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Abstract. Decision making under stressful circumstances may involve strong 

emotions and requires adequate prediction and valuation capabilities. In a social 

context contagion from others plays an important role as well. Moreover, agents 

adapt their decision making based on their experiences over time. Knowledge of 

principles from Neuroscience provides an important source of inspiration to model 

such processes. In this paper an adaptive agent-based computational model is 

proposed to address the above-mentioned aspects in an integrative manner. As an 

application adaptive decision making of an agent in an emergency evacuation 

scenario is explored. By means of formal analysis and simulation, the model has 

been explored and evaluated. 
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1   Introduction 

In emergency evacuations the quality of decision making processes may make a 

difference between surviving or not. Decision making under stressful 

circumstances such as these is a challenging type of human process. It involves a 

number of aspects that have to be dealt with, such as: 

  

 high levels of fear and/or hope  

 adequate predictive capabilities related to available information  

 relation to earlier experiences  

 social impact from other group members  
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Such decision making processes have been addressed in recent literature on 

Cognitive, Affective, and Social Neuroscience. In deciding for certain options the 

predicted effects of the options are determined by internal simulation, valuing of 

these effects takes place, in relation to the emotions felt in relation to this valuing 

(based on as-if body loops). These elements affect each other by cyclic internal 

cognitive/affective processes, and the connections used in these processes are 

adapted based on experiences. 

Prediction of the (expected) effects of a decision option starts from the 

preparation of the action, and is based on internal simulation, as has been 

analysed, for example, in (Wolpert, 1997; Moore and  Haggard, 2008). In 

(Hesslow, 1994; 2002) it is pointed out how such predictions can be repeated, thus 

generating simulated behaviour and perception chains. The predictions of action 

effects are not taken as neutral or objective but subjective. They are valued in a 

subjective, emotion-related manner in relation to the importance of the predicted 

effect for the agent, in a positive (hope) or negative (fear) sense; e.g., (Murray, 

2007). If the predicted effects are valued as (most) positive, this may entail a 

positive decision for the option. In a social context, these processes of prediction 

and valuing within individuals are mutually affecting each other, so that joint 

group decisions may develop.  

In this paper based on principles from literature as indicated, an adaptive agent-

based computational model is proposed to address these aspects in an integrative 

manner. In contrast to the existing agent-based decision-making models designed 

from a software engineering perspective (cf  (Boutilier, Dean, and Hanks, 1999)), 

by employing theoretical principles from Neuroscience and Social Science, a more 

biologically plausible model of human decision making is obtained. In the 

scenario used as illustration an agent considers three decision options (paths) to 

move outside of a burning building. The path to the first exit (option 1) is short, 

but eventually becomes dangerous. The path to the second exit (option 2) is 

known to be dangerous (e.g., contains locations with high smoke and fire 

concentration). The path to the third exit (option 3) is long, but remains safe. By 

means of formal analysis and simulation, computational learning mechanisms are 

identified required for effective decision making of agents. 

The paper is organised as follows. A background for the model is considered in 

Section 2. In Section 3 the model proposed is described. In Section 4 agent 

learning mechanisms are considered. Simulation results based on the model are 

described in Section 5. Formal analysis of the model is provided in Section 6. 

Section 7 concludes the paper. 

2   Background 

The computational decision making model proposed in this paper is based on 

neurological findings and principles considered in this section. 
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2.1   Emotions and Valuing 

In decision making tasks different options are compared in order to make a 

reasonable choice out of them. Options usually have emotional responses 

associated to them relating to a prediction of a rewarding and/or aversive 

consequence. In decisions such an emotional valuing of predicted consequences 

often plays an important role. In recent neurological literature such a notion of 

value is suggested to be represented in the amygdala (Bechara et al., 1999; 

Bechara, Damasio, and Damasio, 2002; Haggard, 2008; Morrison and Salzman, 

2008; Montague and Berns, 2002; Rangel, Camerer and Montague, 2008).  

