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Abstract   
In this paper a computational model is presented for how a desire triggers responses and feelings. The 

model shows how these feelings can be biased, for example due to addicting experiences in the past. Both 

the strength of a response and of the associated feeling result from a converging dynamic pattern modelled 

by reciprocal causal interactions between the two. The model has been used to conduct a number of 

simulation experiments under varying circumstances. Moreover, it has been evaluated by formal analysis 

of emerging patterns entailed by the model. Furthermore, it has been pointed out how the computational 

model can be applied within an ambient agent system supporting a human in not being tempted. In a 

simple example scenario it is shown such an ambient agent system is able to predict and assess a human’s 

desire state, and use this assessment to suggest alternatives to avoid falling for certain temptations. 

  

Keywords: desire, feeling, computational model 

 

1 Introduction 

As many cognitive states, desires trigger responses in the form of preparations for certain actions and 

associated emotional states. These emotional states in turn induce emotional feelings, and in a reciprocal 

manner, the generated feelings affect the preparations. For some literature on such reciprocal interactions 

between cognitive and affective states, see, for example, (Eich, Kihlstrom, Bower, Forgas, and 

Niedenthal, 2000; Niedenthal, 2007; Winkielman, Niedenthal, and Oberman, 2009; Memon and Treur, 

2010). The dynamical model introducd in this paper for these processes is based on neurological theories 

on the embodiement of emotions as described, for example, in (Damasio, 1994, 1996, 1999, 2003, 2010; 

Winkielman, Niedenthal, and Oberman, 2009).  

More specifically, for feeling the emotion associated to a preparation a converging recursive body 

loop is assumed (e.g., Damasio, 1999, 2003, 2010). This feedback loop also involves the interaction back 

from the feeling to the preparation state. For given circumstances, this loop ends up in an equilibrium for 

both the strength of the preparation and of the feeling. The level of this equilibrium depends on the 

                                                           
1 Parts of the work described here have been presented in preliminary forms in conferences as: 

Bosse, T., Hoogendoorn, M., Memon, Z.A., Treur, J., and Umair, M., An Adaptive Model for Dynamics of 

Desiring and Feeling based on Hebbian Learning. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., and Huang, J. 

(eds.), Proceedings of the Second International Conference on Brain Informatics, BI'10. Lecture Notes in Artificial 

Intelligence, vol. 6334, Springer Verlag, 2010, pp. 14-28. 

Hoogendoorn, M., Memon, Z.A., Treur, J., and Umair, M., A Model-Based Ambient Agent Providing Support in 

Handling Desire and Temptation. In: Demazeau, Y., et al. (eds.), Proceedings of the 8th International Conference 

on Practical Applications of Agents and Multi-Agent Systems: Trends in Practical Applications of Agents and 

Multiagent Systems, PAAMS'10. Advances in Intelligent and Soft Computing Series, vol. 71. Springer Verlag, 

2010, pp. 461-475. 
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strengths of the connections within such a loop. By a Hebbian learning mechanism these connection 

strengths are assumed to depend on earlier experiences. This is also in line with the Somatic Marker 

Hypothesis (Damasio, 1994, 1996). By the model it will be shown how through this adaptation process 

addicting experiences can create serious biases in these loops, that may easily lead to vulnerabilities for 

temptations. 

In the first place the paper introduces a dynamical model for the processes indicated above. In 

addition  the possible use of such a model in supporting persons to handle temptations is discussed. To 

this end, a design of an ambient agent system is described (e.g., Aarts, Collier, Loenen, Ruyter, 2003; 

Aarts, Harwig, Schuurmans, 2001; Riva, Vatalaro, Davide, Alcañiz, 2005). One of the more ambitious 

challenges in this area is to create ambient systems with an appropriate form of human-awareness: 

awareness of the (mental) states of humans. To obtain an adequate human-aware ambient system, 

computationally formalised knowledge describing the dynamics and interaction of internal states is 

needed. To design an ambient system incorporating such a model, agent modelling offers a useful 

approach, as agents are able to integrate such dynamical models and reason about them (e.g., Bosse, 

Hoogendoorn, Klein, and Treur, 2009). Human-aware ambient agent systems equipped with the ability to 

reason about the different types of mental states in principle can be applied to support of humans, for 

example persons vulnerable to temptations due to a developing addiction. A second possible application 

of the computational model is as a basis for a virtual agent for a person suffering from addictive 

behaviour, in a simulation-based training environment for psychotherapists. 

In this paper, first in Section 2 the computational model for the dynamics of desires, preparations and 

feelings is described. Section 3 presents simulation results of the domain model. In Section 4, formal 

analysis of the computational model is addressed, both by mathematical analysis of equilibria and 

automated logical verification of properties. In Section 5 it is pointed out how an ambient agent model 

can be obtained which integrates the computational model. Section 6 is a discussion. Appendices give 

some more details for the suggestions put forward for application of the computational model within an 

ambient agent. 

2   The Computational Model for Dynamics of Desires and Feelings 

In this section the dynamical interaction between desiring, preparing and feeling is discussed in some 

more detail from a neurological perspective. First an overview is given, next different parts of the model 

are discussed in more detail. 

 

2.1 Overview of the Computational Model 
 

Any mental state in a person induces emotions felt by this person, as described in (Damasio, 2003): 
 

 ‘… few if any exceptions of any object or event, actually present or recalled from memory, are ever neutral in 

emotional terms. Through either innate design or by learning, we react to most, perhaps all, objects with 

emotions, however weak, and subsequent feelings, however feeble.’  (Damasio, 2003, p. 93) 
 

More specifically, in this paper it is assumed that responses in relation to a mental state of desiring 

roughly proceed according to the following causal chain: 
 

desire     preparation for response    body state modification    sensing body state     

sensory representation of body state   induced feeling 
 

 

As a variation, an ‘as-if body loop’ uses a direct causal relation 

preparation for response    sensory representation of body state 
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as a shortcut in the causal chain; cf. (Damasio, 1999). The body loop (or as-if body loop) is extended to a 

recursive (as-if) body loop by assuming that the preparation of the bodily response is also affected by the 

state of feeling the emotion:  
 

feeling    preparation for  the bodily response   
 

 

Such recursion is suggested in (Damasio, 2003), noticing that what is felt is a body state which is under 

control of the person: 
 

‘The brain has a direct means to respond to the object as feelings unfold because the object at the origin is 

inside the body, rather than external to it. The brain can act directly on the very object it is perceiving. (…) 

The object at the origin on the one hand, and the brain map of that object on the other, can influence each 

other in a sort of reverberative process that is not to be found, for example, in the perception of an external 

object.’  (Damasio, 2003, pp. 91-92) 
 

 

Within the computational model presented in this paper, both the bodily response and the feeling are 

assigned a level or gradation, expressed by a number. The causal cycle is modelled as a positive feedback 

loop, triggered by an activation of the desire and converging to certain activation levels of feeling and 

preparation for a body state. Here in each round of the cycle the next body state preparation has a level 

that is affected by both the activation levels of the desiring and the feeling state, and the next level of the 

feeling is based on the level of the preparation. In this way the activation of a specific action is based on 

both the activation level of the desire and of the feeling associated to this action. This illustrates 

Damasio’s theory on decision making with a central role for emotions felt, called the Somatic Marker 

Hypothesis (cf. Bechara and Damasio, 2004; Damasio, 1994, 1996). Each considered decision option 

induces (via an emotional response) a somatic marker. Viewed from this perspective, based on the 

recursive as-if body loop, not only the strength of the connection from desire to preparation but also the 

strength of the connection from feeling to preparation will play an important role in deciding which action 

to pursue. When one or each of these connections is weak it will not lead to a high activation level of the 

preparation state, whereas a strong connection strength may result in a high activation level of the 

preparation state. A strong preparation state can play the role of a strong temptation. 

The strengths of the connections from feeling to preparation are subject to learning. Especially when a 

specific action is performed and it leads to a strong effect in feeling, by Hebbian learning (Bi and Poo, 

2001; Hebb, 1949; Gerstner and Kirstner, 2002) this will give a positive effect on the strength of this 

connection and consequently on future activations of the preparation of this specific action. Through such 

a mechanism experiences in the past have their effect on behavioural choices made in the future. In the 

computational model introduced here, by a Hebbian learning rule it is realised that actions induced by a 

certain desire which result in stronger experiences of satisfaction will be chosen more often to fulfill this 

desire. This is independent of how benificial these actions are. 

In the remainder of this section the dynamical model is presented; for an overview see Figure 1. This 

picture also shows labels LP0 to LP8  referring to the detailed specifications of dynamical relations 

explained formally in Box 1 and 2. Note that the precise numerical relations between the indicated 

variables V shown are not expressed in this picture, but in the detailed specifications of properties in the 

boxes. Here capitals are used for (assumed universally quantified) variables. The computational model 

was specified in the hybrid dynamical modelling language LEADSTO (Bosse, Jonker, Meij and Treur, 

2007), where the temporal relation a  b denotes that when at some time point a state property a occurs, 

then after a certain time delay (which can be specified as any positive real number, for example, a small 

time step t), state property b will occur. LEADSTO is a hybrid language in the sense that both logical 

and numerical relations can be specified in a fully integrated manner. It is supported by a dedicated editor 

and a simulation environment. 

