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Abstract. Development of more complex cognitive systems during evolution is 
sometimes viewed in relation to environmental complexity. In more detail, 
growth of complexity during evolution can be considered for the dynamics of 
externally observable behaviour of agents, for their internal cognitive systems, 
and for the environment. This paper explores temporal complexity for these 
three aspects, and their mutual dependencies. A number of example scenarios 
have been formalised in a declarative temporal language, and the complexity of 
the structure of the different formalisations was measured. Thus, some 
empirical evidence was provided for the thesis that for more complex 
environments, more complex behaviour and more complex mental capabilities 
are needed. 

1   Introduction 

Behaviour of agents (both living organisms and artificial (software or hardware) 
agents) can occur in different types and complexities, varying from very simple 
behaviour to more sophisticated forms. Depending on the complexity of the externally 
observable behaviour, the internal mental representations and capabilities required to 
generate the behaviour also show a large variety in complexity. From an evolutionary 
viewpoint, for example, Wilson [16], p. 187 and Darwin [3], p. 163 point out how the 
development of behaviour relates to the development of more complex cognitive 
capabilities. Godfrey-Smith [4], p. 3 assumes a relationship between the complexity 
of the environment and the development of mental representations and capabilities. 
He formulates the main theme of his book in condensed form as follows: ‘The 
function of cognition is to enable the agent to deal with environmental complexity’  
(the Environmental Complexity Thesis). In this paper, this thesis is refined as follows: 
• the more complex the environment, the more sophisticated is the behaviour required to deal with this 

environment,  
• the more sophisticated the behaviour, the more complex are the mental representations and capabilities 

needed 
This refined thesis will be called the Complexity Monotonicity Thesis. The idea is 

that to deal with the physical environment, the evolution process has generated and 
still generates a variety of organisms that show new forms of behaviour. These new 
forms of behaviour are the result of new architectures of organisms, including 



cognitive systems with mental representations and capabilities of various degrees of 
complexity. The occurrence of such more complex architectures for organisms and 
the induced more complex behaviour itself increases the complexity of the 
environment during the evolution process. New organisms that have to deal with the 
behaviour of such already occurring organisms live in a more complex environment, 
and therefore need more complex behaviour to deal with this environment, (to be) 
realised by an architecture with again more complex mental capabilities. In particular, 
more complex environments often ask for taking into account more complex histories, 
which requires more complex internal cognitive representations and dynamics, by 
which more complex behaviour is generated.  

This perspective generates a number of questions. First, how can the Complexity 
Monotonicity Thesis be formalised, and in particular how can the ‘more complex’  
relation be formalised for (1) the environment, (2) externally observable agent 
behaviour and (3) internal cognitive dynamics? Second, connecting the three items, 
how to formalise (a) when does a behaviour fit an environment: which types of 
externally observable behaviours are sufficient to cope with which types of 
environments, and (b) when does a cognitive system generate a certain behaviour: 
which types of internal cognitive dynamics are sufficient to generate which types of 
externally observable agent behaviour?  

In this paper these questions are addressed from a dynamics perspective, and 
formalised by a declarative temporal logical approach. Four cases of an environment, 
suitable behaviour and realising cognitive system are described, with an increasing 
complexity over the cases. Next, for each case, complexity of the dynamics of 
environment, externally observable agent behaviour and internal cognitive system are 
formalised in terms of structure of the formalised temporal specifications describing 
them, thus answering (1) to (3). Moreover, (a) and (b) are addressed by establishing 
formalised logical (entailment) relations between the respective temporal 
specifications. By comparing the four cases with respect to complexity, the 
Complexity Monotonicity Thesis is tested. 

2   Evolutionary Perspective 

The environment imposes certain requirements that an agent’s behaviour needs to 
satisfy; these requirements change due to changing environmental circumstances. The 
general pattern is as follows. Suppose a certain goal G for an agent (e.g., sufficient 
food uptake over time) is reached under certain environmental conditions ES1 
(Environmental Specification 1), due to its Behavioural Specification BS1, realised by 
its internal (architecture) CS1 (Cognitive Specification 1). In other words, the 
behavioural properties BS1 are sufficient to guarantee G under environmental 
conditions ES1, formally ES1 & BS1 � G, and the internal dynamics CS1 are sufficient 
to guarantee BS1, formally CS1 � BS1. In other environmental circumstances, 
described by environmental specification ES2 (for example, more complex) the old 
circumstances ES1 may no longer hold, so that the goal G may no longer be reached 
by behavioural properties BS1. An environmental change from ES1 to ES2 may entail 
that behaviour BS1 becomes insufficient. It has to be replaced by new behavioural 



properties BS2 (also more complex) which express how under environment ES2 goal 
G can be achieved, i.e., ES2 & BS2 �  G. 