Traditionally an important function attributed to the amygdala concerns 

representing emotions, in particular in the context of fear. However, in recent 

years much evidence on the amygdala in humans has been collected showing a 

function beyond this fear context. In humans many parts of the prefrontal cortex 

(PFC) and other brain areas such as hippocampus, basal ganglia, and 

hypothalamus have extensive, often bidirectional connections with the amygdala 

(Ghashghaei, Hilgetag, Barbas, 2007; Salzman and Fusi, 2010; Morrison and 

Salzman, 2008). A role of amygdala activation has been found in various tasks 

involving emotional aspects (Murray, 2007). Usually emotional responses are 

triggered by stimuli for which a prediction is possible of a rewarding or aversive 

consequence. Feeling these emotions represents a way of experiencing the value 

of such a prediction: to which extent it is positive or negative. This idea of positive 

and negative value is also the basis of work on the neural basis of economic 

choice in neuroeconomics. In particular in decision-making tasks where different 

options are compared, choices have been related to a notion of value as 

represented the amygdala (Bechara et al., 1999; Bechara, Damasio, and Damasio, 

2002; Haggard, 2008; Morrison and Salzman, 2008; Montague and Berns, 2002; 

Rangel, Camerer and Montague, 2008; Sugrue, Corrado and Newsome, 2005). 

2.2   Internal Simulation 

The notion of internal simulation was put forward, among others, by Hesslow 

(1994; 2002) and Damasio (1994; 1999). The idea of internal simulation is that 

sensory representation states are activated (e.g., mental images), which in response 

trigger associated preparation states for actions or bodily changes, which, by 

prediction links, in turn activate other sensory representation states.  

sensory representation states   preparation states    sensory representation states 

The latter states represent the effects of the prepared actions or bodily changes, 

without actually having executed them. Being inherently cyclic, the simulation 

process can go on indefinitely, and may, for example, be used to evaluate the 

effects of plans before they are executed. In Figure 1 these dynamical 

relationships are depicted by the arrows from the upper plane to the middle plane 

and back. In Section 3 these relationships are formalised in (4), (5) and (6). 

Internal simulation has been used, for example, to describe (imagined) processes 



4  

in the external world (e.g., prediction of effects of own actions (Bi and Poo, 

2001)), or processes in a person’s own body (e.g., (Damasio, 1994)).  

The idea of internal simulation has been exploited in particular by applying it to 

bodily changes expressing emotions, using the notion of as-if body loop bypassing 

(the need for) actually expressed bodily changes (cf. (Damasion, 1994), pp. 155-

158; (Damasio, 1999), pp. 79-80):  
sensory representation    preparation for bodily changes = emotional response    

emotion felt = based on sensory representation of (simulated) bodily changes 

An as-if body loop describes an inner simulation of bodily processes, without 

actually affecting the body. Note that (Damasio, 1994) distinguishes an emotion 

(or emotional response) from a feeling (or felt emotion). In Figure 1 these 

dynamical relationships are depicted by the arrows in the lower plane, and the 

arrow from the lower to the upper plane. In Section (3) these relationships have 

been formalised in (8) and (9). 

An as-if body loop usually occurs in an extended, cyclic form by assuming that 

the emotion felt in turn also affects the preparation states, as it is pointed out, for 

example, in ((Damasio, 2003), pp. 91-92; (Damasio, 2010), pp. 119-122). This can 

be viewed as a way to incorporate emotion integration in the preparation of 

actions. In Figure 1 this relationship is depicted via the arrows in the upper plane. 

2.3   Social contagion 

When decision making takes place in a social context of a group of agents 

interacting (verbally, nonverbally) on the relevant options, mutual contagion 

occurs. It is assumed that the preparation states of an agent for the actions 

constituting options and for emotional responses for the options are reflected in 

body states that are observed with a certain intensity or strength by other agents 

from the group. The contagion strength  of the interaction from an agent A to an 

agent B for a preparation state p depends on the personal characteristic 

expressiveness  of the sender (agent A) for p, the personal characteristic openness 

 of the receiver (agent B) for p, and an interaction characteristic  (channel 

strength) for p from sender A to receiver B. The effects of contagion are 

integrated within the internal processes. In Section 3 these relations are formalised 

in (1), (2), and (3). 

3   An Affective Social Decision Making Model 

Based on the neurological findings and principles from Section 2 a computational 

affective social decision making model has been developed. This model is 

described in this section. 

Depending on a situational context an agent determines a set of applicable 

options to satisfy a goal at hand. In the model proposed the applicable options are 

generated in a cyclic manner, via connections from activated sensory states 
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reflecting this situational context to preparation states for the relevant actions 

related to an option, and valuations of sensory states. An option is represented by a 

(partially) ordered sequence of actions (i.e., a plan) to satisfy the agent’s goals. 