 

 

 



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 1.  Overview of the dynamical model for desiring and feeling 
 

 

2.2  The Dynamical Interaction between Preparing and Feeling induced by a Desire 
 

Desires are assumed to be based on sensory representations of unbalances in the body state. This relates 

to the principle that organisms aim at maintaining homeostasis of their internal milieu. Desires induce 

preparations for actions and associated feelings which in turn have a mutual interaction. 

 

Generating a desire by a sensing a bodily unbalance 

Sensor states are represented in Figure 1 by sensor_state(ub,Vub) and sensor_state(bi,Vi) for i = 1, 2, 3 (see 

LP0 in Box 1). As a next step sensory representations are determined. This takes place by a simple 

propagation of the respective sensor state value to the respective value for the sensory representation 

state; see Figure1 srs(B,V) with B  {ub, b1, b2, b3}, and Box 1, LP1. The desire considered in the example 

scenario is assumed to be generated due to sensing an unbalance in a body state indicated by ub. The first 

part of the example scenario proceeds as follows: 

 

 the person senses the bodily unbalance state ub  

 the desire to address this unbalance ub is generated (e.g., a state of being hungry) 

ωdi 

ωfi 

  

 

  LP0 

srs(b1, V1) 

srs(b2, V2) 

srs(b3, V3) 

feeling(b2, V2) 

feeling(b1, V1) 

body_state(b3,V3) 

body_state(b2,V2) 

body_state(b1,V1) 

body_state(ub,Vub) 

desire(ub, Vub) 

LP2 

              LP3 

prep_state(bi, Vi) 

effector_ 

state(bi, Vi) 

LP6   

LP5 

LP1 

 

LP7               LP8 

LP4 

 

srs(ub, Vub) 

feeling(b3, V3) 

 sensor_state(ub,Vub) 

 sensor_state(b1,V1) 

 sensor_state(b2,V2) 

 sensor_state(b3,V3) 
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 the desire triggers preparations for actions involving body states bi to fulfill the desire; here also 

the associated feeling states play their role. 

 

  
Box 1 Detailed specification of the dynamics of preparing and feeling induced by a desire 

 

The dynamic property for the process for desire generation is described as LP2 in Box 1. From the 

sensory representation of the body state unbalance ub, the value V in srs(ub,Vub) is passed on to the value 

for desire(ub,Vub). The parameters i in LP3 and LP4 denote the speed by which activation levels are 

Sensing and sensory representation of body states B  {ub, b1, b2, b3} 
 

LP0  Sensing a body state B  {ub, b1, b2, b3} 

If  body state property B has level V 

then  after t a sensor state for B will have level V. 

body_state(B, V)   sensor_state(B, V) 
 

LP1  Generating a sensory representation for a sensed body state B  {ub, b1, b2, b3} 

If  a sensor state for B has level V,  

then  after t a sensory representation for B will have level V. 

sensor_state(B, V)    srs(B, V) 
 

Generating a desire to address a body unbalance state ub 
 

LP2  Generating a desire based on a sensory representation for a body unbalance ub 

If  a sensory representation for body unbalance ub has level V,  

then  after t a desire to address ub will have level V. 

srs(ub, V)     desire(ub, V) 
 

Inducing preparations for body states B  {b1, b2, b3} 
 

LP3  From desire and feeling to preparation  

If  the desire to address ub has level Vub  

  and feeling the body state bi has level Vi 

  and  the preparation state for bi has level Ui 

  and  di   is the strength of the connection from desire for ub to preparation for bi 

  and  fi   is the strength of the connection from feeling of bi to preparation for bi 

  and  i  is the steepness value for the preparation for bi 

  and  i  is the threshold value for the preparation for bi 

  and  1 is the person’s flexibility for bodily responses 

then  after t  the preparation state for bi will have level  Ui + 1[ g(i, i,  Vub, Vi, di, fi) - Ui ] t. 

desire(ub, Vub)  &  feeling(bi, Vi)  &  prep_state(bi, Ui)  &   

has_steepness(prep_state(bi), i)  &  has_threshold(prep_state(bi), i) 

  prep_state(bi, Ui + 1 (g(i,  i, Vub, Vi, di, fi) - Ui) t) 
 

From preparation to feeling (as-if body loop) of a body state B  {b1, b2, b3} 
 

LP4  From preparation and sensor state to sensory representation of body state B  {b1, b2, b3} 

If  preparation state for body state B has level V1 

  and sensor state for B has level V2  

  and the sensory representation for B has level U 

  and    is the steepness value for the sensory representation of B 

  and    is the threshold value for the sensory representation of B 

  and  2 is the person’s flexibility for bodily responses 

then  after t  the sensory representation for body state B will have level U + 2 [ g(, ,  V1, V2, 1, 1) - U ] t. 
 

prep_state(B, V1) & sensor_state(B, V2) & srs(B, U)  & has_steepness(srs(B), ) &  has_threshold(srs(B), ) 

  srs(B, U + 2 (g(, , V1, V2, 1, 1) - U) t) 
 

LP5  From sensory representation of body state B  {b1, b2, b3} to feeling B 

If  a sensory representation for body state B has level V, 

then  after t  body state B will be felt with level V. 

srs(B, V)     feeling(B, V) 
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changing. Low values for i  imply that the activation values of the past persist long. Note that in LP4 the 

strengths of the connections from sensor states and from preparation states to sensory representation 

states all have been given a default value 1. This value also could be replaced by other values. 

 

Inducing preparations  

The process of propagation of the value was simple as only state was responsible to activate the next 

state. In contrast, the value of the preparation state depends upon the values of desire and of feeling. 

Activation of a desire, together with feelings, induce preparations for a number of action options: those 

actions the person considers relevant options to satisfy the desire (for example based on earlier 

experiences). Dynamic property LP3 in Box 1 describes such responses to an activated desire in the form 

of the preparation for specific actions. It combines the activation levels Vub and Vi of two states (desire 

and feeling) through connection strengths di and fi respectively. This specifies part of the recursive as-if 

loop between feeling and body state. This dynamic property uses a combination function g(, , Vub, Vi, 

di, fi) which is based on a sigmoid threshold function  

 

th(, , W)  = 
 

               
 

with steepness   and threshold  . For this model g(, , Vub, Vi, di, fi) is defined as  

 

g(, , Vub, Vi, di, fi)  = th(, , diVub + fiVi)  
 

with Vub, Vi  activation levels and di, fi weights of the connections to the preparation state. See Box 1, 

LP3 for formal specification of this dynamic relationship.  

 

Generating associated feelings 

Generating the associated feelings is done in two steps. First the sensory representation of the body state 

is determined by combining two values: 

 

 the preparation state values, i.e. prep_state(bi,Vi) generated through the as-if body loop  

 the value from the sensor state, i.e sensor state(bi,Vi) generated through the body loop.  

 

This combination is based on a similar function g(, , V1, V2, 1,1) where  V,  and V2 are levels for 

preparation state and sensor state for the body state respectively. For details see Box 1, LP4 and LP5. 

 

2.3  Dynamics of Action Performance and Desire Satisfaction 
 

Next effects of the preparations for body states bi on the body states ub and bi are addressed. The idea is 

that the actions performed based on body states bi are different means to satisfy the desire related to ub. 

This is due to the impact they have on the body state in decreasing the activation level Vub (indicating the 

extent of unbalance) of body state ub. In addition, when performed, each of these actions bi  has an effect 

on the specific body state bi. This can be interpreted as a basis for the form of satisfaction felt for the 

specific way in which ub was satisfied. So, a specific action performance involving bi has two effects: 

 

 an effect on body state ub, by decreasing the level of unbalance entailed by ub,  

 an effect on the body state bi by increasing the level of satisfaction entailed by bi 

 

The level of satisfaction entailed by bi may be proportional to the extent to which the unbalance ub is 

reduced, but may also be disproportional. For example, taking sugar free chewing gum may give a form 

of satisfaction, but will not reduce an unbalance in available energy. 

As the possible actions to fulfill a desire are considered different, they differ in the extents of their 

effects on these two types of body states, according to an effectiveness rate i between 0 and 1 for ub, and 
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an effectiveness rate i between 0 and 1 for bi. The effectiveness rates i and i can be considered a kind 

of connection strengths from the effector state to the body states ub and bi, respectively. In common 

situations for each action these two rates may be equal (i.e., i = i). However, especially in more 

pathological cases they may also have different values where the satisfaction felt based on rate i for bi 

may be disproportionally higher or lower in comparison to the effect on ub based on rate i  (i.e., i > i 

or i < i). An example of this situation is a case of addiction for one of the actions. To express the extent 

of disproportionality between i and i, a parameter i, called satisfaction disproportion rate, between -1 

and 1 is used. This parameter relates i to i using a function f, by i = f(i, i). Here the function  f(, ) 

satisfies 
 

f(0, ) =  f(-1, ) = 0 f(1, ) = 1 

 

The function f(, )  can be defined in a continuous (but not differentiable) manner as a piecewise linear 

function in  by 
 

f(, ) =  + (1-) , if    0 

f(, ) = (1+) , if    0 

 

Using such a function f, for normal cases i = 0 is taken, for cases where satisfaction is disproportionally 

higher 0 < i  1 and for cases where satisfaction is disproportionally lower -1  i < 0. For more details 

see Box 2, LP6 and LP7. 