Thus, a population is challenged to realise such behaviour BS2 by changing its 
internal architecture and its dynamics, and as a consequence fulfill goal G again. This 
challenge expresses a redesign problem: the given architecture of the agent as 
described by CS1 (which entails the old behavioural specification BS1) is insufficient 
to entail the new behavioural requirements BS2 imposed by the new environmental 
circumstances ES2; the evolution process has to redesign the architecture into one 
with internal dynamics described by some CS2 (also more complex), with CS2 � BS2, 
to realise the new requirements on behaviour.  
Based on these ideas, the Complexity Monotonicity Thesis can be formalised in the 
following manner. Suppose < E1, B1, C1 > and < E2, B2, C2 > are triples of environment, 
behaviour and cognitive system, respectively, such that the behaviours Bi are adequate 
for the respective environment Ei and realised by the cognitive system Ci. Then the 
Complexity Monotonicity Thesis states that 

E1 ≤c E2  �  B1 ≤c B2    &    B1 ≤c B2  �  C1 ≤c C2   
Here ≤c is a partial ordering in complexity, where X ≤c Y indicates that Y is more 

complex than X. A special case is when the complexity ordering is assumed to be a 
total ordering where for every two elements X, Y either X ≤c Y or Y ≤c X (i.e., they are 
comparable), and when some complexity measure cm is available, assigning degrees 
of complexity to environments, behaviours and cognitive systems, such that 

X ≤c Y ⇔ cm(X) ≤ cm(Y) 
where ≤ is the standard ordering relation on (real or natural) numbers. In this case the 
Complexity Monotonicity Thesis can be reformulated as 

cm(E1) ≤ cm(E2)  �  cm(B1) ≤ cm(B2)    & 
cm(B1) ≤ cm(B2)  �  cm(C1) ≤ cm(C2) 

The Temporal Complexity Monotonicity Thesis can be used to explain increase of 
complexity during evolution in the following manner. Make the following assumption 
on Addition of Environmental Complexity by Adaptation, as described above: 

• adaptation of a species to an environment adds complexity to this environment 

Suppose an initial environment is described by ES0, and the adapted species by 
BS0.  Then this transforms ES0 into a more complex environmental description ES1.  
Based on ES1, the adapted species will have description BS1. As ES1 is more 
complex than ES0, by the Complexity Monotonicity Thesis it follows that this BS1 is 
more complex than BS0: ES0 � ES1  �   BS0 � BS1. Therefore BS1 again adds 
complexity to the environment, leading to ES2, which is more complex than ES1, et 
cetera1: 

 

ES0          �          ES1          �          ES2          … 
 

 
BS0          �          BS1          �          BS2          … 

 

This argument shows that the increase of complexity during evolution can be 
related to and explained by two assumptions: the Complexity Monotonicity Thesis, 

                                                           
1 Note that this argument can also be applied to multiple species at the same time, i.e., species A increases the complexity 

of the environment, which causes another species B to adapt to this more complex environment. 



and the Addition of Environmental Complexity by Adaptation assumption. This paper 
focuses on the former assumption. 

3   Variations in Behaviour and Environment 

To evaluate the approach put forward, a number of cases of increasing complexity are 
analysed, starting from very simple stimulus-response behaviour solely depending on 
stimuli the agent gets as input at a given point in time. This can be described by a very 
simple temporal structure: direct associations between the input state at one time point 
and the (behavioural) output state at a next time point. A next class of behaviours, 
with slightly higher complexity, analysed is delayed response behaviour: behaviour 
that not only depends on the current stimuli, but also may depend on input of the 
agent in the past. This pattern of behaviour cannot be described by direct functional 
associations between one input state and one output state; it increases temporal 
complexity compared to stimulus-response behaviour. For this case, the description 
relating input states and output states necessarily needs a reference to inputs received 
in the past. Viewed from an internal perspective, to describe mental capabilities 
generating such a behaviour, often it is assumed that it involves a memory in the form 
of an internal model of the world state. Elements of this world state model mediate 
between the agent’s input and output states.  

Other types of behaviour go beyond the types of reactive behaviour sketched 
above. For example, behaviour that depends in a more indirect manner on the agent’s 
input in the present or in the past. Observed from the outside, this behaviour seems to 
come from within the agent itself, since no direct relation to current inputs is 
recognised. It may suggest that the agent is motivated by itself or acts in a goal-
directed manner. For a study in goal-directed behaviour and foraging, see, for 
example, [5]. Goal-directed behaviour to search for invisible food is a next case of 
behaviour analysed. In this case the temporal description of the externally observable 
behavioural dynamics may become still more complex, as it has to take into account 
more complex temporal relations to (more) events in the past, such as the positions 
already visited during a search process. Also the internal dynamics may become more 
complex. To describe mental capabilities generating such a type of behaviour from an 
internal perspective, a mental state property goal can be used. A goal may depend on 
a history of inputs. Finally, a fourth class of behaviour analysed, which also goes 
beyond reactive behaviour, is learning behaviour (e.g., conditioning). In this case, 
depending on its history comprising a (possibly large) number of events, the agent’s 
externally observable behaviour is tuned. As this history of events may relate to 
several time points during the learning process, this again adds temporal complexity 
to the specifications of the behaviour and of the internal dynamics. 

To analyse these four different types of behaviour in more detail, four cases of a 
food supplying environment are considered in which suitable food gathering 
behaviours are needed. These cases are chosen in such a way that they correspond to 
the types of behaviour mentioned above. For example, in case 1 it is expected that 
stimulus-response behaviour is sufficient to cope with the environment, whilst in case 
2, 3 and 4, respectively, delayed response behaviour, goal-directed behaviour, and 



learning behaviour is needed). The basic setup is inspired by experimental literature in 
animal behaviour such as [6], [14], [15]. The world consists of a number of positions 
which have distances to each other. The agent can walk over these positions. Time is 
partitioned in fixed periods (days) of a duration of d time units (hours). Every day the 
environment generates food at certain positions, but this food may or may not be 
visible, accessible and persistent at given points in time. The four different types of 
environment with increasing temporal complexity considered are:   
(1) Food is always visible and accessible. It persists until it is taken. 
(2) Food is visible at least at one point in time and accessible at least at one later time point. It persists 

until it is taken. 
(3) Food either is visible at least at one point in time and accessible at least at one later time point, or it 

is invisible and accessible the whole day. It persists until it is taken. 
(4) One of the following cases holds: 

a) Food is visible at least at one point in time and accessible at least at one later time point. It 
persists until it is taken. 

b) Food is invisible and accessible the whole day. It persists until it is taken. 
c) Food pieces can disappear, and new pieces can appear, possibly at different positions. For every 

position where food appears, there are at least three different pieces in one day. Each piece that 
is present is visible. Each position is accessible at least after the second food piece disappeared. 

