
Reuse and Abstraction in Verification:
Agents Acting in Dynamic Environments

Catholijn M. Jonker* Jan Treur* Wieke de Vries‡

* Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
De Boelelaan1081a, 1081 HV Amsterdam, The Netherlands

{jonker, treur}@cs.vu.nl
‡ Institute of Information and Computing Sciences, Universiteit Utrecht,

PO Box 80.089, 3508 TB Utrecht, The Netherlands
wieke@cs.uu.nl

Abstract. To make verification a manageable part of the system development
process, comprehensibility and reusability of properties and proofs is essential.
The work reported in this paper contributes formally founded methods that
support proof structuring and reuse. Often occurring patterns in agent behaviour
can be exploited to establish a library containing properties and proofs. This is
illustrated here by verifying the class of single agents acting in dynamic
environments. First, a notion of abstraction for properties and proofs is
introduced that provides means to structure and clarify verification. Also, the
paper contributes to establishing the library by proposing a reusable system of
generic co-ordination properties for applications of agents acting in dynamic
environments.

1 Introduction

Verification is an important part of agent-oriented software engineering, because it is
the only way to guarantee that demands made on aspects of the system behaviour are
satisfied. The high degree of complexity of agent system behaviour is as much the
reason as the problem here: by simply checking the code of the agent system or by
testing, proper behaviour can never be sufficiently established. Proper functioning is
often crucial, because agent systems are increasingly employed in circumstances
where mistakes have important consequences, for example in electronic commerce.
But verification of agent systems is generally not an easy task. As agents may operate
in a world that is constantly changing, and agent systems can consist of a number of
interacting but independent agents, expressing behavioural requirements may lead to
complex formulae. Therefore verification of agent systems is hardly ever done in
practice.

So, means are needed to make verification of agent systems manageable.
Developers of agent systems should be enabled to verify the system they are building,
assisted by tools, even if they are not specialists in formal theory. Properties and
proofs have to be intuitively clear to the verifier and even, at least to some degree, to

the stakeholder(s) of the system, as verification results are part of the design rationale
of the system. Also, time complexity of the verification process has to be controlled.

This paper discusses some principles that contribute to the support of verification
of agent systems. These principles can be used for all agent systems, but here, they
are applied in the context of single agents that performs actions in dynamic
environments.

In [6] a compositional verification method was introduced. Verifying in a
compositional manner supports reuse of verification results and limits the complexity
of the process, by making proofs more local. In [1] it was shown how this method can
be applied to prove properties of a system of negotiating agents.

However, this does not solve all problems. To manage the complexity of the
proofs, and to make their structure more transparent, additional structuring means and
reuse facilities are necessary, extending the method of compositional verification.
This paper contributes two manners to support proof structuring and reuse.

On the one hand a notion of abstraction is introduced that facilitates structuring of
properties and proofs. To this end, the language to describe properties of agent
systems is extended with new, more abstract, constructs. Parts of formulas can be
given an intuitively enlightening name. This leads to a more informal look and feel
for properties and proofs, without losing any formal rigour. The abstract notions form
a higher-level language to describe system behaviour. The terminology of this
language abstracts away from details of the system design, and is closer to the way
human verifiers conceptualise agent system behaviour. There are a number of
benefits:

• Properties and proofs are more readable and easier to understand.
• Coming up with properties and proofs becomes easier, as the words chosen for the

abstracted formulas guide and focus the cognitive verification process of the
verification engineer, providing clean-cut agent concepts.

• Verification becomes explainable, as part of the design rationale documentation of
a system.

On the other hand, common characteristics of agent systems can be exploited to
support reuse. With the paradigm of agents, a range of agent concepts is associated.
For example, most agents receive observations and communicated information from
their environment and perform actions to manipulate their environment. For this to
yield desired results, proper co-ordination with the environment is essential.
Properties regarding this apply to many agent systems and thus are highly reusable.
Support of reuse requires that a library of predefined templates of properties and
proofs is available. By identifying generic elements in the structure of proofs and
properties, reusable systems of properties and proofs can be constructed. To illustrate
this, this paper proposes a system of co-ordination property properties for applications
of agents acting in dynamic environments. The properties and proofs of this system
are an example of the contents of the verification library. Some advantages of reuse
are:

• Verification becomes faster. Often, the verification engineer only has to look up
suitable properties and proofs from the verification library and customise these by
instantiation.