 

Box 2 Detailed specification of the dynamics of action execution and sensing 

 

Note that in case only one action is performed (i.e., Vj = 0 for all j  i), the formula in Box 2, LP8 

reduces to Vub +( (1-Vub) –   i Vi Vub) t. In the formula   is a rate of developing unbalance over time 

(for example, getting hungry), and   a rate of compensating for this unbalance. Note that the specific 

formula used here to adapt the level of ub is meant as just an example. As no assumptions on body state 

ub are made, this formula is meant as a stand-in for more realistic formulae that could be used for specific 

body states ub. Moreover, actions have been assumed to be nonexclusive. Exclusiveness between two 

actions can be incorporated by adding mutual inhibiting connections between them. 

 

LP6  From preparation to effector state  for B {b1, b2, b3} 

If  preparation state for B has level V, 

then  after t the effector state for body state B will have level V. 

prep_state(B, V)    effector_state(B, V) 
 

LP7  From effector state to modified body state bi  {b1, b2, b3} 

If  the effector state for bi has level Vi, 

  and for each i the effectivity of bi for ub is i 

  and the satisfaction disproportion rate of bi for ub is i 

then  after t body state bi will have level  f(i, i)Vi. 

effector_state(bi, Vi) & is_effectivity_for(i, bi, ub) & 

is_disproportion_rate_for(i, bi, ub)    body_state(bi, f(i, i)Vi) 
 

LP8  From effector state to modified body state bi  {b1, b2, b3} 

If  the effector states for bi have levels Vi, 

  and body state ub has level Vub, 

  and for each i the effectivity of bi for b is i 

then after t body state ub will have  

 level  Vub +( * (1-Vub) –  * (1 – ( (1 - 1 * V1)  * (1 - 2 * V2) * (1 - 3 * V3) )) * Vub) t. 

effector_state(b1, V1)  &  effector_state(b2, V2)  &  effector_state(b3, V3)  &   

body_state(ub, Vub)  &  is_effectivity_for(1, b1, ub) &  is_effectivity_for(2, b2, ub) &  is_effectivity_for(3, b3, ub) 

  body_state(ub, Vub + ( * (1-Vub) –  * (1 – ( (1 - 1*V1)  * (1 - 2*V2) * (1 - 3*V3) )) * Vub) t   
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2.4  Hebbian Learning for the Connections from Feeling to Preparation 
 

The strengths fi  of the connections from feeling bi to preparation of bi are considered to be adapted by 

learning. When an action involving bi is performed and leads to a strong effect on bi, this leads to a 

stronger feeling for bi. By Hebbian learning  (Hebb, 1949; Bi and Poo, 2001; Gerstner and Kirstner, 2002) 

this increases the strength of the connection from feeling bi to preparation for bi. This is an adaptive 

mechanism that models how experiences in the past may affect behavioural choices made in the future, as 

also described in Damasio’s Somatic Marker Hypothesis (Damasio, 1994, 1996). The experiencing itself 

is represented by the feeling states for bi. When these have a high activation level after the action has been 

prepared and performed, the connection from feeling to preparation will be strengthened, thus 

representing the experience in this connection. More specifically, the strength fi of the connection from 

feeling to preparation is adapted using the Hebbian learning rule specified in dynamic property LP9 in 

Box 3. It takes into account a maximal connection strength 1, a learning rate , and an extinction rate . A 

similar Hebbian learning rule can be found in (Gerstner and Kirstner,  2002, p. 406). For more details see 

Box 3, LP9.  

 

 

Box 3  Detailed specification of the learning process for the connections from feeling to preparation 
 

3.   Simulation Results for the Computational Model 
 

Based on the model described in the previous section, a number of simulations have been performed. A 

first example simulation trace included in this section as an illustration is shown in Figure 2. In all traces, 

the time delays within the temporal LEADSTO relations were taken 1 time unit. Note that only a 

selection of the relevant nodes (represented as state properties in LEADSTO) is shown. In all of the 

figures shown time is on the horizontal axis, and the activation levels of the different state properties are 

on the vertical axis. it is shown how activation levels of the state properties gradually increase following 

the recursive loop. In all of the simulations presented here the strengths di of the connections from desire 

to all considered preparations have been given a default value 1. Moreover, the initial values of the 

activation levels for the internal states such as sensory representation states have been chosen 0. 

 

 

LP9  Hebbian learning for the connection from feeling to preparation 

If  the connection from feeling bi to preparation of bi has strength fi 

  and the feeling bi has level V1i  

  and  the preparation of bi has level V2i  

  and  the learning rate from feeling bi to preparation of bi is  

  and  the extinction rate from feeling bi to preparation of bi is  

then  after t  the connection from feeling bi to preparation of bi will have  

 strength fi + (V1iV2i (1 - fi) - fi) t. 

has_connection_strength(feeling(bi), preparation(bi), fi) &  

feeling(bi, V1i)  &  preparation(bi, V2i) &   

has_learning_rate(feeling(bi), preparation(bi), )  &   

has_extinction_rate(feeling(bi), preparation(bi), )    

    has_connection_strength(feeling(bi), preparation(bi), fi + (V1iV2i (1 - fi) - fi) t) 
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Figure 2: Simulation Trace 1 – Normal behaviour 

(1=2=3=10, 1=2=3=0.5, 1=2 =3=0.05;  

1=1 =0.05, 2=2 =0.25, 3=3=1, =0.8, =0.1, =0.04, =0.01) 

 

For the example shown in Figure 2, for each i it was put i = 0, so this shows a case in which 

satisfaction felt is in proportion with fulfillment of the desire. Action option 3 has the highest 

effectiveness rate, i.e. 3 =1. Its value is higher than for the other two action options. This effect 

propagates to their respective body states as shown in Figure 2(b). All these body states have a positive 

effect on body state ub, decreasing the level of unbalance, as shown in Figure 2(b). Here the value of the 

bodily unbalance state ub (which was set initially to 0.3) decreases over time until it reaches an 

equilibrium state. For each of the body states bi feelings are generated, as shown in Figure 2(c). 

Furthermore, the Hebbian learning gives a strong effect on the strength of the connection from feeling to 

preparation for option 1. The connection strength keeps on increasing over time until it reaches an 

equilibrium state, as shown in Figure 2(d). As the extinction rate (=0.01) is a factor 4 smaller than the 

learning rate (=0.04), the connection strength becomes 0.8, which is confirmed by the mathematical 

analysis in Section 4. 

Figure 3 shows the simulation of an example scenario where the person is addicted to a particular 

action, in this case to action option 1, expressed by 1 = 1. Because the effectiveness rate 1 for this 

option is very low (0.05), the addiction makes that the person is not very effective in fulfilling the desire. 

The level of unbalance remains around 0.3; the person mainly selects action option 1 because of its higher 

satisfaction. 
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Figure 3: Simulation Trace 2 – Addiction-like behaviour  

(1=2=3=10, 1=2=3=0.5, 1=2 =3=0.05; 1=0.05, 1=1, 2=2=0.1, 3=3=0.7,  =0.8, =0.1, =0.02, =0.01) 

 

In the next trace (see Figure 4), the effectiveness rates for the different action options have been given a 

varying pattern over time. After some time 1 has been gradually increased by a term of 0.009, starting 

with an initial value of 0.05 until it reaches the value 1, thereafter it has been kept 1. 

 

 
 

Figure 4: Simulation Trace 3 – Adapting to changing circumstances  

(1=2=3=6, 1=2=3=0.5, 1=2=3=0.1; 1=1 increasing from 0.05 to 1, 2=2=0.15,  

3=3 decreasing from 1 to 0.05;  =0.8, =0.1, =0.04, =0.02) 
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In the same period the effectiveness rate 3 has been gradually decreased by 0.009, starting with an initial 

value of 1, until it reaches the value 0.05, thereafter it has been kept 0.05. The latter pattern shows an 

exact opposite pattern of 1. The effectiveness rate 2 was kept constant: 0.15 for all the time points. As 

can be seen in Figure 4, first the person selects action option 3 as the most effective one, but after a 

change in circumstances the person shows adaptation by selecting action option 1, which has now a 

higher effectiveness rate. 

 

4.   Formal Analysis of the Computational Model 
 

This section addresses formal analysis of the domain model and the simulation results presented above. In 

Section 4.1 a mathematical analysis of the equilibria is presented. Moreover, in Section 4.2, it is discussed 

how a number of globally emerging dynamic properties have been identified from the literature and 

verified for a set of simulation traces. 

 

4.1 Mathematical Analysis of Equilibria  
 

For an equilibrium of the strength of the connection from feeling bi to preparation of bi, by LP9 the 

following holds: 
 

V1iV2i (1 - fi) - fi = 0 
 

with values V1i for feeling level and V2i  for preparation level for bi. This can be rewritten into  

 

fi    = 
         

            
  =  

 

  


         

 

 

Using V1i, V2i   1 from this it follows that 
 

fi    
 

     
 

 
 

gives a maximal connection strength that can be obtained. This shows that given the extinction, the 

maximal connection strength will be lower than 1, but may be close to 1 when the extinction rate is small 

compared to the learning rate. For example, for the trace shown in Figure 2 with  = 0.01 and  = 0.04, 

this bound is 0.8, which indeed is reached for option 3. For the traces in Figures 3 and 4 with  / = 0.5 

this maximum is 0.67, which is indeed reached for option 1 in Figure 3 and option 3, resp. 1 in Figure 4. 