Note that there is an accumulating effect in the increase of complexity of these types 
of environment. For example, the behaviour of environment (3) is described as the 
disjunction of the behaviour of environment (2) and another type of behaviour. For 
this reason, it is expected that agents that survive in environment n will also survive in 
environment n-1. 

4   Modelling Approach 

To express formal specifications for environmental, behavioural and cognitive 
dynamics for agents, the Temporal Trace Language (TTL, see [2]) is used. This 
language is a variant of order-sorted predicate logic. In dynamic property expressions, 
TTL allows explicit references to time points and traces. If a is a state property, then, 
for example state(γ, t, input(agent)) |= a denotes that this state property holds in trace γ at 
time point t in the input state of the agent. Here, a trace (or trajectory) is defined as a 
time-indexed sequence of states, where time points can be expressed, for example, by 
real or integer values. If these states are input states, such a trace is called an input 
trace. Similarly for an output trace. Moreover, an input-output correlation is defined 
as a binary relation C : Input_traces x Output_traces between the set of possible input 
traces and the set of possible output traces. 

In the following sections, the four variations in behaviour and environment as 
introduced above are investigated in more detail. For formalising dynamic properties 
in TTL that will be used to specify these cases, the following state properties are used: 

 

at(o, p) object o is at position p 
visible(sp)  an object occurring in the state property sp is visible 

 (e.g. as it is not covered by a large object) 
accessible(p)  position p is accessible (e.g. because there is no enemy at the position) 
distance(p1, p2, i)  the distance between positions p1 and p2 is i  
max_dist  a constant indicating the maximum distance the agent can travel in one step 
observed(sp) the agent observes state property sp 
performing_action(a)   the agent performs action a 



For example, a property that describes stimulus-response behaviour of an agent 
that goes to food, observed in the past can be expressed and formalised as follows: 

 

At any point in time t, 
if  the agent observes itself at position p 
and  it observes an amount of food x at position p' 
and  position p' is accessible 
then at the next time point after t the agent will go to position p' 

 

Formalisation: 
∀t ∀x ∀p ∀p’  
[ state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(at(food(x), p’)) ∧  
  observed(accessible(p’))  �  state(γ, t+1, output(agent)) |= performing_action(goto(p')) ] 

5   Behavioural Cases 

Using the introduced approach to formalise dynamic properties, the four variations in 
behaviour and environment are addressed in this section: stimulus-response, delayed-
response, goal-directed, and learning behaviour.  

5.1   Stimulus-Response Behaviour 

As a first, most simple type of behaviour, stimulus-response behaviour is analysed in 
more detail. For this and the following cases of behaviour the following basis 
properties EP1-EP5 are used to describe the behaviour of the environment. They are 
specified both in a structured semi-formal temporal language, and in the formal 
temporal language TTL. Additionally, for every case specific properties of the 
environment will be specified. 

Environmental properties 
EP1  Sufficient food within reach 
At the beginning of every day n (d is the duration of a day), the agent is positioned at a position p, and a 
sufficient amount x of food (c is the minimum) is provided at some position p' within reachable distance 
from p. 
∀n ∃p ∃p’ ∃x ∃i x>c & i≤max_dist & 
state(γ, n*d, environment) |= at(agent, p) ∧ at(food(x), p’) ∧ distance(p, p’, i) 

 

EP2  Complete observability 
If the agent is at position p, and a(p, p') is a visible state property involving p and a position p' within 
reachable distance, then this is observed by the agent. This property is to be applied to food, distance, 
accessibility, agent position, and the absence of these. 
∀t ∀x ∀p ∀p’ ∀i 
[[ i≤max_dist & state(γ, t, environment) |= at(agent, p) ∧ a(p, p’) ∧ visible(a(p, p’)) ∧ 
   distance(p, p’, i) ] � state(γ, t, input(agent)) |= observed(a(p, p’)))] 

 

EP3  Guaranteed effect of movement 
At any point in time t, if the agent goes to position p, then it will be at position p. 
∀t ∀p state(γ, t, output(agent)) |= performing_action(goto(p)) 
   �  state(γ, t+1, environment) |= at(agent, p)  

 



EP4  Guaranteed effect of eating 
At any point in time t, if the agent takes food and the amount of food is sufficient for the agent then the 
agent will be well fed 
∀t [[∀x state(γ, t, output(agent))|= performing_action(take(food(x))) & x≥c] 
   � state(γ, t+1, environment) |= agent_well_fed ] 

 

EP5  Reachability of environment 
The distances between all positions p in the agent’s territory are smaller than max_dist. Here, p and p' are 
variables over the type TERRITORY_POSITION, which is a subtype of POSITION. 
∀t ∀p ∀p’ ∀I state(γ, t, environment) |= distance(p, p’, i) � i ≤ max_dist 

 

The following environmental properties hold for the stimulus-response case and some 
of the other cases considered. 

