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Abstract. A computational agent model for monitoring and control of a virtual human agent’s resources 

and exhaustion is presented. It models a physically grounded intelligent decision making process within 

the agent model for physical effort to be spent. Simulation results are discussed, and a formal analysis is 

presented on conditions under which the agent model functions properly, for example, such that it can 

be used to avoid running out of resources. The model is related to a model for monitoring or simulating 

a person’s heart rate. Finally some validation experiments are briefly discussed. 

1.   Introduction 

To generate intelligent agent behaviour, it is more and more recognized that in addition to the brain, the 

body often plays a crucial role as well, and thus contributes to the intelligence. Some authors argue that 

also the design of artificial intelligent systems could gain benefit of such analyses by incorporating 

relevant physiological aspects in models developed; e.g., [3], [4], [6], [17]. An example is the intelligence 

with which a person manages exhaustion (or fatigue). In the case the body would only give a signal when 

complete exhaustion occurs, no intelligent management would be possible. Fortunately, by gradually 

getting a feeling of becoming fatigued, more information is available before a total breakdown occurs. In 

this paper a computational model and analysis is made of the role that this physiological aspect (as 

described in more detail in the literature on physical exercise and sport) plays in monitoring and 

intelligent control of resources.  

 For certain types of artificial or virtual human agents, monitoring and control of the own resources 

may be of importance, for example, for human-like characters in a virtual reality context. When such a 

virtual human agent is equipped with the capability to get a feeling of becoming fatigued, it may show a 

more realistic intelligent behaviour. This behaviour can be based on a context-sensitive type of decision 

making to manage limitations of resources, incorporating the intelligence related to aspects of the body. 

Another application area is formed by ambient intelligence used in physical exercise and sport: devices 

that monitor human functioning, are able to analyse this functioning, and respond accordingly. When 

more sophisticated agent models are used, more advanced ambient intelligent agent applications can be 

developed. 

                                                                 
1 A preliminary, shorter version of this paper was included as a full paper in the IEA/AIE’09 conference 
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 In this paper literature on physical exercise and sport (e.g., [18]) is taken as a point of departure. One 

of the issues addressed is how the generated effort is controlled and what is the role of feeling fatigue in 

this process; e.g., [5], [7], [8], [9], [10], [11], [12], [13], [14], [16]. The interplay of mind and body in this 

process is considered a crucial factor. The classical perspective on fatigue is based on the assumption that 

fatigue occurs either when the muscles run out of resources, or they are in a sense poisoned by waste 

material produced; e.g., [10], [11]. Resources may involve oxygen, glycogen (which fuels the muscles), 

or ATP (adenosine triphosphate, the molecule that muscles use to store energy) that are lacking. Waste 

material concerns by-products of exercises, such as lactic acid. In this perspective the body reaches some 

states in which its functioning is disturbed so that only limited effort is possible, and this co-occurs with 

(or is expressed by) feeling fatigue. Noakes and his colleagues (e.g., [13], [14]) emphasize the notion of  

homeostasis: the property of a system (for example, a living organism), to regulate its internal 

environment in such a way that stable, more or less constant, conditions are maintained. They claim that: 

• athletes can become fatigued even when they have enough oxygen left in their blood to keep 

going for some time, 

• fatigue is not always accompanied by the build-up of lactic acid,  

• glycogen and ATP stores are not always polished off during endurance events.  

According to them the body is rarely allowed to reach a ‘catastrophic’ state where it would run out of all 

such essential reserves. In this view the mind keeps the body in physical conditions that are better 

prepared for expected or possible future efforts. A cognitive or neural decision making mechanism is 

assumed that incorporates information on the extent of exhaustion of the agent’s body. Noakes et al. 

formulate the following assumptions2: 
 

• There is never complete muscle recruitment during voluntary exercise in humans.  

• Homeostasis is maintained in all forms of exercise. 

• Fatigue is a symptom that is linked in some way to the maintenance of homeostasis. Thus the 

greater the effort required to maintain homeostasis, the greater the symptoms of fatigue. Indeed 

the perception of fatigue during exercise rises as a linear function of exercise duration suggesting 

that, already at the onset of exercise, the brain has calculated for how long it will allow that 

exercise about to continue and that it is the achievement of a specific level of fatigue sensations 

that causes the voluntary termination of exercise 

• The protection of homeostasis during exercise is hard-wired in the brain but can be modified by a 

number of interventions including training, recent exercise and acute metabolic changes such as 

exposure to low blood glucose or oxygen concentrations. 

 

 According to this perspective it is not the body that limits the mind, but the other way around: the 

mind limits the body, thus keeping the body in physical conditions that are better prepared for expected or 

possible future efforts. Here a decision making mechanism is at work that, in addition to interests in the 

present, also involves interests in the future. This is an example of a type of decision making where 

choice options for different points in time are compared, called intertemporal decision making. 

                                                                 
2 See, e.g.,  http://www.mrc.co.za/exercise/projects9.htm 
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 To obtain a more specific context to analyse this phenomenon, the case study in this paper will be on 

physiological effort in cycling, and in particular on the control of effort to enable management of 

resources. The power provided by a cyclist is used to work against resistance of three types: mechanical 

(the bike’s mechanisms), air (the wind, including the wind encountered due to the own speed), and 

gravitational resistance (for climbing). When speed is not very low, and the road is flat, air resistance is 

the main factor. Cyclists often cooperate to reduce air resistance: riding behind each other. 

