
Compositional Verification of Multi-Agent Systems
in Temporal Multi-Epistemic Logic

Joeri Engelfriet, Catholijn M. Jonker, Jan Treur

Vrije Universiteit Amsterdam
Department of Mathematics and Computer Science, Artificial Intelligence Group

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
URL: http://www.cs.vu.nl/~{joeri,jonker,treur}, Email: {joeri,jonker,treur}@cs.vu.nl

Abstract
Compositional verification aims at managing the complexity of the
verification process by exploiting compositionality of the system
architecture. In this paper we explore the use of a temporal epistemic logic to
formalize the process of verification of compositional multi-agent systems.
The specification of a system, its properties and their proofs are of a
compositional nature, and are formalized within a compositional temporal
logic: Temporal Multi-Epistemic Logic. It is shown that compositional proofs
are valid under certain conditions. Finally, the possibility of incorporating
default persistence of information in a system, is explored.

1 Introduction

It is a recent trend in the literature on verification to study the use of compositionality
and abstraction to structure the process of verification; for example, see [1], [8], [18].
In [19] a compositional verification method was introduced for (formal specifications
of) multi-agent systems. In that paper, properties to be verified were formalized
semantically in terms of temporal epistemic models, and proofs were made by hand,
like mathematicians do. The current paper focuses on the requirements for the choice
and use of a suitable logic within which both the properties to be verified and their
proofs can be formalized. For the particular application of the logic the following
requirements for the logic itself and for the use of the logic are of importance:
• compositional structure: properties and proofs can be structured in a compositional

manner, in accordance with the compositional structure of the system design.
• dynamics and time: dynamic properties can be expressed, reasoning and induction

over time is possible.
• incomplete information states can be expressed.
• transparency: the proof system and the semantics are transparent and not

unnecessarily complicated.
In the following sections, Temporal Multi-Epistemic Logic (TMEL) is introduced and
shown to be a suitable logic; this logic is a generalization of the Temporal Epistemic
Logic TEL introduced in [10], [11]; see also [9], [12]. The generalization is made by
adding multiple epistemic operators according to the hierarchical compositional
structure of the system to be verified. This generalization was inspired by [17], were
multiple modal operators were introduced (in their case without hierarchical
compositional structure) to verify multi-agent systems specified in Concurrent
METATEM. By choosing temporal epistemic logic as a point of departure, a choice
was made for a discrete and linear time structure and for time to be global.

The structure of the paper is as follows. In Section 2 the compositional verification
method for multi-agent systems is briefly described and an example is given. In
Section 3 the temporal multi-epistemic logic is defined. Section 4 discusses
compositional temporal theories, Section 5 compositional proof structures, and

Section 6 focuses on how to treat non-classical semantics related to default persistence
of information.

2 Compositional Verification

The purpose of verification is to prove that, under a certain set of assumptions, a
system satisfies a certain set of properties, for example the design requirements. In the
approach introduced in [19], this is done by mathematical proof (i.e., a proof in the
form mathematicians are accustomed to), which proves that the specification of the
system together with the assumptions implies the properties that the system needs to
fulfill. A compositional multi-agent system can be viewed and specified at different
levels of abstraction. Viewed from the top level, denoted by L0, the complete multi-
agent system is one component S, where internal information and processes are left
unspecified at this level of abstraction (information and process hiding). At the next
level of abstraction, L1, the internal structure of the system is given in terms of its
components (as an example, see the agents A and B and the external world EW in Figure
1), but the details of the components are hidden. At the next lower level of abstraction,
L2, (for example) the agent A is specified as a composition of sub-components (see
Figure 2). Some components may not be composed of sub-components; such
components are called primitive. The example has been designed using the
compositional development method DESIRE, see [6]. This is a method to develop
multi-agent systems according to a compositional structure. The approach to
compositional verification addressed in this paper can be used for multi-agent systems
designed on the basis of DESIRE, but also for systems designed on the basis of any
other method using compositionality as a design principle.

Compositional verification takes into account this compositional structure during
the verification process. Properties of a component are only to be expressed using the
language specified for the component’s interfaces (and not the languages specified for
sub-components or super-components); this restricts the space of the properties that
can be formulated drastically. Verification of a composed component is done using
properties of the sub-components it embeds and the component’s specification (which
specifies how it is composed of its sub-components). The assumptions on its sub-
components under which the component functions properly, are properties to be
proven for these sub-components. This implies that properties at different levels of
abstraction are involved in the verification process. These properties have hierarchical
logical relations in the sense that at each level, given the component’s specification, a
property is logically implied by (a conjunction of) the lower level properties that relate
to it in the hierarchy (see Figure 3); of course, also logical relations between properties
within one abstraction level may exist.