• Verification becomes easier. The contents of the library are usually phrased using
abstraction, so properties and proofs are more intuitively clear, making them more
easy to use.

In the following section, the generic system consisting of an agent acting in a
dynamic environment is sketched. For this application, a system of co-ordination
properties is given in Section 4. But first, Section 3 presents the two languages to
describe system behaviour, the detailed language and the abstract language, and the
connection between them. In Section 5, the abstraction mechanism is applied; abstract
predicates are introduced for parts of properties, yielding an abstract language. In
Section 6, proofs are briefly discussed. Finally, Section 7 concludes.

2 The Domain of Agents Acting in a Dynamic Environment

In this section the characteristics of the application class of an agent in interaction
with a dynamic environment are briefly discussed. A reusable system of properties for
this class will be presented later on, describing correct co-ordination of the agent with
its environment.

Agents that can perceive and act in a dynamic environment are quite common. An
example is an agent for process control (e.g. in a chemical factory). For this class of
single agent systems, an important property is successfulness of actions. This means
that all actions the agent initiates in its environment yield their expected effects.
Because this property is to be proven for a class of systems, it is needed to abstract
from domain-dependent details of systems and give a generic architecture that defines
the class.

Agent External
World

actions

observation results

Fig. 1. Agent and external world in interaction

The specification of a generic architecture for a single agent in a dynamic world
depicted in Figure 1 consists of two components in interaction: an agent (Ag) and the
external world (EW). Only a few aspects of the functioning of the system are specified
by the architecture. The agent generates actions that are transferred from its output
interface to the external world, and the external world generates observation results
that are transferred to the input interface of the agent. Based on the observation results
the agent is to decide which actions are to be performed.

The system employs a formal language internally. This language is an order-sorted
predicate logic. The input interface of the agent is defined by the formal ontology
observation results containing a binary relation observation_result. Formulae that can be

expressed using the information type observation results are, for example,
observation_result(at_position(self, p0), pos), or observation_result(at_position(self, p1), neg).

The output interface of the agent is defined by the formal ontology actions to be

performed based on the sort ACTION and the unary relation to_be_performed. For
example the statement to_be_performed(goto(p)) can be expressed in this ontology. For
the external world the input and output interfaces are the opposite of the agent’s
interfaces.

Realistic characteristics of the agent systems in the class defined above are:

• perceptions take time
• the generation of actions takes time
• execution of actions in the world takes time
• unexpected events can occur in the environment

Proving successfulness of actions under these circumstances is intricate because an
action can only succeed when its execution is not disturbed too much. If two
executions of actions overlap or evens happen during executions, actions could fail.
Also, while an agent is observing and reasoning, the situation in the world might
change. A system of co-ordination properties will be proposed that takes all these
influences into account.

In the literature, varying attitudes towards these disturbances can be found. In one
part of the literature (e.g., standard situation calculus, as described in [9; 11]), these
disturbances are excluded in a global manner, e.g., action generation and execution
have no duration at all and no events occur at all. The problem with these global
assumptions is that they violate the characteristics of most of the application domains.
Some literature takes into account duration of action execution (e.g., [13]). Literature
that also takes into account the reasoning and decision processes in action generation
is very rare. Another lack in the literature is that most authors don’t try to verify
implemented systems; they only state theories regarding actions, without relating
them to practical system engineering.

3 Temporal Models and Temporal Languages

For phrasing properties, a language is needed. Behaviour is described by properties of
the execution traces of the system. In this section, the language used for this is
introduced. Also, this section introduces the language abstraction formalism.

3.1 Basic Concepts

By adding a formalisation of time to the language internally used in the generic
system, a formal language is obtained to formulate behavioural properties. This
language is still semantical in nature; properties of traces are described in a direct
manner. A formal logic could be added, but this is not essential for our purposes.