 In Section 2 the computational agent model for monitoring and management of resources is presented 

and formalised. Section 3 discusses simulation results for the domain of cycling, which is used as a case 

study. In Section 4 a formal analysis is presented, which identifies the conditions and parameter values for 

which the model will function properly. Section 5 briefly analyses how the agent model can be related to 

a person’s heart rate, which is sometimes used as monitor information in sports. Section 6 is a discussion. 

2.   The Computational Agent Model 

This section describes the agent model for monitoring and control of resources. A central concept used is 

power that is generated. The basic idea behind the model is that it is easier to monitor the generated power 

at any time point, than the store of resources left. When based on monitor data on the generated power, 

the brain performs some form of accumulation or integration, then this can be used as a faithful indicator 

for the resources used. Within the literature on exercise and sports the notion of critical power CP plays 

an important role. This is the maximal level of power that can be generated and sustained over longer 

periods without becoming exhausted, assuming no prior exercising. It is an asymptote of the hyperbolic 

power-duration curve defined by (GP – CP).t = W'  that (as shown in various experiments) models the 

relationship between a constantly generated power GP (above the critical power CP) and the time t that 

this can be sustained; e.g., [7], [8], [9], [10], [11], [16]. Here W' is the total amount of work that can be 

spent above the critical power (the availble stored resources). Often it is (implicitly or explicitly) assumed 

that this critical power CP is a constant, that is not affected by prior exercising, and is a capacity to 

provide (sustainable) power based on aerobic processes. Power generated above this critical power is 

assumed to be based on (nonsustainable) anaerobic processes, that exploit an available fixed reservoir of 

stored basic resources BR, which is one of the parameters of the hyperbolic power-duration curve (often 

indicated by W'). Experiments show that after highly intensive prior exercising leading to exhaustion of 

the basic resources BR, for example, power at 90% of the critical power CP cannot be sustained; e.g., [5]. 

Therefore a main assumption made for the model developed below is that a basic critical power BCP 

(applicable when no prior exercising took place) can be distinguished from a dynamic critical power DCP 

(applicable when prior exercising has taken place). The most basic assumptions behind the model are:  

 

• The dynamic critical power indicates the level of (sustainable) power that can be generated for 

which the level of fatigue remains the same. 

• If a level of power is generated above the dynamic critical power, then fatigue will increase 

which makes that less sustainable power can be generated 
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• If a level of power is generated below the dynamic critical power, then fatigue will decrease 

which makes that more sustainable power can be generated 

• Lower dynamic critical power DCP reflects more fatigue, and the maximal dynamic critical 

power DCP (which is the basic critical power BCP) means no fatigue, occurring in a state 

without prior exercising.  

 

The upper bound for the dynamic critical power is the basic critical power BCP and a lower bound is 

lowest critical power LCP.  

 

 

Fig. 1.  Overview of the variables and their dependencies 

 

 Part of the dynamics of the model concerns how this dynamic critical power is affected by the effort 

spent above the critical power in the preceeding time interval (i.e., the extent to which the basic resources 

BR were already used), and how recovery can take place when the effort spent is below the critical power. 

Because the dynamic critical power has a direct relationship with the history of effort spent, it can be 

compared to the feeling of becoming fatigued, which indicates the extent of exhaustion, or the state of the 

(remaining) resources. In this way the dynamic critical power can be taken as a monitoring instrument to 

maintain homeostasis. Based on this indicator, decisions can be made on generated power. A possible 

decision model, for example, takes care that the dynamic critical power always is kept above a certain 

lower bound. When it is assumed that the dynamic critical power relates to fatigue (the lower the dynamic 

critical power, the more fatigue), this means that fatigue is kept limited. To obtain a formal model, the 

concepts used are formalised by numerical variables. Power is the amount of energy spent per time unit 

(expressed in Watt). Different types of power are distinguished; see Fig. 1 for the global effects they have 

on each other. Note that here the dynamic critical power DCP has a temporal relation to the other nodes, 

whereas the others have state relations; below more specific formulae are discussed. 
 

generated power and dynamic critical power →→→→ extracted power 

The generated power is the power level chosen by the person. If this is more than can be produced in a 

direct manner (by the aerobic system), part of this power is extracted from the (longer term) resources 

provided power  

   PP 

recovery        

power RP  

generated power   

  GP 

dynamic critical  

power  DCP  
 

extracted power   

         EP 

+ 

+ 

+ 

- 
+ 

- - 

+ 

+ 



 

5 

 

(the anaerobic system). When generated power is above the dynamic critical power, then the difference is 

extracted from the resources, indicated by: 
 

EP(t)  = Pos(GP(t) – DCP(t))   
 

where the operator Pos for the positive part is defined by Pos(x)  =  (x + |x|)/2, or, alternatively: Pos(x)= x 

if  x≥0  and  0 else.   
 

generated power and dynamic critical power →→→→ recovery power 

When the generated power is lower than the dynamic critical power, this means that not all available 

endurable resources are needed. Therefore it is assumed that a fraction of the generated power is 

contributed as recovery power. It is assumed that this recovery power is proportional to the difference 

between generated power and dynamic critical power, and also proportional to the difference between 

dynamic critical power and basic critical power. The proportion factor is β.  