Whether or not this maximally possible value for fi is approximated for a certain option, also depends on 

the equilibrium values for feeling level V1i and preparation level V2i for bi. For values of V1i  and V2i that 

are 1 or close to 1, the maximal possible value of fi  is approximated. When in contrast these values are 

very low, also the equilibrium value for fi  will be low, since: 
 

fi    = 
         

            
          V1iV2i / 

 

So, when one of V1i and V2i is 0 then also 2i = 0 (and conversely). This is illustrated by the options 1 and 

2 in Figure 2, and option 2 in Figure 3. 

Given the sigmoid combination functions it is impossible to solve the equilibrium equations in 

general. Therefore the patterns emerging in the simulations cannot be derived mathematically in a precise 

manner. However, as the combination functions are monotonic, some relationships between inequalities 

can be found: 
 

(1)  Options with higher activation levels are those with higher connection strengths 

a. V1jV2j   V1kV2k      fj   fk       

b. fj  < fk      V1jV2j  < V1kV2k 
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(2)  Options with higher feeling levels and connection strengths also have higher preparation levels  

a. fj  fk   &  V1j   V1k      fj V1j   fk V1k     V2j   V2k   

b. V2j  < V2k     fj V1j  < fk V1k 

(3)  Options with higher effectiveness rates and preparation levels relate to higher satisfaction 

a. j  k   & V2j   V2k     (1+j ) V2j   (1+k ) V2k   V1j   V1k   

b. V1j  < V1k     (1+j ) V2j  < (1+k ) V2k 
 

Here (1) and (2) follow from the above expressions based on LP9. Moreover, (3) and (4) follow from 

LP3, and (5) and (6) from the properties LP4, LP5, LP6, LP7, LP0 and LP1 describing the body loop and 

as-if body loop.  

For the case that one action dominates exclusively, i.e., V2k = 0 and 2k = 0  for all k  i, and V2i > 0, 

by LP8 it holds 
 

 * (1-Vub) –   * i * V2i * Vub = 0 
 

where Vub is the level of bodily unbalance state ub. Therefore for  >0 it holds  

 

Vub  = 
 

            
     

 

         
 

 

As V2i > 0  is assumed, this shows that if   is close to 0 (almost no development of unbalance), and  > 0 

and i > 0, the value Vub can be close to 0 as well. If, in contrast, the value of   is high (strong 

development of unbalance) compared to  and i, then the equilibrium value Vub will be close to 1. For 

the example traces in Figures 2, 3 and 4,  =0.8 and =0.1, so  / = 8. Therefore for a dominating option 

with i  = 1, it holds Vub  0.11, which can be seen in Figures 2 and 4. In Figure 3 the effectiveness of 

option 1 is very low (1 = 0.05), and therefore the potential of this option to decrease Vub is low: Vub 0.7.  

However, as in Figure 3 also option 3 is partially active, Vub reaches values around 0.35. Note that for 

the special case  = 0  (no development of unbalance) it follows that   i  V2i  Vub = 0 which shows that 

Vub = 0. Values for Vub at or close to 0 confirm that in such an equilibrium state the desire is fulfilled or is 

close to being fulfilled (via LP0, LP1 and LP2 which show that the same value Vub occurs for the desire). 

 
 

4.2  Logical Verification of Emerging Properties in Simulation Traces 
 

In literature such as (Damasio, 1994, 2003) a number of emerging global properties can be identified, 

such as that the option with the best feeling is selected, or that the options with more positive experiences 

get stronger affective connections. In order to investigate such particular emerging patterns in the 

processes shown in the simulation runs, a number of these properties have been formulated. Formal 

specification of the properties, enabled automatic verification of them against simulation traces, using the 

logical language and verification tool TTL (cf. Bosse, Jonker, Meij, Sharpanskykh, and Treur, 2009). The 

purpose of this type of verification is to check whether the simulation model behaves as it should 

according to the literature. As this literature has itself has an empirical foundation, this type of 

verification can be seen as a form of second-order validation. Typical example of property that may be 

checked are whether certain equilibria occur, whether the appropriate actions are selected, or whether the 

appropriate learning takes place.  

The temporal predicate logical language TTL supports formal specification and analysis of dynamic 

properties, covering both qualitative and quantitative aspects. TTL is built on atoms referring to states of 

the world, time points and traces, i.e. trajectories of states over time. Dynamic properties are temporal 

statements formulated with respect to traces based on the state ontology Ont in the following manner. 

Given a trace  over state ontology Ont, the state in  at time point t is denoted by state(, t). These states 

are related to state properties via the infix predicate |=, where state(, t) |= p denotes that state property p 

holds in trace  at time t. Based on these statements, dynamic properties are formulated in a sorted first-

order predicate logic, using quantifiers over time and traces and the usual first-order logical connectives 
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such as , , , , , . For more details, see (cf. Bosse, Jonker, Meij, Sharpanskykh, and Treur, 2009; 

Sharpanskykh and Treur, 2010). 

A number of properties have been identified for the processes modelled. Note that not all properties 

are expected to always hold for all traces; some of them may be a means to distinguish specific cases. The 

first property, GP1 (short for Global Property 1), expresses that eventually the preparation state with 

respect to an action will stabilise. 
 

GP1(d): Equilibrium of preparation state 

Eventually, the preparation state for each bi will stabilise at a certain value: it will not deviate more than a certain 

value d. 
:TRACE, B:BODY_STATE 

 [ t1:TIME   [ t2:TIME > t1, V1, V2 :VALUE 

    [ state(, t1) |= prep_state(B, V1) & state(, t2) |= prep_state(B, V2) 

        V2  (1 – d) * V1 & V2  (1 + d) * V1 ] ] ] 
 

Next, in property GP2 it is expressed that eventually the action which has the most positive feeling 

associated with it will have the highest preparation state value. 
 

GP2: Action with best feeling is eventually selected 

For all traces there exists a time point such that the bi with the highest value for feeling eventually also has the highest 

activation level. 
:TRACE, B:BODY_STATE, t1:TIME<end_time, V:VALUE 

[ [ state(, t1) |= feeling(B, V) & 

B2:BODY_STATE, V2:VALUE  

[ state(, t1) |= feeling(B2, V2)  V2  V]  

  [ t2:TIME > t1, V1:VALUE 

        [ state(, t2) |= prep_state(B, V1) &  

          B3:BODY_STATE, V3:VALUE  

[ state(, t2) |= prep_state(B3, V3)   V3  V1 ] ] ] ] 
 

Property GP3 expresses that if the accumulated positive feelings experienced in the past are higher 

compared to another time point, and the number of negative experiences is lower or equal, then the 

connection strength through Hebbian learning will be higher. 
 

GP3: Accumulation of positive experiences 

If at time point t1 the accumulated feeling for bi is higher than the accumulated feeling at time point t2, then the 

connection strength for bi is higher at t1 compared to t2. 
:TRACE, B:BODY_STATE, a:ACTION, t1, t2:TIME<end_time, V1, V2:VALUE 

[ [state(, t1) |= accumulated_feeling(B, V1) & state(, t2) |= accumulated_feeling(B, V2) & V1>V2 ] 

   W1, W2:VALUE 

[state(, t1) |= has_connection_strength(feeling(B), preparation(B), W1) &  

state(, t2) |= has_connection_strength(feeling(B), preparation(B), W2) & W1  W2 ] ] 
 

Next, property GP4 specifies a monotonicity property where two traces are compared. It expresses that 

strictly higher feeling levels result in a higher connection strength between the feeling and the preparation 

state. 
 

GP4: High feelings lead to high connection strength 

If at time point t1 in a trace 1 the feelings have been strictly higher level compared to another trace 2, then the 

connection strength from feeling to preparation state will also be strictly higher. 
1, 2:TRACE, B:BODY_STATE, t1:TIME<end_time, W1, W2:VALUE 

[t’ < t1:TIME, V1, V2:VALUE 

 [ [ state(1, t’) |= feeling(B, V1) &  

     state(2, t’) |= feeling(B, V2) ]  V1 > V2 ] & 

state(1, t1) |= has_connection_strength(feeling(B), preparation(B), W1) &  

state(2, t1) |= has_connection_strength(feeling(B), preparation(B), W2)  W1  W2 ] 
 

Finally, property GP5 analyses traces that address cases of addiction. In particular, it checks whether it is 

the case that if a person is addicted to a certain action which has a high value for the satisfaction 

disproportion rate  for this action, this results in a situation of unbalance (i.e., a situation in which the 

feeling caused by this action stays higher than the overall body state). An example of such a situation is 

found in simulation trace 2 (in Figure 3). 
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GP5: Addiction leads to unbalance between feeling and body state 

For all traces, if a certain action has  > 0, then there will be a time point t1 after which the feeling caused by this 

action stays higher than the overall body state. 
:TRACE, B:BODY_STATE, L:VALUE 

[ state(, 0) |= has_lambda(B,L) & L > 0 

 [ t1:TIME < last_time 

   t2:TIME>t1 Vub,V1:VALUE  

      [ state(, t2) |= body_state(ub, Vub) & body_state(B, V1)  Vub < V1 ] ] ] 
 

An overview of the results of the verification process is shown in Table 1 for the three traces that have 

been considered in Section 3. The results show that several expected global properties of the model were 

confirmed. For example, the first row indicates that for all traces, eventually an equilibrium occurs in 

which the values of the preparation states never deviate more than 0.0005 (this number can still be 

decreased by running the simulation for a longer time period). Also, the checks indicate that some 

properties do not hold. In such cases, the TTL checker software provides a counter example, i.e., a 

situation in which the property does not hold. This way, it could be concluded, for example, that property 

GP1 only holds for the generated traces if d is not chosen too small. 
 