The example multi-agent model used in this paper is composed of two co-operative
information gathering agents, A and B, and a component EW representing the external
world (see Figure 1). Each of the agents is able to acquire partial information about the
external world (by observation). Each agent’s own observations are insufficient to draw
conclusions of a desired type, but the combined information of both agents is
sufficient. Therefore communication is required to be able to draw conclusions. The
agents can communicate their own observation results and requests for observation
information of the other agent. This quite common situation is simplified to the
following materialized form. The world situation consists of an object that has to be
classified. One agent can only observe the bottom view of the object (e.g., a circle),
the other agent the side view (e.g., a square). By exchanging and combining
observation information they are able to classify the object (e.g., a cylinder, expressed
by the atom object_type(cylinder)).

External
World

Agent B

Agent A

Fig. 1. The example Multi-Agent System for Co-operative Information Gathering

Communication from the agent A to B takes place in the following manner:

• the agent A generates at its output interface a statement of the form:

to_be_communicated_to(<type>, <atom>, <sign>, B)

• the information is transferred to B; thereby it translated into

communicated_by(<type>, <atom>, <sign>, A)

In the example <type> can be filled with a label request or world_info, <atom> is an atom
expressing information on the world, and <sign>, is one of pos or neg, to indicate truth or
falsity.

Interaction between agent A and the world takes place as follows:

• the agent A generates at its output interface a statement of the form:

to_be_observed(<atom>)

• the information is transferred to EW; thereby it is translated into

to_be_observed_by(<atom>, A)

• the external world EW generates at its output interface a statement of the
form:

observation_result_for(<atom>, <sign>, A)

• the information is transferred to A; thereby it is translated into

observation_result(<atom>, <sign>)

Part of the output of an agent are conclusions about the classification of the object of
the form object_type(ot); these are transferred to the output of the system.

To be able to perform its tasks, each agent is composed of four components, see
Figure 2: three for generic agent tasks (world interaction management, or WIM for short,
which reasons about the interaction with the outside world, agent interaction management,

or AIM, which reasons about the interaction with other agents, and own process control, or
OPC, which reasons about the control of the agent itself; in this example it determines
the agent characteristics, for example whether the agent is pro-active or reactive), and
one for an agent specific task (object classification, or OC). Since the two agents have a
similar architecture, the notation A.WIM is used, for example, to denote component WIM

of agent A. As an example of how this agent model works, information describing
communication by the agent B to the agent A is transferred to the (input interface of

the) component AIM within A (in the form of an atom communicated_by(<type>, <atom>,

<sign>, A)). In the component AIM the communicated information is identified (by a
meta-reasoning process that interprets the communication) and at the output interface
of AIM the atom new_world_info(<atom>, <sign>) is generated. From this output interface the
information is transferred to the component OC, where it is stored as object level
information in the form <atom> or not <atom>, depending on whether <sign> is pos or neg. A
similar process takes place when observation information is received by the agent, this
time through the component WIM.

Object
Classification

(AST)

Agent
Interaction

Management

 World
Interaction

Management

Own
Proces
Control

Fig. 2. Composition of an agent

This example multi-agent system has been verified for all 64 cases where each of
the two agents may be pro-active or reactive with respect to observation,
communication and/or reasoning in any combination (see [19]; in Figure 3 a small
part of the properties and logical relations found is depicted). The example used to
illustrate the formalization in the current paper is restricted to a pro-active agent A and
a reactive agent B.

The compositional verification method can be formulated informally as follows (for
a formalization, see Section 5 below):

A. Verifying one abstraction level against the other
For each abstraction level the following procedure is followed:
1. Determine which properties are of interest for the (higher level) component D;

these properties can be expressed only in terms of the vocabulary defined for the
interfaces of D.

2. Determine assumed properties for the lower level components (expressed in terms
of their interface languages) that guarantee D’s properties.

3. Prove D’s properties on the basis of the properties of its sub-components, using
the system specification that defines how D is composed of its sub-components.

B. Verifying a primitive component
For primitive knowledge-based components a number of verification techniques exist
in the literature, see for example [20].

S is successful

or

conclusion
successfulness, A

effective interaction
from A to S

conclusion
successfulness, B

effective interaction from
B to S

A provides output information of S B provides output information of S

& def & def

- -

conclusion successfulness, A

information saturation, A

communicated info saturation, Aobservation info saturation, A

conclusion pro-activeness, A

&

&

observation
pro-activeness, A

observation
effectiveness, A

& &

request effectiveness, Arequest
pro-activeness, A

effective interaction
from A to EW

reactive observation
results provision, EW

effective interaction
from EW to A

effective interaction
from A to B

reactive information
provision, B

effective interaction
from B to A

& & & &

Fig. 3. Logical relations between a number of properties at different levels of abstraction
for the example multi-agent model

C. The overall verification process
To verify the complete system:
1. Determine the properties are that are desired for the whole system.
2. Apply the above procedure A iteratively.

In the iteration the desired properties of abstraction level Li are either:
• those determined in step 1, if i = 0, or
• the assumptions made for the higher level Li-1, if i > 0

3. Verify the primitive components according to B.

The results of verification are:

• Properties and assumptions at the different abstraction levels.
• Logical relations between the properties of different process abstraction levels (cf.

Figure 3).

Note that both static and dynamic properties and connections between them are
covered. Furthermore, process and information hiding limits the complexity of the
verification per abstraction level.