  RP(t)   =  β GP(t) Pos(DCP(t) – GP(t)) 
��� � �����	

���  

 

extracted power and recovery power →→→→  dynamic critical power 

Extracted power decreases the dynamic critical power. Recovery power increases the dynamic critical 

power, bounded upward by the basic critical power BCP. The adjustment of the dynamic critical power 

after a time interval from t to t+∆t  is assumed proportional to the recovery power (factor γ1), respectively 

the extracted power (factor γ2). 
 

DCP(t+∆t) = DCP(t) + (γ1 RP(t) – γ2 EP(t)) ∆t 
 

The continuous model can be described by a differential equation:  

 


�����	

�   = γ1 RP(t) – γ2 EP(t) 

        = γ1 β GP(t) Pos(DCP(t) – GP(t))  
��� � �����	

���    – γ2 Pos(GP(t) – DCP(t)) 

 

recovery power and generated power →→→→  provided power 

The provided power is the difference between generated power and recovery power. 

 PP(t) = GP(t) – RP(t) 

 

dynamic critical power →→→→  dynamic maximal power 

The notion of maximal power models a limitation on the choice of the generated power. An assumption in 

the model is3: the higher dynamic critical power, the higher the dynamic maximal power. Extracted power 

can only be positive as long as the dynamic critical power is above its minimum value LCP. The 

maximum power possible is assumed to be the dynamic critical power plus a constant C, as long as DCP 

> LCP (no complete exhaustion), and equal to LCP when DCP = LCP (complete exhaustion). 
 

                                                                 
3 An alternative assumption could be that the maximal power is constant. 
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  DMP(t) = C + DCP(t) when DCP > LCP 

 DMP(t) = LCP(t) when DCP = LCP 

    BMP  = C + BCP 
 

Note that before reaching complete exhaustion, maximal power is substantially above the dynamic critical 

power, but upon reaching complete exhaustion, the maximal power drops to the level of the critical 

power, in accordance with the experiments reported, for example, in [4]. The agent model as described 

provides possibilities to make decisions based on the dynamic critical power as an indicator. When it is 

assumed that the dynamic critical power represents the feeling of fatigue, that feeling is in fact the 

indicator. 

3.  An Example Simulation for the Cycling Case 

In this section an example simulation for the cycling case is discussed. First a computational model for 

this case is introduced, as an extension to the more general model described above. Next, the example 

simulation is discussed and evaluated. 

 

3.1  The cycling case 

First a model for a cycling case study is described. In this case study the provided power is used to move 

a bike with a certain speed, depending on the resistance. Mechanical resistance can be taken into account 

in a cycling efficiency factor, for the process of generating actual power to move the bike. Further 

resistance is mainly based on air resistance, and if the road is ascending or descending on gravitation 

resistance. Given these resistances, velocities can be determined, and from them distances. For the sake of 

simplicity no gravitation resistance is considered; air resistance depends on a parameter called air 

resistance coefficient.  
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Fig. 2  Overview of the extension of the model for the cycling case 

 

To obtain a formal model, numerical variables are used: cycling efficiency factor CEF, air resistance 

coefficient ARC, actual cycling power ACP, and velocity v. The actual cycling power is the cycling 

efficiency factor times the provided power: ACP(t) = CEF*PP(t). It is assumed that power exerted for 

movement is used to work against air resistance. For air resistance it is assumed that it is a force 

proportional to the square of velocity, with resistance coefficient ARC. Actual cycling power is the work 

performed per time unit, which is equal to this resistance force times the distance covered divided by the 

time (which is the velocity); therefore ACP(t) = ARC*v(t)
3 or:    

 

    v(t) = ������	
�
�

�
 

 

 

3.2  The example simulation 

Based on the model described in Section 2 and the cycling model described above, a number of 

simulation experiments have been performed, using existing numerical simulation tools. In Figure 3 

results are shown of one of them, with time scale displayed in minutes; the step size ∆t was taken one 

minute. The fixed parameter settings are:  

 

β =  0.02  

γ1 = γ2 =  0.4  

ρ  =  0.8 

BCP  =  400 

LCP = 300  

 C = 100  

 

The story goes as follows. First the cyclist generates power a bit above (403) the dynamic critical power 

(initially 400), riding alone (air resistance coefficient 0.3). As this effort higher than the dynamical critical 

power cannot be sustained, the dynamic critical power slightly decreases: more fatigue. Then she joins a 

group of cyclists that passes by, and hence has less air resistance (coefficient 0.25). The generated power 

is now lower than the dynamic critical power, while the speed is higher. Therefore some recovery takes 

place. After a while in the group she is persuaded that it is her turn to take the front position. Now she has 

higher air resistance again, upon which she generates higher power (but lower speed), which is not 

sustainable; this brings the dynamic critical power down to near 350. After some time she leaves the front 

position to somebody else, and while still being in the group she has less air resistance. However, as the 

dynamic critical power was decreased, the generated power now is still above the dynamic critical power; 

the dynamic critical power continues to decrease and approaches 300: she cannot maintain the speed of 
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this group after her effort at the front. She decides to leave the group and take some recovery time, riding 

on her own, with much lower speed, with more air resistance. The dynamic critical power increases; 

when another group passes by, she joins this group, and has lower air resistance again. Now the generated 

power stays slightly under the dynamic critical power, although this group has a higher speed. A state 

occurs with (almost) constant dynamic critical power.  