 

EP6  Food persistence 
Food persists until taken by the agent. 
∀t1 ∀t2 ∀x ∀p [ t1<t2 & state(γ, t1, environment) |= at(food(x), p) & 
[ ∀t  t1 ≤ t ≤ t2 � state(γ, t, output(agent)) |= not(performing_action(take(food(x)))) ] 
   � state(γ, t2, environment) |= at(food(x), p) ] 

 

EP7  Food on one position 
Per day, food only appears on one position. 
∀n ∀x ∀p ∀p’ ∀t state(γ, n*d, environment) |= at(food(x), p) & 
state(γ, t, environment) |= at(food(x), p’) & n*d < t ≤ (n+1)*d � p = p’ 

 

EP8  Complete accessibility 
Each position is accessible for the agent (i.e., never blocked by enemies). 
∀t ∀p state(γ, t, environment) |= accessible(p) 

 

EP9  Complete visibility  
All state properties a(p, p') that are true, are visible (which means that they will be observed by agents that 
are close enough, according to EP2). This property is to be applied to food, distance, accessibility, agent 
position, and the absence of these. 
∀t ∀p ∀p’ state(γ, t, environment) |= a(p, p’) � state(γ, t, environment(agent)) |= visible(a(p, p’)) 

 
Note that the property of an agent being well fed is assumed to be a state property of 
the environment, since it refers to the agent’s body state. 

For the case of stimulus-response behaviour the environment is characterised by the 
following conjunction ES1 of a subset of the environmental properties given above: 

 

ES1 ≡  EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP8 & EP9 
 

Behavioural Properties 
The agent’s stimulus-response behaviour is characterised by the following 
behavioural properties. 

 

BP1  Going to observed food 
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it 
observes that an amount of food x is present at position p' and it observes that position p' is accessible and it 
observes that position p' is within reachable distance then it will go to position p'. 
∀t ∀x ∀p ∀p’ [ [ state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(not(at(food(x), p))) ∧ 
observed(at(food(x), p’)) ∧ observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist ] 
   �  state(γ, t+1, output(agent)) |= performing_action(goto(p’)) ] 

 

BP2  Food uptake 
At any point in time t, if the agent observes itself at position p and the agent observes food at p then it will 
take the food 
∀t ∀x ∀p [ [ state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(at(food(x), p))] 
   �  state(γ, t+1, output(agent))|= performing_action(take(food(x))) ] 



Vitality property VP 
The animal gets sufficient food within any given day. 
∀n ∃t1 [ n*d ≤ t1 ≤ (n+1)*d & state(γ, t1, environment) |= agent_well_fed ] 

Logical relations 
Given the dynamic properties specified above, the environmental and behavioural 
specifications (in short, ES1 and BS1) for case 1 (stimulus-response behaviour) are as 
follows: 

 

         ES1 ≡ EP1 & EP2 & EP3 & EP4 & EP5 &EP6 & EP7 & EP8 & EP9 
BS1 ≡ BP1 & BP2 

 

Given these specifications, the question is whether they are logically related in the 
sense that this behaviour is adequate for this environment, i.e., whether indeed the 
following implication holds: 

 

BS1 & ES1 �  VP 
 

To automatically check such implications between dynamic properties at different 
levels, model checking techniques can be used. To this end, first the dynamic 
properties should be converted from TTL format to a finite state transition format. 
This can be done using an automated procedure, as described in [11]. After that, for 
checking the implications between the converted properties, the model checker SMV 
is appropriate (see URL: http://www.cs.cmu.edu/~modelcheck/smv.html; see also [8]). 
SMV has been used to verify (and confirm) the above implication, as well as a 
number of other implications shown in this paper. 

Concerning the relation between the specification of the cognitive and the 
behavioural dynamics: in this case CS1 = BS1. Thus, CS1 �  BS1 also holds. 

5.2   Delayed Response Behaviour 

In delayed response behaviour, previous observations may have led to maintenance of 
some form of memory of the world state: a model or representation of the (current) 
world state (for short, world state model). This form of memory can be used at any 
point in time as an additional source (in addition to the direct observations). In that 
case, at a given time point the same input of stimuli can lead to different behavioural 
output, since the world state models based on observations in the past can be 
different. This makes that agent behaviours do not fit in the setting of an input-output 
correlation based on a direct functional association between (current) input states and 
output states. Viewed from an external viewpoint, this type of behaviour, which just 
like stimulus-response behaviour occurs quite often in nature, is just a bit more 
complex than stimulus-response behaviour, in the sense that it adds complexity to the 
temporal dimension by referring not only to current observations but also to 
observations that took place in the past.  

This leads to the question what kind of complexity in the environment is coped 
with this kind of behaviour that is not coped with by stimulus-response behaviour. An 
answer on this question can be found in a type of environment with aspects which are 
important for the animal (e.g., food or predators), and which cannot be completely 
observed all the time; e.g., food or predators are sometimes hidden by other objects: 

 



Environmental properties 
For this case the environment described sometimes shows the food, but not always as 
in the previous case. It is characterised by the following conjunction ES2 of a subset 
of the environmental properties given above, extended with the properties EP10, EP11 
and EP12 given below: 

 

ES2  ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP10 & EP11 & EP12 
 

EP10  Temporary visibility of food 
Per day, all food that is present is visible for at least one time point, and is accessible for at least one later 
time point2. 

 

EP11  Complete visibility of non-food 
All state properties that are true, except the presence of food, are visible. Thus, this property is applied to 
distance, accessibility, and agent position. 