3 Temporal Multi-Epistemic Logic

In this section we introduce a logic that can be used to formalize the dynamic aspects
of reasoning and the incomplete information states that play a role: temporal multi-
epistemic logic. Our approach is in line with what in [15] is called temporalizing a
given logic; in our case the given logic is a multi-modal epistemic logic based on the
component hierarchy of a multi-agent system to be verified. As the base language in
which the multi-agent system can express its knowledge and conclusions, we will take
a propositional language. Let COMP be a given set of component names with a
hierarchical relation sub between them, defining a finite tree structure. The following
definition formalizes information states and a temporalization of these states, using
linear discrete time with a starting point. For convenience we will take the set of
natural numbers NN = {0, 1, 2, ...} as the time frame.

Definition 3.1 (compositional temporal epistemic model)
a) A signature � ���

is an ordered sequence of (propositional) atom names. A
compositional epistemic state, or compositional information state, based on � ���

, is a
collection (Min X , Mint X , MoutX)X � ��� COMP of triples of sets Min X , Mint X , Mout X of
propositional models of signature � ���

 for each of the components X in COMP.
The set of compositional information states based on � ���

 is denoted by CIS(
� ���

), or shortly
CIS.
b) Let � ���

be a signature. A (propositional) compositional temporal epistemic model
M of signature � ���

is a mapping M: NN � ��� CIS(
� ���

). We will sometimes use the notation
(M t)t � ��� NN for M .

In the language we introduce modal operators CinX , CintX , CoutX for each component X
in COMP, expressing the input, internal, and output knowledge of the component. We
call these operators the epistemic operators. Modal formulae can be evaluated in
compositional epistemic states at any point in time: a modal formula CoutX � ��� (where � ���
is propositional) is true in a compositional epistemic state M , denoted M � ��� CoutX � ��� , if
m � ��� � ��� for all m � ��� MoutX (and similarly for CinX and Cint X). The operators CinX, CintX ,
CoutX are very similar to the modal K operator, so for instance the formula � ��� CoutX

� ��� � ��� � ��� CoutX � ��� � ��� denotes that � ��� is unknown in the output state of component X (i.e.,
neither known to be true nor known to be false).

We will need a language to express changes over time. To this end in [10], [11] the
temporal (uni-modal) epistemic language TEL and its semantics were introduced. To
obtain a compositional temporal logic, this logic TEL is generalized in the following
manner (the result is called Temporal Multi-Epistemic Logic, or TMEL). Formulae of
the form CinX � ��� , Cint X � ��� and CoutX � ��� play the role of atomic propositions. The
temporal operators X, Y, F and G are used. Intuitively, the temporal formula F � ��� is true
at time t means that viewed from time point t, the formula � ��� will be true at some time
in the future (in some future information state), G� ��� is true at time t means that viewed
from time point t, the formula � ��� will be true at all time points in the future, and X � ��� is
true at time t means that � ��� will be true in the next information state. The operator Y
means “true at the previous time point”. Some examples of temporal formulae will be
given in the next section. For more details of TEL, see [10], [11]. For temporal
epistemic logic different entailment relations can be used, both classical and non-
classical; see e.g., [9], [12].

4 Compositional Temporal Theories

In order to embed the compositional verification proofs in temporal multi-epistemic
logic, a multi-agent system specification is translated into a temporal theory. As a
requirement on this translation we impose that the compositional structure is
preserved. This means that instead of one global temporal theory, each component in
the hierarchy is translated into a separate temporal theory for this component.
Therefore, we introduce collections of sub-languages and collections of temporal
theories that are labelled by the set of components COMP. A language for a component
defines the terms in which its internal information, as well as the information in its
input and output interface can be expressed.

Definition 4.1 (language composition)
Let COMP be a set of component names with a binary sub-component relation sub.
Primitive components are elements D � COMP for which no C � COMP exists with
C sub D. The other components are called composed.
A language composition is a collection of sub-languages (LC)C � ��� COMP, where in each
language LC only the epistemic operators CinC, CintC and CoutC are used (and no
epistemic operators for other components).
The collection of interface languages for the language composition (LC)C � ��� COMP is the
collection (L if

C)C � ��� COMP where for any component D, the language L if
D is the

restriction of LD to formulae in which the epistemic operator CintD does not occur.
The collection of bridge languages for the language composition (LC)C � ��� COMP is the
collection (L+

C)C � ��� COMP defined for any component D by
L+

D = LD � �������� C sub D L if
C

The cumulative language composition for the language composition (LC)C � ��� COMP is the
collection
(L* C)C � ��� COMP defined for any component D by

L* D = LD � �������� C sub D L* C if D is a composed component
L* D = LD if D is a primitive component

Example 4.2 (language composition)
We give part of the languages of some of the components of the example multi-agent
system (for ot varying over the object types, r over shapes, X is the agent A or B, sign
is pos or neg):

LS CoutS object_type(ot)

LA CoutA � ����� ���
	 			
� ���� ��� 	 			 observed(view(A, r)),

CoutA � ����� ����	 			�� ���� ��� 	 			 communicated_to(request, view(B, r), pos, B)
CinA observation_result(view(A, r), pos)
CinA communicated_by(world_info, view(B, r), pos, B)