 Note that after 30 minutes a critical situation occurred. Taking the front position in the (first) group 

took so much of the resources that after leaving the front position, still the generated power to stay within 

the group was higher than the dynamic critical power. Therefore the cyclist could not recover and instead 

velocity 

air resistance coefficient 

dynamic critical power 

recovery 

generated power  

extraction 

Fig. 3.  Example simulation trace for the cycling case 
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had to extract more and more from the resources, bringing the dynamic critical power further down. If no 

decision would have been made to decrease the generated power, within a very short time the decreasing 

trend of the dynamic critical power would have led to the lower bound LCP of the dynamic critical 

power, after which the maximal generated power would drop to the level of LCP.  

 The decisions of the cyclist have been modelled by the generated power levels over time, set by hand 

(see the lowest graph in Fig. 3). Note that in the second picture in Fig. 2, the areas under the extraction 

graph and the recovery graph are more or less the same, which means that the dynamic critical power 

after 40 minutes is almost equal to the one at the start, which also can be seen in the first graph. 

3.3   Evaluation of characteristic patterns 

A number of expected characteristic patterns were formulated initially. For each of them it is discussed in 

how far they are realised by the model. 
 

Keeping the energy-related parameters of the organism between certain limits (homeostasis). 

The model formalises the perspective that fatigue plays a role in a cognitive or neural mechanism that 

allows an agent to maintain homeostasis: keeping the energy-related parameters of the agent, in particular 

the resources that are present in the body, between certain limits. The model is based on monitoring of the 

generated power at any time point. It performs integration of these monitoring data over time and uses 

this to determine indicators for the power extracted from the resources, the recovery of the resources and 

the amount of resources left. The model indeed realises homeostasis under the assumption that the human 

makes the proper decisions about its generated power. Appropriate decisions about generated power can 

be based on certain indicators provided by the model: the stable power point (assuming that this correlates 

to feeling fatigue), the stable heart rate, or the heart rate itself. Decision criteria for generated power can 

be simple: keeping such indicators constant to achieve a steady state, or keeping the indicators between 

certain bounds, thus avoiding running out of resources. 
 

The effect of differences in the resistance, for example, based on riding behind somebody else, in order to 

reduce air resistance. 

These effects are also realised in the model. In the example simulation it is shown how the cyclist 

provides a higher speed (for lower generated power) when joining a group. 
 

Irregular effort is less efficient than regular effort (for reaching a distance in a time interval) 

This has been shown by multiple simulations of the model. In particular, the fact that air resistance is not 

linear with speed makes that irregular effort is less economical than regular effort. 

 

4.   Formal Analysis  

A main question addressed in the formal analysis is whether the introduced agent model allows the person 

to monitor and control its resources in a proper manner. For some lemmas and proof sketches, see 

Appendix A. 
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Maintaining a steady state 

Enduration sporters often try to maintain what they call a steady state: a state in which the main 

parameters are kept constant. In particular, it can be analysed how DCP(t) can be kept constant. =  

An analysis of this is summarised in the following theorem expressing how a steady state for DCP(t) can 

be characterised.  

Theorem 1  (Maintaining a Steady State) 

For any time point t, when GP(t) > 0, the following are equivalent: 

  (i)    

�����	


�   = 0   (dynamic critical power equilibrium) 

 (ii)   Either  GP(t) = DCP(t)  or  GP(t) ≤ DCP(t) = BCP  

How the indicator relates to the resources 

In Proposition 1 it is investigated under which conditions the dynamic critical power is a proper indicator 

for the basic resources. It turns out that this is the case under a certain condition on the parameters; the 

same condition implies that the resource level is a linear function of the dynamic critical power. 

Proposition 1  (Indicating Basic Resource Levels) 

The following are equivalent: 

 (i) The dynamic critical power is a proper indicator for basic resources:  

∀t  [ DCP(t) = BCP  ⇔  R(t) = BR ]     

 (ii)  γ1 /α1   = γ2 /α2 

(iii)  For all time points t1 and t2 it holds: 

α1 (DCP(t2) � DCP(t1))  =  γ1 (R(t2)� R(t1)) 

(iv) The expression γ1 R(t) � α1 DCP(t) is invariant over time: for all time points t1 and t2 it holds: 

γ1 R(t2)� α1 DCP(t2) =  γ1R(t1) � α1 DCP(t1)   

 (v) The dynamic critical power is a linear function of the resource level: for a given point t0, for all time 

points t it holds: 

α1 DCP(t) = γ1 R(t) � α1 DCP(t0)   -  γ1R(t0)  

In Proposition 2 it is investigated under which conditions the dynamic critical power is a proper indicator 

for running out of resources. This is the case under a certain further condition on the parameters; this 

condition implies that the resource level is proportional to the dynamic critical power, as expressed in 

Theorem 2. Below it is assumed that at the initial time point t0 the resources BR(t0) are the basic resources 

BR and the dynamic critical power DCP(t0) is the basic critical power BCP. 

