x), and it does not have any information about the truth 
of x yet, then x will be considered a possible assumption. 

∀x:info_element 
   default_rule(not(x), not(x))  ∧  not belief(x)  ∧ not belief(not(x)) →→  possible_belief(not(x))  

 
LP2  Candidate Comparison 
If a possible belief x has a certain priority p1, and a possible belief y has a priority p2, and p1 > p2, then y is an exceeded 
possible belief. 

∀x, y:info_element, p1, p2:real 
   possible_belief(x) ∧ possible_belief(y) ∧ has_priority(x, p1)  ∧ has_priority(y, p2) ∧ p1 > p2 
   →→exceeded_belief(y)  

If a possible belief not(x) has a certain priority p1, and a possible belief y has a priority p2, and p1 > p2, then y is an exceeded 
possible belief. 

∀x, y:info_element, p1, p2:real 
   possible_belief(not(x)) ∧ possible_belief(y) ∧ has_priority(not(x), p1)  ∧ has_priority(y, p2) ∧ p1 > p2 
   →→exceeded_belief(y)  

If a possible belief x has a certain priority p1, and a possible belief not(y) has a priority p2, and p1 > p2, then not(y) is an 
exceeded possible belief. 

∀x, y:info_element, p1, p2:real 
   possible_belief(x) ∧ possible_belief(y) ∧ has_priority(x, p1)  ∧ has_priority(not(y), p2) ∧ p1 > p2 
   →→exceeded_belief(not(y))  

If a possible belief not(x) has a certain priority p1, and a possible belief not(y) has a priority p2, and p1 > p2, then not(y) is an 
exceeded possible belief. 

∀x, y:info_element, p1, p2:real 
   possible_belief(not(x)) ∧ possible_belief(not(y)) ∧ has_priority(not(x), p1)  ∧ has_priority(not(y), p2) ∧ p1 > p2 
   →→exceeded_belief(not(y))  

 

LP3 Candidate Selection 
If x is a possible belief, and it not exceeded by any other belief, then it will be derived 

∀x:info_element  
   possible_belief(x) ∧ ¬exceeded_belief(x) →→ belief(x)  

If not(x) is a possible belief, and it not exceeded by any other belief, then it will be derived 
∀x:info_element  
   possible_belief(not(x)) ∧ ¬exceeded_belief(not(x)) →→ belief(not(x))  
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LP4  Persistence 
If x is derived, then this will remain derived. 

∀x:info_element  
   belief(x) →→ belief(x) 

If not(x) is derived, then this will remain derived. 
∀x:info_element  
   belief(not(x)) →→ belief(not(x)) 

 

By these temporal rules the following global reasoning pattern is modelled: 
 

while there is a default d that is applicable to T 
  generate the consequence possible belief of d 

while there is a possible belief 
  find the best belief b based on the priorities  
  add the best belief b to T 
add all negations of values inconsistent with belief b to T   

 

A default rule is applicable if the negation of the justif ication and the justif ication itself 
do not exist within the information state derived. After all possible beliefs are generated 
the best belief is selected based on priority. The belief with the highest priority is 
derived, and reasoning rules from the background knowledge can be applied. Next all 
negations of values inconsistent with the new belief are derived. This also has the effect 
that no inconsistent beliefs will be derived because those default rules to generate them 
do not apply anymore. All extensions of the default theory can be found by varying 
different settings of priority numbers. 

5.2  Default Reasoning for the Wristband Case Study  

For the wristband case the relevant extensions include only situations in which at least 
one of the conditions is true. If no conditions are true, no conclusions can be drawn 
about the symptoms, thus these extensions will consist of all possible combinations of 
symptoms.  