For example, in the evacuation scenario under investigation each option is 

represented by a sequence of locations with an exit as the last location. 

Computationally, alternative options considered by an agent are being 

generated and evaluated in parallel. The evaluation of options is based on internal 

simulation as described in Section 2. The process is depicted in Figure 1. In the 

vertical plane it is shown how in the overall process options for actions are 

considered (action preparations in the upper horizontal plane), for which by 

prediction links sensory representations of effects are generated (internal 

simulation, middle horizontal plane), which are evaluated (emotion-related 

valuing, lower horizontal plane). The notations used in the model are summarized 

in Table 1. 

3.1   The Social Contagion Impact 

The social context in which decision making is performed is represented by a 

group of agents interacting (verbally, nonverbally) on the relevant options. The 

contagion strength of the interaction from agent A to agent B for a preparation 

state p is modelled as follows:  
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prepbe 

srsevaleffa2  srsevaleffa3 
srsevaleffa1 srsevaleffa4 

srsg,A 

  srseffa2       
srseffa3 

  srseffa1    srseffa4 srsO 

  srsbe 

prepa2    prepa3 prepa1 prepa4 

 

                       Figure 1. A graphical representation of the model for a given agent and option O.  

                            Circles represent neural states and links represent connections between the states.  

                                 Upperplane: the preparation states for the subsequent actions related to the option O 

                            Middleplane: the predicted effects of the subsequent actions  

                            Lower plane: the emotion-related valuing of the predicted action effects 

 
Table 1 Notations used 

Notation Explanation 

SA expressiveness of agent A for mental state S 

αSAB channel strength for S from agent A to agent B 

δSB openness of agent B for S 

SAB contagion strength for state S in the interaction from agent A to agent B 

G(S, B) aggregated group state for S as impact for B 

prepa,O,A Preparation of agent A for action a in option O 

srsE,O,A Feeling emotion E by agent A for option O  

srsG(a,O,A) Group preparation for a in O perceived by A 

srseffect(a,O),A A’s representation of the effect of a in O 

srseval_for(effect(a,O),E),A A’s valuation by E of the effect of a in O 

srsg,A A’s goal g 

prepE,O,A Preparation for E of agent A for option O 

srsdist(effect(a,O)),A Representation of A’s distance to exit by a and O 

 

                              pAB=pAαpABδpB  (1) 
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Here pA is the personal characteristic expressiveness of the sender (agent A) for 

p, δpB is the personal characteristic openness of the receiver (agent B) for p, and 

αpAB is the interaction characteristic channel strength for p from sender A to 

receiver B. 

By aggregating such input, an agent B perceives the group’s joint attitude 

towards each option, which comprises the following dynamic properties. Note that 

for the sake of simplicity no intermediate states for this process have been 

included, such as effector states, body states, or sensor states; the process from 

internal states to external expression, transfer and receipt is characterised at once 

by using parameters such as pA, αpAB 
and δpB introduced above. 

(a) The aggregated group preparation to (i.e., the externally observable intention to 

perform) each action p constituting the option for agent B: 

        G(p, B) = A≠B  pAB qp,A  /  A≠B  pAB 
pA               (2) 

 (b) The aggregated group preparation to an emotional response (body state) be for each 

option. A predicted consequence for an option may induce different types of emotions 

(e.g., fear, hope, joy) with separate preparation states. Formally:  

            G(be, B) = A≠B  beAB  
qbe,A  /  A≠B  beAB 

beA                (3) 

Note that in Figure 1 for reasons of transparency only one agent is depicted. 

The contagion received by this agent can be visualised as incoming arrows to the 

preparation states of the action options in the upper horizontal plane, and to the 

preparation state of the emotional response in the lower horizontal plane. The 

contagion from the depicted agent to other agents can be visualised as outgoing 

arrows from the same preparation states. 