The state language SL(D) of a system component D is the (order-sorted) predicate
logic language based on the interface ontologies of D. The formulae of this language

are called state formulae. An information state M of a component D is an assignment
of truth-values {true, false, unknown} to the set of ground atoms in SL(D). The set of all
possible information states of D is denoted by IS(D).

The time frames are assumed linear with initial time point 0. Time frames must be
discrete; using dense time frames is also possible, as long as some constraints are
obeyed. A trace M of a component D over a time frame T is a sequence of information
states (Mt)t �T in IS(D). Given a trace M of component D, the information state of the
input interface of component C at time point t is denoted by state(M , t, input(C)), where
C is either D or a component within D. Analogously, state(M , t, output(C)) denotes the
information state of the output interface of component C at time point t.

These information states can be related to formulae via the satisfaction relation �.
If « is a state formula expressed in the input ontology for component C, then

state(M , t, input(C)) � «

denotes that « is true in this state at time point t � T
These statements can be compared to holds-statements in situation calculus [9]. A

difference, however, apart from notational differences, is that we refer to a trace and
time point, and that we explicitly focus on part of the system. Based on these
statements, which only use predicate symbol �, behavioural properties can be
formulated in a formal manner in a sorted predicate logic with sorts T for time points,
Traces(C) for traces of component C and F for state formulae. The usual logical
connectives such as É, ®, º, û, � are employed to construct formulae, as well as < and
= (to compare moments in time). The language defined in this manner is denoted
by TL(D) (Temporal Language of D). An example of a formula of TL(S), where S refers
to the whole system, is:

 û M � Traces(S):
 û t1 : state(M , t1, output(Ag)) � to_be_performed(A) º

 � t2 > t1 : state(M , t2, output(Ag)) � to_be_performed(B)

This expresses that every decision of Ag to do action A is always followed by a later
decision to do B.

The languages TL(D) are built around constructs that enable the verifier to express
properties in a detailed manner, staying in direct relation to the semantics of the
design specification of the system. For example, the state formulae are directly related
to information states of system components. But the detailed nature of the language
also has disadvantages; properties tend to get long and complex. The formalism of
abstraction, described in Section 3.2, alleviates this considerably.

3.2 The Language Abstraction Formalism

Experience in nontrivial verification examples has taught us that the temporal
expressions needed in proofs can become quite complex and unreadable. Also, details
of the formalisation blur the generic agent concepts in properties. As a remedy, new
language elements are added as abbreviations of complex temporal formulae. These
new language elements are defined within a language AL(D) (meaning Abstract
Language of component D). As a simple example, for the property that there is action

execution starting in the world at t a new predicate ActionExStarting can be
introduced. Then the property can be expressed in the abstracted language:

ActionExStarting(A, t, EW, M)

which is interpreted as:

state(M , t, input(EW)) � to_be_performed(A)

Semantics of these new language elements is defined as the semantics of the
detailed formulae they abstract from. In logic the notion of interpretation mapping
has been introduced to describe the interpretation of one logical language in another
logical language, for example geometry in algebra (cf. Chapter 5 in [5]). The
languages AL(D) and TL(D) can be related to each other by a fixed interpretation
mapping from the formulae in AL(D) onto formulae in TL(D).

The language AL(D) abstracts from details of the system design and enables the
verifier to concentrate on higher level (agent) concepts. Proofs can be expressed either
at the detailed or at the abstract level, and the results can be translated to the other
level. Because formulae in the abstract level logic can be kept much simpler than the
detailed level logic, the proof relations expressed on that level are much more
transparent.

4 Properties for Proving Successfulness of Actions

In Section 4.1, an informal introduction to the system of co-ordination properties is
given. The system itself appears in Section 4.2.

4.1 Approaching the Problem of Co-ordination of Actions

For the application class described in Section 2, the aim is to prove that under the
specified assumptions all actions executed in the agent system are successful, that is,
yield all of their effects. To arrive at a reusable and intuitively pleasing proof, it was
necessary and illuminating to separate the different aspects into a number of
properties. These will constitute the system of co-ordination properties. In this
section, some important aspects are described informally.