Proposition 2 (Indicating Running Out of Resources) 

Suppose γ1 /α1 = γ2 /α2 and let η = BCP/BR. Then the following are equivalent: 

   (i)  The dynamic critical power is a proper indicator for running out of resources:  

∀t  [ DCP(t) = LCP   ⇔  R(t) = 0 ]     

  (ii) At any point of time the dynamic critical power as an indicator faithfully (proportionally) reflects the 

resources left: 

(DCP(t) – LCP) /  R(t)   is constant over time 

 (iii)  γ1 /α1  = γ2 /α2  = η  
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Theorem 2 (Proper Indicator for Resources) 

In case γ1/α1 = γ2/α2 = η, with η = BCP/BR, the following hold: 

a) The dynamic critical power is a proper general indicator for the resource level. More specifically, 

DCP(t) is proportional to R(t) over time with η  as factor: 

∀t    DCP(t) = LCP + η  R(t)    

b) Suppose for some lower bound L>LCP the basic power power DCP(t) is always kept above L i.e., ∀t 

DCP(t) ≥ L, then the person will never run out of resources. 

c) When the person has nonzero resources and DCP(t) is kept constant, then the person will never run out 

of resources. 
 

In this theorem a) and b) immediately follow from Proposition 2. Concerning c), when the person keeps 

DCP(t) at a constant value above LCP, then b) applies. Therefore the person can only run out of resources 

when DCP(t) = LCP, but as DCP(t) is kept constant, then by Proposition 2 there already were no resources, 

which is not the case. 
 

Corollary 

In case γ1/α1 = γ2/α2 = η, with η = BCP/BR, the resource level R(t) over time satisfies the following 

differential equation 



��	

�  �   α1 β GP(t) Pos(η R(t)+LCP – GP(t))  

�
 � 
��	
�
     – α2 Pos(GP(t) – η R(t)- LCP) 

 

This corollary follows from the differential equation 



��	

�  �   α1 RP(t) – α2 EP(t) 

for R(t) by expressing EP(t) and RP(t) in GP(t) and DCP(t) and then, according to Theorem 2, replacing 

DCP(t) by LCP + η R(t). An alternative derivation is by taking the differential equation for DCP(t) and 

replacing DCP(t) by LCP + η R(t). 

Notice that the parameters α1,α2 are physiological parameters related to mechanisms for extraction 

from and recovery of resources. In contrast the parameters γ1, γ2 are neural or cognitive parameters, 

assumed to be set by the brain. To obtain a faithful indicator system, the relationships between the 

physiological and neural parameters as expressed in Theorem 2 are needed. It is assumed that within the 

brain the neural parameters stand in these relationships to the physiological parameters.  

5.   Relation to Heart Rate 

In exercising and sport practice sometimes not (only) the feeling of fatigue, but (also) the heart rate is 

used to monitor the extent of exhaustion; here often some estimations are used, assuming a linear relation 

of heart rate to generated power above the critical power point. For example, if it is assumed that the heart 

rate for generated power at the level of the critical power is a constant BHR, and the maximal heart rate is 

a constant MHR, then for cases where GP(t) is at least DCP(t) the heart rate can be estimated as:  

 

 HR(t) =  BHR + (MHR–BHR).(GP(t)–DCP(t))/(DMP(t)–DCP(t)) 
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           = BHR + (MHR–BHR)/(GP(t)–DCP(t))/C = BHR + γ (GP(t)–DCP(t)) 
 

with γ = (MHR–BHR)/C. From this relation it follows that 


�
��	

�    =  γ   


����	

�   –  γ  


�����	

�    

Therefore in case of generated power in equilibrium (for example, constant), the following can be 

derived. 

Theorem 3 (Heart Rate as Indicator) 

a)  If GP(t)≥ DCP(t) and it holds  

����	

�   = 0  (generated power equilibrium) 

then the following are equivalent: 
 

 (i)    

�
��	

�   =  0                  (heart rate equilibrium) 

(ii)    

�����	


�   =  0               (critical power equilibrium) 

b)  When both the generated power and heart rate are constant, then no running out of resources will 

occur. 

 

6.  On Validation of the Model 

The agent model may be applied as part of an intelligent ambient agent device interacting with humans in 

physical exercise or sport, or in other demanding circumstances. Supporting devices mostly concentrate 

on the sensoring and usually do not possess much intelligence to perform analysis of sensor data. 

Incorporating a dynamical model may provide a basis for more intelligent ambient agents in relation to 

such devices. It is in this direction that some initial validation of the model has taken place. First it is 

discussed how the model was used in projects of first year undergraduate students in AI, addressing the 

design and use of an ambient agent to guide cycling training. Next it is discussed how the presented 

model was integrated in a model for an operator’s functional state in demanding tasks, and how this more 

complex model was validated. 

 

 

6.1  Validation of the model by experiments in guiding cycling training 

In the final project for first year undergraduate students in the field of Human-oriented Ambient 

Intelligence (or Human Ambience), the domain of physical endurance training for cyclists is addressed. 

For long distance cyclists it is a challenge to train in an optimal fashion. The goal of training is to shift the 

basic critical power point upwards such that the person can deliver more power without having to pay 

back later (e.g., [9], [16]). This can be accomplished by conducting training in intervals with a power 

level above the critical power point (high effort intervals), alternating with intervals with power level 

below the critical point (low effort intervals). The goal of the project is to design and use an ambient 

agent guiding the cyclists within training experiments that are to be set up. Equipment is used to measure 
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and display the provided power and the heart rate, and the model presented in the current paper is used to 

estimate the dynamical critical power point on the fly. Based on this estimated value, per interval the 

ambient agent gives advice on the power to be provided (for low effort intervals below the critical power 

point, and for high effort intervals above it). 