3.2   Internal simulation 

The preparation state prepa1 for the first action from an option is affected by the 

sensory representations srsOi  of the option, of the perceived group preparation 

srsG(a1,Oi,A)  for the action and of the emotion srsbe felt towards the option which 

functions as valuing the option (Figure 1, upper horizontal plane). Formally: 

d prepa1,Oi,A
(t)/dt = 

  [ h(srsOi,A
(t), srsbe,Oi,A

(t), srsG(a1,Oi,A)(t)) – prepa1,Oi,A
(t) ]       (4) 

where A is any agent, Oi is an option, be is an emotional response state, 

G(a1,Oi,A) is the aggregated group preparation to action a1 of agent A, h(V1, V2, 

V3) is a combination function. In general, different forms of combination functions 

are possible. For example: 

h(V1, V2, V3) =  (1-(1- V1)(1- V2)(1- V3)) + (1-) V1 V2 V3 

Another possibility is a logistic combination function: 

    h(V1, V2, V3) = 1/(1+e
-2(V-2)

), with V= 1V1 + 2V2 + 3V3 



8  

The simulated perception of the effect of an action a (Figure 1, middle plane) in 

a simulated behavioural chain, based on prediction links (the arrows from the 

upper to the middle plain in Figure 1) is modelled by the following property: 

d srseffect(a,Oi),A
(t) /dt  =  

 [(prepa,Oi,A
(t),srseffect(a,Oi),A

(t)) prepa,Oi,A
(t) - srseffect(a,Oi),A

(t)] (5)         

The confidence that an action will result in a particular effect is specified as the 

strength of the link between the preparation for the action state and the sensory 

representation of the corresponding effect state (the vertical arrows from the upper 

plane to the middle plane in Figure 1). In the evacuation scenario the strength of a 

link between a preparation for a movement action and a sensory representation of 

the effect of the action is used to represent confidence values of the agent’s beliefs 

about the accessibility of locations. For example, if the agent’s confidence of the 

belief that location p1 is accessible from location p2 is , then the strength of the 

link between the states described by prepmove_from_to(p2,p1) and srsis_at_location(p1) is put on 

. 

Similar to the first action a1, the preparation state for each subsequent action a 

from the behavioural chain is specified by: 

d prepa,Oi,A
(t)/dt =  

 [h(srseffect(a,Oi),A
(t), srsbe,Oi,A

(t), srsG(a,Oi,A)(t)) – prepa,Oi,A
(t)]     (6) 

Note that here the effects of the arrows pointing towards the preparation states 

in the upper plane in Figure 1 are combined using the chosen combination 

function. The option with the highest value for the preparation state for the first 

action is chosen for the execution by the agent. 

3.3   Emotion-related valuing 

In the lower horizontal plane in Figure 1 emotion-related valuing of the action 

options takes place.  

An emotional response is generated based on an evaluation of the effects of 

each action of the option. In such an evaluation the effect state for each action is 

compared to a goal state(s) of the agent. Note that for different types of emotions 

different aspects of a goal state or different types of goals may be used. In 

(Ortony, Clore and Collins, 1988) a number of cognitive structures eliciting 

particular types of emotions are described. As a simulated behavioural chain is a 

kind of a behavioural projection, cognitive structures of prospect-based emotions 

(e.g., fear, hope, satisfaction, disappointment) from (Ortony, Clore and Collins, 

1988) are particularly relevant for the evaluation process. Such structures can be 

represented formally as evaluation properties. As indicated in (Ortony, Clore and 

Collins, 1988), the intensity of prospect-based emotions depends on the likelihood 

(confidence) that a prospect state will occur. Thus, the strength of the link between 

the preparation state for an action and the sensory representation of its effect state 



9 

is taken into account as a factor in the evaluation property. The generic evaluation 

property of the effect of the action a compared with the goal state g (in the lower 

plane in Figure 1) is specified formally as: 

d srseval_for(effect(a,Oi),be),A(t)/dt =  

[h((prepa,Oi,A
(t),srseffect(a,Oi),A

(t))f(srsg,A(t),srseffect(a,Oi),A
(t)), srsbe,Oi,A

(t)) - 

srseval_for(effect(a,Oi),be),A(t) ],                                     (7) 

where f(srsg,A(t),srseffect(a,Oi),A
(t)), srsbe,Oi,A

(t)) is an evaluation function depending 

on the cognitive structure used for the evaluation. 

The evaluation of the effects of the actions for a particular emotional response 

to an option together with the aggregated group preparation to the emotional 

response determine the intensity of the emotional response: 

prepbe,Oi,A
(t) = f(srseval_for(effect(a1,Oi),be),A(t),…,  

 srseval_for(effect(an,Oi),be,A(t))  (8) 

where be is a particular type of the emotional response. 