 

EP12  Complete local observability of food 
For all time points, if the agent is at the position p with food then the agent observes the food (no matter if 
it is visible, e.g., by smell) 

 

Behavioural properties  
Next, dynamic properties are identified that characterise the input-output correlation 
of delayed response behaviour, observed from an external viewpoint. Such a dynamic 
property has a temporal nature; it can refer to the agent’s input and output in the 
present, the past and/or the future. In semi-formal and formal notation, for the case 
considered, the input-output correlation for delayed response behaviour can be 
characterised by: 

 

BP3  Going to food observed in the past 
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it 
observes that position p' is accessible and it observes that position p' is within reachable distance and at 
some earlier point in time t1 the agent observed that an amount of food x was present at position p' and at 
every point in time t2 after t1 up to t, the agent did not observe that no food was present at  p' then at the 
next time point after t the agent will go to position p' 
∀t ∀x ∀i ∀p ∀p’  
[ [ state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(not(at(food(x), p))) ∧  
    observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist ] & 
    ∃t1<t [state(γ, t1, input(agent)) |= observed(at(food(x), p')) & 
       ∀t2  [t ≥ t2 > t1 � state(γ, t2, input(agent))|= not(observed(not(at(food(x), p'))))]]  
          �  state(γ, t+1, output(agent)) |= performing_action(goto(p')) ] 

 

Cognitive properties 
Since the external characterisations of delayed response behaviour refer to the agent’s 
input in the past, it is assumed that internally the agent maintains past observations by 
means of persisting internal state properties, i.e., some form of memory. These 
persisting state properties are sometimes called beliefs. For the example case, it is 
assumed that an internal state property b1(p) is available, with the following 
dynamics: 

 

CP1  Belief formation on food presence 
At any point in time t, if the agent observes that food is present at position p then internal state property 
b1(p) will hold (i.e., a belief that food is present at p) 
 

                                                           
2 Formal expressions for all properties can be found in the Appendix at http://www.cs.vu.nl/~tbosse/complexity. 



CP2  Belief b1 persistence 
At any point in time t, if internal state property b1(p) holds and the agent does not observe the absence of 
food at position p then at the next time point internal state property b1(p) still holds  
 

CP3  Going to food believed present 
At any point in time t, if the agent observes itself at position p and it observes no food at position p and it 
observes that position p' is accessible and it observes that position p' is within reachable distance and p ≠ p' 
and internal state property b1(p') holds then the agent will go to position p' 

 

Logical relations 
ES2  ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP10 & EP11 & EP12 
BS2  ≡ BP2 & BP3 
CS2  ≡ BP2 & CP1 & CP2 & CP3 
BS2 & ES2 �  VP  

   CS2  �  BS2 

5.3   Goal-Directed Behaviour 

A next, more complex type of behaviour considered is goal-directed behaviour. This 
behaviour is able to cope with environments where visibility can be more limited than 
in the environments considered before. 

 

Environmental properties 
For this case the environment is characterised by the following expression ES3 based 
on a subset of the environmental properties given earlier, extended with property 
EP13, given below: 

 

ES3  ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP11 & EP12 & 
(EP10 OR (EP8 & EP13)) 

 

EP13  Complete invisibility of food 
Food is always invisible for the agent (e.g., always covered), unless the agent is at the same position as the 
food. 

 

Behavioural properties 
The agent’s behaviour exploring positions in order to discover food is characterised 
by the following behavioural property: 

 

BP4  Searching for food 
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible 
and it observes that position p' is within reachable distance and it did not visit position p' yet and p' is the 
position closest to p which the agent did not visit and it did not observe any food at all yet then at the next 
time point after t the agent will go to position p' 
∀t ∀p ∀p’  
state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ observed(accessible(p’)) ∧ 
observed(distance(p, p’, i)) & i≤max_dist & 
   not [∃t’ t’<t & state(γ, t’, input(agent)) |= observed_at(agent, p’) ] & 
   ∀p” [[not [∃t’ t’<t & state(γ, t’, input(agent)) |= observed_at(agent, p”) ]] 
      � ∃d1 ∃d2 state(γ, t, input(agent)) |= observed(distance(p, p’, d1)) ∧ 
      observed(distance(p, p’’, d2)) & d1<d2 ] & 
      not [∃t’ ∃p’’ ∃x t’≤t & state(γ, t’, input(agent)) |= observed(at(food(x), p’’)) ]  
         � state(γ, t+1, output(agent)) |= performing_action(goto(p’)) 
 



Cognitive properties 
To describe the internal cognitive process generating this type of behaviour, the 
mental state property goal is used. In particular, for the case addressed here, when the 
agent has no beliefs about the presence of food, it will generate the goal to find food. 
If it has this goal, it will pro-actively search for food in unexplored positions. This is 
characterised by the following dynamic properties: 

 

CP4  Goal formation 
At any point in time t, if the agent does not believe that food is present at any position p then it will have 
the goal to find food 
 

CP5  Non-goal formation 
At any point in time t, if the agent believes that food is present at position p then it will not have the goal to 
find food 
 

CP6  Belief formation on visited position 
At any point in time t, if the agent observes itself at position p then internal state property b2(p) will hold 
(i.e., the belief that it visited p) 
 

CP7  Belief b2 persistence 
At any point in time t, if internal state property b2(p) holds then at the next time point internal state 
property b2(p) still holds  
 

CP8  Belief formation on distances 
At any point in time t, if the agent observes that the distance between position p and p' is d then internal 
state property belief(p, p', d) will hold 
 

CP9  Belief persistence on distances 
At any point in time t, if internal state property belief(p, p', d) holds then at the next time point internal state 
property belief(p, p', d) still holds  
 