An action succeeds when its execution renders the appropriate effects. This effect
has to happen during the execution of the action to be recognisable as an effect of that
particular action. We assume there is some means to detect the end of an action
execution. Just like the start of an execution of A is indicated by a to_be_performed(A)-
atom, the end is indicated by an ended(A)-atom.

Action executions can fail because of three reasons. The first reason is overlapping
of action executions. So, to guarantee success, overlapping should not happen.
Property COORD0 formalises this. This property is proved from other properties of the
agent and the world using induction, but the proof is left out. Figure 2 illustrates
COORD0.

Agent
tbp(A) ended(A) tbp(B) ended(B) tbp(A) ended(A)

output input outputoutput inputinput

World
tbp(A) ended(A) tbp(B) ended(B) tbp(A) ended(A)

input output input output input output

Fig. 2. No overlapping of executions

Note that COORD0 also enables identification of action execution.
But action executions can also fail due to events. In our view, events are changes to

the world state that aren’t controlled by the agent. These can be due to the dynamics
of the world itself (natural events). But changes due to the aftermath of a failed action
also are events. So, each change to the world state either is the effect of a successful
action or it is an event. In some other approaches, events designate all causes of state
changes, including agent-initiated actions. This might be confusing, but is just a
matter of definitions.
Property COORD3 is a property of the world, stating that no events happen during
action execution. This is quite a strong demand, as not every event might interfere
with the action. The demand can be relieved by only forbidding interfering events,
which is a minor extension.

A third reason for action failure is that the world can change prior to an action
execution starting in the world. Between the moment the world situation arises that
gives the agent reason to decide to do an action and the start of the execution of this
action, events or other action effects could occur, disrupting the applicability of the
action. Property COORD5 states that all actions are still applicable the moment their
execution starts in the world.

In the following, it is shown that under the assumptions associated with the class of
systems considered here, absence of these three causes for failure is sufficient to
prove successfulness of actions.

4.2 The System of Co-ordination Properties

One of the main objectives of this paper is to establish a set of properties that enable
the verifier to prove that all actions executed will succeed. The system of co-
ordination properties presented here provides a clear separation of all aspects
involved. The properties are phrased in the abstract languages AL, although the
interpretation of this language in the detailed language is presented later, to show the
intuitive power of the abstract languages.

The system is structured in the following way: COORD1 is the target property,
formalising action successfulness, COORD0 is the foundational property, parts of
which are frequently used as condition in other co-ordination properties, COORD2, -3,
-4 and -5 are used to prove COORD1.

COORD0 is the foundation of the system of co-ordination properties. It enables the
verifier to identify action executions, by formalising Figure 2. The property states that
action executions don’t overlap, not in the world and neither in the agent. The agent-
and the world-part will be part of the conditions of many properties to come, to enable
identification of action executions. This is the abstract formula:

COORD0:
û M � Traces(S)

NoOverlappingInWorld(M) ®

 NoOverlappingInAgent(M)

COORD1 formalises action successfulness, stating that all action executions of the
system are applicable and yield all expected effects. Informally:

“When an action execution in the world begins at t1 and ends at t2,
then
the action is applicable at t1 in the world
and
all expected effects of the action in that world situation will be realised
during the execution.”

This is the abstract formalisation:

COORD1:
û M � Traces(S) û A � ACTION û t1 û t2 > t1 :

(ActionEx(A, t1, t2, EW, M) º

Appl(A, t1, M) ®

ExpEffectsHappen(A, t1, t2, EW, M))

It is essential that all action executions are applicable at the moment they start in the
world. When actions are applicable at the moment the execution starts, the expected
effects of the action are the desired effects. When an action is not applicable, there
might be no effects at all, or unwanted ones.

COORD2 is an auxiliary property stating that all action executions started at times
that the action is applicable will be successful. Informally:

“When an action execution in the world begins at t1 and ends at t2,
and
when the action is applicable at t1 in the world
then
all expected effects of the action in that world situation will be realised
during the execution.”