By the as-if body loop, the agent perceives its own emotional response 

preparation and creates the sensory representation state for it (in Figure 1 the 

arrow from the lower plane to the upper plane):  

          d srsbe,Oi,A
(t) /dt =   [ prepbe,Oi,A

(t)- srsbe,Oi,A
(t) ]            (9) 

The options in the evacuation scenario evoke two types of emotions: fear and 

hope, which are often considered in the emergency context. According to (Ortony, 

Clore and Collins, 1988), the intensity of fear induced by an event depends on the 

degree to which the event is undesirable and on the likelihood of the event. The 

intensity of hope induced by an event depends on the degree to which the event is 

desirable and on the likelihood of the event. Thus, both emotions are generated 

based on the evaluation of a distance between the effect states for the actions from 

an option and the agent’s goal states. In this example each agent in the group has 

two goal states ‘be outside’ and ‘be safe’. The evaluation functions for both 

emotions include two aspects: (1) how far is the agent’s location from the nearest 

reachable exit; (2) how dangerous is the agent’s location (i.e., the amount of 

smoke and fire). Formally these two aspects are combined in the evaluation 

function from (7) using the formula  

                 V1 + (1-)/(1+e
-V2

)                        (10) 

where V1 is the degree of danger of the location, V2 is the distance in number of 

actions that need to be executed to reach the nearest accessible exit,  and  are 

parameters of the threshold function,  is a weight. The goal value in (7) is 

obtained by setting V1=0 and V2=0 in (10):   (1-)/(1+). 

According to the two emotions considered in the example, (7) is refined into 

two specialized evaluation properties – one for fear and one for hope: 

d srseval_for(effect(a,Oi),bfear),A(t)/dt =  

[h((prepa,Oi,A
(t),srseffect(a,Oi),A

(t)) f(srsg,A(t),srseffect(a,Oi),A
(t)),  
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                         srsbfear,Oi,A
(t)) - srseval_for(effect(a,Oi),bfear,A(t)]       (11) 

where  

f(srsg,A(t),srseffect(a,Oi),A
(t))= 

|srsg,A(t)-srsdanger(effect(a,Oi)),Oi,A
(t) - (1-)/(1+e

-  srsdist(effect(a,Oi)),A(t))|  
 

and 

d srseval_for(effect(a,Oi),bhope),A(t)/dt =  

[h((prepa,Oi,A(t),srseffect(a,Oi),A(t))f(srsg,A(t),srseffect(a,Oi),A
(t)),    

srsbhope,Oi,A
(t)) - srseval_for(effect(a,A),bhope),A(t)]                              (12) 

where  

f(srsg,A(t),srseffect(a,Oi),A
(t))=  

  1- |srsg,A(t) –  srsdanger(effect(a,Oi)),Oi,A
(t) - (1-)/(1+e

- 
 
f1(a,O

i
,A)

)| 

 

Also specialized versions of other generic properties 3-9 are defined by replacing 

the generic state be in them by specific emotional response states bfear and bhope. 

4   Agent Learning 

Decision making in ongoing real life processes is adaptive in the sense that 

decisions made lead to new information and valuations based on which future 

decisions may be different. In this process a central role is played by how the 

experienced emotion-related information and valuations lead to adaptations. Such 

adaptations may concern, for example, (1) altered action effect prediction links, 

(2) altered links by which input from the other group members is incorporated, or 

(3) altered emotion-related valuation links. These three types of links are 

addressed in the approach put forward here. 

In the model presented in this paper, a Hebbian learning principle (Hebb, 1949) 

is exploited to obtain this form of adaptivity for the three types of links mentioned: 

roughly spoken this principle states that connections between neurons that are 

activated simultaneously are strengthened. From a Hebbian perspective, 

strengthening of connections as mentioned in case of positive valuation may be 

reasonable, as due to feedback cycles in the model structure, neurons involved will 

be activated simultaneously. Therefore such a connection may be developed and 

adapted based on a Hebbian learning mechanism. Originally proposed in (Hebb, 

1949), in recent years more support has been found for the biological plausibility 

of this principle; e.g., (Bi and Poo, 2001). In (Gerstner and Kistler, 2002) a more 

in depth treatment of different variations of the principle from a mathematical 

perspective can be found, including the variation used here. The Hebbian learning 

of the three types of links considered above is formalised as follows (and similarly 

for state bhope). 