Conducting this project (scheduled in four weeks time) requires substantial effort from students, 

among which setting up an appropriate series of  experiments and identifying appropriate parameter 

values in the model. The experiences overall are positive; the project as set up is a permanent subject in 

the Human Ambience curriculum. Experiences for the project in June 2009 as formulated by the four 

different student groups (of two or three persons each) are as follows: 

 

• During the exercising it turned out that the model gave a rather accurate image of the energy stores of the 

cyclist.  Each time that the cyclist was about to stop cycling due to fatigue, the model gave a warning that 

he could take it more easy. The cyclist noticed that everytime when he was close to exhaustion, the model 

indicated that he could slow down the cycling. So, in this respect the model seemed well-adapted to him. 

• During the training the cyclist could accommodate wel to the model. The training was not too difficult or 

too easy.  It never occurred that the cyclist was so exhausted that he could not follow the desired provided 

power.  The heart rate was never above the bound of 160. The cyclist found training with the model a nice 

experience. 

• The model took care that there was enough rest between the intervals,  due to which the cyclist could not 

become exhausted and was cycling in the neighbourhood of the critical power point. In this manner it still 

was an intensive training.  
• At the end of the training the cyclict was not really tired. He felt that effort had been spent, but still was 

able to spend extra effort. It turned out that according to the model the critical power point had decreased 

much more than was the case in reality.  

 

From these evaluations it turned out that in three of the four groups the students were able to find settings 

for which they experienced realistic advices. In one of the four groups it was reported that they 

experienced that the model indicated too low effort. A crucial issue here is that the model contains a 

number of parameters, and most of these are person-specific, and for one person may even be affected by 

training. Estimating realistic values for these parameters for such a dynamical model is a real challenge, 

as almost no direct objective measurements are possible. What is shown in the reports above is a more 

subjective perspective, taking into account in how far the cyclist feels the level of fatigue the model 

assumes. But even when such a feedback is used, and deviations are noticed, it is far from trivial how to 

adjust values of parameters in such a manner that the results become better. Nevertheless, it seems that 

most of the student groups were able to find satisfactory settings. This issue of parameter estimation also 

plays a main role in the validation discussed in Section 6.2. 

 

6.2  Validation of the model in experiments with a functional state model 

The model presented in the current paper has been applied in a more cognitive task context as well. More 

specifically, it has been the inspiration for a part of the functional state model of an operator performing 

demanding tasks described in [1]. This operator function state (OFS) model, depicted in Figure 4, also 

includes additional elements such as effort motivation and experienced work pressure. The shaded area is 

what corresponds to the model presented in the current paper.  
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A first test of the OFS-model against empirical data in a simulation-based training environment4 has 

shown preliminary results which were positive; see [2]. In the validation study 31 persons participated (18 

males, 13 females, of which 25 students). They ranged in age from 17 to 57 years with a mean age of 26 

years. The experiment took approximately 1 hour for which participants received a voucher of 10 euro. In 

addition, there was a voucher of 100 euro for the one with the best score. 

 

 

 

Fig. 4.  Overview of the OFS-model 

 

In the experiment the main task is a task where the goal is to get as many points as possible by 

eliminating hostile objects. Objects (friends and enemies) are falling down from different locations at 

different speeds. The purpose is to shoot the enemies before they hit the ground, and not shoot the friends. 

Shooting at a missile is done by a mouse click at a specific location; the missile would then explode 

exactly at the location of the mouse click. The speed with which the missile reaches this location is 79.6 

pixels per second. When an object is within a radius of 50 pixels of the explosion, the object is destroyed. 

The number of points a participant receives for hitting an enemy is proportional to the proximity of the 

explosion. When a participant shoots a friend or when an enemy reaches the bottom of the screen, points 

are lost. When a friendly object reaches the bottom of the screen points are gained. Next to each of the 

objects, a calculation is written on the screen, representating an identification task. A correct calculation 

indicates that the object is friendly. An incorrect calculation indicates that the object is an enemy. 

In [2] it is reported how automated parameter estimation for the functional state model was used two 

different methods: a gradient-based approach and a simulated annealing approach based on probabilistic 

search. To perform gradient-based parameter estimation, a method based on the maximum likelihood 

principle has been applied [15], based on a likelihood function of the measurement data and the unknown 

parameters. This function is essentially the probability density function of the measurement data given the 

                                                                 
4 For a demo of a version of this simulation-based training environment, see 

http://www.forcevisionlab.nl/demo/MissileCommandWebStarter.html 
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parameter values. For more details, see [2]. The Simulated Annealing method used a probabilistic 

technique to find a parameter setting. In this method a random parameter setting is chosen as the best 

available parameter setting at the start. Then a displacement is introduced into these settings to generate a 

neighbour of the current parameter settings in the search space. If this neighbour is found to provide a 

more appropriate representation of the observed human behavior, then it is marked as the best known 

parameter setting; otherwise a new neighbor is selected to evaluate its appropriateness. The displacement 

in the parameter settings depends on the temperature, in case the temperature is higher, the steps will 

become larger. Over time the temperature goes down, thus obtaining a form of convergence. For more 

details about this form of parameter estimation, see [2]. 