And this is its abstract formalisation:

COORD2:
û M � Traces(S) û A � ACTION û t1 û t2 > t1 :

ActionEx(A, t1, t2, EW, M) ®

Appl(A, t1, M) º

ExpEffectsHappen(A, t1, t2, EW, M)

COORD3 is a demand on the world that states that there are no events happening
during action executions. Informally:

 “If there is an action execution in the world
and
action executions do not overlap
then
no events happen during the execution.”

And this is the formalisation in the abstract language:

COORD3:
û M � Traces(EW) û A � ACTION û t1 û t2 > t1 :

ActionEx(A, t1, t2, EW, M) ®

NoOverlappingInWorld(M) º

NoEventsDuring([t1, t2], EW, M)

COORD4 is a demand on the world that says that an action execution in the world
will be successful when the action is applicable and there are no disturbances caused
by overlapping executions or events. These are all conditions for action success, as
long as the world satisfies COORD4. Informally:

 “If an action execution in the world begins at t1 and ends at t2
and
action executions do not overlap
and
no events happen during the execution
and
the action is applicable at t1
then
all effects of the action will be realised during the execution.”

This is the formalisation:

COORD4:
û M � Traces(EW) û A � ACTION û t1 û t2 > t1 :

ActionEx(A, t1, t2, EW, M) ®

NoOverlappingInWorld(M) ®

NoEventsDuring([t1, t2], EW, M) ®

Appl(A, t1, M) º

ExpEffectsHappen(A, t1, t2, EW, M)

COORD5 simply states that an action is applicable at the moment its execution
starts. This is a necessary condition for success of this action. This is its formalisation:

COORD5:
û M � Traces(S) û A � ACTION û t1 û t2 > t1 :

ActionEx(A, t1, t2, EW, M) º

Appl(A, t1, M)

Because the abstraction formalism is exploited, these properties are relatively easy
to read and understand, even without knowing the formal meaning of abstract terms,
which is provided in the next section. Technical details are hidden beneath intuitively

clear notions. The clarity and brevity of the formulas make the verification process
more manageable, as the abstract concepts yield a natural view of the system’s
behaviour and prevent getting lost in symbolic clutter while constructing proofs.

The system of co-ordination properties is applicable for many systems with a
single agent that performs actions in a changing world. By simple instantiation of the
system specific details, such as the set of actions, the conditions of applicability and
the effects of these actions, the system can be customised.

5 Abstract Formulations

In this section, a number of predicates of the abstract language are defined. The
abstract language enables the verifier to express temporal properties of system
behaviour using a vocabulary of clean-cut concepts. To be able to distinguish
elements of the abstract language, a different font is used to denote them.

But first, some auxiliary abbreviations are introduced. All relate to changes in the
system state. The ø-notation, pronounced as just, is used to denote a change to a
certain information state. The symbol means “is defined as”.

 østate(M , t1, interface) � « state(M , t1, interface) � « ®

 � t2 < t1 û t : (t2 � t < t1 º state(M , t1, interface) � «)

The definition of østate(M , t1 , interface) � « is analogous. Closely related is the
÷t1, t2ø-notation, defined as follows:

 ÷t1, t2østate(M , t2, interface) � « østate(M , t2, interface) � « ®

 û t : (t1 < t < t2 º É østate(M , t, interface) � «)

Again, an analogous definition can be given for the variant with � instead of �. This
notation can be used to say that the information state has just changed in some way at
t2, for the first time since t1.

All further definitions concern elements of the languages AL. Some notions are
formally defined; others are only informally sketched.

Concerning action executions
The notion of an action execution is central to the system of co-ordination properties,
so formalisation is desired. Both for the world and the agent, an action execution is
defined to happen between t1 and t2 when a tbp-atom appears at t1 and the first
matching ended-atom appears at t2. These definitions only yield the right intuitions
when property COORD0 holds. If not, then it is not reasonable to take on the first
matching ended-atom as belonging to the tbp-atom, as it could be the end of an earlier
executed instance of the same action.