For link (1):   
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d (prepai,Oj,A
(t), srseffect(ai+1,Oj),A

(t))/dt =  

 srseffect(ai+1,Oj),A
(t) prepai,Oj,A

(t) (1 – (prepai,Oj,A
(t),  

srseffect(ai+1,Oj),A
(t))) –   (prepai,Oj,A

(t), srseffect(ai+1,Oj),A
(t))         (13) 

where   is a learning rate and   is an extinction rate. 

In the presence of actual observation of an agent of an effect of its action, 

(prepai,Oj,A
(t), srseffect(ai+1,Oj),A

(t)) may be updated differently. For example, its 

value may be set to 0 in the absence of the effect, and to 1 in the presence of the 

effect. Another alternative is to apply a Bayesian update rule (Perl, 2000) or a 

probabilistic update based on the weighting function from the Prospect Theory 

(Kahneman and Tversky, 1984). 

For link (2):    

d αprep(ai,Oj)A2A1
(t)/dt =  

 prepai,Oj,A1
(t) prepai,Oj,A2

(t) (1 – α prep(ai,Oj)A2A1
(t)) -  αprep(ai,Oj)A2A1

(t)) 

 (14) 

For link (3): d(prepbfear,Oi,A
(t), srsbfear,Oi,A

(t))/dt =  

 srsbfear,Oi,A
(t) prepbfear,Oi,A

(t) (1 – (prepbfear,Oj,A
(t), srsbfear,Oj,A

(t))) –   

     (prepbfear,Oj,A
(t), srsbfear,Oj,A

(t))            (15) 

5   Simulation Results 

Based on the model described in Section 3 and the variations in types of links 

being learned considered in Section 4, simulation has been performed in the 

Matlab environment. The aim of the simulation was to investigate systematically 

how emotions and different mechanisms of learning considered in Section 4 

influence the dynamics of the agent decision making. The simulation model 

included a group of 10 agents at some location in the building with the parameters 

drawn from the ranges of uniformly distributed values as indicated in Table 2 

below. The agents were deliberating about three decision options (paths) to move 

outside of a burning building.  

Furthermore, information sources placed at each location in the building were 

providing information to the agents about the degree of danger of the locations. 

Table 2. Ranges and values of the agent parameters used in the simulation 

Parameter    pA δpA  αpAiAj
 

Range/value [0.7,1] 0.8 0.1 [0.7,1] [0.7,1] [0.55, 0.7] 1 

 

First, simulation of the agent system without learning was performed; see 

Figure 2. In this simulation the agents did not adapt to changing conditions of the 

environment, e.g., emergence and spread of fire. The agents did not have the 

ability to store information received from the information sources. Thus, the 

danger of fire was taken into consideration by an agent only at the moment when 

it received the corresponding information. Because of this shortsightedness, the 
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agents preferred options 1 and 2 (shorter, but dangerous paths) to option 3 (a 

longer, but safer path) (Figure 2).  

 

   

Figure 2. Change of the Agent1’s preparation for execution of options 1 (left), 2 

(center), 3 (right) without learning; the x-axis is the time scale (0-150), on the y-axis 

are the ordered numbers of actions in each options 

   
Figure 3. Change of the Agent1’s preparation for execution of options 1 (left), 2 

(center), 3 (right) with the Hebbian learning of links (1), (2) and (3); the x-axis is the 

time scale (0-150), on the y-axis are the ordered numbers of actions in each option. 

   
Figure 4. Change of the Agent1’s preparation for execution of options 1 (left), 2 

(center), 3 (right) with the Hebbian learning of links (1) and (2), without emotion-

related links; the x-axis is the time scale (0-150), on the y-axis are the ordered 

numbers of actions in each options 

Table 3. A partial simulation trace for the case of learning of the emotion-related links (3) 

in the model for option 1 of Agent1 

Time point 10 30 50 70 100 

Preparation to move to loc2 from loc1 0.73 0.88 0.55 0.55 0.55 

Preparation to move to loc3 from loc2 0.67 0.82 0.52 0.45 0.44 

Preparation to move to exit1 from loc3 0.66 0.8 0.52 0.43 0.40 

 

After that different variations in learning of the three types of links considered 

in Section 4 have been explored in a systematic manner by simulation. A partial 

simulation trace for the case of learning of the emotion-related links (3) in the 

model for option 1 of Agent1 is provided in Table 3.  
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Option 1 consists of three movement actions between  locations loc1, loc2 and 

loc3.  During the time period [0, 29) the path corresponding to option 1 was safe. 