CP10  Going to closest position 
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible 
and it observes that position p' is within reachable distance and it has the goal to find food and it believes it 
did not visit p' yet and p' is the position closest to p of which the agent believes it did not visit it then at the 
next time point after t the agent will go to position p' 

 

Logical relations 
ES3 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & EP6 & EP7 & EP11 & EP12 &  

                (EP10 OR (EP8 & EP13)) 
BS3 ≡ BP2 & BP3 & BP4 
CS3 ≡ BP2 & CP1 & CP2 & CP3 & CP4 & CP5 & CP6 & CP7 & CP8 & CP9 & CP10 
BS3 & ES3 �  VP 
CS3  �  BS3 

5.4   Learning Behaviour 

A final class of behaviour analysed is learning behaviour. In this case, depending on 
its history comprising a (possibly large) number of events, the agent’s externally 
observable behaviour is tuned to the environment’s dynamics. In the case addressed 
here, in contrast to the earlier cases, the environment has no guaranteed persistence of 
food for all positions. Instead, at certain positions food may come and go (e.g., 
because it is eaten by competitors). The agent has to learn that, when food often 



appears (and disappears) at a certain position, then this is an interesting position to be, 
because food may re-appear at that position (but soon disappear again). 

 

Environmental properties 
For this case the environment is characterised by the following expression ES4 based 
on a subset of the environmental properties given earlier, extended with property 
EP14, given below. 

ES4 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & ((EP6 & EP7 & EP10 & EP11 & EP12) 
 OR (EP6 & EP7 & EP8 & EP11 & EP12 & EP13) OR (EP9 & EP14)) 
 

EP14  Food reoccurrence 
Every piece of food disappears and reappears at least 2 times per day, of which at least after the second 
disappearance its position will be accessible. 

 

Behavioural properties 
The agent’s behaviour for this case should take into account which positions show 
reoccurence of food. The following behavioural property characterises this. 

 

BP5  Being at useful positions 
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible 
and it observes that position p' is within reachable distance and for all positions p" that the agent observed 
food in the past, the agent later observed that the food disappeared and at some earlier point in time t1 the 
agent observed that food was present at position p' and after that at time point t2 before t the agent observed 
no food present at position p' and after that at time point t3 before t the agent again observed the presence 
of food at position p' and after that at a time point t4 before t the agent again observed no food present at 
position p' and p' is the closest reachable position for which the above four conditions hold then at the next 
time point after t the agent will go to position p' 
∀t ∀p ∀p’ ∀x 
state(γ, t, input(agent)) |= observed(at(agent, p)) ∧ 
observed(accessible(p’)) ∧ observed(distance(p, p’, i)) & i≤max_dist & 
∀t’ ∀p’’ ∀x’ [t’<t & state(γ, t’, input(agent)) |= observed(at(food(x’), p’’))  
� ∃t’’ t’<t’’≤t & 
   state(γ, t’’, input(agent)) |= observed(not(at(food(x’), p’’)))]  
   & ∃t1 ∃t2 ∃t3 ∃t4 [ t1<t2<t3<t4<t & 
   state(γ, t1, input(agent)) |= observed(at(food(x), p’)) & 
   state(γ, t2, input(agent)) |= observed(not(at(food(x), p’))) & 
   state(γ, t3, input(agent)) |= observed(at(food(x), p’)) & 
   state(γ, t4, input(agent)) |= observed(not(at(food(x), p’))) ]  
   & ∀p” [ ∃t1 ∃t2 ∃t3 ∃t4 [ t1<t2<t3<t4 &  
   state(γ, t1, input(agent)) |= observed(at(food(x), p”)) & 
   state(γ, t2, input(agent)) |= observed(not(at(food(x), p”))) & 
   state(γ, t3, input(agent)) |= observed(at(food(x), p”)) & 
   state(γ, t4, input(agent)) |= observed(not(at(food(x), p”))) ] � 

   ∃d1 ∃d2 
   state(γ, t, input(agent)) |= observed(distance(p, p’, d1)) ∧ 
   observed(distance(p, p’’, d2)) & d1<d2 ] 

          �  state(γ, t+1, output(agent)) |= performing_action(goto(p’)) 
 

Cognitive properties 
The internal cognitive dynamics has to take into account longer histories of positions 
and food (re)appearing there. This is realised by representations that are built up for 
more complex world properties, in particular, not properties of single states but of 
histories of states of the world. For example, at a certain time point, it has to be 
represented that for a certain position in the past food has appeared twice and in 



between disappeared. The state properties b3(p, q) play the role of representations of 
world histories on food (re)occurrence. 

 

CP11  Initial mental state 
At the beginning of every day n, for all positions p, internal state property b3(p, 0) holds (i.e. a belief that 
there is no food at p) 
 

CP12  Belief update on food presence 
At any point in time t, for q ∈ {0,2}, if internal state property b3(p, q) holds and the agent observes food at 
position p then internal state property b3b(p, q+1) will hold 
 

CP13  Belief update on food absence 
At any point in time t, for q ∈ {1,3}, if internal state property b3(p,q) holds and the agent observes no food 
at position p then internal state property b3(p,q+1) will hold 
 

CP14  Belief b3 persistence 
At any point in time t, for all q, if internal state property b3(p,q) holds then at the next time point internal 
state property b3(p,q) still holds  
 

CP15  Going to interesting position 
At any point in time t, if the agent observes itself at position p and it observes that position p' is accessible 
and it observes that position p' is within reachable distance and it has the goal to find food and p' is the 
position closest to p of which the agent believes that it is an attractive position then at the next time point 
after t the agent will go to position p' 

 

Here, b3(p,4) represents the belief that food was twice present at p, and subsequently 
disappeared (in other words, a belief that p is an attractive position, since food might 
show up again). Note that, although the mechanism described here is quite different 
from, e.g., machine learning, this type of behaviour nevertheless can be qualified as 
learning behaviour. The reason for this is that the behaviour can be split into two 
distinct phases: one in which nothing was learned, and one in which the agent has 
learned which positions are useful by maintaining a history of previous observations. 