Table 1. Results of verification of emerging patterns 

property trace 1 trace 2 trace 3 

GP1(X) X0.0001 X0.0005 X0.0001 

GP2 satisfied satisfied satisfied 

GP3 satisfied satisfied Satisfied 

GP4 satisfied for all pairs of traces 

GP5 satisfied satisfied satisfied 

5   On Application of the Computational Model in an Ambient Agent 

As a first step to explore application of the computational model introduced here, the model was 

embedded within an ambient agent model, in order to enable the agent to reason about this process, and to 

assess a person’s desires, preparations and feelings. The embedding takes place by using the causal 

relationships of the model described in Section 2 above in relationships for beliefs of the ambient agent 

on mental states of the person. In order to achieve this, the idea of recursive modelling is used; e.g., 

(Marsella, Pynadath and Read, 2004). This means that the beliefs that agents have about each other are 

represented in a nested manner. To this end, each mental state is parameterized with the name of the agent 

that is considered, thus creating concepts like  
 

 

has_state(human, feeling(b, 0.5))  
has_state(AA, performed(suggest(X))  
 

 

In addition, a number of meta-representations are introduced. For example,  
 

 

has_state(AA, belief(has_state(human, feeling(b, 0.7))))  
 

 

states that the ambient agent (AA) believes that the human has a feeling level of 0.7 for body state b. The 

following are the resulting agent local properties (ALP) that specify the processes within the ambient 

agent. Three examples of the dynamic properties making up the ambient agent model are as follows. The 

first two dynamic properties (ALP1 and ALP2) specify how the ambient agent AA observes the human’s 

body state and creates a belief about it. The third one (ALP6) shows how the computational model was 

embedded in the ambient agent model. Here di   is the strength of the connection from desire for b to 

preparation for Bi, fi   is the strength of the connection from feeling of Bi to preparation for Bi  and  1 is 

the person’s flexibility for bodily responses. 
 

ALP1 Observing the human’s body state B  {ub, b1, b2, b3} 

If  the human has certain body state B,  

then  the ambient agent AA will observe this. 
has_state(human, body_state(B, V, t))  

  has_state(AA, observed(has_state(human, body_state(B, V, t)))) 
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ALP2 Generating a belief for the human’s body state B  {ub, b1, b2, b3} 

If  the ambient agent AA observes that the human has certain body state,  

then  it will generate a belief on it. 
has_state(AA, observed(has_state(human, body_state(B, V, t))))  

   has_state(AA, belief(has_state(human, body_state(B, V, t))))  
 

ALP6  Generating a belief for the human’s preparations bi  { b1, b2, b3} 

If  AA believes that the human has a desire to address ub with level Vub  

  and  AA believes that the human has feeling bi with level Vi 

  and  AA believes that the preparation for body state bi has level Ui  

  and  i  is the steepness value for the preparation for bi 

  and   i  is the threshold value for the preparation for bi 

then  ambient agent AA will generate the belief that the human’s preparation state for body state bi will occur with 

level Ui +  1(g(i,  i,  Vub, Vi, di, fi) - Ui) t 
has_state(AA, belief(has_state(human, desire(ub, Vub, t)))) & 
has_state(AA, belief(has_state(human, feeling(bi, Vi, t)))) 
has_state(AA, belief(has_state(human, prep_state(bi, Ui, t)))) & 

has_steepness(prep_state(bi), i) &  has_threshold(prep_state(bi), i) 

  has_state(AA, belief(has_state(human, prep_state(bi, Ui + 1 (g(i,  i, Vub, Vi, di, fi) - Ui) t), t+t))) 

 

The desire assessment is used to generate an intervention intention, whenever needed. This intention 

persists until the point in time at which the intervention has to be performed. Table 2 shows the criteria 

used in the ambient agent’s decision process, where the human is assumed to consider an option if the 

level of the associated preparation state is predicted above a certain threshold, which in the example 

scenario is set to 0.1, whereas the different options that are available are characterized as good or bad 

based on the values of the effectivity rates of those options higher or lower than 0.5. The shaded cases in 

Table 1 indicate the cases for which intervention is intended: a bad option is considered by the human, or 

a good option is not considered. 
 

Table 2. Assessment criteria used by the ambient agent  

 

 
 

 

Further dynamic properties for the ambient agent model can be found in detail in Appendix A. 

Based on the ambient agent model pointed out above, a number of simulations have been performed 

within the LEADSTO simulation environment (Bosse, Jonker, Meij and Treur, 2007). The main goal of 

the ambient agent is to predict the level of desire of the human, assess it and, if needed, to suggest 

effective options to fulfill the desire. To this end, it starts with some initial values of the human’s desire 

and feeling levels, and then keeps on updating this, using the integrated model explained above. The 

model was tested in a small scenario, involving an ambient agent and a human, indicated by AA and 

human, respectively. The example scenario taken here considers a person who is getting hungry which 

generates a desire to eat for which a number of options is available at that time. As the level of desire 

increases this makes the person more tempted to eat, and in particular to choose the option that is 

associated to the best feeling. As the domain model is integrated within the ambient agent, it can predict 

the human’s desire level well in advance, and assesses the extent to which the human will consider the 

different options that are available to fulfill this desire. Based on the criteria given in Table 2, if the 

ambient agent predicts that the human will consider those options that are not effective for fulfilling the 

desire, then it will suggest not to choose them. Similarly, if the assessment process of the ambient agent 

determines any options that are quite effective for the human to choose, but the human will not consider 

those, then it will suggest the human to choose them.  

An example simulation trace is illustrated in Figure 5 (here the time delays within the temporal 

LEADSTO relations were taken 1 time unit). In such figures time is on the horizontal axis, and the upper 

part shows the time periods, in which the binary logical state properties hold (indicated by the dark lines); 

for example, has_state(AA, assessment(has_state(human, high_desire(ub), 204))). Below this part, quantitative 

 Preparation state level > 0.1 Preparation state level  0.1 

Effectivity rate > 0.5 A good option considered by the human  A good option not considered by the human 

Effectivity rate  0.5 A bad option considered by the human A bad option not considered by the human 
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information is provided about the human’s actual desire, preparation states, connection strength levels, 

levels of different body states and the ambient agent AA’s prediction of these. Values for these levels for 

the different time periods are shown by the dark lines. Note that the scale on the vertical axis differs over 

the different graphs, and only a selection of the relevant state properties is shown. Figure 5 shows the 

simulation of an example scenario where the person is developing an addiction to a particular action, in 

this case to action option 1, since 1 = 1 was chosen, which makes the satisfaction rate for this option 

high: 1 = 1. Because the effectiveness rate 1 for this option is very low (0.05), the person is not very 

effective in fulfilling the desire; the level of unbalance remains around 0.3. The human selects action 

option 1 because of its high feeling of satisfaction, as shown in lower part of Figure 7, in the graph of AA 

prep_state b1, which is strengthening the connection from feeling to preparation for this option. The 

ambient agent suggests not to choose the option. More details of simulated scenarios for the ambient 

agent model can be found in Appendix B. 

 

 

 

 

Figure 5 Simulation Trace 2 – Addiction like behavior: desire and preparation states 

(1=0.05, 1 =1, 2=2 =0.25, 3=3=1, 1=2=0.05,  

1=2=10, 1=2=0.5, =0.8, =0.1, =0.04, =0.01) 
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6   Discussion  

In this paper a formally defined dynamical model was introduced integrating cognitive and affective 

aspects of desiring, based on informally described theories in the neurological literature. The presented 

dynamical model describes how a desire induces (as a response) a set of preparations for a number of 

possible actions, involving certain body states, which each affect sensory representations of the body 

states involved and thus provide associated feelings. On their turn these feelings affect the preparations, 

for example, by amplifying them. In this way a dynamical model is obtained for desiring which integrates 

both cognitive and affective aspects of mental functioning. For the interaction between feeling and 

preparation of responses, a converging recursive body loop is included in the dynamical model, based on 

elements taken from (Damasio, 1999, 2003, 2010; Bosse, Jonker and Treur, 2008). Both the strength of 

the preparation and of the feeling emerge as a result of the dynamic pattern generated by this loop. The 

dynamical model is adaptive in the sense that within these loops the connection strengths from feelings to 

preparations are adapted over time by Hebbian learning (cf. Hebb, 1949; Bi and Poo, 2001; Gerstner and 

Kirstner, 2002). By this adaptation mechanism, in principle the person achieves that the most effective 

action to fulfill a desire is chosen. However, the dynamical model can also be used to cover humans for 

whom satisfaction for an action is not in proportion with the fulfillment of the desire, as occurs, for 

example, in certain cases of earlier addictive experiences which provide temptations for the future. In this 

case, action choice may become biased by such temptations.  