Thus, option 1 was valuated highly by the agent, and was chosen for execution. 

During the execution of option 1, at time point 29, the agent received information 

about fire, which occurred at location loc 2 along the path of option 1. This 

observation caused a rapid devaluation of all action steps constituting option 1 by 

the agent, which eventually stabilized (time point 100). Other simulation results 

are summarized in Table 4 and depicted in Figure 3. 

In comparison with the case without learning, learning of links (1) and (3) 

results into a noticeable increase in discrimination of the decision options in 

favour of option 3 (i.e., a longer and safer path). Learning of links (3) has the 

greatest effect on decision making. On the contrary, learning of links (2) has a 

negligible effect on the evaluation of options in this simulation study (Table 4). A 

close similarity of the preparation states of the agents observed in simulation is the 

main cause of a limited effect of learning of link (2) on decision making. In 

situations in which agents with radically conflicting opinions participate in social 

decision making, the effect of learning of links (2) would be much higher. A 

combination of learning of all links (1), (2) and (3) results in the strongest 

discrimination between the options (Figure 3, Table 4). 

In the end simulation of the model without emotion-related links was 

performed, in which learning of links (1) and (2) was employed (Figure 4). In this 

case the agent preparation states quickly approached 1, and became almost not 

distinguishable. Thus, not only learning, but also the use of emotion-related links 

in the decision making model is essential for the discrimination of the options. 

Table 4. Preparation for the first action of each option and the average preparation (over all 

actions) for each option per learning case 

Learning 

links 

Option 1  

1st action 

Option 1 

(average) 

Option 2   

1st action 

Option 2 

(average) 

Option 3         

1st action 

Option 3 

(average) 

(1) 0.53 0.50 0.53 0.50 0.63 0.59 

(1), (2) 0.53 0.49 0.53 0.49 0.63 0.57 

(3) 0.55 0.46 0.55 0.46 0.88 0.77 

(1), (3) 0.49 0.36 0.49 0.36 0.8 0.69 

(1), (2), (3) 0.49 0.31 0.49 0.31 0.8 0.65 

6   Formal Analysis 

The behaviour of the agent’s adaptation process can also be investigated by formal 

analysis, based on the specification for the connection strength  = ij from node i 

to node j. 
    

  
 +  (ai(t)aj(t) + ) (t)  = ai(t)aj(t) 
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This is a first-order linear differential equation with time-dependent 

coefficients: ai and aj are functions of t which are considered unknown external 

input in the equation for . An analysis can be made for when equilibria occur:  

    

  
 = 0   (aiaj  + )  = aiaj        =  

     

        
 

Indeed this relation was confirmed up to an accuracy of 0.01 for  by the 

example simulations. One case here is that  = 0  and one of ai and aj is 0. When ai 

and aj are nonzero, it can be rewritten as (since aiaj  1):    = 1 /(1  + /aiaj)    1 /(1  

+ /). This shows that when no extinction takes place ( = 0), an equilibrium for  

of 1 is possible, but if extinction is nonzero, only an equilibrium < 1 is possible, as 

is also shown in the example simulations.  

Further analysis can be made by obtaining an explicit analytic solution of the 

differential equation in terms of the functions ai and aj. This can be done as 

follows. Take W(t) =             
 

  
   the accumulation of ai(t)aj(t) over time from 

t0 to t; then 
     

  
  = ai(t)aj(t). Given this, the differential equation for  can be 

solved by using                as an integrating factor obtaining: 

(t) =                         

                             
 

  
ai(u)aj(u)    

                    du  

For the special case of constant aiaj= c, explicit expressions can be obtained, 

using  W(t) = c(t-t0) and W(t)-W(u) = c(t-u): 

 

  
 

  
ai(u)aj(u)    

                    du = 

                    
 

  
c             du = 

 

     
 [1 -                ] 