LEW CinEW � ����� ����	 			
� ���� ��� 	 			 observed_by(view(X, r), X),
CoutEW observation_result_for(view(X, r), sign, X)

Definition 4.3 (theory composition)
Let (LC)C � ��� COMP be a language composition. A compositional temporal theory for
(LC)C � ��� COMP is a collection (TC)C � ��� COMP where each temporal theory TC is a theory in
the language L+

C .
Let (TC)C � ��� COMP be a compositional temporal theory. The collection of cumulative
theories (T* C)C � ��� COMP is defined for any component D as:

T* D = TD � �������� C sub D T* C if D is a composed component
T* D = TD if D is a primitive component

Example 4.4 (partial compositional theory; a composed component)
For each of the components of the multi-agent system its specification can be
translated into a temporal theory. The part of the theory for the top level component
that is relevant to prove successfulness of the system is the following (again, ot ranges
over the object types, r over shapes, X is the agent A or B, sign is pos or neg):

TS : Y CoutX to_be_observed(view(X,r))
� ��� CinEW to_be_observed_by(view(X,r), X)

Y CoutA to_be_communicated_to(request, view(B,r), pos, B)
� ��� CinB communicated_by(request, view(B,r), pos, A)

Y CoutB to_be_communicated_to(world_info, view(B,r), sign, A)
� ��� CinA communicated_by(world_info, view(B,r), sign, B)

Y CoutX object_type(ot) � ��� CoutS object_type(ot)
Y CoutX ¬ object_type(ot) � ��� CoutS ¬ object_type(ot)
Y CoutEW observation_result_for(view(X,r), sign, X)

� ��� CinX observation_result(view(X,r), sign, X)

For example, the last formula is part of the description of the information links from
EW to A and from EW to B. This formula expresses that the information previously in
the output of EW is currently contained in the input interface of the agent A (under a
simple translation). The part of the theory for agent A that is relevant to prove
successfulness of the system is the following:

TA : Y CinA observation_result(view(A,r), sign)
 � ��� CinA.WIM observation_result(view(A,r), sign)
Y CinA communicated_by(world_info, view(B,r), sign, B)
 � ��� CinA.AIM communicated_by(world_info, view(B,r), sign, B)
Y CoutA.WIM to_be_observed(view(A,r), sign)
 � ��� CoutA to_be_observed(view(A,r), sign)
Y CoutA.AIM to_be_communicated_to(request, view(B,r), pos, B)

� ��� CoutA to_be_communicated_to(request, view(B,r), pos, B)
Y CoutA.OC object_type(ot) � ��� CoutA object_type(ot)
Y CoutA.OC ¬ object_type(ot) � ��� CoutA ¬ object_type(ot)
Y CoutA.AIM communicated_by(request, view(A,r), sign, B)
 � ��� CinA.WIM requested(view(A,r))
Y CoutA.AIM new_world_info(view(B,r), pos)
 � ��� CinA.OC view(B,r)
Y CoutA.AIM new_world_info(view(B,r), neg)
 � ��� CinA.OC ¬view(B,r)
Y CoutA.WIM new_world_info(view(A,r), pos)
 � ��� CinA.OC view(B,r)
Y CoutA.WIM new_world_info(view(A,r), neg)
 � ��� CinA.OC ¬view(B,r)

Example 4.5 (partial compositional theory; a primitive component)
Primitive components can, for example, be specified by logical rules of the form
‘conjunction of literals’ implies ‘literal’), as is the case in DESIRE. Consider the
following rule of the knowledge base of the primitive component object classification:

if view(A, circle) and view(B, square) then object_type(cylinder)

This rule can be formalized in TMEL by:
� ���

 � ��� Y CinX.OC view(A, circle) � ��� Y CinX.OC view(B, square) � ��� CoutX.OC object_type(cylinder)

where � ���
is a formula expressing control information that allows the rule to be used (for

example, the component should be active).

5 Compositional Proof Structures

Verification proofs are composed of proofs at different levels of abstraction (see
Figure 3). These proofs involve properties of the components at these abstraction
levels.

Definition 5.1 (composition of properties)
A composition of properties for a language composition (LC)C � ��� COMP is a collection
(PC)C � ��� COMP where for each C the set PC is a set of temporal statements in the
language L if

C.

Note that in our approach it is not allowed to phrase properties of a component in
terms other than those of its interface language.