 

Logical relations 
ES4 ≡ EP1 & EP2 & EP3 & EP4 & EP5 & ((EP6 & EP7 & EP10 & EP11 & EP12) 

 OR (EP6 & EP7 & EP8 & EP11 & EP12 & EP13) OR (EP9 & EP14)) 
BS4 ≡ BP2 & BP3 & BP4 & BP5 
CS4 ≡ BP2 & CP1 & CP2 & CP3 & CP4 & CP5 & CP6 & CP7 & CP8 & CP9 & CP10 & 

 CP11 & CP12 & CP13 & CP14 & CP15 
BS4 & ES4 �  VP 
CS4  �  BS4 

6   Formalisation of Temporal Complexity 

The Complexity Monotonicity Thesis discussed earlier involves environmental, 
behavioural and cognitive dynamics of living systems. In Section 2 it was shown that 
based on a given complexity measure cm this thesis can be formalised by: 

cm(E1) ≤ cm(E2)  �  cm(B1) ≤ cm(B2)  & 
cm(B1) ≤ cm(B2)  �  cm(C1) ≤ cm(C2)   

What remains is the existence or choice of the complexity measure function cm. To 
measure degrees of complexity for the three aspects considered, a temporal 
perspective is chosen: complexity in terms of the temporal relationships describing 



them. For example, if references have to be made to a larger number of events that 
happened at different time points in the past, the temporal complexity is higher. The 
temporal relationships have been formalised in the temporal language TTL based on 
predicate logic. This translates the question how to measure complexity to the 
question how to define complexity of syntactical expressions in such a language. In 
the literature an approach is available to define complexity of expressions in predicate 
logic in general by defining a function that assigns a size to every expression [7]. To 
measure complexity, this approach was adopted and specialised to the case of the 
temporal language TTL. Roughly spoken, the complexity (or size) of an expression is 
(recursively) calculated as the sum of the complexities of its components plus 1 for 
the composing operator. In more details it runs as follows. 

Similarly to the standard predicate logic, predicates in the TTL are defined as 
relations on terms. The size of a TTL-term t is a positive natural number s(t) 
recursively defined as follows: 

(1) s(x)=1, for all variables x. 
(2) s(c)=1, for all constant symbols c. 
(3) s(f(t1,…, tn))= s(t1) + … + s(tn) + 1, for all function symbols f. 

For example, the size of the term observed(not(at(food(x), p))) from the property BP1 
(see the Appendix) is equal to 6.  

Furthermore, the size of a TTL-formula ψ is a positive natural number s(ψ) 
recursively defined as follows: 

(1) s(p(t1,…, tn))= s(t1) + … + s(tn) +1, for all predicate symbols p. 
(2) s(¬ϕ)=s((∀x) ϕ)= s((∃x) ϕ) = s(ϕ)+1, for all TTL-formulae ϕ and variables x. 
(3) s(ϕ&χ) = s(ϕ|χ) = s(ϕ�χ) = s(ϕ)+ s(χ)+1, for all TTL-formulae ϕ, χ. 

In this way, for example, the complexity of behavioural property BP1 amounts to 53, 
and the complexity of behavioural property BP2 is 32. As a result, the complexity of 
the complete behavioural specification for the stimulus-response case (which is 
determined by BP1 & BP2) is 85. 

Using this formalisation of a complexity measure as the size function defined 
above, the complexity measures for environmental, internal cognitive, and 
behavioural dynamics for the considered cases of stimulus-response, delayed 
response, goal-directed and learning behaviours have been determined. Table 1 
provides the results (see the Appendix for all properties).  

Table 1.  Temporal complexity of environmental, behavioural and cognitive dynamics. 
 

Case Environmental 
dynamics 

Behavioural 
dynamics 

Cognitive 
dynamics 

Stimulus-response 262 85 85 
Delayed response 345 119 152 
Goal-directed 387 234 352 
Learning 661 476 562 

 

The data given in Table 1 confirm the Complexity Monotonicity Thesis put 
forward in this paper, that the more complex the environmental dynamics, the more 
complex the types of behaviour an agent needs to deal with the environmental 
complexity, and the more complex the behaviour, the more complex the internal 
cognitive dynamics.  



7   Discussion 

In this paper, the temporal complexity of environmental, behavioural, and cognitive 
dynamics, and their mutual dependencies, were explored. As a refinement of 
Godfrey-Smith’s Environmental Complexity Thesis [4], the Complexity 
Monotonicity Thesis was formulated: for more complex environments, more complex 
behaviours are needed, and more complex behaviours need more complex internal 
cognitive dynamics. A number of example scenarios were formalised in a temporal 
language, and the complexity of these formalisations was measured.  Complexity of 
environment, behaviour and cognition was taken as temporal complexity of dynamics 
of these three aspects, and the formalisation of the measurement of this temporal 
complexity was based on the complexity of the syntactic expressions to characterise 
these dynamics in a predicate logic language, as known from, e.g., [7]. The outcome 
of this approach is that the results support the Complexity Monotonicity Thesis. 