As the introduced model is mainly based on theories of the neurologist Damasio (1994, 1999, 2003, 

2010), from this literature it can be seen how different concepts in the model can be related to neural 

concepts. A brief survey of Damasio’s ideas about emotion and feeling, and the ‘tightly bound cycle’ 

between them can be found in (Damasio, 2010, pp. 108-129). According to this perspective emotions 

relate to actions, whereas feelings relate to perceptions: 
 

‘Emotion and feeling, albeit part of a tightly bound cycle, are distinguishable processes. (…) 

Emotions are complex, largely automated programs of actions concocted by evolution. The actions 

are complemented by a cognitive program that includes certain ideas and modes of cognition, but the 

world of emotions is largely one of actions carried out in our bodies, from facial expressions and 

postures to changes in viscera and internal milieu. Feelings of emotion, on the other hand, are 

composite perceptions of what happens in our body and mind when we are emoting. As far as the 

body is concerned, feelings are images of actions rather than actions themselves; the world of feelings 

is one of perceptions executed in brain maps. (…) While emotions are actions accompanied by ideas 

and certain modes of thinking, emotional feelings are mostly perceptions of what our bodies do 

during the emoting, along with perceptions of our state of mind during that same period of time.’  

(Damasio, 2010, pp. 109-110) 

‘Seen from a neural perspective, the emotion-feeling cycle begins in the brain, with the perception 

and appraisal of a stimulus potentially capable of causing an emotion and the subsequent triggering of 

an emotion. The process then spreads elsewhere in the brain and in the body proper, building up the 

emotional state. In closing, the process returns to the brain for the feeling part of the cycle, although 

the return involves brain regions different from those in which it all started.’ (Damasio, 2010, p. 111) 
 

In the presented computational model the emotion process is modelled by the dynamics of the preparation 

states, triggered by the desire reflecting the perceived bodily unbalance state, whereas the feeling process 

is modelled by the dynamics of sensory representations of body states, and indeed they are connected by a 

cycle by which they mutually affect each other (see Fig. 1). 

The states used in the model for sensory representations, desires, emotions and feelings are rather 

abstract. Viewed from a biological perspective, each of them relates to a combination of neural, 

biochemical and body states. For example, for emotions Damasio describes the following biological 

substrate; this can be viewed as the neural correlate of the preparation states in the model (expressed in 

dynamic relationship LP3): 
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 ‘Emotions work when images processed in the brain call into action a number of emotion-triggering 

regions, for example, the amygdala or special regions of the frontal lobe cortex. Once any of these 

trigger regions is activated, certain consequences ensue – chemical molecules are secreted by 

endocrine glands and by subcortocol nuclei and delivered to both the brain and the body (e.g., cortisol 

in the case of fear), certain actions are taken (e.g., fleeing or freezing; contraction of the gut, again in 

the case of fear), and certain expressions are assumed (e.g., a face and posture of terror).’ (Damasio, 

2010, p. 110) 
 

Note that here a role of the amygdala is indicated in the process of generating an emotion, whereas 

in earlier times often the amygdala was related to feelings. In contrast, Damasio describes the 

substrate for feelings as follows: 
 

‘In the late 1980s I hypothesized a role for the somatosensory cortices in feelings, and I pointed to the 

insula as a likely provider of feelings. I wanted to move away from the hopeless idea of attributing the 

origin of feeling states to action-driving regions, such as the amygdalae.’ (Damasio, 2010, p. 118) 
 

At that time this idea had a rather hypothetical character, and was not the accepted view. This changed 

after 2000: 
 

 ‘Since 2000, however, we have known that activity in the insula is indeed an important correlate for 

every conceivable kind of feeling (…) The idea that the insular cortex is an important substrate for 

feelings is certainly correct.’ (…) The anterior cingulate cortex tends to become active in parallel with 

the insula when we experience feelings. The insula and anterior cingulate are closely interlocked 

regions, the two being joined by multiple connections. The insula has dual sensory and motor 

functions, albeit biased toward the sensory side of the process, while the anterior cingulate operates as 

a motor structure.’ (Damasio, 2010, p. 118) 
 

In addition to these, the process of generating a feeling involves several subcortical regions for certain 

preprocessing as well, as ‘they are the first recipients of information from the viscera and internal milieu 

with the ability to integrate signals from the entire range of the body’s interior’ (Damasio, 2010, p. 118-

119). So, these elements can be seen as the neural correlates of the sensory representation states for body 

states (expressed in dynamic relationship LP1), the desire state (expressed in LP2), and the feeling states 

(expressed in LP5). 

The computational model for the dynamics of desires, preparations and feelings was specified in the 

hybrid dynamic modelling language LEADSTO, and simulations were performed in its software 

environment (cf. Bosse, Jonker, Meij, and Treur, 2007). The presented model uses neurological 

knowledge and technical elements from the neural modelling area. More specifically, it takes states as 

having a certain activation level (instead of binary states), thus making reciprocal cognitive/affective 

loops possible. To achieve this, the modelling approach exploits techniques used in continuous-time 

recurrent neural networks, in line with what is proposed in (Beer, 1995), adopting elements from 

(Hopfield, 1982; 1984). In particular, for a state connected to and affected by multiple other states, values 

for incoming activation levels are combined, using a combination function based on a logistic threshold 

function applied to an addition of all incoming activations. Simulation experiments show that the model 

behaves as expected, which also  has been verified formally. 

Two models that address similar processes are CAGE (Wagar & Thagard, 2004) and ANDREA (Litt, 

Eliasmith, Thagard, 2008) based on the neural engineering framework NESim (Eliasmith and Anderson, 

2003). Some commonalities with the approach presented here are that decision making is addressed in 

which emotions play an important role, and that neurological knowledge is used as a point of departure. 

There are also a number of differences. In the first place the grain size is quite different; the model 

introduced here is at a more abstract level. In CAGE and ANDREA spiking neural networks are used 

consisting of thousands of neurons of different types. The presented model abstracts from spiking and 

uses activation levels instead, and abstracts from individual neurons by considering groups of neurons and 

their activations as single states and activations. A further difference in abstraction is that in the model 

presented here only one (positive) valency for emotion is used, whereas in CAGE and ANDREA positive 
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and negative valencies of emotions are distinguished. Furthermore, in all three models learning 

techniques are used: Hebbian learning in the current model (following Gerstner and Kirstner, 2002) and 

CAGE (following Kempter, Gerstner, and van Hemmen, 1999), and temporal difference learning (cf. 

Sutton and Barto, 1998) in ANDREA.  

A further difference is that in contrast to CAGE and ANDREA, in the current model body states are 

explicitly modelled, and getting impact from them by sensing processes, and  the stimulus provided by a 

desire related to a bodily unbalance are part of the model. Moreover, discrepancies between feelings of 

satisfaction and contributing to decrease bodily unbalance are explicitly modelled, due to the aim of the 

model to make such discrepancies explicit, for example, in the context of addiction. 

As a form of second-order validation, claims made in the cognitive or neurological literature have 

been expressed and formalised in the form of dynamic properties (Section 4.2). Examples of such 

properties are that a decision takes the option with most positive feeling (GP2), and that better 

experiences with an option lead to stronger connections for that option (GP4). It turned out that the model 

indeed satisfies such properties. This is not a direct validation with empirical data, but at least an indirect, 

second-order validation against the empirically-based theories on which the model is grounded. More 

direct forms of validation will be an interesting challenge for the future. 

Possible applications of the introduced model can be twofold. In a first type of application the model 

can be used as a way to represent domain knowledge in intelligent software to support persons suffering 

from addictive behaviour, for example, in the context of Ambient Intelligence. To function in a 

knowledgeable manner, ambient agents (e.g., Aarts, Collier, Loenen, Ruyter, 2003; Aarts, Harwig, 

Schuurmans, 2001; Riva, Vatalaro, Davide, Alcañiz, 2005) need a model of the humans they are 

supporting. Such a model enables them to obtain human-awareness. It has been pointed out above how 

the introduced model can be integrated within an ambient agent model to be able to analyse and support a 

person’s functioning. A second type of application of the computational model is in simulation-based 

training. The model can be used as a basis for a virtual patient that can be used by (candidate) 

psychotherapists, to learn how a person suffering from adictive behaviour may function. In addition it can 

be studied how certain interventions may work out for the patient. 
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Appendix A: Ambient Agent Model Properties 
 

This appendix includes the details of the explored ambient agent model. The first two properties specify 

how the agent AA observes the human’s body state and creates a belief about it. 
 

ALP1 Observing the human’s body state B  {ub, b1, b2, b3} 

If  the human has certain body state B,  

then  the ambient agent AA will observe this. 
has_state(human, body_state(B, V, t))  

  has_state(AA, observed(has_state(human, body_state(B, V, t)))) 
 

ALP2 Generating a belief for the human’s body state B  {ub, b1, b2, b3} 

If  the ambient agent AA observes that the human has certain body state,  

then  it will generate a belief on it. 
has_state(AA, observed(has_state(human, body_state(B, V, t))))  

   has_state(AA, belief(has_state(human, body_state(B, V, t)))) 
 

The following properties specify how the ambient agent observes and generates beliefs about the human’s 

sensing and sensory representation process. 
 