Action executions are defined for the world as well as for the agent. First, new
predicates are introduced and explained in informal terms. Next, formal
interpretations in terms of the detailed language are given.

Let A � A C T I O N and t1, t2 > t1 be moments in time. Then, the abstract formula
ActionEx(A, t1, t2, EW, M) denotes that there is an execution of A in the

world starting at t1 and ending at t2.

Interpretation in terms of the detailed language:
ActionEx(A, t1, t2, EW, M) østate(M , t1, input(EW)) � to_be_performed(A) ®

÷t1,t2østate(M , t2, output(EW)) � ended(A)

The predicate ActionEx(A, t1, t2, Ag, M) is the corresponding agent notion.

Concerning applicability
Actions can only be successfully executed in certain world states. There must be
nothing obstructing the execution of the action. For each action A, the existence of a
formula appl(A) is assumed, describing exactly the world situations in which the action
can be fruitfully executed. It is not excluded that the effects of the action are already
present in these world situations. Now, applicability can be defined straightforwardly:

Let A � A C T I O N and t1 be a moment in time. Then, the abstract formula
Appl(A, t1, M) denotes that action A is applicable in the world at t1.

Interpretation in terms of the detailed language:
Appl(A, t1, M) state(M , t1, output(EW)) � appl(A)

Concerning expected effects
When an execution of an action A starts at t1 in the world, the effects expected depend
on the factual world situation at t1. So, the following notion takes into account the
output information state of EW, at the time the execution starts.

Let A � ACTION, l � groundliterals(world info) and t be a moment in time. Then, the
abstract formula
ExpEffect(l, A,t1, EW, M) denotes that l is expected to become true as a

result of executing A in the world at t1.

Concerning effects of actions and events
A literal is defined to be an effect of an action when the literal is an expected outcome
that becomes true during execution of the action. Note that this doesn’t mean that the
literal becomes true as a result of the action, though this will be usually the case. But
when during an action execution an event happens, which causes changes that are also
expected effects of the action being executed, these changes will be seen as effects of
the action. This choice is made because there is no means by which an external
observer can distinguish changes caused by actions from changes caused by events. A
literal is defined to be an effect of an event when it is not an effect of any action.

Let A � ACTION, l � groundliterals(world info) and t be a moment in time. Then, the
abstract formula
ActionEff(A, l , t , EW, M) denotes that at t, l becomes true as a result of

executing A.

Interpretation in terms of the detailed language:
ActionEff(A, l , t , EW, M) � t1 < t � t2 � t :

østate(M , t , output(EW)) � l ®

ActionEx(A, t1, t2, EW, M) ®
ExpEffects(l, A,t1, EW, M)

Let l � groundliterals(world info) and t be a moment in time. Then, the abstract formula
EventEff(l , t , EW, M) denotes that at t, l becomes true as a result of some

event.
Interpretation:
EventEff(l , t , EW, M) østate(M , t , output(EW)) � l ®

É � A � ACTION: ActionEff(A, l , t , EW, M)

The next abstract formula is used to state that during an interval in time there are
no effects of events.

Let int be an interval in time. Then, the abstract formula
NoEventsDuring(int, EW, M) denotes that there are no events taking place in the

world during int.
Definition within the abstract language:
NoEventsDuring(int, EW, M) û l � groundliterals(world info) û t � int :

É EventEff(l , t , EW, M)

Concerning successful actions
The following formula of the abstract language states that an execution of A is
successful, meaning that all expected effects are achieved during the execution:

Let A � A C T I O N and t1, t2 > t1 be moments in time. Then, the abstract formula
ExpEffectsHappen (A, t1, t2, EW, M) denotes that all expected effects of doing

A between t1 and t2 are achieved.
Definition within the abstract language:
ExpEffectsHappen (A, t1, t2, EW, M) ActionEx(A, t1, t2, EW, M) ®

û l � world info � t3 � ¾ t1, t2] :
ExpEffect(l, A,t1, EW, M) º

 ActionEff(A, E , t3 , EW, M)

Concerning overlapping executions
The notions NoOverlappingInWorld(M) and NoOverlappingInWorld(M) denote that
action executions don’t overlap, neither in the world nor in the agent. No formal
definitions are given.