 
 

 

Figure 1 Simulation trace of extension 9. 
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In Table 1, showing all 11 extensions in the last column, the information elements are 

shown that are given a high priority in order to obtain the extension. Note that only the 
positi ve literals (atoms) are shown. The example simulation trace in Figure 1 shows how 
extension 9 is found with high priorities for information elements myocardial_infarction, 
has_value(blood_pressure, very_ low) and has_value(temperature, low). The condition myocardial is 
introduced as a possible belief by a default rule shown in the first line of the Figure. 
Because this condition has the highest priority, the belief belief(has_value(condition, 

myocardial_infarction)) is derived. At the next time point, beliefs on other values that are 
implied by the new belief are derived: the other conditions can be ruled out because they 
are inconsistent with the current belief about the condition myocardial infarction. In this 
example trace only the possible beliefs of not myocardial infarction and healthy sleep are 
shown.  Then, at time point 5, the model reasons that the pul se must be irregular. Since 
the pulse must be irregular, the other values for pulse are ruled out at time point 6. A 
default rule introduces the possible belief that the blood pressure is very low. Since its 
priority level is not exceeded by another possible belief, belief(has_value(blood_pressure, 

very_low)), is derived. Next, the other values for blood pressure can be ruled out (time 
point 8). At time point 10 the belief with the highest priority – the belief’ s priority is no 
longer exceeded - is derived (belief(has_value(temperature, low)) and the inconsistent values of 
that belief are ruled out (belief(has_value(temperature, low)). 

5.3  Default Reasoning for the Crime Case Study 

The simulation trace for the second case study in Figure 2 shows how extension 7 is 
found with high priorities for information elements has_value(situation, drinks_alcohol) and 
has_value(sound, aggressive). 

 
 

 
 
 

Figure 2 Simulation trace of the derivation of extension 7. 
 
The condition belief(has_value(sound, aggressive)) has the highest priority, because this 

information is given in the case. Because it has the highest priority, this condition is the 
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first to be derived (at time point 4). The condition with the second highest priority is 
derived at time point 7 (belief(has_value(situation, drinks_alcohol). This belief leads to the 
following beliefs: belief(has_value(alcohol_level, high)) at time point 8, 
belief(has_value(aggressiveness, high)) and belief(has_value(ankle_ethanol_level, high) at time point 9. At 
time point 12 the belief belief(not(has_value(testosterone, high))) becomes true and at time point 
15 the belief belief(not(has_value(situation, conflict))) becomes true. 

6  Discussion 

This paper shows how a number of known techniques and tools developed within the 
area of nonmonotonic reasoning and AI can be applied to analyse model-based 
interpretation. The formal techniques exploited in the approach, are causal graphs and 
causal reasoning in conjunction with techniques from the nonmonotonic reasoning area 
such as: multi -interpretation operators as an abstract formalisation multiple 
interpretation, a default theory to represent this multi -interpretation operator, and a 
temporali sed default logic to specify reasoning traces involved. Model-based default 
refinement can be useful to obtain  (on top of sensor information) a high level of context 
awareness; see also [22, 23, 24]. The properties and default rules presented in this paper 
have all been specified in a generic fashion, such that they can easil y be reused for 
studying other cases. 

References 

1. Aarts, E.; Colli er, R.; van Loenen, E.; Ruyter, B. de (eds.) (2003). Ambient Intelli gence. 
Proc. of the First European Symposium, EUSAI 2003. Lecture Notes in Computer Science, 
vol. 2875. Springer Verlag, 2003, pp. 432. 

2. Aarts, E., Harwig, R., and Schuurmans, M. (2001), Ambient Intelli gence. In: P. Denning 
(ed.), The Invisible Future, McGraw Hill , New York, pp. 235-250.  

3. Bosse, T., Hoogendoorn, M., Jonker, C.M., and Treur, J. (2007). A Formal Empirical 
Analysis Method for Human Reasoning and Interpretation. In: Lewis, R., Polk, T. (eds.), 
Proceedings of the 8th International Conference on Cogniti ve Modeling, ICCM'07. Taylor 
and Francis, 2007, to appear.  

4. Bosse, T., Jonker, C.M., and Treur, J. (2006). Formali zation and Analysis of Reasoning by 
Assumption. Cogniti ve Science Journal, volume 30, issue 1, 2006, pp. 147-180. 

5. Bosse, T., Jonker, C.M., Meij , L. van der, and Treur, J. (2007). A Language and 
Environment for Analysis of Dynamics by Simulation. International Journal of Artifi cial 
Intelli gence Tools, vol. 16, 2007, pp. 435-464. 

6. Bosse, T., and Treur, J. (2006) Modelli ng Dynamics of Cogniti ve Agents by Higher-Order 
Potentialiti es. In: Stone, P. and Weiss, G. (eds.), Proceedings of the Fifth International Joint 
Conference on Autonomous Agents and Multi -Agent Systems, AAMAS'06. ACM Press, 2006, 
pp. 117-119. 