Example 5.2 (a composition of properties)
In the proof of the successfulness property of S (a small part of which is depicted in
Figure 3) the following composition of properties is used (see also Example 4.2):

System S as a whole

PS : ��� � (F CoutS object_type(ot) � ��� F CoutS ¬ object_type(ot))

Agent A (the pro-active agent)

PA : � ��� ��� (CinA observation_result(view(A,r), pos) � ���
CinA observation_result(view(A,r), neg))� ���

� ��� � ��� �	� (CinA communicated_by(world_info, view(B,r), pos, B) � ���
CinA communicated_by(world_info, view(B,r), neg, B))� ���

 � ��� �
��� (F CoutA object_type(ot) � ��� F CoutA ¬ object_type(ot))

(conclusion pro-activeness, A)

��� F CoutA to_be_observed(view(A,r))

(observation pro-activeness, A)

��� F CoutA to_be_communicated_to(request, view(B,r), pos, B),

(request pro-activeness, A)

Agent B (the reactive agent)

PB : ������� CinB communicated_by(request, view(B,r), pos, A)
 � ��� (F CoutB to_be_communicated_to(world_info, view(B,r), pos)� ���

F CoutB to_be_communicated_to(world_info, view(B,r), neg))� ���
(reactive information provision, B)

External World EW

PEW : �������� CinEW to_be_observed_by(view(X,r), X)
 � ��� (F CoutEW observation_result_for(view(X,r), pos)� ���
 F CoutEW observation_result_for(view(X,r), neg))� ���
(reactive observation results provision, EW)

Components within A
PA.OPC : F CoutA.OPC pro-active

(pro-activeness, OPC)

PA.AIM : � ��� CinA.AIM pro-active

 � ��� �
� F CoutA.AIM to_be_communicated_to(request, view(B,r), pos, B) � ��� ,
(conditional request pro-activeness, AIM)

� ��� ��� CinA.AIM communicated_by(world_info, view(B,r), sign, B)
 � ��� F CoutA.AIM new_world_info(view(B,r), sign) � ���

PA.WIM : � ��� CinA.WIM pro-active � ��� ��� F CoutA.WIM to_be_observed(view(A,r)) � ��� ,
(conditional observation pro-activeness, WIM)

� ��� ��� CinA.WIM observation_result(view(A,r), sign)
 � ��� F CoutA.WIM new_world_info(view(A,r), sign) � ���

PA.OC : � � � � (CinA.OC view(X,r) � ��� CinA.OC ¬ view(X,r))

� ��� ��� � (F CoutA.OC object_type(ot) � ��� F CoutA.OC ¬ object_type(ot))

In the proof of the properties shown in Example 5.2, the theories shown in Example
4.4 and 4.5 are used.

Definition 5.3 (compositional and global provability)
For the language composition (LC)C � ��� COMP, let a composition of properties (PC)C � ��� COMP

and a compositional temporal theory (TC)C � ��� COMP be given. Let |~ be an entailment
relation for temporal multi-epistemic logic.
a) The composition of properties (PC)C � ��� COMP is compositionally provable with
respect to |~ from the compositional temporal theory (TC)C � ��� COMP if for each
component D the following holds:

TD � ��� � ��� C sub D PC |~ PD if D is composed

TD |~ PD if D is primitive

b) The composition of properties is globally provable with respect to |~ from the
compositional temporal theory (TC)C � ��� COMP if for each component D the following
holds:

T* D |~ PD

For example, the collection of success properties of Example 5.2 turns out to be
globally provable from the compositional temporal theory (TC)C � ��� COMP , with respect
to the provability relation of classical entailment in TMEL, augmented with a default
persistence assumption (see the next section).

Compositional provability does not necessarily imply global provability.
However, the implication holds if the entailment relation satisfies, apart from
reflexivity (if V � ��� W, then W |~V), the property of transitivity:

T |~ U & U |~ W � ��� T |~ W (Transitivity)

for all sets of formulae T, U, W. It is well-known that transitivity and reflexivity imply
monotonicity.

Proposition 5.4
If the entailment relation |~ satisfies, in addition to reflexivity, transitivity, then

compositional provability with respect to |~ implies global provability with respect to

 |~. In particular, if � ��� is a classical provability relation for temporal multi-epistemic
logic, then compositional provability with respect to � ��� implies global provability
with respect to � ��� .

This proposition shows that for classical entailment the implication holds. But, for
example, for an entailment relation taking into account minimal change the
implication does not hold. In the light of these results, for compositional verification a
classical proof system is the best choice.

6 Default Persistence and Revision

The conditions under which a classical inference relation can be used depend on the
specific form of semantics. For example, in DESIRE a default persistence assumption
has been made: it is only specified what has to be changed; all other information is
meant to persist in time. An exception is made for information that has to be retracted
because it was derived from information that does not hold anymore. In this section we
discuss a manner in which default persistence and revision can be treated within
temporal multi-epistemic logic.

In principle, a compositional specification can be formalized by executable
temporal formulae. Roughly spoken, executable temporal formulae are temporal
formulae of the form

declarative past � ��� imperative future

For more details on this paradigm, and the different variants within, see [2], [3]. For
our purposes the following definition is chosen. Simplified executable temporal
formulae are formulae of the form

past and present � ��� present

The right hand side of these formulae F are called heads, denoted by head(F); they are
taken from the set

HEADS = { CL | L propositional literal, C epistemic operator } � ���
{ � ��� CA � ��� � ��� C � ��� A | A propositional atom, C epistemic operator }

The left hand side of F is called body, denoted by body(F). Within the body, the ‘past’
part is a formula that refers strictly to the past. The ‘present’ part is a conjunction of
temporal literals that are either of the form CL or � ��� CL.