6 Proofs

In this section, a complete proof tree of COORD1 is given. In order to prove COORD1,
it is possible to stay entirely within the abstract language; no abstractions need to be
expanded into the detailed language. This makes the proof very easy.

To prove COORD1, all that is needed is performing simple modus ponens on a
subset of the system of co-ordination properties. Figure 3 shows the proof tree:

COORD1
S

COORD5
S

COORD2

COORD0 COORD3 COORD4

S

S EW EW

Fig. 3. The proof tree

The proofs of COORD0 and COORD5 are left out. These are more complex, but the
really difficult parts of the proof can be done once and for all.

7 Discussion

One of the challenges to improve development methods for agent systems is to
provide appropriate support for verification of agent systems being built in practice.
The current state is that from the theoretical side formal techniques are proposed, such
as temporal logics, but that developers in practice do not consider them useful. Three
main reasons for this gap are that

• behavioural properties relevant for agent systems in practice usually have such a
high complexity that both fully automated verification and verification by hand are
difficult,

• the formal techniques offered have no well-defined relation to design or software
specifications of the real systems used in practice, and

• the formal techniques offered require a much higher level of formal skills than the
average developer in practice possesses.

This paper addresses these issues in the following manner. Two languages are
proposed: a detailed language, with a direct relation to the system design
specification, and an abstract language in which properties can be formulated in a
more conceptual manner. Both languages have been defined formally; moreover,
well-defined relationships exist between the two languages, and between the detailed
language and the system design specification. Proof structures can be made visible
within the abstract language; by this abstraction, complexity of the property and proof

structures are reduced considerably. More detailed parts of proofs and properties can
be hidden in the detailed language, and show up in the abstract language only in the
form of, more abstractly formulated, reusable lemmas.

Two roles are distinguished within the verification engineering process: the
verification support developer, who defines libraries of reusable properties in the
abstract language, and their related properties in the detailed language, and the
verification engineer, who uses these libraries to actually perform verification for a
system being developed in practice.

The approach has been illustrated by addressing the case of co-ordination of
actions. Under realistic assumptions, such as action generation and action execution
with duration, it is a complex problem to guarantee the successfulness of action
executions. A set of reusable co-ordination properties has been defined both in the
detailed language and in the abstract language. Indeed, the abstract formulations are
much more accessible and explainable than their detailed counterparts. It has been
shown that the abstractly formulated relationships between these properties can be
expressed within the abstract languages. The co-ordination properties found have
become part of a library of reusable properties that is being developed.

When we try to relate our work to the other contributions to the AOSE workshop,
our approach of formally verifying requirements of agent systems seems to be unique.
Many papers describe methodologies for designing and analysing multi-agent
systems. These methodologies enable system developers to build a well-structured
agent system, but they don’t offer support to verify whether the behaviour of the
resulting system obeys the requirements of the prospective user. For example, in [14],
a methodology is proposed that supports the developer “through an entire software
development lifecycle from problem description through implementation”. From the
requirements of the user, which may be informal or formal, goals are distilled which
guide the development process. These goals are the essence of the set of requirements,
but they don’t seem to be formal in nature. So, it’s not possible to proof whether the
resulting multi-agent system reaches its goals.

Many approaches are based on UML. The work of Odell et al. [10] extends UML
with agent concepts. Though UML is graphical in nature, UML models do represent
requirements, as is also explicated by Depke et al. in [2]. A UML model semantics is
represented by a formal metamodel. According to the authors of [10], logical
specifications like we use them could be expressed using features of the metamodel.
Also, this paper mentions templates as being behaviours common to different problem
domains. A template is a behaviour pattern that can be instantiated and customised to
fit a specific domain. In our paper, we developed a set of generic properties that
describe an often-occurring pattern in agent behaviour, namely performing actions in
a dynamic environment. This is similar in spirit.