ALP3 Generating a belief for a human’s sensing B  {ub, b1, b2, b3} 

If  AA believes that the human has certain body state B,  

then it will generate a belief that after t the human will sense this body state B 
has_state(AA, belief(has_state(human, body_state(B, V, t))))  

   has_state(AA, belief(has_state(human, sensor_state(B, V, t+t)))) 
 

ALP4 Generating a belief for the human’s sensory representation for B  {ub, b1, b2, b3} 

If  AA believes that the human senses body state B, 

then it will generate a belief that after t the human will have a sensory representation for B. 
has_state(AA, belief(has_state(human, sensor_state(B, V, t))))  

   has_state(AA, belief(has_state(human, srs(B, V, t+t)))) 
 

The ambient agent generates a belief on the human’s desires by: 
 

 

ALP5 Generating a belief for the human’s desire to address ub 

If  AA believes that the human has a sensory representation for body state ub 

then it will generate a belief that after t the human will generate a desire to address ub 
has_state(AA, belief(has_state(human, srs(ub, Vub, t))))  

   has_state(AA, belief(has_state(human, desire(ub, Vub, t+t)))) 
 

Next it is shown how the ambient agent estimates the preparations that are triggered. 
 

ALP6  Generating a belief for the human’s preparations for bi  {b1, b2, b3} 

If  AA believes that the human has a desire to address ub with level Vub  

  and  AA believes that the human has feeling bi with level Vi 

  and  AA believes that the preparation for body state bi has level Ui  

   and  di   is the strength of the connection from desire for b to preparation for bi 

   and  fi   is the strength of the connection from feeling of Bi to preparation for bi 

   and   i  is the steepness value for the preparation for bi 

   and   i  is the threshold value for the preparation for bi 

   and   1 is the person’s flexibility for bodily responses 

then  ambient agent AA will generate the belief that the human’s preparation state for body state bi will occur with level Ui 

+  1(g(i,  i,  Vub, Vi, di, fi) - Ui) t 
has_state(AA, belief(has_state(human, desire(ub, Vub, t)))) & 
has_state(AA, belief(has_state(human, feeling(bi, Vi, t)))) 
has_state(AA, belief(has_state(human, prep_state(bi, Ui, t)))) & 

has_steepness(prep_state(bi), i) &  has_threshold(prep_state(bi), i) 

  has_state(AA, belief(has_state(human, prep_state(bi, Ui + 1 (g(i,  i, Vub, Vi, di, fi) - Ui) t), t+t))) 
 

Variants of this property have been used to incorporate interventions which affect the preparations of 

some Bi in the sense that they are assumed to become 0 (suggestion not to do that) or 1 (suggestion to do 

that). For example: 
 

has_state(AA, belief(has_state(human, desire(ub, Vub, t)))) & 
has_state(AA, belief(has_state(human, feeling(bi, Vi, t)))) 
has_state(AA, belief(has_state(human, prep_state(bi, Ui)))) & 

has_steepness(prep_state(bi), i) &  has_threshold(prep_state(bi), i) & 
has_state(human, sensor_state(suggestion(do, bi))))) & 

  has_state(AA, belief(has_state(human, prep_state(bi, 1, t+t)))) 
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The following five properties describe how the ambient agent reasons about the human’s body loop.  
 

 

ALP7 Generating a belief for the human’s sensory representation of body state bi  {b1, b2, b3} 

If  AA believes that the human’s preparation state for body state bi with level V1 occurred 

  and  AA believes that the human senses his body state bi with level V2 

  and  AA believes that the human has sensory representation for bi with level U 

  and    is the steepness value for the sensory representation for bi 

  and     is the threshold value for the sensory representation for bi 

  and     is the person’s flexibility for bodily responses 

then  ambient agent AA will generate the belief that the human’s sensory representation for body state bi  will occur with 

level U + 2 (g(, ,  V1, V2, 1, 1) - U) t. 
has_state(AA, belief(has_state(human, prep_state(bi, V1, t)))) & 
has_state(AA, belief(has_state(human, sensor_state(bi, V2, t)))) 
has_state(AA, belief(has_state(human, srs(bi, U, t)))) & 

has_steepness(srs(bi), ) &  has_threshold(srs(bi), ) 

  has_state(AA, belief(has_state(human, srs((bi, U + 2 (g(, , V1, V2, 1, 1) - U) t), t+t) 
 

ALP8 Generating a belief for the human’s feeling of bi  {b1, b2, b3} 

If  AA believes that the human has a sensory representation for body state bi with level V,  

then it will believe that the human has feeling bi with level V. 
has_state(AA, belief(has_state(human, srs(bi, V, t)))) 

  has_state(AA, belief(has_state(human, feeling(bi, V, t+t)))) 
 

ALP9 Generating a belief for the human’s body modification of bi  {b1, b2, b3} 

If  AA believes that the human’s preparation state for body state bi with level V occurred,  

then it will believe that the human’s body state bi is modified with level V. 
has_state(AA, belief(has_state(human, prep_state(bi, V, t))))  

  has_state(AA, belief(has_state(human, effector_state(bi, V, t+t)))) 
 

ALP10 Generating a belief for the human from effector state to modified body state bi  {b1, b2, b3} 

If  AA believes that the human’s body bi is modified with level Vi,  

  and AA believes that for each i the effectivity of bi for ub is i 

and AA believes that the satisfaction disproportion rate of bi for ub is i 

then AA will believe that the human’s body state bi will have level f(i, i)Vi. 
has_state(AA, belief(has_state(human, effector_state(bi, Vi, t)))) & 

has_state(AA, belief(is_effectivity_for(i, bi, ub))) & 

has_state(AA, belief(is_disproportion_rate_for(i, bi, ub))) 

  has_state(AA, belief(has_state(human, body_state(bi, f(i, i)Vi), t+t))) 
 

ALP11 Generating a belief for the human from effector state to modified body state bi  {b1, b2, b3} 
If  AA believes that the human’s body bi is modified with level Vi, 

   and AA believes that human’s body state unbalance ub has level Vub, 

   and AA believes that for each i the effectivity of bi for ub is i 

then AA believes that human’s body state unbalance ub will have level  Vub +( * (1-Vub) –  

         * (1 – ( (1 - 1 * V1)  * (1 - 2 * V2) * (1 - 3 * V3) )) * Vub) t. 
has_state(AA, belief(has_state(human, effector_state(bi, Vi, t))))  &  
has_state(AA, belief(has_state(human, body_state(ub, Vub, t))))  &   

has_state(AA, belief(is_effectivity_for(i, bi , ub))) 

  has_state(AA, belief(has_state(human, body_state(ub,  

Vub + ( * (1-Vub) –  * (1 – ( (1 - 1*V1)  * (1 - 2*V2) * (1 - 3*V3) )) * Vub) t), t+t)) 
 
 

A variant of this property has been used to incorporate external events p that incidentally increases the 

level of the body state (such as exercising): 
 

has_state(AA, belief(has_state(human, effector_state(bi, Vi, t))))  &  
has_state(AA, belief(has_state(human, body_state(ub, Vub, t))))  &   

has_state(AA, belief(is_effectivity_for(i, bi , ub)))  &  external_effect(p) 

  has_state(AA, belief(has_state(human, body_state(ub,  

Vub + ((+p) * (1-Vub) –  * (1 – ( (1 - 1*V1)  * (1 - 2*V2) * (1 - 3*V3) )) * Vub) t), t+t)) 
 

 

The ambient agent AA generates beliefs about the connection strengths based on Hebbian learning 
 

ALP12  Generating a belief for the human’s learning of the connection from feeling to preparation of bi  {b1, b2, b3} 

If  AA believes that the connection from feeling bi to preparation of bi has strength fi 

  and AA believes that human has feeling bi with level V1i  

  and  AA believes that the human’s preparation of bi has level V2i  

  and  the learning rate from feeling bi to preparation of bi is  

  and  the extinction rate from feeling bi to preparation of bi is  

then  after t  AA will believe that the connection from feeling bi to preparation of bi will have  
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 strength fi + (V1iV2i (1 - fi) - fi) t. 

has_state(AA, belief(has_connection_strength(feeling(bi), preparation(bi), fi, t))) &  
has_state(AA, belief(has_state(human, feeling(bi, V1i, t))))  &   
has_state(AA, belief(has_state(human, prep_state(bi, V2i, t)))) &   

has_learning_rate(feeling(bi), preparation(bi), )  &   

has_extinction_rate(feeling(bi), preparation(bi), )    

    has_state(AA, belief(has_connection_strength(feeling(bi), preparation(bi),  

fi + (V1iV2i (1 - fi) - fi) t)), t+t) 
 

Based on the beliefs about the human’s states an assessment is made on the level of desire, as follows 

(where, for example th = 0.7):  
 

ALP13 Assessment generation 

If  AA believes that the human has a desire to address ub with level V at time t which is higher than threshold th1,  

then an assessment will be generated by AA that human will have a high desire to address ub at time t 

has_state(AA, belief(has_state(human, desire(ub, V, t)))) & V  th1  

     has_state(AA, assessment(has_state(human, high_desire(ub), t)))  
 