The intended semantics of these formulae is that it is only specified what has to be
changed. All other information is meant to persist (default persistence) in time, with
an exception for information that has to be revised because it was derived from
information that does not hold anymore. In principle this entails non-classical
semantics. However, a translation is possible into temporal theories with classical
semantics if a form of temporal completion (similar to Clark’s completion in logic
programming) is applied:

Let T be a temporal theory consisting of simplified executable temporal formulae.
For each H � ��� HEADS define

TH = { F � ��� T | head(F) = H }

Let L be a literal and C an epistemic operator; define

tc(TCL) = [
� ���

 {body(F) | F � ��� TCL } � ���

(� ���
� ���

 {body(F) | F � ��� TC~L } � ���

 � ���
� ���

 {body(F) | F � ��� T� ��� CL � ��� � ��� C ~L} � ���
 YCL)]

� ��� CL

tc(T � ��� CL � ��� � ��� C ~L) = [
� ���

 {body(F) | F � ��� T� ��� CL � ��� � ��� C ~L} � ���

 (� ���
� ���

 {body(F) | F � ��� TC~L } � ���

 � ���
� ���

 {body(F) | F � ��� TCL } � ���
 � ��� YCL � ��� � ��� YC ~L)]

� ��� � ��� CL � ��� � ��� C ~L

Here ~L denotes the complementary literal of L . The intuition behind these formulae is
the following: a literal is (known to be) true in a component exactly when either there
was an applicable rule making it true, or it was true before, and all rules making the
literal false or unknown, are not applicable.

The temporal completion of T is defined by

tc(T) = { tc(TCL) | L literal, C epistemic operator } � ���

{ tc(T � ��� CL � ��� � ��� C ~L) | L literal, C epistemic operator }

Under a consistency assumption the right part { tc(T � ��� CL � ��� � ��� C ~L) | L literal, C epistemic

operator } of the above union is already implied by the left part { tc(TCL) | L literal, C

epistemic operator }.

Example 6.1 (temporal completion of a link formalization)
Let T be the temporal theory (a subset of TS) that formalizes the information link from
EW to the agent X; see Example 4.4. The temporal completion of T contains the set of
formulae:

[Y CoutEW observation_result_for(view(X,r), sign, X)) � ���
(� ��� Y CoutEW � ��� observation_result_for(view(X,r), sign, X)) � ���

 Y CinX observation_result(view(X,r), sign, X))]

� ��� CinX observation_result(view(X,r), sign, X)

[Y CoutEW � ��� observation_result_for(view(X,r), sign, X)) � ���
(� ��� Y CoutEW observation_result_for(view(X,r), sign, X)) � ���

 Y CinX � ��� observation_result(view(X,r), sign, X))]

� ��� CinX � ��� observation_result(view(X,r), sign, X)

Note that the result of temporal completion is a temporal theory that is not anymore
in executable format.

The temporal completion allows to formalize proofs in a classical proof system.
This means that, given a compositional theory (TC)C � ��� COMP, we should consider the
completion of the union of these theories, i.e. tc(T* S) where S is the component of the
entire system, for global provability. On the other hand, for compositional
provability, we have to consider (tc(TC))C � ��� COMP. In general, however, tc(T* S) need not
be identical to the union of (tc(TC))C � ��� COMP. This may occur when a literal occurs in
the head of two rules belonging to different components. Then there will be one
formula tc(TCL) in tc(T* S), combining the two rules (and this is intended), but there will
be two in the union of (tc(TC))C � ��� COMP, one for each component (and this is not
intended). In the case of simplified executable temporal formulae we can give a simple
criterion which ensures that tc(T* S) is equal to the union of (tc(TC))C � ��� COMP. The only
thing that is required is that for each formula CL , the temporal formulae defining it, are
all in one component, i.e., TCL � ��� TD for some component D. It is easy to see that this
requirement is sufficient, and it is a requirement satisfied at least by all theories
describing components in DESIRE.

Given that this requirement is satisfied, we can of course apply Proposition 5.4 to
the compositional theory (tc(TC))C � ��� COMP:

Corollary 6.2
For the language composition (LC)C � ��� COMP, let a composition of properties (PC)C � ��� COMP

and a compositional temporal theory (TC)C � ��� COMP be given. Let � ��� be a classical
provability relation for temporal multi-epistemic logic.
If (PC)C � ��� COMP is compositionally provable with respect to � ��� from the compositional
temporal theory (tc(TC)) C � ��� COMP then (PC)C � ��� COMP is globally provable with respect to

� ��� from the compositional theory (tc(TC)) C � ��� COMP.