The results obtained for the parameter adaptation overall were satisfactory. However, a number of 

parameters (35% in average) were evaluated as less accurate, and, therefore, less reliable. Partially this 

can be explained by a large overall number of parameters being estimated. Most of the less precise 

parameters have a weak relation to the measured output (e.g., noise sensitivity). Furthermore, since the 

empirical data were collected based on irregular events (i.e., actions of humans), some intervals contained 

the amount of information insufficient for estimation. Despite this, as shown in [2], the models with 

estimated parameters demonstrated good predictive capabilities in the cross-validation, which is a strong 

indicator of the model validity. 

7.   Discussion 

In this paper a virtual human agent model was introduced that addresses the notion of critical power 

which plays a central role in scientific and practical literature on exercising and sport. It performs 

integration of monitoring data on generated power over time and uses this to determine in a dynamic 

manner the critical power as an indicator for the amount of stored resources left. The model realises 

homeostasis under the assumption that the human uses this indicator to make the proper decisions about 

its generated power. Decision criteria for generated power are, for example, keeping this indicator 

constant (achieving a steady state), or keeping the indicator between certain bounds, thus avoiding 

running out of resources. It has also been discussed how a person’s heart rate can be related to the 

dynamic critical power and used as an indicator. To keep the complexity of the model limited, the 

following assumptions were made. 

• The extraction of power from the resources and recovery are without loss: all power invested in 

recovery adds to the stable power point, and all extraction subtracts from the stable power point. 

This implies that during a period for which the stable power point is the same at the start and at 

the end, the sum of all extracted power is equal to the sum of all invested recovery power. 

• The internal decision mechanism for the cyclist is left out of consideration.  

• More specific aspects such as oxygen uptake, food intake, and lactic acid production have been 

left out of consideration. 

For each of these assumptions possible extensions of the model can be made to loosen them. 

The model has been used to perform a number of simulations, one of which was presented above. 

Moreover, a formal analysis has been undertaken that shows under which conditions the critical power 
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indicator indeed correlates to what it is expected to indicate, and that some strategies often used are 

guaranteed to work out well. A first test of the model against empirical data has shown preliminary results 

which were positive.  

 The agent model may be useful in a number of application areas for intelligent agents. In the first 

place it may by useful as a basis for virtual characters with a realistic appearance (which, for example, 

may show a heart rate depending on efforts made). Furthermore, the agent model may be applied as part 

of an intelligent ambient agent device interacting with humans in physical exercise or sport, or in other 

demanding circumstances. Supporting devices mostly they concentrate on the sensoring and do not 

possess much intelligence to perform analysis of sensor data. Incorporating a dynamical model may 

provide a basis for more intelligent ambient agents. As an example of this development, some of the ideas 

reported in the current paper already were the inspiration for a part of the functional state model 

described in [1]. Moreover, the model may be used for social simulations, to investigate how persons can 

cooperate in order to manage their resources more economically. For example, in cycling sports, based on 

riding behind each other sophisticated cooperation strategies between competing teams are followed, 

including negotiation processes. Finally, more specifically for the cycling case, when also ascending and 

descending roads are taken into account, in addition to air resistance, also gravitation resistance can be 

built in. Gravitation resistance is independent of velocity, but depends on the steepness s of the road 

(taken as the tangens tan(α) with α the angle), and is proportional to the combined mass m of the cyclist 

and the bike. An approximation for not too large s  is that for ascending roads gravitation resistance 

contributed to the total resistance is also proportional to s, with the gravitation constant g as the 

proportion factor: gms (for larger s the formula gms / √(1 + s
2
) can be taken). For descending roads a 

negative contribution to the resistance (proportional to ms / √(1 + s
2
)  with proportion factor g) can be 

taken into account. In principle this can lead to a situation where the gravitation alone is enough to 

compensate the air resistance, or even more. One of the questions that can be addressed is the following: 

suppose you decrease the mass m by buying a more expensive, lighter bike (10 kg instead of 16 kg), and 

by reducing your own weight (from 74 to 70 kg), how much faster can you climb an ascending road of 

say 10%  using the same power? 
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Appendix A   Some Further Details of the Formal Analysis 
 

This Appendix gives some more details such as the lemma and proof sketches of this lemma and the 

propositions. 

 

Theorem 1  (Maintaining a Steady State) 

For any time point t, when GP(t) > 0, the following are equivalent: 

  (i)    

�����	


�   = 0   (dynamic critical power equilibrium) 

 (ii)   Either  GP(t) = DCP(t)  or  GP(t) ≤ DCP(t) = BCP  

 

How the indicator relates to the resources 

A next issues to address in the analysis is the question how the dynamic critical power relates to the real 

resources. The level of resources R(t) is assumed to be based on losses per time unit that are proportional 

to the extracted power (factor α2) and gains proportional to the recovery power (factor α1):  



��	

�  �  α1 RP(t) – α2 EP(t) 

In a different form this can be expressed by. 