ALP14a Generation of intended intervention by the ambient agent: positive suggestion 

If         AA has generated an assessment that human will have a high desire to address ub at time t 

and      AA has desire of human’s wellbeing 

and      AA believes that the human’s preparation of bi has level Vi 

and       AA believes that for each i the effectivity of bi for ub is i 

and      Vi < 0.1 and i > 0.5 

then     AA will intends to intervene the human at a later time t to suggest for doing bi 
has_state(AA, assessment(has_state(human, high_desire(ub), t))) & 
has_state(AA, desire(wellbeing(human))) & 
has_state(AA, belief(has_state(human, prep_state(bi, Vi, t+20)))) &  Vi < 0.1 & 

has_state(AA, belief(is_effectivity_for(i, bi, ub))) & i > 0.5  

 has_state(AA, intended_intervention_at(suggestion(human, do, bi), t)) 
 

ALP14b Generation of intended intervention by the ambient agent: negative suggestion 

If         AA has generated an assessment that human will have a high desire to address ub at time t 

and      AA has desire of human’s wellbeing 

and      AA believes that the human’s preparation of bi has level Vi 

and       AA believes that for each i the effectivity of bi for ub is i 

and      Vi > 0.1 and i < 0.5 

then     AA will intends to intervene the human at a later time t to suggest for not doing bi 
has_state(AA, assessment(has_state(human, high_desire(ub), t))) & 
has_state(AA, desire(wellbeing(human))) & 
has_state(AA, belief(has_state(human, prep_state(bi, Vi, t+20)))) &  Vi > 0.1 & 

has_state(AA, belief(is_effectivity_for(i, bi, ub))) & i < 0.5  

 has_state(AA, intended_intervention_at(suggestion(human, don’t_do, bi), t)) 
 

ALP15 Propagation of the intended intervention by the ambient agent 

If       AA intends to intervene the human at a later time t1 to suggest X 

and    the current time is t2  and  t2 < t1 

then   the intended intervention for X by AA will persist 
has_state(AA, intended_intervention_at(X, t1)) & current_time(t2) & t2 < t1 

 has_state(AA, intended_intervention_at(X, t1)) 
 

 

Finally the intervention is performed: 
 

 

ALP16 Intervention by the ambient agent 

If       AA intends to intervene the human at a later time t1 to suggest doing X 

and    the current time is t2 

and    t2 = t1-3 

and    AA does not observes the human in doing X 

then   AA will suggest the human to do X 
has_state(AA, intended_intervention_at(X, t1)) & current_time(t2) & t2 = t1 - 3 

 has_state(AA, performed(X)) 
 

ALP17 The human responding to the action performed by the ambient agent 

If      AA suggests human to do X 

then human will perform X 
has_state(AA, performed(suggestion(human, X, B))) 

 has_state(human, sensor_state(has_state(AA, performed(suggestion(human, X, B))))) 
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Appendix B    Simulation Results for the Ambient Agent Model  

This appendix gives some more details of an example simulation scenarios for the ambient agent model. 

An example simulation trace is illustrated in Figure 6 and 7 (here the time delays within the temporal 

LEADSTO relations were taken 1 time unit). Recall that in all of these figures, where time is on the 

horizontal axis, the upper part shows the time periods, in which the binary logical state properties hold 

(indicated by the dark lines); for example, has_state(AA, assessment(has_state(human, high_desire(ub), 204))). 

Below this part, quantitative information is provided about the human’s actual desire, preparation states, 

connection strength levels, levels of different body states and the ambient agent AA’s prediction of these.  

 

 

 
 

 

Figure 6  Simulation Trace 1 – Normal behaviour: desire and preparation states 

 (1=1 =0.05, 2=2 =0.25, 3=3=1, 1=2=0.05,  

1=2=10, 1=2=0.5,  =0.8, =0.1, =0.04, =0.01) 

Values for these levels for the different time periods are shown by the dark lines. Note that the scale on 

the vertical axis differs over the different graphs, and only a selection of the relevant state properties is 

shown. For the example trace shown in Figures 6 and 7, for each i that represents an option, i = 0 was 

taken, so in this example simulation the human is not developing an addiction to any option. Option 3 has 
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the highest effectiveness rate, i.e. 3 =1. Its value is substantially higher than the rates for the other two 

available options. This affects the respective body states. Furthermore, as can be seen in Figure 7 by the 

Hebbian learning it gives a strong effect on the strength of the connection from feeling to preparation for 

this option: the connection strength for option 3 increases over time until it reaches an equilibrium state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 7 Simulation Trace 1 – Normal behaviour: adaptation process 
 

 
 
 

As shown in the lower part of the Figure 6, at time point 10, the ambient agent predicts that the desire 

level of human will increase but it will not cross the threshold set to 0.7, i.e., it is not considered sufficient 

enough to make the human tempted to choose this option. This is confirmed by the graph of the desire 

level of the human, where at time point 20, it increases but does not cross the threshold. Hence the 

ambient agent does not intend to perform any action. But later, some external effects (e.g., the human’s 

habit to attend gym) causes an increase in this desire level, which is predicted by the ambient agent AA in 

the simulation at time point 102, as shown in the upper part of the Figure 6, by the state property 

has_state(AA, assessment(has_state(human, high_desire(ub), 204))), expressing that an assessment has been 

generated that the human will have a high desire for b at time 204. Thereafter, as described in Table 2, AA 
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predicts that the human will choose all three options because of the high values of the preparation states 

for those options, as shown in Figure 6, in the graph of AA prep_state b1, AA prep_state b2 and AA prep_state b3. 

After this, the ambient agent will assess for these options whether they are good or bad, based on their 

effectivity rates. For this particular example simulation, the options b1 and b2 are assessed as bad because 

of their low effectivity rates, i.e., 1 =0.05, 2 =0.25, which are lower than the threshold set to 0.5. 

On the other hand, option b3 is assessed as good because its effectivity rate is higher than threshold, 

i.e., 3 =1. Hence the ambient agent generates the intention to suggest the human not to choose options b1 

and b2 as shown in the upper part of Figure 6, by the state property has_state(AA, 

intended_intervention_at(suggestion(human, don’t_eat, b1), 204)) and similarly for b2. In Figure 7 it is shown how 

the ambient agent can reason about the human’s adaptation process. 

 

Appendix C   Analysis of the ambient agent model by automated verification 

In order to investigate whether the ambient agent indeed acts according to what is expected, some 

hybrid-logical specifications (requirements) for emerging properties have been identified, formalised, and 

verified against the simulation traces of the model. In this section,  specification of the actual properties, 

and the result of their verification are described using TTL, the language introduced on Section 4. 

An overall property to be satisfied by the ambient agent is that if the level of a desire of the human 

exceeds a particular threshold, it should eventually become below the threshold. 

 
AGP1(th:real): Successful support 

In all traces  and all time points t the level of a desire of the human to address ub  if the desire of a human exceeds 

the threshold, then there exists a later time point at which this is not the case. 
t:TIME, :TRACE, Vub1:REAL 

[ state(, t) |= desire(ub, Vub1) & Vub1 > th  t2:TIME, Vub2:REAL [ state(, t2) |= desire(ub, Vub2) & Vub2 < th ] ] 
 

 

For the simulation traces generated using the ambient agent model, this property is satisfied for all 

traces (with a threshold value of 0.7). The overall behavior as expressed in AGP1 can be accomplished by 

intervention by giving one or more suggestions at the right moment (expressed in AGP2) in combination 

with the human responding to these suggestions (expressed in AGP3).  

 
AGP2(th:real, d:duration): Right moment for  intervention 

In all traces , if the ambient agent at time point t1 predicts that at time point t2 the human will have a desire to 

address ub exceeding the threshold th, then the ambient agent will give a suggestion to the human. 
t1, t2:TIME, :TRACE, Vub:REAL 

[ [ state(, t1) |= has_state(AA, belief(has_state(human, desire(ub, Vub, t2)))) & Vub > th ] 

   t3:TIME > t1:TIME, A:ACTION,  B:BODY_STATE 

                    [ state(, t3) |= has_state(AA, performed(suggestion(human, A, B))) ] ] 
 

This property holds for all traces (when a threshold of 0.7 is chosen). 

 
AGP3(d:duration): Right response B  {b1, b2, b3} 

In all traces , if the ambient agent gives a suggestion to the human at time point t to either avoid a body state B  {b1, 

b2, b3} (don’t eat for this case) or accomplish a body state B  {b1, b2, b3} (i.e., eat), then the human will follow this 

suggestion, indicated by a preparation state for B being 0 for the case of an avoidance suggestion, or a 1 in the case of 

an accomplish suggestion for the body state B. 
t1:TIME, :TRACE, V:REAL, B:BODY_STATE 

[ [ state(, t1) |= has_state(AA, performed(suggestion(human, dont_do, B))) 

      t2:TIME > t1 [ state(, t2) |= prep_state(B, 0) ] ] & 

  [ state(, t1) |= has_state(AA, performed(suggestion(human, do, B))) 

      t2:TIME > t1 [ state(, t2) |= prep_state(B, 1) ] ] 
 

 

This last property is satisfied for all traces as well. 

 