The notion of temporal completion defined above expresses default persistence for all
information in the system. This implies that in all cases where no default persistence
is intended, explicit temporal rules are required that prohibit the persistence. For
example, to describe retraction of information that deductively depends on other
information that was revised (such as occurs, for example, in the truth maintenance
process of primitive components in DESIRE), it is needed in addition to explicitly
express a temporal rule, e.g., (for the Example 4.5) of the form:

� ���
 � ��� � ��� (Y CinX.OC view(A, circle) � ��� Y CinX.OC view(B, circle)) � ���

� ��� CoutX.OC object_type(sphere) � ��� � ��� CoutX.OC � ��� object_type(sphere)

where � ���
is again a formula expressing control information that allows the rule to be

used (for example, the component should be active). Another approach is to define a
more sensitive form of temporal completion already taking this into account, in which
case these separate rules for retraction are not needed.

7 Conclusions

The compositional verification method formalized in this paper can be applied to a
broad class of multi-agent systems. Compositional verification for one process
abstraction level deep is based on the following very general assumptions:
• a multi-agent system consists of a number of agents and external world

components.
• agents and components have explicitly defined input and output interface languages;

all other information is hidden; information exchange between components can
only take place via the interfaces (information hiding).

• a formal description exists of the manner in which agents and world components
are composed to form the whole multi-agent system (composition relation).

• the semantics of the system can be described by the evolution of states of the
agents and components at the different levels of abstraction (state-based semantics).

This non-iterative form of compositional verification can be applied to many existing
approaches, for example, to systems designed using Concurrent METATEM [16], [17].
Compositional verification involving more abstraction levels assumes, in addition:
• some of the agents and components are composed of sub-components.
• a formal description exists of the manner in which agents or components are

composed of sub-components (composition relation).
• information exchange between components is only possible between two

components at the same or adjacent levels (information hiding).
Currently not many approaches to multi-agent system design exist that exploit
iterative compositionality. One approach that does is the compositional development
method for multi-agent systems DESIRE. The compositional verification method
formalized in this paper fits well to DESIRE, but not exclusively.

Two main advantages of a compositional approach to modelling are the transparent
structure of the design and support for reuse of components and generic models. The
compositional verification method extends these main advantages to (1) a well-
structured verification process, and (2) the reusability of proofs for properties of
components that are reused.

The first advantage entails that both conceptually and computationally the
complexity of the verification process can be handled by compositionality at different
levels of abstraction. Apart from the work reported in [19], a generic model for
diagnosis has been verified [7] and a multi-agent system with agents negotiating about
load-balancing of electricity use [5]. The second advantage entails: if a modified
component satisfies the same properties as the previous one, the proof of the
properties at the higher levels of abstraction can be reused to show that the new system
has the same properties as the original. This has high value for a library of reusable
generic models and components. The verification of generic models forces one to find
the assumptions under which the generic model is applicable for the considered
domain, as is also discussed in [13]. A library of reusable components and generic
models may consist of both specifications of the components and models, and their
design rationale. As part of the design rationale, at least the properties of the
components and their logical relations can be documented.

The usefulness of a temporal multi-epistemic logic, TMEL, a generalization of
temporal epistemic logic was investigated to formalize verification proofs. As a test,
the properties and proofs that were found for verification of an example multi-agent
system for co-operative information gathering [19] were successfully formalized within
the logic TMEL. Our study shows that Temporal Multi-Epistemic Logic provides
enough expressivity for dynamics and reasoning about time, and formalizes incomplete
information states in an adequate manner. To obtain the right structure in accordance
with the compositional system design, the logic is equipped with a number of
compositional structures: compositions of sub-languages, compositional theories, and
compositional provability. It was established that under the assumption that the
provability relation is reflexive and transitive, compositional provability implies
global provability. Therefore this logic is adequate if the executable temporal theories
formalizing a specification are temporally completed, a temporal variant of Clark’s
completion for logic programs. In this case classical provability can be used, which is
much more transparent than the more complicated non-classical provability relations
that are possible.

In [17] a temporal belief logic, TBL, was introduced to define semantics and verify
properties for systems specified in Concurrent METATEM [16]. A similarity with our
approach as introduced above is that in both cases modal operators are used to
distinguish knowledge of different agents, and a discrete linear time temporal logic is
built on top of the multi-modal logic. A main difference in comparison to [17] is that
our approach exploits compositionality. In Concurrent METATEM no iterated
compositional structures can be defined, as is the case in DESIRE. Therefore
verification in TBL always takes place at the global level, instead of the iterated
compositional approach to verification in TMEL. Another difference is that in our
approach the states in the base logic are in principle three-valued, whereas the states in
Concurrent METATEM are two-valued: an atom in a state that is not true is assumed
false in this state.

A future continuation of this work will consider the development of tools for
compositional verification. To support the handwork of verification it would be useful
to have tools to assist in the creation of the proof.

References

1 . Abadi, M. and L. Lamport (1993). Composing Specifications, ACM Transactions on
Programming Languages and Systems, Vol. 15, No. 1, pp. 73-132.

2 . Barringer, H., M. Fisher, D. Gabbay, and A. Hunter (1991). Meta-Reasoning in
Executable Temporal Logic, in: J. Allen, R. Fikes, E. Sandewall, Proc. of the 2nd Int.
Conf. on Principles of Knowledge Representation and Reasoning, KR'91.