A very prominent concept in the AOSE workshop was the concept of roles. In [8],
Kendall represents patterns of interaction using role models. These role models
abstract from application details, just as we do in our system of co-ordination
properties. In a recent paper by Ferber et al. [4], the relation between formal
requirements on dynamic agent system and the dynamics of abstract organisational
concepts like roles and groups is explored.

The languages used in this paper are similar to the approach in situation calculus
[9]. A difference is that explicit references are made to temporal traces and time

points. In [12], Reiter addresses proving properties in situation calculus. A difference
with our approach is that we incorporate arbitrary durations in the decision process of
the agent, and in the interaction with the world. Also, we focus on capturing agent
concepts in the abstract language, which makes our approach specifically suitable for
verifying agent applications.

References

[1] Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak, B.,
and Treur, J., Compositional Design and Verification of a Multi-Agent System for One-to-
Many Negotiation, in: Proceedings of the Third International Conference on Multi-Agent
Systems, ICMAS'98, IEEE Computer Society Press, 1998, pp. 49-56.

[2] Depke, R., Heckel, R., and Küster, J.M., Requirement Specification and Design of Agent-
Based Systems with Graph Transformation, Roles and UML, in: this volume.

[3] Engelfriet, J., Jonker, C.M., and Treur, J., Compositional Verification of Multi-Agent
Systems in Temporal Multi-Epistemic Logic, in: Pre-proceedings of the Fifth International
Workshop on Agent Theories, Architectures and Languages, ATAL'98 (J.P. Mueller, M.P.
Singh, and A.S. Rao, eds.), 1998, pp. 91-106. To appear in: Intelligent Agents V (J.P.
Mueller, M.P. Singh and A.S. Rao eds.), Lecture Notes in AI, Springer Verlag, in press,
1999.

[4] Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., and Treur, J., Organization Models and
Behavioural Requirements Specification for Multi-Agent Systems, in: Proceedings of the
Fourth International Conference on Multi-Agent Systems, ICMAS 2000, IEEE Computer
Society Press, in press. Extended version in: Proceedings of the ECAI 2000 Workshop on
Modelling Artificial Societies and Hybrid Organizations, in press, 2000.

[5] Hodges, W., Model theory, Cambridge University Press, 1993.
[6] Jonker, C.M., and Treur, J., Compositional Verification of Multi-Agent Systems: a Formal

Analysis of Pro-activeness and Reactiveness, in: Proceedings of the International Workshop
on Compositionality, COMPOS'97 (W.P. de Roever, H. Langmaack, A. Pnueli eds.),
Lecture Notes in Computer Science, vol. 1536, Springer Verlag, 1998, pp. 350-380.

[7] Jonker, C.M., Treur, J., and Vries, W. de, Compositional Verification of Agents in Dynamic
Environments: a Case Study, in: Proceedings of the KR98 Workshop on Verification and
Validation of KBS (F. van Harmelen ed.), 1998.

[8] Kendall, E.A., Agent Software Engineering with Role Modelling, in: this volume.
[9] McCarthy, J., and Hayes, P.J., Some Philosophical Problems from the Standpoint of

Artificial Intelligence, Machine Intelligence, vol. 4, 1969, pp. 463-502.
[10] Odell, J., Van Dyke Parunak, H., and Bauer, B., Representing Agent Interaction Protocols

in UML, in: this volume.
[11] Reiter, R., The Frame Problem in the Situation Calculus: a Simple Solution (Sometimes)

and a Completeness Result for Goal Regression, in: Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honor of John McCarthy (V. Lifschitz ed.), Academic
Press, 1991, pp. 359-380.

[12] Reiter, R., Proving Properties of States in the Situation Calculus, Artificial Intelligence,
vol. 64, 1993, pp. 337-351.

[13] Sandewall, E., Features and Fluents. The Representation of Knowledge about Dynamical
Systems, Volume I, Oxford University Press, 1994.

[14] Wood, M., and DeLoach, S.A., An Overview of the Multiagent Systems Engineering
Methodology, in: this volume.