R(t2)  =  R(t1)  + α1  � ����	����
��    α2 � ����	����

��  

Recall that by BR the basic (additional) resources are denoted (in the literature often called W'). When at 

time point t0 the resources are the basic resources, then the model can be described as:  

R(t)  =  BR  + α1  � ����	���
��   � α2 � ����	���

��  

To analyse the relationships between the indicators and the resource level, two special extreme cases are 

considered first: the case that the values are equal to the basic values, as in a situation at rest (addressed in 

Proposition 1), and the case that the resource level is 0, as in a situation with  completely exhausted 

resources (addressed in Proposition 2). For proper functioning in both special cases certain conditions on 

the parameters are identified in the two propositions. These conditions also turn out sufficient for proper 

functioning for the general case, as  covered by Theorem 2. 

In Proposition 1 it is investigated under which conditions the dynamic critical power is a proper 

indicator for the basic resources. It turns out that this is the case under a certain condition on the 

parameters; the same condition implies that the resource level is a linear function of the dynamic critical 
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power. The proposition makes use of Lemma 1 which related the dynamic critical power power to the 

resource levels. 

 

Lemma 1   (Critical Power vs Resource Level) 

For all time points t1 and t2 it holds: 

γ1 (R(t2)� R(t1)) =  α1 (DCP(t2) � DCP(t1))  + (α1γ2  � γ1α2) � ����	����
��  

 

Proof of Lemma 1  Multiplying  
 

R(t2)  =  R(t1)  +α1  � ����	����
��   �α2 � ����	����

��  

DCP(t2)  =  DCP(t1)  + γ1 � ����	����
��   � γ2  � ����	����

��  
 

by γ1 respectively α1 provides: 
 

γ1 R(t2) =   γ1 R(t1)  + γ1α1  � ����	����
��   � γ1α2 � ����	����

��  

α1 DCP(t2) =  α1DCP(t1) + α1γ1 � ����	����
��  – α1γ2  � ����	����

��  
 

From subtracting, the statement of Lemma 1 follows.          � 

 

Proposition 1  (Indicating Basic Resource Levels) 

The following are equivalent: 

 (i) The dynamic critical power is a proper indicator for basic resources:  

∀t  [ DCP(t) = BCP  ⇔  R(t) = BR ]     

 (ii)  γ1 /α1   = γ2 /α2 

(iii)  For all time points t1 and t2 it holds: 

α1 (DCP(t2) � DCP(t1))  =  γ1 (R(t2)� R(t1)) 

(iv) The expression γ1 R(t) � α1 DCP(t) is invariant over time: for all time points t1 and t2 it holds: 

γ1 R(t2)� α1 DCP(t2) =  γ1R(t1) � α1 DCP(t1)   

 (v) The dynamic critical power is a linear function of the resource level: for a given point t0, for all time 

points t it holds: 

α1 DCP(t) = γ1 R(t) � α1 DCP(t0)   -  γ1R(t0)  

 

Proof of Proposition 1 (i) ⇒ (ii)  Suppose for two time points t1 and t2 it holds: 
 

R(t2) = R(t1) = BR  and  DCP(t2)=  DCP(t1) = BCP 
 

whereas between these time points resources have been extracted, after which full recovery took place, 

i.e.,  
  

� ����	����
��  ≠ 0 

 

By applying Lemma 1 it follows that  α1γ2  � γ1α2  = 0. 

(ii) ⇒ (i)  This follows from Lemma 1, applied to the time interval between initial time point t0 and t. 

(ii) ⇔ (iii) ⇔ (iv) ⇔ (v)  This also follows from Lemma 1.        � 
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In Proposition 2 it is investigated under which conditions the dynamic critical power is a proper indicator 

for running out of resources. This is the case under a certain further condition on the parameters; this 

condition implies that the resource level is proportional to the dynamic critical power, as expressed in 

Theorem 2. Below it is assumed that at the initial time point t0 the resources BR(t0) are the basic resources 

BR and the dynamic critical power DCP(t0) is the basic critical power BCP. 

Proposition 2 (Indicating Running Out of Resources) 

Suppose γ1 /α1 = γ2 /α2 and let η = BCP/BR. Then the following are equivalent: 

   (i)  The dynamic critical power is a proper indicator for running out of resources:  

∀t  [ DCP(t) = LCP   ⇔  R(t) = 0 ]     

  (ii) At any point of time the dynamic critical power as an indicator faithfully (proportionally) reflects the 

resources left: 

(DCP(t) – LCP) /  R(t)   is constant over time 

 (iii)  γ1 /α1  = γ2 /α2  = η  

 

Proof of Proposition 2  (i) ⇒ (iii) Apply Proposition 1 (iii) to a time interval from the initial time point t0 

and a time point t, to obtain that the expression α1 DCP(t) � γ1  R(t)  is invariant over time. From this it 

follows that for all t 
 

α1 DCP(t) � γ1  R(t)  = c 

with 

c =  α1 DCP(t0) � γ1  R(t0)  =  α1 BCP - γ1 BR 
 

From this it follows that 
 

 [∀t  DCP(t) = LCP  ⇔  R(t) = 0 ]  ⇔  c = α1 LCP  ⇔ α1 (BCP-LCP) =  γ1 BR  

 ⇔  γ1/α1  = η  ⇔  ∀t    DCP(t) - LCP = η R(t)    
 

So under these conditions the dynamic critical power – LCP and the resource level are proportional over 

time with factor γ1/α1  =  γ2/α2  =  η. This proves Proposition 2. � 

 