3 . Barringer, H., M. Fisher, D. Gabbay, R. Owens, and M. Reynolds (1996). The
Imperative Future: Principles of Executable Temporal Logic, Research Studies Press
Ltd. and John Wiley & Sons.

4 . Benthem, J.F.A.K. van (1983). The Logic of Time : a Model-theoretic Investigation
into the Varieties of Temporal Ontology and Temporal Discourse, Reidel, Dordrecht.

5 . Brazier, F.M.T., F. Cornelissen, R. Gustavsson, C.M. Jonker, O. Lindeberg, B.
Polak, and J. Treur, (1998). Compositional Design and Verification of a Multi-Agent
System for One-to-Many Negotiation. In: Proceedings of the Third International
Conference on Multi-Agent Systems, ICMAS'98, IEEE Computer Society Press.

6 . Brazier, F.M.T., B.M. Dunin-Keplicz, N.R. Jennings, and J. Treur, (1995) Formal
Specification of Multi-Agent Systems: a Real World Case, In: Lesser, V. (ed.), Proc. of
the First International Conference on Multi-Agent Systems, ICMAS’95, MIT Press,
pp. 25-32. Extended version in: Huhns, M. and Singh, M. (eds.), International Journal
of Co-operative Information Systems, IJCIS vol. 6 (1), special issue on Formal
Methods in Co-operative Information Systems: Multi-Agent Systems, pp. 67-94.

7 . Cornelissen, F., C.M. Jonker, and J. Treur (1997). Compositional Verification of
Knowledge-based Systems: a Case Study for Diagnostic Reasoning. In: E. Plaza, R.
Benjamins (eds.), Knowledge Acquisition, Modelling and Management, Proc. of the
10th EKAW, Lecture Notes in AI, vol. 1319, Springer Verlag, pp. 65-80.

8 . Dams, D., R. Gerth, and P. Kelb (1996). Practical Symbolic Model Checking of the
full µ-calculus using Compositional Abstractions. Report, Eindhoven University of
Technology, Department of Mathematics and Computer Science.

9 . Engelfriet, J. (1996). Minimal Temporal Epistemic Logic, Notre Dame Journal o f
Formal Logic, vol. 37, pp. 233-259 (special issue on Combining Logics).

10. Engelfriet, J., and J. Treur (1996). Specification of Nonmonotonic Reasoning. Proc.
International Conference on Formal and Applied Practical Reasoning, FAPR'96 ,
Springer-Verlag, Lecture Notes in Artificial Intelligence, vol. 1085, pp. 111-125.

11. Engelfriet, J., and J. Treur (1996). Executable Temporal Logic for Nonmonotonic
Reasoning; Journal of Symbolic Computation, vol. 22, no. 5&6, pp. 615-625.

12. Engelfriet, J., and J. Treur (1997). An Interpretation of Default Logic in Temporal
Epistemic Logic. Journal of Logic, Language and Information, to appear.

13. Fensel, D., and R. Benjamins (1996). Assumptions in model-based diagnosis. In:
B.R. Gaines, M.A. Musen (eds.), Proceedings of the 10th Banff Knowledge
Acquisition for Knowledge-based Systems workshop, KAW'96 , Calgary: SRDG
Publications, Department of Computer Science, University of Calgary, pp. 5/1-5/18.

14. Fensel, D., A. Schonegge, R. Groenboom, and B. Wielinga (1996). Specification and
verification of knowledge-based systems. In: B.R. Gaines, M.A. Musen (eds.),
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-based Systems
workshop, KAW'96, Calgary: SRDG Publications, Department of Computer Science,
University of Calgary, pp. 4/1-4/20.

15. Finger, M. and D. Gabbay (1992). Adding a Temporal Dimension to a Logic System,
Journal of Logic, Language and Information 1, pp. 203-233.

16. Fisher, M. (1994). A survey of Concurrent METATEM - the language and its
applications. In: D.M. Gabbay, H.J. Ohlbach (eds.), Temporal Logic - Proceedings of
the First International Conference, Lecture Notes in AI, vol. 827, pp. 480-505.

17. Fisher, M., and M. Wooldridge, (1997). Specification and Verification of Multi-Agent
Systems. In: Huhns, M. and Singh, M. (eds.), International Journal of Co-operative
Information Systems, IJCIS vol. 6 (1), special issue on Formal Methods in Co-
operative Information Systems: Multi-Agent Systems,

18. Hooman, J. (1994). Compositional Verification of a Distributed Real-Time
Arbitration Protocol. Real-Time Systems, vol. 6, pp. 173-206.

19. Jonker, C.M. and J. Treur (1997). Compositional Verification of Multi-Agent
Systems: a Formal Analysis of Pro-activeness and Reactiveness. In: W.P. De Roever,
H. Langmaack, A. Pnueli, (eds.). Proceedings of the International Symposium on
Compositionality, COMPOS’97, Springer Verlag, to appear.

20. Treur, J., and M. Willems (1994). A logical foundation for verification. In:
Proceedings of the Eleventh European Conference on Artificial Intelligence, ECAI’94,
A.G. Cohn (ed.), John Wiley & Sons, Ltd., pp. 745-749.