7. Bosse, T., and Treur, J., (2007). Higher-Order Potentialiti es and their Reducers: A 
Philosophical Foundation Unifying Dynamic Modelli ng Methods. In: M.M. Veloso (ed.), 
Proceedings of the Twentieth International Joint Conference on Artifi cial Intelli gence, 
IJCAI'07. AAA I Press, 2007, pp. 262-267. 

8. Brewka, G. (1994), Adding prioriti es and specificity to default logic. In: MacNish, C., 
Pereira, L., and Pearce, D., (eds.), Proc. of JELIA' 94, LNAI, vol. 838. Springer Verlag, pp. 
247-260.  

9. Brewka, G., and Eiter, T. (1999), Prioriti zing Default Logic: Abridged Report. In Festschrift 
on the occasion of Prof.Dr. W. Bibel's 60th birthday. Kluwer. 

10. Engelfriet, J., Herre, H., and Treur, J. (1998), Nonmonotonic Reasoning with Multiple Belief 
Sets, Annals of Mathematics and Artifi cial Intelli gence, vol. 24, pp. 225-248. 



 14 

11. Engelfriet, J., Jonker, C.M., and Treur, J. (2002). Compositional Verification of Multi -Agent 
Systems in Temporal Multi -Epistemic Logic. Journal of Logic, Language and Information, 
vol. 11, 2002, pp. 195-225. 

12. Engelfriet, J., and Treur, J., (1995). Temporal Theories of Reasoning. Journal of Applied 
Non-Classical Logics, vol. 5, 1995, pp. 239-261 

13. Engelfriet, J., and Treur, J. (1998), An Interpretation of Default Logic in Minimal Temporal 
Epistemic Logic. Journal of Logic, Language and Information, vol. 7, pp. 369-388. 

14. Engelfriet J., and Treur J. (2000). Specification of Nonmonotonic Reasoning. Journal of 
Applied Non-Classical Logics, vol. 10, 2000, pp. 7-27. 

15. Engelfriet, J., and Treur, J. (2003), Multi -Interpretation Operators and Approximate 
Classification. Int. Journal of Approximate Reasoning, vol. 32, pp. 43-61. 

16. Josephson, J.R. and Josephson, S.G. (eds.) (1996), Abductive Inference: Computation, 
Philosophy, Technology. New York: Cambridge University Press 

17. Marek, V.W., and Truszczynski, M. (1993), Nonmonotonic Logics. Springer Verlag. 
18. Marek, V.W., Treur, J., and Truszczynski, M. (1997), Representation Theory for Default 

Logic. Annals of Mathematics and AI , vol. 21, pp. 343-358.  
19. Niemelä, I., Simons, P., and Syrjänen, T. (2000). Smodels: a system for answer set 

programming. In: Proceedings of the 8th International Workshop on Non-Monotonic 
Reasoning, Breckenridge, Colorado, USA, April 2000. 

20. Reiter, R. (1980) A logic for default reasoning. Artificial Intelli gence, 13:81-132.  
21. Riva, G., F. Vatalaro, F. Davide, M. Alcañiz (eds.) (2005). Ambient Intelli gence. IOS Press, 

2005. 
22. Schmidt, A., Interactive Context-Aware Systems - Interacting with Ambient Intelli gence. In: 

G. Riva, F. Vatalaro, F. Davide, , M. Alcañiz (eds.), Ambient Intelli gence. IOS Press, 2005, 
pp. 159-178. 

23. Schmidt, A.,  Beigl, M., and Gellersen, H.W. (1999), There is more to Context than 
Location. Computers & Graphics Journal, vol. 23, 19, pp.893-902. 

24. Schmidt, A., Kortuem, G., Morse, D., and Dey, A.  (eds.), Situated Interaction and Context-
Aware Computing. Personal and Ubiquitous Computing,  vol. 5(1), 2001, pp. 1-81 

Tan, Y.H., and Treur, J. (1992) Constructive Default Logic and the Control of Defeasible 
Reasoning. In: B. Neumann (ed.), Proc. ECAI’ 92. Wiley and Sons, 1992, pp. 299-303.  