Obviously, the results as reported in this paper are no generic proof for the 
correctness of the Complexity Monotonicity Thesis. Instead, the paper should rather 
be seen as a case study in which the thesis was tested positively. However, the 
approach taken for this test was not completely arbitrary: the used complexity 
measure is one of the standard approaches to measure complexity of syntactical 
expressions [7]. Moreover, the formal specifications were constructed very carefully, 
to ensure that no shorter specifications exist that are equivalent. Although no formal 
proof is given that the used specifications are indeed the shortest possible ones, the 
construction of these specifications has been an iterative process in which multiple 
authors have participated. To represent the specifications, the language TTL was just 
used as a vehicle. Various similar temporal languages could have been used instead, 
but we predict that this would not significantly influence the results. 

Nevertheless, there are a number of alternative possibilities for measuring 
complexity that might in fact influence the results. Among these is the option to use 
complexity measures from information theory based on the amount of entropy of a 
system, such as [1]. In future work, such alternatives will be considered as well. 
Another challenging direction for future work is the possibility to establish a uniform 
approach for specification of dynamic properties for environment, behaviour, and 
cognition. Such an approach may, for example, prescribe a limited number of 
predefined concepts that can be used within the dynamic properties. 

Another issue that is worth some discussion is the fact that the Complexity 
Monotonicity Thesis can also be considered in isolation of Godfrey-Smith’s 
Environmental Complexity Thesis. Although it was used as a source of inspiration to 
explore for the more refined Complexity Monotonicity Thesis, the Environmental 
Complexity Thesis as such was not investigated in this paper. Doing this, again from 
an agent-based modelling perspective, is another direction for future work. To this 
end, techniques from the area of Artificial Life may be exploited, e.g., to perform 
social simulations and observe whether more complex agents evolve in a way that 
supports the Environmental Complexity Thesis. 

In [4], in particular in Chapters 7 and 8, mathematical models are discussed to 
support the Environmental Complexity Thesis, following, among others [9] and [12]. 
These models are made at an abstract level, abstracting from the temporal dimension 
of the behaviour and the underlying cognitive architectures and processes. Therefore, 



the more detailed temporal complexity as addressed in this paper is not covered. 
Based on the model considered, Godfrey-Smith [4] concludes that the flexibility to 
accommodate behaviour to environmental conditions, as offered by cognition, is 
favoured when the environment shows (i) unpredictability in distal conditions of 
importance to the agent, and (ii) predictability in the links between (observable) 
proximal and distal. This conclusion has been confirmed to a large extent by the 
formal analysis described in this paper. Comparable claims on the evolutionary 
development of learning capabilities in animals are made in work such as [13] and 
[10]. According to these authors, learning is an adaptation to environmental change. 
All these are conclusions at a global level, compared to the more detailed types of 
temporal complexity considered in our paper, where cognitive processes and 
behaviour extend over time, and their complexity can be measured in a more detailed 
manner as temporal complexity of their dynamics. 

References 

1. Berlinger, E. (1980). An information theory based complexity measure. In Proceedings of 
the Natural Computer Conference, pp. 773-779. 

2. Bosse, T., Jonker, C.M., Meij, L. van der, Sharpanskykh, A., and Treur, J. (2006). 
Specification and Verification of Dynamics in Cognitive Agent Models. In: Proceedings of 
the Sixth International Conference on Intelligent Agent Technology, IAT'06. IEEE 
Computer Society Press, 2006, pp. 247-254. 

3. Darwin, C. (1871). The Descent of Man. John Murray, London. 
4. Godfrey-Smith, P., (1996). Complexity and the Function of Mind in Nature. Cambridge 

University Press. 
5. Hills, T.T. (2006). Animal Foraging and the Evolution of Goal-Directed Cognition. 

Cognitive Science, vol. 30, pp. 3-41. 
6. Hunter, W.S. (1912). The delayed reaction in animals. Behavioral Monographs, 2, 1912, 

pp. 1-85 
7. Huth, M. and Ryan, M. (2000). Logic in Computer Science: Modelling and reasoning about 

computer systems, Cambridge University Press. 
8. McMillan, K.L. (1993). Symbolic Model Checking: An Approach to the State Explosion 

Problem. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 
1992. Published by Kluwer Academic Publishers, 1993. 

9. Moran, N. (1992). The evolutionary maintenance of alternative phenotypes. American 
Naturalist, vol. 139, pp. 971-989. 

10. Plotkin, H. C. and Odling-Smee, F. J. (1979). Learning, Change and Evolution. Advances in 
the Study of Behaviour 10, pp. 1-41. 

11. Sharpanskykh, A., Treur, J. (2006). Verifying Interlevel Relations within Multi-Agent 
Systems. In: Proceedings of the 17th European Conference on Artificial Intelligence, 
ECAI'06. IOS Press, 2006, pp. 290-294. 

12. Sober, E. (1994). The adaptive advantage of learning versus a priori prejustice. In: From a 
Biological Point of View. Cambridge University Press, Cambridge. 

13. Stephens, D. (1991). Change, regularity and value in evolution of animal learning. 
Behavioral Ecology, vol. 2, pp. 77-89. 

14. Tinklepaugh, O.L. (1932). Multiple delayed reaction with chimpanzees and monkeys. 
Journal of Comparative Psychology, 13, 1932, pp. 207-243. 

15. Vauclair, J. (1996). Animal Cognition. Harvard Univerity Press, Cambridge, MA.  
16. Wilson, O. (1992). The Diversity of Life. Harvard University Press, Cambridge, MA. 