Although in a simulation usually aiaj will not be constant, these expressions 

may still be useful in a comparative manner. When aiaj   c on some time interval, 

then by monotonicity the above expressions for  with aiaj= c  provide a lower 

bound for . Thus it can be found that 

c /(c+) – (t) = [c /(c+) – (0)]         

which shows the convergence rate to an equilibrium for constant aiaj= c, provides 

an upper bound for the deviation from the equilibrium. This has half-value time 

ln(2)/(c+) = 0.7/(c+). When aiaj   c on some time interval, then by the 

monotonicity mentioned earlier, the upward trend will be at least as fast as 

described by this expression. In the example simulations these relations roughly 

have been confirmed as a way of approximation of the actual convergence speed 

(with deviations varying from less than 15% to 50%). 
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7   Conclusion 

Effectiveness of human reasoning and decision making is determined largely by 

learning and adaptation mechanisms. In this paper effects of learning of different 

types of links in a social affective decision making model based on neurological 

principles are explored. Learning of the emotion-related links has the strongest 

effect on discrimination of decision making options, which can be seen as in line 

with recent perspectives addressing the role of the Amygdala in valuing, 

described, for example, in (Ghashghaei, Hilgetag and Barbas, 2007; Murray, 

2007; Morrison and Salzman, 2010). The adaptation of action effect prediction 

links has a smaller, but still noticeable effect on social decision making. Next to 

learning of action effect prediction links, adaptation of effect-next action 

prediction links in simulated chains was investigated by simulation. It was 

established that the learning effect of the latter links on decision making is the 

same as of the former links. Thus, employing learning of both types of links in 

simulated decision chains does not have any added value for discrimination of the 

decision options. The Hebbian learning of external information provision links did 

not result in a significant discrimination between the decision options. This is 

explained by a high mutual influence of the agents and the similarity of their 

states.  In conclusion, in societies of homogeneous and/or pervious to influence 

agents, employing Hebbian learning of action-effect prediction and emotion-

related links would result in an efficient social decision making process. When 

agents express strong opposing opinions in decision making, learning of external 

information provision links may also need to be employed. 

Previously, the Prospect Theory model of human decision making was 

proposed (Kahneman and Tversky, 1984), which is often used for representing 

human decision making in Cognitive Science (see e.g., (Delgado, Phelps, and 

Robbins, 2011)). The theory is developed for simple probabilistic options (actions) 

with monetary outcomes, however can be extended to more involved options. In 

the model individuals subjectively transform probabilities pi into decision weights 

w(pi) and outcomes xi into values v(xi), relative to a reference point, which 

depends on the individual’s expectation and situation. The utility of an option in 

its simplest form is calculated as i=1..N w(pi)v(xi), where N is the number of 

outcomes of an option. The decision weighting function may have different forms, 

e.g. as in (Delgado, Phelps and Robbins, 2011): w(p)=p

/( p

 
+ (1-p)


)
1/

. In the 

proposed model such a function could be incorporated into (13) for updating the 

strength values of links from preparation to sensory representation of action effect 

states.  

The value function for an option in the Prospect Theory model is often defined 

as a power function of deviations of outcomes of actions from the agent’s 

reference point. In (Ahn, 2010) a computational decision making model is 

proposed, in which parameters of a prospect theory value function change with 

emotions. Similarly, in the proposed model, emotions, which play a crucial role in 

the evaluation of options, arise based on a difference between sensory 

representation of action effect states (the reference point) and the agent’s desired 
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state (a goal) (equation (7)). In contrast to the standard prospect model with 

atomic actions, options in our model are composite (i.e., represented by chains). 

Furthermore, in contrast to a linear (non-cyclic) evaluation of options in the 

prospect model, in the proposed model the evaluation of later states in a chain has 

an effect through an emotional influence on the evaluation of earlier states in a 

cyclic manner. This assumption is in line with psychological evidences (Gray, 

2004), submitting that emotions influence not only the final outcome (action 

selection), but the processing dynamics of the whole system. 

In the literature (Delgado, Phelps and Robbins, 2011) it is recognized that 

humans often employ diverse emotion regulation mechanisms (e.g., to cope with 

fear and stress). These mechanisms involve interplay between cognitive and 

affective processes. In the future the proposed model will be extended with an 

emotion regulation component. 
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